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ABSTRACT: The antibiotic ciprofloxacin (CIP) zwitterion has
been cocrystallized via slurry and/or ball-milling with carvacrol
(CAR) and thymol (THY), also known to exert antimicrobial
activity, with the aim of improving the antibacterial activity of
ciprofloxacin. In the case of CAR, the 1:4 cocrystal CIP·CAR4
appears to be the most stable phase, where the intermediate phases
CIP·CAR3 and CIP·CAR2 have been isolated by stepwise loss of
CAR. In the case of THY, the 1:2 cocrystal CIP·THY2 is the most
stable, while the 1:4 cocrystal CIP·THY4 easily loses THY to yield
the bisadduct. All cocrystals were structurally characterized by single
crystal or powder diffraction: in both cocrystals sheets of CIP
molecules are intercalated with layers of CAR and THY, respectively,
that can be released stepwise upon heating as followed by DSC, TGA
and variable temperature XRPD. Preliminary antimicrobial experiments provide encouraging evidence of the enhanced activity of the
cocrystals CIP·CAR4 and CIP·THY2 against Escherichia coli (ATCC 25922) with respect to pure ciprofloxacin as well as to physical
mixtures of ciprofloxacin with carvacrol or thymol.

■ INTRODUCTION

Cocrystallization, an application of crystal engineering
principles,1−5 provides alternative routes to the synthesis of
new materials and/or to the enhancement of the properties of
active molecules.6−11 As a matter of fact, cocrystals are finding
applications in diverse areas: pharmaceuticals,12−16 agro-
chemistry,17−20 high-energy materials,21−23 food,24−26 etc.
The basic idea is that the solid state association, via
noncovalent interactions, of an active ingredient with a
molecular component may alter in a useful way physicochem-
ical properties such as solubility, dissolution rate, thermal
stability, photoreactivity, etc. of the active ingredient.
Cocrystals have become especially attractive in the pharma-
ceutical field, since they can lead to new pharmaceutical
formulations compared, for example, to conventional salts.
This goal is usually pursued by cocrystallizing the API with a

nonactive (GRAS accepted27) molecule, as in molecular
cocrystals, or with a salt, as in ionic cocrystals.28 The large
choice of molecular and/or ionic building blocks makes the
number of possible combinations between active pharmaceut-
ical ingredients (APIs) and ancillary coformers virtually
limitless.
In more advanced applications, however, the API may also

be cocrystallized with another active ingredient, yielding a so-
called codrug,29−33 whereby not only are the solid state

physicochemical properties of the API altered with respect to
those of the pure crystal but also the pharmaceutical and
biological activity may give significantly different results.34−36

In this paper, we apply cocrystallization strategies to
approach a problem of extraordinary contemporary impor-
tance, namely that of “antimicrobial resistance” (AMR). As a
matter of fact, the AMR phenomenon is one of the major
medical challenges in most healthcare systems, both in
developed countries and in low financial income areas.37

AMR has increased dramatically in the recent years and
represents a global public health threat.38 A number of diseases
that were thought to be under control by the application of
antibacterial remedies are getting back being resistant to these
therapies. One of the main reasons for drug-resistance in
microorganisms is the intensive overuse of treatments to
control infections in humans and animals as well as in the
agricultural sector.39 Actually, the reason AMR is a significant
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concern is the high mortality level attributed to infections
caused by multi drug resistant germs.40 A number of common
pathogenic strains are already bearing antibiotic-resistant
genes, and presumably, more antibiotic-resistant pathogens
will emerge in the future, if no different and more cautious use
of antimicrobials takes place.41

To cope with the problem of AMR, two possible strategies
can be used: the first is the quest for novel active ingredients,
but this is facing increasing bench-to-market costs and times;42

the second is the exploration of ways to improve the activity of
existing antibacterials, and it is more promising. In a recent
paper, we showed that cocrystallization of the antibacterial
agents proflavine and methyl viologen with the inorganic salts
CuCl, CuCl2, and AgNO3 results in enhanced antimicrobial
activity with respect to the separate components.43

In this paper we report our results in the cocrystallization of
the known antibiotic ciprofloxacin (CIP hereafter) with the
natural antimicrobials carvacrol (CAR) and thymol (THY)
(see Scheme 1). At ambient conditions THY is a molecular

solid (mp 51.5 °C),44 while carvacrol is a liquid (mp 3.5 °C);44

therefore, crystalline solids containing ciprofloxacin and this
latter coformer should be strictly regarded as “pharmaceutical
solvates”.45−47 However, as it will be apparent in the following,
the distinction between cocrystals and solvates is rather
semantic in the contest of this study and does not reflect
specific differences in physicochemical behaviors.
Ciprofloxacin (1-cyclopropyl-6-fluoro-1,4-dihydro-4-oxo-7-

