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TENSOR-TRAIN DECOMPOSITION FOR IMAGE RECOGNITION∗

D. BRANDONI† AND V.SIMONCINI‡

Abstract. We explore the potential of Tensor-Train (TT) decompositions in the context of
multi-feature face or object recognition strategies. We devise a new recognition algorithm that can
handle three or more way tensors in the TT format, and propose a truncation strategy to limit
memory usage. Numerical comparisons with other related methods – including the well established
recognition algorithm based on high-order SVD – illustrate the features of the various strategies on
benchmark datasets.

1. Introduction. Automatic Object Classification and Face Recognition have
become an important component in activities such as security and video-surveillance,
where the quantities under scrutiny are the image pixels; see, e.g., [19] for some appli-
cations. Several factors, including illumination, view angle and expression, can affect
the image, making the process of classification more complex. In the past, numeri-
cal linear algebra tools, and primarily the Singular Value Decomposition (SVD) have
been extensively used to automatically process images in computations for classifica-
tion purposes, see, e.g., [9] and its references. In this context, a database of np persons
in ne expressions is stored as np distinct matrices Ap ∈ Rni×ne , p = 1, . . . , np, where
ni is the number of pixels of each image. SVD-based classification algorithms work
pretty well when the number of image pixels is greater than the number of features,
otherwise the classification performance drops significantly. This suggests that alter-
native strategies should be used, since the latter condition often occurs in realistic
applications where very many images need to be analyzed.

More recently, it has been shown that multilinear algebra and the algebra of
higher-order tensors (see, e.g., [13]) can offer a more powerful mathematical frame-
work for analyzing and addressing the multi-factor structure of image ensembles. For
instance, the Weizmann database in [22] - where TensorFaces are introduced - is com-
posed by 28 male subjects in 15 poses, 4 illumination conditions and 3 expressions,
and it is represented by a 5-way tensor. Then the High-Order SVD (HOSVD, see [7]
and its references) is used to classify the image of an unknown person. Other tensor-
based approaches have been proposed in a large variety of contexts; for instance, in
[12] Face Recognition is performed using tensor-tensor decompositions, while in [4]
the classification problem is expressed using the Kronecker Product Equation (KPE)
in a randomization context. The very recent applied literature in object classification
and face recognition methods is quite vast and it now extends to various machine
learning strategies such as neural network ([24],[8]) and deep learning ([2]) method-
ologies. For these reasons, it is hard to clearly capture the algorithmic properties
and specific features of the proposed methods, and at the same time it is difficult
to single out a winning method among those recently proposed. Here we would like
to study (algebraic) matrix- and tensor-based approaches, whose performance can be
analyzed in a well established manner. A qualitative comparison with a simple Neural
Network architecture is also included; a deeper investigation of this comparison will
be the subject of future research, due to the far more involved setting of the Neural
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2 D. BRANDONI AND V. SIMONCINI

Network architecture. Indeed, the huge number of parameters to set and the strong
dependency of the network performance on the database make the process of selecting
a winning neural architecture extremely complex. Furthermore, there may be dra-
matic differences between the computational costs (in terms of CPU time) associated
with training a Neural Network and training a tensor/matrix-based algorithm, with
the latter possibly being orders of magnitude cheaper. On the other hand, if one can
afford using a high number of layers and neurons, Neural Networks indeed perform
well with a broad variety of databases.

We explore the use of the Tensor-Train Decomposition (TT-Decomposition) for
multi-feature recognition strategies. This tensor decomposition has been shown to
have great potential in multivariate function approximation and compression, and it
is particularly amenable to truncation strategies yielding low-rank tensor approxima-
tions. The decomposition unwraps the given multi-way tensor in an appropriate chain
(“train”) of three-dimensional tensors and it is thus appropriate to handle high order
tensors, as opposed to HOSVD, which requires to allocate memory for a core tensor
with the same order of A. We have thus devised a recognition algorithm based on the
TT Decomposition, which extends the recognition method of HOSVD to this setting;
to the best of our knowledge this algorithm is new.

