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Abstract
A global reshaping of the immune responses occurs with ageing, indicated as immunosenescence, where mitochondria and
mitochondrial metabolism play an important role. However, much less is known about the role of mitochondrial
stress response in this reshaping and in particular of the molecules induced by such response, collectively indicated
as mitokines. In this review, we summarize the current knowledge on the role of mitokines in modulating immune
response and inflammation focusing on GDF15, FGF21 and humanin and their possible involvement in the chronic
age-related low-grade inflammation dubbed inflammaging. Although many aspects of their biology are still contro-
versial, available data suggest that these mitokines have an anti-inflammatory role and increase with age. Therefore,
we hypothesize that they can be considered part of an adaptive and integrated immune-metabolic mechanism activated by
mitochondrial dysfunction that acts within the framework of a larger anti-inflammatory network aimed at controlling both acute
inflammation and inflammaging.
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Introduction

During ageing, an imbalance between inflammatory and spe-
cific immune responses occurs, leading to a decreased effi-
ciency of these latter. It is known in fact that elderly people
are more susceptible to infectious diseases and have a lower
response to vaccination, with respect to young people. In par-
ticular, an increased inflammatory response blocks the activa-
tion of B and T cell responses [1–6]. This phenomenon,

indicated as “immune paralysis” [7] or sometimes “immune
activation” [8], can be considered one of the most striking
clinical features of immunosenescence, and it is at least in part
due to an excess activation of immune cells, mediated by pro-
inflammatory cytokines [9–14]. B cells from both mice and
humans are also impaired as a result of exposure to pro-
inflammatory cytokines such as TNF-α [15, 16]. In fact, high
levels of TNF-α induce a significant decrease in the capacity
of B cells to produce protective antibodies [15, 16]. Other cell
types like macrophages and NK cells undergo immune paral-
ysis after a prolonged inflammation. To this regard, it has been
reported that human monocytes display phagocytosis defects
up to 6 months after a recovery from an inflammatory condi-
tion [17]. As far as NK cells, a decrease of NK cell number
and functionality has been reported in experimental sepsis
[18]. Moreover, it is also reported that chronic inflammation
can drive the induction of myeloid-derived suppressor cells
(MDSCs), which in turn create a microenvironment
favourable to immune suppression [19–21]. To this regard,
an almost universal phenomenon occurring during ageing is
a state of chronic, low-grade, sterile inflammation that has
been termed inflammaging [22]. Since many years, the role
of energy metabolism in immune responses and inflammation
is acknowledged (see below). However, the picture is much
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less clear as far as the role of mitochondrial stress response in
these phenomena. In fact, it is known that a series of reactions
are elicited in response to a mitochondrial dysfunction.
In this short review, we will focus on the possible in-
volvement of mitokines, i.e. soluble molecules produced
in response to mitochondrial stress, in immunosenescence and
inflammaging.

Inflammaging has long been considered a feature of
immunosenescence, as it was thought that macrophages were
the main responsible for the observed age-related increase of
soluble inflammatory mediators [22]. Since then, the role of
other cells and tissues as well as the contribution of other
biological processes such as meta-flammation and cellular se-
nescence has been recognized; however, the importance of
immune cells in inflammaging is likely not negligible, consid-
ering in particular the capability of immune cells to recognize
self-molecules such as uric acid crystals, heat shock proteins
and mitochondrial components. These latter include
cardiolipin, N-formyl peptides, TFAM transcription factor,
mitochondrial DNA (mtDNA) and double-stranded RNA
(dsRNA) [23, 24]. These self-molecules, when misplaced or
altered in any way, can be sensed by macrophages through
innate immunity receptors and can induce the production and
release of pro- and anti-inflammatory mediators such as IL-6,
TNF-α, IL-1β, RANTES and IL-1ra [25–28]. Collectively,
these self-molecules are indicated as DAMPs (danger-associ-
ated molecular patterns), and their receptors are indicated as
PRR (pattern recognition receptors). More recently, the pro-
inflammatory role of at least some of those molecules has been
extended also to non-immune cells, as they can be sensed also
through widely expressed intracellular receptors, such as
inflammasomes, mitochondrial antiviral signalling (MAVS)
proteins, cGAS-Sting and toll-like receptor 9 (TLR 9), leading
to a robust inflammatory and type I interferon response [24].
We have hypothesized that a possible cue for understanding
inflammaging resides in the age-dependent increment in the
production (or inefficient clearance) of these DAMPs, a phe-
nomenon that we proposed to indicate as “garb-aging”
[29]. As a solid example of garb-aging, we have report-
ed that circulating levels of mtDNA increase with age
and that people with highest levels of circulating
mtDNA show higher concentrations of IL-6, TNF-a,
RANTES and IL-1ra with respect to those with the
lowest levels of mtDNA [30].