(1-piperazinyl)-3-quinoline carboxylic acid) is an antibiotic
belonging to the class of fluoroquinolones, which are effective
antibacterial agents against a broad spectrum of Gram-positive
and Gram-negative bacteria. Thymol [5-methyl-2-(propan-2-
yl)benzenol, also known as m-thymol] is a natural mono-
terpenoid phenol derivative of p-cymene, and it is the most
abundant component of the oil extracted from Thymus vulgaris
(thyme). Carvacrol [2-methyl-5-(propan-2-yl)benzenol, also
known as o-thymol], is present in the essential oils of Origanum
vulgare (oregano), thyme, pepperwort, and wild bergamot. The

effective antibacterial properties of both essential oils have
been investigated in vitro and in vivo against diverse Gram-
negative and Gram-positive bacteria such as Salmonella
typhimurium, Escherichia coli, and Listeria monocytogenes.48−52

Both THY and CAR are generally used as natural preservatives
in food treatment and packaging.53−56 They are both
components of “Thymi aetheroleum”, a herbal medicinal
product,57 and have been assigned the GRAS (generally
recognized as safe) status of flavor additives58 by FEMA.59

Recently cocrystals of thymol and carvacrol, among a number
of essential oils components, have been investigated for
agricultural applications.60

In the following, we describe preparation, solid state
characterization and thermal behavior of the two families of
ciprofloxacin cocrystals with carvacrol, CIP·CARn (n = 2, 3, 4)
and with thymol, CIP·THYn (n = 2, 4). The effect of cocrystals
formation on the antibiotic activity of ciprofloxacin has also
been evaluated by means of standard antimicrobial tests in the
case of CIP·CAR4 and CIP·THY2 and compared with the
results for the pure components and their physical mixtures.
Preliminary results are encouraging, and they have prompted a
thorough antimicrobial investigation, which will be the subject
of a separate research project.

■ EXPERIMENTAL PART
Materials and Instrumentation. All reagents and solvents used

in this work were purchased from Sigma-Aldrich and used without
further purification.

Synthesis of Ciprofloxacin Cocrystals with Carvacrol. CIP·
CAR4. CIP·CAR4 was obtained by three different methods: solution,
mechanochemistry, and slurry. In the first one, ciprofloxacin (30 mg,
0.09 mmol) was dissolved in carvacrol (2 mL, 12.99 mmol), and upon
solvent evaporation single crystals were obtained after 2 weeks. In the
second one, 100 mg (0.30 mmol) of ciprofloxacin were manually
ground with 4−5 drops of carvacrol, added in a stepwise manner: the
powder was ground until dryness, and then an additional drop of CAR
was added. In the third method, ciprofloxacin was slurried for 60 h in
3 mL of ethanol with a slight excess of carvacrol with respect to the
CIP:CAR 1:4 stoichiometric ratio; after filtration, the solid material
was left to dry out at room temperature.

CIP·CAR3. CIP·CAR3 was obtained in two steps starting from CIP·
CAR4: first CIP·CAR4 was heated to 80 °C in an oven and kept at this
temperature for 30 min; the sample was then cooled to 40 °C and
kept at this temperature for 4 h.

CIP·CAR2. CIP·CAR2 was obtained in two steps starting from CIP·
CAR4: first CIP·CAR4 was heated to 100 °C in an oven and kept at
this temperature for 30 min; the sample was then cooled to 40 °C and
kept at this temperature for 4 h.

All attempts to synthesize CIP·CAR2 and CIP·CAR3 by direct
mixing of the reactants in the correct stoichiometric ratios were
unsuccessful.

Synthesis of Ciprofloxacin Cocrystals with Thymol. CIP·
THY2. CIP·THY2 was obtained mechanochemically by ball milling
ciprofloxacin (100 mg, 0.30 mmol) and thymol (90.7 mg, 0.60 mmol)
for 30 min in a Retsch MM200 ball miller, operated at a frequency of
20 Hz, in the presence of 2 drops (100 μL) of ethanol.

