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Abstract—This paper deals with the design, fabrication and
preliminary experimental results of a novel soft tactile sensing
system for large surfaces, aiming at detecting the location of
the contact points on the surface of the sensor. The sensor
is composed by soft material with an IMU embedded on a
deformable silicon-based surface. Using the data provided from
the IMU during morphological variations of the soft sensor, the
aim of the sensing system is to recognize different locations
of single contact points and linear regions of contact points
resembling the contacts with soft linear objects. In order to
achieve this behaviour, an artificial neural network has been
used, and evaluated trough experiments. The reported results
show that the sensing system is able to discriminate between
a grid of single contact locations, and among different linear
regions of contact points, with a mean accuracy superior than
80%, and peak accuracy of 97.97% (for the single single point
contact locations) and 97.54% (for the linear regions of contact
points.)

Index Terms—Soft Robotics, IMU, Silicone, Tactile Sensor, Soft
Materials.

I. INTRODUCTION

The field of Soft Robotics is rapidly expanding in recent
years [1], thanks to many researchers working on a wide
variety of soft robots. Soft Robotics can be roughly divided
into two groups of applications, related to the study of ac-
tuators and sensors. In the field of the actuator, researchers
have worked extensively in developing solutions for robotic
manipulators and grippers, often basing their study on be-
haviours that can be found in nature, as for the case octopuses,
snakes or caterpillars, and many others [2], [3]. For example,
in [4], a soft gripper was actuated pneumatically, highlighting
the simplification and effectiveness with respect to approaches
based on electric motors.

With regard to sensing systems based on soft materials,
most of the researchers have studied and developed devices
that are strongly related to the field of the morphological
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computation [5]. In the present work, we also focus on this
kind of sensing devices, in order to develop a soft tactile
sensor, since the possibility of having an easy-to-build and
low-cost sensing system of this type can be important in many
robotics applications. Many researchers have developed a soft
material based tactile sensor. Kadowaki et al. [6] developed
a soft tactile sensor based on Light Emitting Diodes (LEDs)
and light receiver elements. Paulino et al. [7] developed a low-
cost soft tactile sensor for a robot finger,exploiting Hall-effect
sensor. Hammond et al. [8] used liquid metal circuits in order
to develop a soft sensorized glove for the measurements of the
human hand motions and forces.

In this article, we propose a tactile sensor based on a silicone
skin attached on a proper base in order to obtain a chamber.
In this way, by inserting inserting air into the chamber, the
silicone skin is inflated, changing its morphological structure
and making the sensor able to work with both very soft
and very hard objects. The present work is an advancement
with the respect to our previous works. In [9], [10], we
embedded a strain gauge in the silicon skin also reporting
for its computational model. Subsequently, we developed a
similar sensing system by embedding on the silicon skin an
Inertial Measurement Unit (IMU) realized with a rigid PCB.
This kind of sensor had the dimension of 64x64x25 mm, and
the presence of the rigid IMU-PCB limited the morphological
deformations of the silicon, also causing damages of the soft
skin after short usage. Furthermore, we just evaluated a very
rough possibility of detecting tactile motions with such sensor
[11], without studying the problem of contact points and
regions detection.

In this paper, we improve the design, size and functioning
of the sensing system with respect to our previous works. First
of all, in this work a flexible PCB in the silicon-based skin
of sensor is introduced, then the dimension of the sensor is
also reduced. Finally, we evaluated via experimental sessions
its accuracy in detecting points and linear contact regions.
To achieve this goal, a specific setup has been developed:
the soft sensor is equipped by a 6-axis Force/Torque (F/T)
sensor, and a robot manipulator is used in order to have precise
position and force measurements as ground truth. An artificial



(a) Parts of mold. (b) Assembled mold and silicon
skin.

Fig. 1. Mold for the silicon skin and cured silicon skin.

(a) Parts of mold. (b) Assembled
mold.

(c) Cured silicone base.

Fig. 2. Mold for the silicon base and cured silicon base.

neural network (ANN) is used to train a model used to obtain
the output of the tactile sensor from the embedded IMU. In
this way, we evaluated that the proposed sensor is capable of
detecting contact point locations and discriminating between
different linear contact regions resembling the contact with a
thin objects with a mean accuracy superior than 80%. The
developed sensor can be then used to evaluate the orientation
of a thin object, such as cable, over a large surface.