Other than sources of DAMPs, mitochondria are important
modulator of immune responses also because of their role in
energy metabolism, as it is known that T lymphocyte activa-
tion entails a shift from oxidative phosphorylation (OXPHOS)
to aerobic glycolysis [31], though OXPHOS is still present
and needed for the functional differentiation. In particular, it
has been reported that succinate dehydrogenase is needed for
T cell differentiation into Th1, while OXPHOS complex I, the
malate-aspartate shuttle and the mitochondrial citrate export

are required for proliferation [32]. Considering that one of the
key features of ageing appears to be mitochondrial dysfunc-
tion, it is more than likely that such dysfunction can also
impinge upon proper T cell function [23]. Accordingly, it
has been recently reported that CD4+ T cells from elderly
people are characterized by the presence of an elevated num-
ber of dysfunctional mitochondria engulfed into
autophagosomes with respect to cells from young people,
suggesting the presence of a defective mitochondrial turnover.
These defective mitochondria may be the source of inflamma-
tory stimuli, as mentioned above, and contribute to the impair-
ment of immune defences in older people [33–35].

As far as B lymphocytes, it is reported that activation of
naïve B lymphocytes leads to an increase in mitochondrial
mass and number as well as expression of genes for TCA
cycle and OXPHOS [36] and, on the other side, inhibition of
OXPHOS (by oligomycin) or TCA (by glutamine depletion)
blocks the activation of B cells and differentiation into
plasmablasts, as well as proliferation and antibody class
switching [36, 37]. These data suggest that also for B cells
mitochondrial energy metabolism is important and that mito-
chondrial dysfunction can be at the basis of B cell functional
impairment.

Finally, it is known that a main feature of the ageing bone
marrow is a shift toward the production of myeloid cells at the
expenses of lymphoid ones [38], and, consistently, it has been
found that in a mouse model of mitochondrial impairment
(UCP2 knockout, leading to an increased production of
ROS), aged animals display an increased amount of mono-
cytes and neutrophils and a decreased amount of B cells [39].