A synopsis of the paper is as follows. In section 2 we recall some standard prop-
erties of tensor computations, that will be used throughout the paper. In section 3 we
present the TT-form of the given image-related tensor. With section 4 we start our
discussion of classification algorithms, beginning with a simple minded least-squares
method, and then relating it to the algorithms based on the HOSVD. In subsection 4.3
we introduce our TT classification algorithm for the 3D case, making some algebraic
comparisons with known methods and discussing a truncation strategy. In section 5
we extend our algorithm to fourth (or higher) order tensors. In section 6 we present
the eight databases, which will be used to exercise the various algorithms in section 7
using different performance measures. We include our conclusions in section 8.

2. Tensor Computations. In this section we summarize some of the basic facts
about tensors and their computations, that will be used in the paper.

A higher-order tensor is a multidimensional array, corresponding to an element of
a tensor product of N vector spaces. First-order tensors (that is, vectors) are usually
denoted by lowercase letters (a, b, c, . . . ), second-order tensors (matrices) are denoted
by capital letters (A, B, C, . . . ) and higher-order tensors are denoted by calligraphic
letters (A, B, C, . . . ). The order of a tensor is the number of dimensions, also known
as ways or modes. For example, a tensor A ∈ R4×2×3 is a third-order tensor.

Two important tensor operations need to be introduced: the n-mode product,
which is a tensor by matrix operation, and the

(
m
n

)
-product, which is a tensor-by-

tensor operation.

Definition 2.1. [13, p. 460] Given the tensor A ∈ RI1×I2×···×IN , the n-mode
matrix product of A with a matrix U ∈ RJ×In is denoted by

A×n U ∈ RI1×···×In−1×J×In+1×···×IN

and its entries are given by

(A×n U)i1,...,in−1,j,in+1,...,IN =

In∑
in=1

ai1,i2,...,in,...,iNuj,in
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The n-mode multiplication satisfies the following important commutativity property,

A×n U ×m V = A×m V ×n U ∀ m 6= n,

where A ∈ RI1×···×In×···×Im×···×IN , U ∈ RJ×In and V ∈ RJ×Im . Therefore, in a series
of multiplications the product order of distinct modes is irrelevant. If the modes are
the same, i.e. m = n, then

A×n U ×n V = A×n (V U).

In a similar way to the n-mode product, in [6] the
(
m
n

)
-product of a tensor is intro-

duced.

Definition 2.2. [6] The
(
m
n

)
-product of a tensor A ∈ RI1×I2×···×IN with a tensor

B ∈ RJ1×J2×···×JM , such that In = Jm, is defined as

C = A×mn B,

where C ∈ RI1×···×In−1×In+1×···×IN×J1×···×Jm−1×Jm+1×···×JM . Its entries are given by

C(i1, . . . , in−1,in+1, . . . , iN , j1, . . . jm−1, jm+1, . . . , jM ) =
In∑
i=1

A(i1, . . . , in−1, i, in+1, . . . , iN )B(j1, . . . , jm−1, i, jm+1, . . . , jM ).

Finally, we define the process of flattening a tensor into a matrix, i.e. the unfold-
ing. There are several ways to unfold a tensor into a matrix. In this work we refer
to the one used by Oseledets in [15]. Let A ∈ RI1×I2×···×IN be an Nth-order tensor.
The k− th unfolding of A is a matrix Ak ∈ R(I1I2...Ik)×(Ik+1Ik+2...IN ), whose elements
are taken column-wise from A, that is

(2.1) Ak(i1 · . . . · ik, ik+1 · . . . · iN ) = A(i1, . . . , ik, ik+1, . . . iN ).

3. Tensor-Train Decomposition. The Tensor-Train Decomposition factorizes
an Nth-order tensor A in a product of third-order tensors and it is given by ([15])

A(i1, . . . , iN ) = G1(i1, :)G2(:, i2, :)G3(:, i3, :) . . . GN (iN , :)

= G1(i1)G2(i2)G3(i3) . . . GN (iN ),
(3.1)

where G1, G2, . . . , GN are called TT-cores.
In index form, the definition (3.1) can be written as

(3.2) A(i1, . . . , iN ) =
∑

α1,...,αN−1

G1(i1, α1)G2(α1, i2, α2) . . . GN (αN−1, iN ).