CIP·THY4. A solid mixture of ciprofloxacin (30 mg, 0.09 mmol) and
thymol (150 mg, 1.00 mmol) was gently ground and subsequently
heated to 55 °C, to induce the melting of thymol (mp of 51.5 °C).44

Upon slow cooling the growth of single crystals was observed. CIP·
THY4 was also obtained via slurry: ciprofloxacin (100 mg, 0.30 mmol)
and excess thymol (272 mg, 1.80 mmol) were slurried in 2 mL of
ethanol for 60 h in a closed vial; the vial was then opened, still under
slurry conditions, to allow the complete evaporation of ethanol.

Thermogravimetric Analysis (TGA). TGA measurements
(Figures SI-6 to SI-11) for all compounds were performed with a

Scheme 1. Ciprofloxacin (CIP) Zwitterion and the Two
Antimicrobial Molecules, Carvacrol (CAR) and Thymol
(THY), Used as Coformers

Crystal Growth & Design pubs.acs.org/crystal Article

https://dx.doi.org/10.1021/acs.cgd.0c00900
Cryst. Growth Des. 2020, 20, 6796−6803

6797

http://pubs.acs.org/doi/suppl/10.1021/acs.cgd.0c00900/suppl_file/cg0c00900_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.cgd.0c00900?fig=sch1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.cgd.0c00900?fig=sch1&ref=pdf
pubs.acs.org/crystal?ref=pdf
https://dx.doi.org/10.1021/acs.cgd.0c00900?ref=pdf


PerkinElmer TGA7 in the temperature range 30−400 °C, under an
N2 gas flow, at the heating rate of 5 °C min−1.
Differential Scanning Calorimetry (DSC). DSC measurements

(Figures SI-12 to SI-16) for all compounds were performed with a
Perkin−Elmer Diamond, at the heating rate of 5 °C min−1. Samples
(3−5 mg) were placed in hermetic aluminum pans.
X-ray Powder Diffraction Measurements. Room temperature

X-ray powder diffraction (XRPD) patterns were collected on a
PANalytical X’Pert Pro automated diffractometer equipped with an
X’Celerator detector in Bragg−Brentano geometry, using Cu Kα
radiation (λ = 1.5418 Å) without monochromator in the 3−40° 2θ
range (step size, 0.033°; time/step, 20 s; Soller slit, 0.04 rad;
antiscatter slit, 1/2; divergence slit, 1/4; 40 mA × 40 kV). For
structure solution purposes, X-ray diffraction patterns were collected
on a PANalytical X’Pert Pro automated diffractometer with
transmission geometry equipped with a focusing mirror and Pixcel
detector, using Cu Kα radiation (λ = 1.5418 Å) without
monochromator in the 2θ range 3−70° (step size, 0.0130°; time/
step, 170.595 s; Soller slit, 0.04 rad; antiscatter slit, 1/2; divergence
slit, 1/2; 40 kV × 40 mA). To improve the quality of the obtained
XRPD patterns, three repetitions were performed, and the scans were
merged. Data analyses were carried out using the PANalytical X’Pert
Highscore Plus program.61

Structural Characterization from Powder Data. Powder
diffraction data were analyzed with the software PANalytical X’Pert
HighScore Plus. Fifteen peaks were chosen in the 2θ range 3−40°,
and unit cell parameters were found using the DICVOL4 algorithm.
The structure of CIP·THY2 was solved by simulated annealing,
performed with EXPO2014.62 Ten runs for simulated annealing trials
were set, and a cooling rate (defined as the ratio Tn/Tn‑1) of 0.95 was
used. The best solution was chosen for Rietveld refinement, which
was performed with the software TOPAS 5.0.63 The peak shape was
modeled for size and strain with the Gaussian and Lorentzian
functions present in TOPAS 5.0. All the hydrogen atoms were fixed in
calculated positions. Refinement converged with χ2 = 1.84 and Rwp =
6.51%. Rietveld refinement is shown in the Supporting Information
(Figure SI-1). Structural data for all compounds investigated in this
work are listed in Table SI-1.
Variable Temperature X-ray Diffraction. X-ray powder

diffractograms in the 3−40° 2θ range were collected for CIP·CAR4
and CIP·THY4 on a PANalytical X’Pert PRO automated diffrac-
tometer, equipped with an X’Celerator detector and an Anton Paar
TTK 450 system for measurements at controlled temperature. Data
were collected in open air in Bragg−Brentano geometry using Cu Kα
radiation without a monochromator. Thermal programs were selected
on the basis of TGA results.
Single Crystal X-ray Diffraction. Single crystal X-ray diffraction