The article is organized as follows: Sec. II illustrated the
materials and the fabrication techniques of the soft tactile
sensor; in Sec. III the experimental setup is described together
with the protocol for the evaluation of the system, also
reporting for the obtained results and related considerations;
finally, Sec. IV outlines the conclusions.

II. MATERIALS AND METHODS

A. Materials and Fabrication

The material used to build the tactile sensor is silicon
rubber (in detail, for the base: Dragon Skin30 (D30), for the
skin: Ecoflex30 (E30) and Dragon Skin 10 (D10), available

Fig. 3. Soft material tactile sensor.

Fig. 4. Soft material tactile sensor.

from the company Smooth-On Inc1.). This material is selected
because of its properties of being modelled very easily, which
is suitable for the implementation of the deformable skin for
our sensor.

For the skin implementation (see Fig. 1), two kind of
liquid silicon – Ecoflex30 (E30) and Dragon Skin 10 (D10)
– which have the same weight ratio, are mixed up. A mold
is created by means of 3D printing (printer: Zortrax m200
plus, by Zortrax Inc 2.). As mentioned in the introduction, in
our previous work we embedded a rigid PCB accelerometer
(4 mm of thickness) within the skin of the sensor, however
in this way the accelerometer inhibited the full deformation
of the silicone skin. Therefore, we chose in this work a
flexible PCB (available from Shinwa Print Industry Co.3).
In particular, this flexible PCB sensor has only 0.3 mm of
thickness, embedding a flexible circuit and an IMU (the latter,
with 2 mm of thickness.)

For the base implementation, we poured liquid silicone
rubber to the mold illustrated in Fig. 2, which was made of
polyoxymethylene (POM) thermoplastic. Thereafter, in order
to remove several imperfections and bubbles the liquid silicon
creates, we put the mold in a vacuum defoamer. After that,
the liquid silicone was cured in an oven at the temperature of
70 degree Celsius. The aspect of the completed sensor’s base
can observed in Fig. 2(c).

The completed structure of the soft tactile system is shown
in Fig. 3. The base has dimension of 60x55x20 mm, whereas
the dimension of the chamber is 35x40x10 mm. The proposed
soft tactile sensor is 30% smaller than the prototype presented
in our previous works.

B. Working Principle of the Sensor

The working principle of the sensing system is based on
the measurement of the contact surface deformation due to the
contact with he external object through a 3-axis accelerometer.
Moreover, the possibility of changing the pressure inside air
chamber, as shown in Fig. 4, enables to change the sensitivity
of the system, making it suitable for the interaction with a
very large set of object, ranging from deformable, very soft
and very fragile objects to very stiff ones. In the left side of
Fig. 4, it is possible to observe the sensor configuration when
the chamber is empty, i.e. the sensor is not inflated by air.
Conversely, on the right side of Fig. 4, the sensor is inflated

1www.smooth-on.com
2www.3dpworld.it
3www.shinwa-print-ind.co.jp



(a)

(b) (c)

Fig. 5. Soft material tactile sensor with the fixing tool.

(a) (b)

Fig. 6. End-effectors.

Fig. 7. Schematic drawing the experiment setup.

(a) 42 touching positions. (b) Degree of rectangle.

Fig. 8. Experiment position.

by 10 ml of air. In this way, the silicone skin changes its
morphological structure and stiffness, according to the quantity
of inflated air. Consequently, also the pose of the IMU will
change accordingly with the silicone skin shape.

In this way, when a solid object get in contact with a point
of the sensor’s surface (i.e. the silicon skin), the pose of the
IMU will change, based on the new distribution of the air,
due to the deformation of the skin. The data related to the
three-axis accelerometer the IMU is then acquired by means
of an Arduino Due board, which is connected to a computer
that collects all the data. In order to obtain the detection of
the contact points on the sensor, the IMU’s accelerometer data
is processed by means of ANN.