A classical visualization of the decomposition of a third-order tensor in index form is
given in Figure 3.1 (see [15]). In this work we consider the TT-SVD decomposition,
i.e. each factor of the Tensor-Train Decomposition is computed using the SVD of a
specific unfolding of A. For example, the first term of the decomposition is obtained
by considering the SVD of A1 = G1Σ1V

T
1 . For further details we refer the reader to

the seminal work [15] and to [21].
Using Definition 2.2 for the

(
m
n

)
-mode product, (3.2) can be written as

(3.3) A = G1 ×1
2 G2 ×1

3 G3 ×1
3 · · · ×1

3 GN .
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Fig. 3.1: Visualization of the Tensor Train Decomposition in index form.

Thus, if A is a third-order tensor, then

(3.4) A = G2 ×1 G1 ×3 G
T
3 ,

since

A(i1, i2, i3) = G1(i1, :)×1
2 G2(:, i2, :)×1

3 G3(:, i3) =
∑
α1,α2

G1(i1, α1)G2(α1, i2, α2)G3(α2, i3)

=
∑
α2

(G2 ×1 G1)(i1, i2, α2)G3(α2, i3) = (G2 ×1 G1 ×3 G
T
3 )(i1, i2, i3).

A standard visualization of (3.4) is given in Figure 3.2.

Fig. 3.2: Visualization of the Tensor Train Decomposition of a third-order tensor
using the

(
m
n

)
-mode product.

We notice that for a third order tensor the Tensor-Train Decomposition corre-
sponds to the classical Tucker2 decomposition (see, e.g., [17]), while HOSVD cor-
responds to a Tucker3 decomposition, when the involved matrices are orthogonal.
Thorough overviews of various Tucker decompositions for a third-order tensor can be
found for instance in [5],[11].

To make tensor computations affordable, rank truncation strategies are commonly
employed; we refer the reader to, e.g., [12],[1],[16] for a discussion of various alterna-
tives, to comply with the difficulties associated with the higher order setting.

In TT decompositions a crucial aspect is how to determine the TT-ranks (R1, · · · , RN ),
where each Ri is such that Gi ∈ RRi−1×Ii×Ri . To specify its TT-ranks, we have con-
sidered both a full representation, and a truncated version of the tensor. In the first
case, Ri equals the number of columns of the matrix Ui, which contains the left sin-
gular vectors of the i-th unfolding of A. Thus, no truncation is performed in the SVD
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Fig. 3.3: Singular values of A1 for the Orl Database.

along different modes. In the truncated version, we truncate the matrix Ui to its first
k columns, according to a threshold π, where k satisfies

k = max
J

{∑J
j=1 σj(Ai)∑Ii
j=1 σj(Ai)

≤ π

}
,

where π is such that k ≥ 1. This selection is in agreement with the truncation
guidelines discussed in [1],[12],[14]. In our strategy we truncate only along the first
mode, although the same procedure can be used to perform the truncation also along
the second and third modes. Thus, we consider only the first k columns of G1, and
name the resulting matrix Ĝ1. As a consequence, we also set Ĝ2 ∈ Rk×ne×np as
the tensor of the first k first-mode elements of G2. Hence the truncated TT-SVD
decomposition has the following form

A = Ĝ2 ×1 Ĝ1 ×3 G
T
3 .

The error due to this truncation can be estimated as described in [16, Th.2.2].

4. 3D Classification problem and algorithms. In this and the next sec-
tions we recall some known tensor-based classification algorithms, and we introduce
a classification strategy associated with the Tensor-Train decomposition. In this first
section we consider the TT decomposition of a 3D tensor, while we postpone to later
sections that of higher order tensors, anticipating that the TT formulation allows us
to treat the two cases in exactly the same manner. To the best of our knowledge, the
use of these strategies in the classification context is new.