data for CIP·CAR4 and CIP·THY4 were collected at room
temperature and at 250 K, respectively, with an Oxford Diffraction
X’Calibur equipped with a graphite monochromator and a CCD
detector. Unit cell parameters for all compounds discussed herein are
reported in Table SI-1. The structures were solved by the Intrinsic
Phasing methods and refined by least-squares methods against F2

using SHELXT-201664 and SHELXL-201865 with Olex2 interface.66

Non-hydrogen atoms were refined anisotropically. Hydrogen atoms
were added in calculated positions. The software Mercury 4.1.267 was
used to analyze and represent the crystal packing. Crystal data can be
obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html
(or from the Cambridge Crystallographic Data Centre, 12 Union
Road, Cambridge CB21EZ, UK; fax: (+44)1223-336-033; or e-mail:
deposit@ccdc.cam.ac.uk). CCDC 2010400−2010402.
Testing of Antimicrobial Activity. Antimicrobial activity was

tested with broth microdilution, according to the guidelines of the two
established organizations and committees on antimicrobial suscept-
ibility testing, the CLSI and EUCAST.68−70 For comparison, testing
was conducted on suspensions of thymol, carvacrol, ciprofloxacin, and
both physical mixtures and cocrystals of CIP·THY2 and CIP·CAR4, in
10 progressive concentrations ranging from 0.063 to 160 μg mL−1. All
suspensions were tested in parallel, using both a reference strain of E.

coli (ATCC 25922), which is susceptible to ciprofloxacin, and a
ciprofloxacin-resistant E. coli strain (MIC > 32).70

■ RESULTS AND DISCUSSION
Cocrystals of Ciprofloxacin with Carvacrol. The

cocrystallization of ciprofloxacin with CAR resulted in the
formation of the cocrystal CIP·CAR4, characterized by a 1:4
stoichiometry. Figure 1a shows how the carboxylate group on

ciprofloxacin interacts via hydrogen bonds with the −OH
group of two molecules of CAR, while the remaining two CAR
molecules in the formula unit form OH···OOH hydrogen bonds
with other CAR molecules. Each ciprofloxacin molecules
interacts via NH+···OCOO- and COO−···HN+ hydrogen bonds
with four neighboring ciprofloxacin molecules. Figure 1c shows
an interesting feature of the molecular packing in crystals of
CIP·CAR4, namely a layered structure: one layer is formed by
ciprofloxacin and two (referred by symmetry) CAR molecules,
while the second layer is exclusively formed by the remaining
three CAR molecules. This feature is of help in understanding
the thermal behavior of the cocrystal (see below), and it is
shared with the cocrystal of ciprofloxacin with THY.
Segregation of CAR and THY has also been observed in
cocrystals with acridine.71

The study of the thermal behavior of CIP·CAR4 via DSC
allows one to observe, on heating, the presence of multiple
endothermic events at 80, 92, and 109 °C (peak temperatures,

Figure 1. Hydrogen-bonding interactions between ciprofloxacin and
the carvacrol molecules in crystalline CIP·CAR4 (a). The cipro-
floxacin molecules also interact with each other via hydrogen bonds;
they are arranged in nets (b) filled with a quarter of the CAR
molecules (c), thus forming parallel layers (d) alternating with thick
layers of CAR molecules (e). HCH hydrogens were omitted for clarity.
Carbon atoms of CAR are given in orange.
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see Figure SI-7), followed by exothermic events. This is an
indication that CAR molecules are released stepwise from the
crystal, and each loss of CAR is immediately followed by
recrystallization to a cocrystal with different stoichiometry. The
last step corresponds to complete loss of CAR and
recrystallization of ciprofloxacin. The stepwise loss of CAR
from CIP·CAR4 to CIP is summarized in Scheme 2.