Mitochondrial stress response and immune
responses

Despite the fact that, as mentioned in the previous paragraph,
mitochondrial dysfunction can be a cause of immune response
impairment, it has been proposed that a mild mitochondrial
dysfunction could be beneficial for the cell as it could elicit an
effective stress response [40]. This hypothesis was introduced
a few years ago by Johnson and co-workers in a study con-
ducted on Caenorhabditis elegans. They demonstrated that a
mild disruption of mitochondrial electron transport chain
(ETC) causes a transient DNA (nuclear and mitochondrial)
damage leading to the activation of compensatory mecha-
nisms that increase the lifespan in C. elegans [41]. A detailed
discussion on the retrograde stress responses elicited by a
mitochondrial stress, such as the mitochondrial unfolded pro-
tein response, is outside the scope of this short review, as
many excellent studies have been published on this topic
[40, 42, 43]. Rather, we will focus on the effects of some
downstream products of this stress response on the immune
function and on inflammation.
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In their 2011 seminal paper, Dillin and co-workers demon-
strated that the beneficial effect of a mild mitochondrial stress
is not limited to the affected cell/tissue but also spreads to
distal ones, thus conferring a global resistance and survival
advantage to the whole organism [44]. In this paper, the au-
thors presented evidence that an impairment of the electron
transport chain localized in one tissue can be perceived in
distal ones. In other words, the signalling of a localized mito-
chondrial perturbation can actually spread through the organ-
ism via soluble mediators that these authors indicated as
“mitokines”. A mitokine should be a soluble molecule (pro-
tein, peptide or other) produced and secreted in response to a
mitochondrial stress response and able to elicit an adaptive/
compensatory response in distal cells even though not directly
affected by the stressful event/stimulus. Since then, a number
of molecules have been identified that fulfil this definition,
including the neuronal peptide FLP2 in C. elegans [45], the
fibroblast growth factor 21 (FGF21) [46–48] and the growth
differentiation factor 15 (GDF15) [49, 50] and a series of
mitochondrial DNA-encoded peptides that include humanin
(HN) [51], MOTS-c [52, 53] and small humanin-like peptides
(SHLPs) [54]. We have reported that some of them, namely,
GDF15, FGF21 and HN, increase with age from young people
to centenarians and are associated with worsened
haematochemical parameters and, for nonagenarians and cen-
tenarians, with lower life expectancy [55]. Consistently,
GDF15 has been reported to be the most upregulated protein
in old age [56, 57] associated with many pathological condi-
tions, such as type 2 diabetes (T2D), cardiovascular diseases
(CVD), neurodegeneration and overall mortality [50, 58–60].
FGF21 is considered a pro-longevity hormone as it is able to
modulate energy and lipid metabolism and extend animal
lifespan [46, 47, 61–63]; however, it is also involved in accel-
erated ageing and premature death in Opa-1-deficient mice
[64]. HN has been identified as a powerful anti-apoptotic fac-
tor with a cytoprotective role in many age-associated diseases
such as Alzheimer’s disease (AD), T2D and CVD [65]. As a
whole, these data support the idea of mitohormesis proposed
by Ristow and Zarse [66]. According to this idea, the pro-
longevity effects of some treatments like calorie restriction
are ultimately due to an increased formation of ROS, which
in turn activates a retrograde response of stress resis-
tance culminating in lifespan extension. The observed
age-related increase of mitokines could be then consid-
ered an attempt of mitohormesis aimed at increasing
stress resistance [55, 67]; however, when the production
of otherwise beneficial mitokines turns from acute to
chronic (as it occurs with age), it becomes either no
longer effective or even toxic [55]. In the next para-
graphs, we will briefly summarize the present knowl-
edge on the involvement of mitokines in the ageing of
the immune system (immunosenescence), with particular
regard to inflammaging.

Mitokines in immune responses

The role in immune response and inflammation of the mostly
studied mitokines will be briefly described below, and, where
available, data on ageing will be discussed.

GDF15

GDF15 was discovered over 20 years ago as a member of the
transforming growth factorβ (TGF-β) superfamily. The func-
tion of GDF15 is not still fully clear, since several findings
propose opposite roles for this protein. While on one hand
many studies suggest a protective/anti-inflammatory role for
GDF15, on the other hand, many studies hypothesize a
pathogenic/pro-inflammatory function.