Let A ∈ Rni×ne×np be the tensor representing the database of images with ni
pixels, np persons and ne expressions for each person. Given an image z of an unknown
person in an unknown expression, represented by a vector in Rni , we want to determine
which of the np persons, the new image is closest to. To this end we define a distance
dist(z,A(:, :, p)) of z from each person p of the given database, for p = 1, . . . , np.

In the following discussion Ee denotes the space “expression e”. This space is
spanned by all images of the np persons in expression e.

4.1. Least Squares Classification Algorithm. This simple minded classifi-
cation strategy merely focuses on the matrices obtained by comparing with respect
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Algorithm 4.1 Least Squares

1: Input: z ∈ Rni input image and A.
2: for e = 1, · · · , ne do
3: Solve for xe in (4.1) and set re = z −Aexe 1

4: end for
5: ê = argmin

e
(‖re‖)

6: p̂ = argmax
p
|xê(p)|

7: Output: Classify z as person p̂

to all images in each given expression. More precisely, for each expression e let
Ae := A(:, e, :), where the columns of Ae have been scaled to have unit Euclidean
norm. Consider the following least squares problem

(4.1) min
x
‖z −Aex‖2.

Let xe be the solution to (4.1), and let re = z−Aexe be the associated residual. The
distance of z from Ee is obtained by ‖re‖2. We then compute

ê = argmine‖re‖2,

and we classify z as person p̂, where p̂ = argmaxp|xê(p)|, that is p̂ corresponds to the
largest component of the xê, where xê holds the linear combination of all persons in the
closest expression. A version of the classification algorithm is given in Algorithm 4.1.

4.2. HOSVD Classification Algorithm. Using the HOSVD described in [7],
the tensor A ∈ Rni×ne×np can be written as follows

(4.2) A = S ×i F ×e G×p H,

where ×i, ×e, ×p are the 1-mode, 2-mode, 3-mode multiplications, respectively2; with
G ∈ Rne×ne , H ∈ Rnp×np and, if ni > nenp then S ∈ Rnenp×ne×np , F ∈ Rni×nenp ,
otherwise, S ∈ Rni×ne×np , F ∈ Rni×ni .

Letting C = S ×i F ×e G, for a fixed expression e

(4.3) Ae = CeHT e = 1, 2, . . . , ne,

where Ae and Ce are the matrices obtained by fixing the second index of A and C
equal to e. Note that the np×np matrix HT is orthogonal and that the matrix Ce is
ni × np. Column p of Ae can be written as

(4.4) a(e)p = CehTp ,

where hTp is the p-th column of HT . Now let z ∈ Rni be the new image to be classified.
The coordinates of z in the expression basis can be found by solving a least squares
problem

(4.5) α̂e = argminαe
‖Ceαe − z‖2, e = 1, · · · , ne.

1Each slice of A, that is Ae, is normalized before solving (4.1).
2×i is the image-mode multiplication, ×e is the expression-mode multiplication, ×p is the person-

mode multiplication.
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Then, for each e = 1, · · · , ne and for each p = 1, · · · , np

DHO(e, p) = ‖α̂e − hTp ‖2.

Note that if Ce is full column rank, then the least squares problem (4.5) has a unique
solution, otherwise the solution is not unique, but the solution with smallest norm can
be obtained by using the SVD of Ce for its computation ([10, section 5.5]). A version
of the classification algorithm based on the HOSVD can be found in [9, Chapter 14,
p.174], and this is what was used in our experiments.

There is a tight connection between the LS-based method and the HOSVD clas-
sification, given that for each expression e the matrix Ae is the same.

Proposition 4.1. Let xe be the solution to (4.1) in the LS-based method, and let
α̂e be the solution to (4.5) in the HOSVD method. Then α̂e = HTxe. Letting I:,p be
the p-th column of the canonical basis, it then holds

DHO(e, p) = ‖α̂e − hTp ‖2 = ‖xe − I:,p‖2.