ANN Structure: The ANN used in this study is a shallow
feedforward network [12] implemented in Matlab. In partic-
ular, the network is used in order to perform data pattern
classification, with the aim of detecting contact locations on
the sensor surface, as reported in detail in the following
section. With regard to the structure of the implemented
ANN, an hyperbolic tangent sigmoid has been used for the
activation functions of the hidden layers, whereas a normalized
exponential for the output layer’s activation function [13] – the
latter used in order to map the non-normalized outputs of the
previous layer to the probabilities of the different classes to
be predicted. The number of hidden layers has been varied
between different values in order to evaluate the performance
of the classification – refer to Subsec. III-C. Therefore, first of
all, the ANN is systematically trained on a series of contact
points, as explained in the subsequent Sec. III.

III. EXPERIMENTS AND RESULTS

A. Experimental Setup

In order to train the ANN and perform the evaluation
experiments, we equipped the tactile sensor described in the
previous section by means of a rigid fixing support and a F/T
sensor of the related vertical force of the contact.

The fixing support is realized by 3D printing (printer:
Dimension Elite), and its structure can be observed in Fig. 5.
In particular, Fig. 5(a) shows the different components of the
fixing support, together with the soft tactile sensor, whereas
Fig. 5(b) and 5(c) shows the final assembling in the upper
and later views. Importantly, the fixing support embeds on its



bottom the F/T sensor (Nano17, ATI Industrial Automation,
Inc.4). The F/T sensor is used as measurement ground-truth
the experiment in order to identify different contact conditions
based on the measurement of the applied force through the
proposed sensor.

A suitable set of contact forces are applied on a grid of
contact points by means of two different tools shown in Fig.
6. Specifically, the tool reported in Fig. 6(a) is used to provide
a single-point contact on the sensor surface, and it is covered
on the tip by a thin silicone rubber layer; this silicon cover is
necessary in order to reduce the sharpness of the metal stick
and not damage the silicone skin of the sensor. On the other
hand, the tool illustrated in Fig. 6(b) is used in order to apply
to the tactile sensor a linear contact region, with a thickness of
4 mm. These two tools are therefore mounted as end-effectors
of a robotic manipulator (UR5, Universal Robots), and the
training of the ANN and the related experiments are carried
as explained in the following subsection.

B. Experimental Protocol

As illustrated in Fig. 7, the overall setup used during the
experiment is composed by the UR5 manipulator controlled
by ROS, the F/T sensor attached to base of the tactile sensor
and the proposed tactile sensor. The F/T measurements are
collected in Matlab/Simulink through a specific “Net F/T Box”
connect to PC via Ethernet, while the IMU data coming
from the developed sensor are collected by the same PC and
Matlab/Simulink application by means of an Arduino Due
USB interface.

This setup is used in order to carry out the following
experimental protocol. Three different types of data acquisition
are performed. The first data acquisition is composed by the
output of the IMU while the UR5 is pressing on its surface
with the metal stick end-effector (Fig. 6(a)) on a grid on
42 different locations, as illustrated in Fig. 8(a) (namely: the
42-locations-session); the data acquired during this process
from the tactile sensor are labeled based on the Cartesian
position of the robot, therefore associating the signals with
42 different classes. The second data acquisition is related to
the IMU data when the robot is pressing on the tactile sensor
by means of the linear-like end-effector of Fig. 6(b), applying
the orientations of 0o, 30o, 60o, 90o, 120o and 150o (see Fig.
8(b)) (namely: the 6-orientations-session); in this case, the
signals are labeled according to 6 classes, that corresponds
to the six orientations of the linear region of contact points.
Finally, the third data acquisition is built in the same way
of the second, but considering the orientations of the linear
region of contact points related to 0o, 45o, 90o and 135o (see
Fig. 8(b)) (namely: the 4-orientations-session), corresponding
to the labeling of the signals according to 4 classes. For each
type of data acquisition, we repeated the experiment two times,
and, for each of this repetition, we acquired the data for 3
levels of vertical force applied on the tactile sensor – 0.5 N,
1 N and 2 N (using the information from the force sensor at

4www.ati-ia.com

the base of the tactile sensor) – and 3 levels of inflating air
– 5 ml, 7 ml and 10 ml (measured by using a syringe.) In this
way, we obtained a total amount of 54 datasets (27 datasets
for the first session, and 27 datasets for the second session.)