Several studies in humans have reported that GDF15 activ-
ity increases under stress conditions in response to tissue in-
sults. In healthy individuals, as well as young subjects, the
circulating concentration of GDF15 is very low. Conversely,
plasma GDF15 levels are higher in the elderly, in particular in
the presence of pathological conditions, such as CVD, insulin
resistance and T2D, neurodegeneration, renal chronic disease
and cancer [50, 55], where it is supposed that GDF15 plays a
protective role against different insults via PI3K–Akt, ERK1/2
and SMAD2/3 signalling pathways [68–71]. Recently, it has
been shown that GDF15 decreases the expression of pro-
inflammatory cytokines and prevents the activation of T cells
in the liver of mice with fibrosis, while deficiency of GDF15
aggravates liver injury and fibrosis [72]. In agreement, Bootcov
and co-workers found that the expression of GDF15 is induced
in macrophages by IL-1β, IL-2, TNF-α and TGF-β and limits
their activation, consequently blunting inflammation [73].
GDF15 is responsive to inflammation via p53 [74] and is nec-
essary for tolerance to inflammation induced by viral or bacte-
rial infections [75]. We have reported that GDF15 in humans is
associated with increased number of total leukocytes and de-
creased number of lymphocytes [76]. This is also in agreement
with a previous report showing an increase of GDF15 and a
concomitant decrease in circulating CD4+ and CD8+ T cells in
patients with COPD [77]. Therefore, all these findings suggest
that GDF15 may have an anti-inflammatory role, although
there are also studies suggesting the opposite. In particular, a
study in mouse models indicates that the deletion of
haematopoietic GDF15 reduces CCR2 expression and chemo-
taxis and improves plaque stability, with beneficial effects
against atherosclerosis [78]. In agreement, another study in
mice demonstrates that GDF15 is involved in the progression
of atherosclerosis by regulating apoptotic cell death and IL-6
inflammatory response [79]. The hypothesis that GDF15 may
play detrimental role is also supported by many studies on the
effects of GDF15 on cachexia. Higher circulating GDF15
levels in fact were found to be associated with the development
of cachexia in both animal models and human patients [80–82].
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In particular, gain- and loss-of-function experiments in mouse
models suggest that GDF15 is a mediator of cancer cachexia
[81]. In addition, GDF15 is also considered a marker of all-
cause mortality [50, 83], and in agreement in our previous
study, we found that, among mitokines, GDF15 is the most
associated with mortality in old age [55]. Therefore, the role
of GDF15 is more complex than expected and possibly double-
sided. In a condition of mild or transient stress (or when a
pathology is in an early stage), the increase in circulating
GDF15 levels could be protective; on the contrary, when the
stress is elevated and chronic (or when a pathology is in an
advanced stage), the continuous/chronic release of GDF15
may become detrimental [55, 84]. It is also possible that, very
simply, in chronic situations, the detrimental effects that caused
GDF15 expression overcome GDF15’s beneficial ones.
Interestingly, GDF15 appears themost upregulated protein dur-
ing the ageing process, as mentioned above [56, 57]; therefore,
its importance is probably higher than expected and plays a
crucial role in the interconnection between metabolism, inflam-
mation and immune response in old age.

Given the large number of actions associated with GDF15,
a still unresolved question is how GDF15 acts and by what
type of receptors. To date, the only confirmed GDF15 receptor
is the GDNF receptor family member GFRAL, acting with its
co-receptor RET. However, several studies in mice, as well as
in nonhuman primates, reported that GFRAL expression is
present only in hindbrain neurons but not in other peripheral
tissues [85, 86]; therefore, it is not yet clear how GDF15 can
act directly on peripheral tissues in the absence of any known
receptors. It is then possible that still not recognized receptors
exist other than GFRAL or that GDF15 may exerts its effects
through other molecules. Actually, previous studies showed
that GDF15 might act on different cell types through TGF-β
and its receptors, as GDF15 is involved in the regulation of
TGF-β/Smad signalling pathway [74, 87–90]. However, these
findings must be interpreted with caution, as it has been re-
ported that commercial preparations of recombinant GDF15
can be contaminated with variable levels of TGF-β [91].

HN

HN plays a cytoprotective role against oxidative stress, apo-
ptosis and inflammatory response [65]. A role for HN in im-
mune responses has been, in fact, demonstrated in several
studies, suggesting that HN has a role in the attenuation of
inflammation and it has therefore to be considered an anti-
inflammatory mediator [92–95]. In particular, the neuropro-
tective role of HN has been at least in part attributed to the
capability of HN to interact with the gp130 subunit of the IL-6
receptor, leading to a decreased in vitro production of pro-
inflammatory cytokines, such as IL-6, IL-1β and TNFα [92,
94]. HN attenuates inflammation and macrophages infiltra-
tion, as well as apoptosis, also in the early stage of kidney