Proof. The least squares solution α̂e is given by α̂e = ((Ce)
TCe)

−1(Ce)
T z, while

the least squares solution xe is given by xe = ((Ae)TAe)−1(Ae)T z. Substituting
Ae = CeHT we obtain

xe = ((Ae)TAe)−1(Ae)T z = (H(Ce)TCeHT )−1H(Ce)T z

= H−T ((Ce)TCe)−1(Ce)T z = H−T α̂e,

which proves the first assertion. For the second assertion, since α̂e = HTxe, we have
‖α̂e − hTp ‖2 = ‖HTxe −HT I:,p‖2 = ‖HT (xe − I:,p)‖2. From the orthogonality of H
the result follows.

Assume that z and Ae have both been scaled to have unit norm columns, so
that the entries of xe are all not greater than one in absolute value. It follows that
for a fixed e, finding the minimum of DHO(e, p) corresponds to finding the largest
entry of xe, the p̂-th entry, which is closest to one. Hence, the difference between
the two methods lays in the way the “best” expression is chosen. In the basic least
squares method the expression corresponding to the smallest residual norm is selected,
whereas in HOSVD all is based on the quantity ‖xe − I:,p‖. This implies that the
HOSVD and LS methods compute the same quantities, but the stopping criterion
changes, which is thus responsible of possible discrepancies in the performance of the
two approaches (see, e.g., the results for the Fashion MNIST dataset).

Table 4.1 displays the differences and similarities between the least-squares and
the HOSVD formulations for the classification of a single image: the test set is com-
posed by the person p in the last expression, while all the other np persons in the re-
maining expressions are used as training set. We report the classification result of each
method by displaying p̂ for each database. The method LS2 corresponds to Algorithm
4.1, in which lines 5 and 6 are replaced with [ê, p̂] = argminD(e, p) = argmin‖xe−I:,p‖.
According to Proposition 4.1, the same classification results are obtained using either
HOSVD or LS2.

Another classification algorithm based on HOSVD is presented in [18], where the
training set is decomposed as in (4.2). The tensor L = S(1 : r, 1 : s, :) ×3 H is then
computed3, and for every person p the first k singular vectors of Lp = L(:, :, p) are

3The parameters r, s can be set arbitrarily and depend on the desired data compression.
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Database p LS LS2 HOSVD
Orl 14 18 14 14

COIL-20 1 1 1 1
Faces95 5 50 57 57
Faces96 59 77 59 59

Ext’d Yale shrunk 9 10 6 6

Table 4.1: Classification performance of least squares based algorithms and the algo-
rithm based on HOSVD.

stored in a matrix Bp. Let z ∈ Rni be the image of an unknown person in an unknown
expression to be classified. The following least squares problem measures how far z is
from being a linear combination of the columns of Bp for each p = 1, · · · , np:

(4.6) D(p) := min
x
‖zp −Bpx‖2, where zp = F (1 : r, :)T z.

Therefore, z is classified as person p̂ = argminp(D). A more complete analysis of
this method can be found in [18]. In Section 7 we will refer to this algorithm as
HOSVD2. We conclude this brief description by noticing that HOSVD2 requires the
computation of an HOSVD of the training tensor and np SVDs to determine the
matrices Bp, p = 1, · · · , np. This can be computationally expensive when np is large.

4.3. Tensor-Train Classification Algorithm. To derive the new classification
algorithm we first write the data tensor for each expression e, by means of a TT-based
basis for Ee. Then we define the associated distance to be minimized.

Using (3.4), A(:, e, :) can be written as

(4.7) A(:, e, :) = Ge2 ×i G1 ×p GT3 ∀e = 1, . . . , ne,

where Ge2 = G2(:, e, :) is a matrix. Thus, the image of a person p in the expression e is

(4.8) A(:, e, p) = G1G
e
2g
p
3 , where gp3 = G3(:, p).

To deal with the classification problem, it is better to set C = G2 ×i G1 so that (4.8)
becomes

(4.9) A(:, e, p) = Cegp3 , with Ce = C(:, e, :) = G1G
e
2.