The series of solid-to-solid transformations occurring upon
heating crystalline CIP·CAR4 was also followed by variable
temperature X-ray powder diffraction (see Figure SI-3). The
temperatures at which the transformations occur from CIP·
CAR4 to CIP·CAR3, then to CIP·CAR2 and finally to CIP, are
in agreement (80, 100, and 110 °C, respectively) with the DSC
values. Thermal gravimetric analysis, on the contrary, is not as
informative (see Figure SI-13), and its trace shows a single,
broad event corresponding to the loss of all CAR molecules
per formula unit (weight loss ca. 63%) in the temperature
range 60−150 °C. This is attributable to the low volatility of
CAR, which leaves the crystal but does not evaporate from the
sample in the TGA experiment. VT-XRPD experiments
confirmed this observation: two samples of CIP·CAR4 were
first converted into CIP·CAR3 and CIP·CAR2, respectively,
and then they were cooled to room temperature. In both cases,
partial reformation of CIP·CAR4 could be observed; i.e., excess

of CAR was still available in the powder samples at the end of
the heating cycles.
The results of the VT-XRPD measurements were useful for

the preparation of the intermediate phases CIP·CAR2 and CIP·
CAR3 as pure materials. In both cases samples of CIP·CAR4
were heated to the transition temperatures (ca. 80 and 100 °C,
respectively) and kept at these temperatures for 30 min, to
allow for complete transformation; the samples were then
cooled to 40 °C and kept at this temperature for 3−4 h to
allow for complete evaporation of the excess CAR. TGA
measurements on these pure samples (see Figures SI-15 and
SI-16) allowed to confirm the CIP·CAR3 and CIP·CAR2
stoichiometries. Once formed, all cocrystals of ciprofloxacin
with CAR are stable. Even after 50 days in the open air, no
change of crystalline phase was observed.

Cocrystals of Ciprofloxacin with Thymol. Thymol is a
solid at ambient conditions, but it melts at 51.5 °C.44 For this
reason, the same cocrystallization approach used for
ciprofloxacin with CAR was applied here, and ciprofloxacin
was dissolved in excess melted THY (see Experimental Part).
Upon slow cooling of the mixture two types of single crystals
were recovered, and both were characterized via X-ray single
crystal diffraction. The first type of crystals turned out to be
pure THY, identified on the basis of CSD data (refcode
IPMEPL72), while crystals of the second type were
characterized as the new cocrystal CIP·THY4. Data were
collected at 250 K, to avoid loss of THY during data collection.
In terms of crystal structure, CIP·THY4 closely resembles CIP·
CAR4, as is evident from Figure 2.
Figure 2a shows how ciprofloxacin interacts via hydrogen

bonds with the −OH group of three molecules of THY, while
the remaining THY molecules in the formula unit form an
OH···OOH hydrogen bond with another THY molecule. As
observed in CIP·CAR4, each ciprofloxacin molecules interacts
via hydrogen bonds with four neighboring ciprofloxacin
molecules, thus forming a 2D-net (see Figure 2b) filled with
THY molecules (Figure 2c). The most relevant analogy,
however, is represented by the layered organization, as thick
layers of THY intercalate between the ciprofloxacin/THY
layers, as shown in Figures 2, part d and e.
Ciprofloxacin and THY were also made to mechanochemi-

cally react in 1:4 stoichiometric ratio in a ball milling
experiment, in the presence of two drops of ethanol. This
time, however, a new solid was obtained, characterized by a
powder diffraction pattern different from those of the starting
materials and of CIP·THY4, although peaks of unreacted THY
were still present. The synthesis via ball milling was thus
repeated with lower quantities of THY, and a pure phase was
obtained with the 1:2 stoichiometric ratio, as confirmed by
TGA (see Figure SI-14). The new cocrystal CIP·THY2 was
structurally characterized from powder data (see Experimental
Part), since all attempts to grow single crystals were
unsuccessful. Figure 3a shows the hydrogen-bonding inter-
actions of ciprofloxacin with the two independent THY
molecules. As in CIP·THY4 the CIP molecules form a 2D net
(Figure 3b), with ciprofloxacin molecules connected via
hydrogen bonds; parallel nets (Figure 3c) are intercalated
with THY molecules, which also partially enter the CIP layers
with the −OH groups (Figure 3d).
Pure CIP·THY4 was also obtained by slurry in EtOH with an

excess of THY; the resulting solid was then left in the air for 72
h, for the excess of THY to sublimate. A DSC measurement on
CIP·THY4 thus obtained (Figure SI-8) shows two endother-

Scheme 2. Solid-State Transformations upon Heating for
the 1:4 Cocrystals of Ciprofloxacin (CIP) Zwitterion with
Carvacrol (CAR) and Thymol (THY)a

aTemperatures are from DSC measurements (peak values, see
Supporting Information).
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mic events, at ca. 69 °C and at 137 °C, respectively. VT-XRPD
experiments (Figure SI-5) confirmed that the first event
corresponds to the transformation of CIP·THY4 into CIP·
THY2, while the second one leads to complete loss of THY.
The stepwise loss of THY and the thermal transformation of
CIP·THY4, first into CIP·THY2 and then into CIP, are
summarized in Scheme 2.