disease in ApoE-deficient mice [93]. Moreover, it is possible
that the anti-inflammatory activity is partly mediated by the
well-known anti-apoptotic effects of HN, as it can dampen the
production of pro-inflammatory, apoptosis-related DAMPs.
To mention only few examples of the anti-apoptotic activities
of HN, it has been demonstrated that HN physically interacts
with IGFBP-3, a pro-apoptotic protein [96]. In particular,
IGFBP-3 expression is very elevated in brain affected by
AD suggesting a role for IGFBP-3 in cell death [97].
Moreover, it has been demonstrated that HN interacts with
the apoptosis-inducing protein Bax, creating a HN-Bax com-
plex. In this way, HN retains Bax in the cytoplasm and pre-
vents the translocation of Bax tomitochondria, thus protecting
from apoptosis [98]. This activity is important also for inflam-
mation, as the activation of Bax/Bak complexes leads not only
to the release of pro-apoptotic molecules but also of mtDNA
and dsRNA that can activate a pro-inflammatory response via
MAVS, cGAS-Sting, inflammasomes and NF-κB [24].
Consistently with the idea that HN has not only cytoprotective
but also anti-inflammatory roles, it has been found that HN
has protective roles not only in AD [94] but also in T2D, CVD
and atherosclerosis [95, 99–101], which are all considered
inflammaging-related diseases [102, 103]. Moreover, very re-
cently it has been reported that HN, and probably other
mitochondria-derived peptides, improves not only health sta-
tus but also lifespan [104]. In particular, Yen and co-workers
found that the overexpression of HN increases lifespan in
C. elegans, while middle-aged mice treated with the potent
humanin analogue HNG showed an improvement in health
parameters [104]. Literature data are still controversial as far
as the age-related changes in HN circulating levels. At vari-
ance with some studies that showed a decrease of HN with
ageing in both mice and humans, we have found in humans an
increase of HN with age. To further support this finding, we
have also observed that higher levels of HN and GDF15 are
present in people with accelerated ageing such as Down
Syndrome (DS) persons, with respect to their siblings of sim-
ilar age [55]. In agreement with our finding, a recent work by
Salemi et al. [105] shows a significant upregulation of HN in
fibroblasts from DS persons compared with non-trisomic sib-
lings [105]. As a whole, it is tempting to speculate that these
increases in HN concentrations can be considered an attempt
of the tissue/organism to counteract the detrimental effects of
inflammation/inflammaging.

FGF21

FGF21 is an important regulatory protein of energy metabo-
lism and inflammatory processes. Several studies of gain- and
loss-of-function indicate that FGF21 is a key metabolic medi-
ator to improve the compromised mitochondrial function and
reduce inflammation and apoptosis in several organs
[106–108]. An in vitro study in LPS-stimulated murine
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macrophagic cells (RAW 264.7) demonstrated that a pre-
incubation with FGF21 reduces the expression of the pro-
inflammatory cytokines TNF-α, IL-1β and IL-6, increases
the level of IL-10 and inhibits the activation of the nuclear
factor-κB (NF-κB) [109]. This finding was then confirmed
and further investigated by many other studies. For example,
a recent study from Gao et al. [110] demonstrated that FGF21
suppressed inflammation and apoptosis caused by LPS stim-
ulation via inhibition of TLR4/MYD88/NF-κB signalling
pathway in both Balb/c mice and BEAS-2B or THP-1 cells
[110]. Moreover, in a rat model of atherosclerosis, the upreg-
ulation of FGF21 affected inflammation and oxidative stress
by increasing the expression of Nrf2-ARE (nuclear factor ery-
throid 2-related factor 2-antioxidant response elements)
signalling-related proteins [111], which are involved in cellu-
lar antioxidant and anti-inflammatory pathways, as well as in
the protection of mitochondria.