This can be interpreted as follows. The columns of Ce are a basis for Ee while gp3 , the
p-th column of G3, holds the coordinates of person p in this basis. Notice that the
same gp3 holds the coordinates of all the images of person p in the different expression
bases [9, p.173]. The expression above plays the same role as (4.4) for the HOSVD.

Given the image z of an unknown person in an unknown expression, we want to
find the coordinates αe of z in all the ne bases {Ce}e=1,...,ne and then compare each
αe for e = 1, . . . , ne with the coordinates of all np persons in the same basis, which are
represented by the columns of G3. More precisely, for each e = 1, · · · , ne we compute

(4.10) min
αe

‖Ceαe − z‖2,

and then, for each e = 1, · · · , ne and for each p = 1, · · · , np

(4.11) DTT (e, p) := ‖α̂e − gp3‖2.
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Hence, the distance between z and person p is given by

dist(z,A(:, :, p)) = min
e
DTT (e, p).

The computation in (4.10) can be performed by means of the reduced QR de-
composition of Ge2, that is Ge2 = QeRe. The coordinates of z in Ee are thus given by

α̂e = R(e)−1
Q(e)TGT1 z and so (4.11) becomes

DTT (e, p) = ‖R(e)−1
Q(e)TGT1 z − g

p
3‖2 p = 1, · · · , np,

where gp3 = G3(:, p). The overall procedure is summarized in Algorithm 4.2.

Algorithm 4.2 Algorithm TT3D

Input: z test image G1, G2, G3.
Compute ẑ = GT1 z:
for e = 1, . . . , ne do

Solve Ge2αe = ẑ for αe
for p = 1, . . . , np do
DTT (e, p) = ‖αe − gp3‖2 where gp3 = G3(:, p).

end for
end for
(ê, p̂) = argmin

e,p
(DTT )

Output: Classify z as person p̂

Remark 4.2. Let Ae = A(:, e, :) in (4.8). Then a result analogous to that in
Proposition 4.1 can be derived, that is the distance DTT satisfies

DTT (e, p) = ‖xe − I:,p‖

where xe = argminx‖Aex− z‖.

5. 4D Classification algorithm with Tensor-Train decomposition. Sev-
eral authors in the literature have observed that image classification can be improved
by considering images as matrices I ∈ Rn1×n2 instead of vectors, thus adding a forth
dimension to the problem; see, e.g., [12]. Hence, a database of np persons in ne ex-
pressions is represented by a four-dimensional tensor A ∈ Rn1×n2×ne×np , written in
TT-form as

A = G1 ×1
2 G2 ×1

3 G3 ×1
3 G4,

where G1 ∈ Rn1×n1 , G2 ∈ Rn1×n2×nenp , G3 ∈ Rnenp×ne×np , and G4 ∈ Rnp×np . Thus,
the image of a person p in expression e in the database is given by

(5.1) A(:, :, e, p) = G2 ×1 G1 ×3 (G
(e)
3 )T ×3 g

(p)
4 ,

where G
(e)
3 = G3(:, e, :) ∈ Rnenp×np and g

(p)
4 = G4(:, p) ∈ Rnp . Let C(e) = G2×1G1×3

(G
(e)
3 )T . Then (5.1) becomes

A(:, :, e, p) = C(e) ×3 g
(p)
4 .
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The classification strategy is then analogous to that for the three-dimensional case. In
particular, given an image z ∈ Rn1n2 of an unknown person in an unknown expression,
we define the distance of z from person p as

DTT4(e, p) = ‖α̂e − g(p)4 ‖2,

where

α̂e = argminαe
‖unfold(C(e))αe − z‖2.

A version of the classification algorithm is given in Algorithm TT 4D. In our ex-
periments, we used the unfolding tenmat(Ce,3,’t’) from the Matlab Tensor Toolbox
[3].