C. Results

After the experiment, we processed the data in order to
properly obtain the aforementioned datasets and related labels.
Then we trained and tested the ANN on the datasets of
the first experimental session. In this case, the procedure
for the training and testing of the ANN is realized for
each combination of inflated air and vertical force levels, by
means of a nested cross-validation (CV). In detail, the CV
is composed by two nested loops. The inner loop consisted
of a 10-fold CV, whereas the outer loop, a 10-fold CV as
well, evaluated the performance of the ANN model that won
in the inner loop, tested on a separated external fold. This
validation process is then repeated for 9 different values of
the number of hidden layers of the ANN (20, 21, 22, ..., 28),
and the related accuracy results fo the ANN are reported in
Fig. 9(a) for the 42-locations-session, in Fig. 9(d) for the 6-
orientations-session and in Fig. 9(g) for the 4-orientations-
session. According to these figures, it is possible to see that
the best accuracy for the 42-locations-session (97.97%) is
obtained for the combination of 1 hidden layer, 5 ml of air and
2 N of vertical force; with regard to the 6-orientations-session,
the best accuracy is obtained with the same combination
(85.7%); differently, for the 4-orientations-session the best
accuracy (85.7%) corresponded to 256 hidden layers, 10 ml
of air and 2 N of vertical force.

Additionally, for each type of data acquisition, the ANN
trained on the data of the first session is tested on the data
obtained from the second session, in order to evaluate the
accuracy on datasets totally independent from the training set,
as can be observed in the results reported in Fig. 9(b) for
the 42-locations-session, in Fig. 9(e) for the 6-orientations-
session and in Fig. 9(h) for the 4-orientations-session. Finally,
Fig. 9(c), Fig. 9(f) and Fig. 9(i) reports the mean accuracy
between the results obtained from the first and second session
testing, obtaining: (i) for the 42-locations-session, the best
mean accuracy (84.12%) for the combination of 1 hidden layer,
5 ml of air and 1 N of vertical force; (ii) for the 6-orientations-
session, a best mean accuracy of 80.58% for 256 hidden layers,
10 ml of air and 2 N of vertical force; and finally, (iii) for the
4-orientations-session, the combination of 256 hidden layers,
10 ml of air and 2 N of vertical force, a mean accuracy of
96.97% is obtained.

IV. CONSLUSIONS

In this paper, the implementation and the experimental
validation of a tactile sensor based on an inflatable chamber
and an IMU is reported. The working principle of the sensor
is based on the measurement through the IMU of the changes
of the sensor surface due to the contacts with external objects.
The proposed sensor is conceived to deal with both very
soft deformable object as well as stiff objects thanks to



(a) (b) (c)
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Fig. 9. Accuracies resulting from the ANN training and test for the different combinations of number of hidden layers and injected air-pressure force. Fig.
9(a) reports the results of the nested-CV process (first session dataset) for the 42-locations-session, Fig. 9(d) for the 6-orientations-session and Fig. 9(a)
for the 4-orientations-session. Fig. 9(b) reports the results of the testing of the ANN on the trainingset-independent-dataset (second session dataset) for the
42-locations-session, Fig. 9(e) for the 6-orientations-session and Fig. 9(h) for the 4-orientations-session. Finally, Fig. 9(c), Fig. 9(f) and Fig. 9(i) reports the
mean accuracy with respect to the first and second session datasets, for the 42-locations-session, 6-orientations-session and 4-orientations-session, respectively.

the possibility of changing the sensor responsiveness and
sensitivity by changing the pressure inside the air chamber.

The calibration of the sensor both in terms of contact force
detection, location of point contacts and orientation of line
contacts has been executed by means of an artificial neural
network, showing an accuracy ranging from 80.58% in the
worst case to 96.97% in the best one.

Future works will be devoted to the application of the
proposed sensor into a manipulation systems for soft objects.
In this case the use of an additional IMU to compensate
the motion of the sensor and of the whole manipulation
system will be investigated in order to preserved the accuracy
observed during the experiments reported in this paper.
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