In addition to its anti-inflammatory role, FGF21 seems to
play also an important protective role against thymus ageing
by delaying age-related thymic involution in mice [112]. In
particular, the overexpression of FGF21 reduces the genera-
tion of ectopic lipids and inflammation, while its loss-of-
function in middle-aged mice accelerates thymic involution.
Therefore, it seems that FGF21 can be considered a key reg-
ulator of the immune function able to counteract at least in part
the immune dysfunction occurring with ageing. In agreement
with these positive roles in immune function, FGF21 has a
pro-longevity activity in mice [93] and is considered a marker
of successful ageing [113]. However, the precise role of
FGF21 in ageing is still highly questioned. In fact, it is report-
ed that FGF21 could be responsible for the accelerated ageing
phenotype observed in Opa-1 KOmice [64], and consistently,
in our previous study, we have found that circulating FGF21
levels increase with age in subjects without evident patholo-
gies and are particularly higher in centenarians. Moreover, we
have found that FGF21 is positively associated with worsened
parameters, such as higher insulinemia and HOMA-IR, and is
inversely correlated with survival in oldest subjects [55].
Therefore, whether the role of FGF21 in ageing is beneficial
or detrimental is still to be clarified. It has to be considered
that, similarly to GDF15, an acute or chronic production of
FGF21 may have different or even opposite biological mean-
ings. Therefore, it could be speculated that an acute increment
of FGF21 is good for health and lifespan, while a chronically
elevated level of circulating FGF21 could be detrimental or,
more likely, could be interpreted as an attempt of the organism
to counteract an overwhelming stress.

Other mitokines

Much less is known regarding the role in immune responses/
inflammation of mitokines such as FLP2, MOTS-c and
SHLPs.

FLP2 neuropeptide is important for the regulation of mito-
chondrial stress response in the nervous system of C. elegans.
FLP2 is released by neurons during mitochondrial dysfunc-
tion and transmits to distal tissues a signal for the induction of
UPRmt [45]. However, its overexpression does not extend
worms’ lifespan [45]. No data are available regarding the pos-
sible involvement of FLP2 in the ageing process, as well as
inflammation or immune response. However, since many
studies indicate that UPRmt affects inflammatory responses
[114–117], it is possible that, at least indirectly, FLP2 can
have a role as well.

MOTS-c is a peptide of 16 amino acids discovered few
years ago by Lee et al. [53]. MOTS-c is expressed in several
tissues, such as skeletal muscle and adipose tissue, but it is
also present at circulating level, both in mice and humans [53,
118]. Studies suggested that MOTS-c is a key regulator of
cellular metabolism and inflammatory processes [53, 119]. It
has been shown that MOTS-c counteracts inflammation by
reducing the levels of pro-inflammatory cytokines, such as
IL-6, IL-1β and TNFα, and increasing those of the anti-
inflammatory cytokine IL-10 [53, 120]. In particular,
MOTS-c decreases the bacterial load in mice with sepsis by
enhancing the bactericidal capacity of macrophages and thus
improving the survival of mice [120]. Moreover, MOTS-c
suppresses inflammation also by controlling NF-κB and
STAT1 pathway [121]. As far ageing, it seems that MOTS-c
circulating levels decrease with ageing [53, 122].

SHLPs are a class of peptides (from 1 to 6) expressed in
several tissues and detectable at plasma level [54]. To date
little is known about their precise role; however, in vitro stud-
ies demonstrated that they have a number of biological effects.
In particular, SHLP2 and SHLP3 increase cell viability and
reduce apoptosis, while SHLP6 significantly enhances apo-
ptosis [54]. Similar to HN, SHLP2 and SHLP3 play a critical
role in metabolism, apoptosis and inflammation [54]. The
mechanism by which SHLPs regulate the expression of met-
abolic and inflammatory markers remains still unclear; how-
ever, data from Cobb et al. suggest that SHLP2 and SHLP3
regulate the levels of leptin, while SHLP3 regulates also those
of IL-6 and MCP-1 [54]. In addition, SHLP2 treatment pro-
tects against Aβ1–42-induced cell death and thus can coun-
teract AD [54]. Moreover, SHLP2 circulating levels decline
with age. Altogether, these data suggest that SHLP2 and
SHLP3 have potential beneficial effects and can counteract
(at least some) age-related diseases [54, 123, 124].