Algorithm TT 4D

Input: z test image, G1, G2, G3, G4.
Compute G12 = G2 ×1 G1:
for e = 1, . . . , ne do

Compute C(e) = G12 ×3 (G
(e)
3 )T , where G

(e)
3 = G3(:, e, :)

Solve minαe
‖unfold(C(e))αe − z‖2 for αe

for p = 1, . . . , np do
DTT4(e, p) = ‖αe − gp4‖2 where gp4 = G4(:, p).

end for
end for
(ê, p̂) = argmin

e,p
(DTT4)

Output: Classify z as person p̂

The TT format naturally extends to the higher-dimensional setting. For instance,
suppose that A is an Nth order tensor representing our database, further assume that
the first two modes are the pixel modes (as in TT4D) and the last one is the person
mode. According to (3.3) A can be written in the following way:

A = G1 ×1
2 G2 ×1

3 G3 ×1
3 · · · ×1

3 GN−1 ×1
3 GN .

Thus, person p in a specific combination of all the other (N − 3) features can be
expressed as

(5.2) A(:, :, i3, · · · , iN−1, p) = G1 ×1
2 G2 ×1

3 G
(i3)
3 ×1

3 · · · ×1
3 G

(iN−1)
N−1 ×1

3 GN (:, p).

Let C(i3,··· ,iN−1) = G1 ×1
2 G2 ×1

3 G
(i3)
3 ×1

3 · · · ×1
3 G

(iN−1)
N−1 . Then, (5.2) becomes

(5.3) A(:, :, i3, · · · , iN−1, p) = C(i3,··· ,iN−1) ×3 g
(p)
N ,

where g
(p)
N = GN (:, p).

Given an image vector z ∈ Rn1n2 of an unknown person in an unknown combi-
nation of the (N − 3) features, we define the distance between z and the person p
as

DTTN (i3, · · · , iN−1, p) = ‖α̂i3,··· ,iN−1
− g(p)N ‖,
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where

α̂i3,··· ,iN−1
= argminαi3,··· ,iN−1

‖unfold(C(i3,··· ,iN−1))αi3,··· ,iN−1
− z‖.

6. Description of the Databases. In the following we consider a database of
faces of np persons in ne different expressions – where by expression we possibly mean
different illuminations, view angle, etc. – with ni = n1n2 pixels. Each image can be
either considered as an n1 × n2 matrix, or as a n1n2 vector, so that such a database
can be represented either by a 4-way tensor A ∈ Rn1×n2×ne×np or by a 3-way tensor
A ∈ Rni×ne×np .

In this work we consider eight different datasets. For the first four ones it holds
that ni < ne, while for the others ni > ne. This selection was performed to compu-
tationally illustrate the need to use tensor strategies whenever the number of pixel is
larger than the number of expressions, to be able to classify a new image with a high
success rate.

1. The Orl database, which contains 400 grayscale images in PGM format
of 40 persons. Each subject is photographed in 10 different expressions. In
Figure 6.1 all the expressions of subject 1 are shown.

Fig. 6.1: Subject 1 of the Orl database.

2. The Faces95 database, which consists of 1440 RGB images in JPG format
of 72 persons in slightly different positions with respect to the camera for a
total of 20 expressions. RGB images were transformed in gray images within
Matlab. The same was done for the other images with colors. In Figure 6.2
the first subject is reported in all expressions.

Fig. 6.2: Subject 1 of the Faces95 database photographed in 20 different expressions.

3. The Faces96 database, which is composed by 2261 images in JPG format
of 119 persons at different distance with respect to the camera totalling 19
expressions. In Figure 6.3 the first subject is reported in all the expressions.

Fig. 6.3: Subject 1 of the Faces96 database.

4. The COIL-20 database composed by 20 objects, each of which is pho-
tographed in 72 different view angles. In Figure 6.4 object 1 in 15 different
view angles is shown.
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Fig. 6.4: Object 1 of the COIL-20 database.

5. The Extended Yale database, which contains 16380 grayscale images in
PGM format of 28 persons. Each person is photographed in 9 poses and 65
illumination conditions for a total of 585 expressions. A shrunk version 4 of
the Extended Yale database is used. In Figure 6.5 subject 1 is reported in 15
different expressions.