Antimicrobial Activity. The antimicrobial activity of the
cocrystals CIP·CAR4 and CIP·THY2, chosen because they
could easily be obtained mechanochemically as pure phases,
was compared with that of the pure components, as well as
with that of physical mixtures of CIP and CAR/THY in
adequate stoichiometric ratios, against a reference strain of E.
coli (ATCC 25922), which is susceptible to the ciprofloxacin
component. Pure samples of CIP·CAR4 and CIP·THY4
obtained as described above were used.
Concerning strain ATCC 25922, ciprofloxacin showed

growth inhibition at 4 μg/mL, while THY and CAR were
not effective by themselves and did not show growth
inhibition. The physical mixtures of CIP and CAR and of
CIP and THY in 1:4 and 1:2 ratios, respectively, resulted in
growth inhibition at ca. 10 μg/mL, which, upon normalization,
approximately corresponds to the inhibition effect of pure
ciprofloxacin. Interestingly, both CIP·CAR4 and CIP·THY2
cocrystals showed growth inhibition at ca. 2 μg/mL
concentration; normalizing these quantities on the base of
the cocrystals formula units, it can be seen that CIP·CAR4 and
CIP·THY2 are ca. 6 and 4 times more efficient, respectively,
with respect to pure ciprofloxacin.

■ CONCLUSIONS
The study of cocrystals is at the forefront of crystal engineering
because it offers a viable route to prepare, often with
nonexpensive and environmentally friendly solvent free
(mechanochemical) methods, novel materials for a variety of
applications well beyond the pharmaceutical field. For instance,

Figure 2. Hydrogen-bonding interactions between ciprofloxacin and
the thymol molecules in crystalline CIP·THY4 (a). The ciprofloxacin
molecules also interact with each other via hydrogen bonds; they are
arranged in nets (b) filled with a quarter of the THY molecules (c),
thus forming parallel layers (d) alternating with thick layers of THY
molecules (e). HCH hydrogens were omitted for clarity. Carbon atoms
of THY are given in orange.

Figure 3. Hydrogen-bonding interactions between ciprofloxacin and the thymol molecules in crystalline CIP·THY2 (a). As in CIP·THY4, the CIP
molecules form 2D-nets (b and c), filled with the −OH extremities of the intercalated thymol layers (d). HCH hydrogens were omitted for clarity.
Carbon atoms of THY are given in orange.
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it has been amply shown that cocrystallization approaches can
be used to produce materials that can be used as fertilizers,
nutrients and enzyme inhibitors in the agrochemical field.17−19

There are also indications that cocrystals could be used in an
area of increasing global importance, such as that of
antimicrobial resistance. In the case of proflavine, for example,
it has been possible to demonstrate that cocrystallization of
proflavine with CuCl and AgNO3 yield materials, namely PF·
CuCl and PF·AgNO3 that appear to perform better in terms of
antimicrobial activity than proflavine and the inorganic salts,
separately.43

In this paper, we have reported the preparation and
characterization of a series of cocrystals obtained by cocrystall-
izing by slurry and/or ball-milling the antibiotic ciprofloxacin
(CIP) with carvacrol (CAR) and thymol (THY), which are
also known to exert antibacterial activity. CIP forms
compounds in 1:4 ratio with both coformers. While CIP·
CAR4 is stable and loses CAR in stepwise manner upon
heating with formation of the phases CIP·CAR3 and CIP·
CAR2, while CIP·THY4 is unstable and loses THY
spontaneously at room temperature with formation of stable
CIP·THY2.
The idea was that of verifying whether cocrystallization of a

known antibiotic with herbal medicinal products could indeed
represent a viable route to improve the properties of
ciprofloxacin. Preliminary antimicrobial testing against a
reference strain of E. coli (ATCC 25922), susceptible to
ciprofloxacin, clearly indicated that cocrystals CIP·CAR4 or
CIP·THY2 have the comparable bacteriostatic activity, and that
this is significantly better than ciprofloxacin alone. If one takes
into account that THY and CAR appear to be not effective on
their own, or in physical mixture with ciprofloxacin, it appears
that association with ciprofloxacin in the cocrystals enhances
significantly its efficacy. These encouraging preliminary results
require an in depth systematic study, which is under way.
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