Conclusions and perspectives

Even if the role of mitochondrial stress response in modulat-
ing the immune responses is only partially understood, avail-
able data point out to an anti-inflammatory role of the most
studied mitokines. As summarized in the previous paragraphs,
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GDF15, FGF21 and HN have been proposed as anti-
inflammatory molecules in many experimental conditions, in
both humans and animal models. As their blood levels appear
to increase with age (as many pro-inflammatory mediators
do), it is possible that they are part of an integrated, molecular,
immune-metabolic machinery/network able to respond to
(among others) mitochondrial stress, whose role is to set up
a coordinated, systemic anti-inflammatory response in both
acute and chronic conditions. In this latter case, the mitokine
response could be considered part of an “anti-inflammaging”
process whose existence was proposed some years ago as a
consequence of inflammaging [124]. In fact, the capability to
downregulate both acute and chronic inflammatory responses
is crucial to maintain homeostasis in young subjects and to
avoid/postpone age-related diseases (CVD, T2D, neuro-
inflammation and cancer, among others) in the elderly.
Many other anti-inflammatory molecules are known, includ-
ing resolvins, maresins, adiponectin, IL-10, TGF-β, etc. Some
of them are particularly elevated in centenarians [125–128],
suggesting that these exceptional people owe their longevity,
among others, to a successful balancing between pro- and
anti-inflammatory mediators. Now, the discovery that other
molecules endowedwith anti-inflammatory and immunomod-
ulatory activity increase with age not only in centenarians but
also in elderly people suggests that a large, comprehensive

anti-inflammaging network is physiologically put in place
likely as a general attempt of the ageing organism to cope with
the progressive increase of chronic inflammation
(inflammaging) and its deleterious effects. However, ultimate-
ly this (beneficial) response can be insufficient to counteract
the detrimental accumulation with age of molecular insults,
particularly in those old people affected by major are-related
pathologies. Thus, the increased blood levels of mitokines
such as GDF15, FGF21 and HN become correlated with al-
tered haematochemical parameters and lower life expectancy
[55]. A simplified version of this hypothesis is presented in
Fig. 1. The key concept expressed in the figure is the
balancing between pro- and anti-inflammatory stimuli that
are tightly interconnected via feedback loops to produce a
net result of detrimental or successful adaptation to a chronic
stress. The other key concept is that the source of the chronic
stress is not necessarily an external noxa, but it can be the
inescapable, progressive process of deterioration of crucial
organelles such as mitochondria. Thus, all the systems aimed
at sensing and responding to mitochondrial dysfunction occu-
py the centre of the stage for effective adaptation/remodelling
of the different cell types and organs involved, leading even-
tually to either successful or unsuccessful ageing. As far as
immune responses other than inflammation, the precise role of
mitochondrial stress response and mitokines is less clear, and

Fig. 1 Schematic representation of the role of mitochondria in healthy
ageing or unsuccessful ageing and the onset of age-related diseases
(ARDs). In healthy ageing, stress stimulates the mitochondrial unfolded
protein response (UPRmt) and the production of mitokines (HN, FGF21,
GDF15) that act to inhibit production and activity of inflammatory
cytokines (including IL-1β, IL-18, IL-6, type I IFN, TNF-α) through
yet not clarified mechanisms and thus preserve a balance between
inflammatory and specific immune responses; in unsuccessful ageing,
an imbalance between inflammatory and specific immune responses

occurs, with a high production of reactive oxygen species (ROS) and
danger-associated molecular patterns (DAMPs) leading to an increase
of inflammatory cytokines that contribute to the onset of ARDs.
GDF15, FGF21 and HN can be part of an immune-metabolic
machinery/network activated by both acute and chronic stressors
impinging on mitochondria aimed at modulating inflammaging. Many
other anti-inflammatory molecules are known, including IL-10,
resolvins, maresins, etc
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more studies are needed to better clarify this topic, in particu-
lar in the framework of immunosenescence and of the
crosstalk between the immune system and other organs such
as the liver and adipose tissue. As other types of stresses, like
ER stress, can also elicit the production of some mitokines,
future studies should disentangle the precise role of mitochon-
drial dysfunction with respect to other stresses in modulating
the immune responses via mitokine production. Moreover,
studies aimed at better clarifying the direct responsiveness of
mitokines to inflammatory or immunological stimuli would
be also desirable. However, should the hypothesis that
mitokines are part of an attempt to modulate acute and chronic
inflammatory reactions be confirmed, a reappraisal of the bi-
ological meaning of their association with morbidity (age-
related diseases) and mortality, is urgently needed, also con-
sidering their possible use (positive modulation of their ex-
pression) as therapeutic tools and targets.
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