Fig. 6.5: Subject 1 of the Extended Yale database in 15 different expressions.

6. The MIT-CBCL database,which contains 3240 grayscale images of 10 per-
sons in 324 different expressions.5 The original pixel size of each image is
200×200. For our experiments the pixel size is reduced to 15×15. In Figure
6.6, 10 different expressions of person one are shown.

Fig. 6.6: Subject 1 of the MIT-CBCL database in 10 different expressions.

7. The MNIST database, from which we selected about 1901 grayscale 28×28
images of each of the 10 handwritten digits. In fact, for each digit we used 260
images as test set, and more images as training set, whose number depends
on the used test-training splitting percentage. For this dataset the third vari-
able cannot be given the interpretation of “expression”. Indeed, there is no
explicit correspondence between the same jth image of two different digits,
so that images of each digit occur in a completely random order, though they
all correspond to some sorts of stretching of a reference digit. We shall refer
to this as a lack of a classification feature. In Figure 6.7, 10 different versions
of the digit “three” are shown.

8. The Fashion MNIST database, which contains 70000 images of 10 different
kinds of Zalando’s articles. The Dataset is split in a training set, composed by
6000 images, and a test set, composed by 1000 images. For our experiments
only a subset of the whole dataset is used. In particular we use all the images

4Each image has been reduced to the pixel size 20× 15, instead of the original 640× 480 size.
5In our experiments only the training set of the database is considered for generating the training

and test phases.
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Fig. 6.7: Digit 3 of the MNIST database.

Fig. 6.8: First and second object of the Fashion MNIST database in the same “ex-
pression”.

of the test set but only a subset of images of the training set, as required by
the chosen test-training splitting percentage. In Figure 6.9 the first object
is represented in 10 different conditions. Notice that, as for the MNIST, the
variable expression is not defined, thus this variable lacks of a classification
feature. For example, as shown in Figure 6.8, it is not possible to define
the variable “expression 1”, since expression 1 for the first object is different
from expression 1 for the second object. Thus, with such data, we may expect
HOSVD, TT3D and TT4D to achieve low classification success rates.

Fig. 6.9: First object of the Fashion MNIST database.

The characteristics of all databases are summarized in Table 6.1.

7. Numerical experiments. The validation of a classification algorithm needs
to be addressed by using different perspectives. The most obvious way to evaluate the
algorithm performance is to inspect its median success rate across several trials, as we
are going to show in Table 7.1. However, other important measures should be taken
into account to perform a fair comparison among different classification strategies. For
example, CPU time, memory requirements and statistical classification parameters
may be crucial in ranking the given methods, depending on the application where the
algorithm is supposed to be used. For these reasons, in the next two subsections we
report on our computational experience using the mentioned performance measures.

All numerical experiments were performed using Matlab [?].

7.1. A first Classification test. In this section we first report on our numerical
experiments where we use the success rate as performance measure. To this end, we
split each database in a training set and a test set. The split is made by taking the
s% of the ne expressions for each person as training set and the remaining ones as test
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Database pixel size pixel size (vector format) ne np
Orl 92× 112 10304 10 40

COIL-20 128× 128 16384 72 20
Faces95 180× 200 36000 20 72
Faces96 196× 196 38416 19 119

Ext’d Yale shrunk 20× 15 300 585 28
MNIST 28× 28 784 1901 10

Fashion MNIST 28× 28 784 7000 10
MIT-CBCL 15× 15 225 324 10

Table 6.1: Pixel size, number of expressions and persons of all databases.

set. The expressions used as training set are chosen randomly. We report results for
s = 80%, 50%; except for HOSVD2, the tensor methods were not overly sensitive to
the choice of this parameter. In Table 7.1 we report the success rate of all considered
algorithms, namely matrix SVD, tensor SVD (HOSVD, HOSVD2), three- and four-
dimensional TT (TT 3D and TT 4D) and simple least squares (LS) method. For all
datasets except the large MNIST ones, all percentages correspond to the average of
20 consecutive runs.

s% Database SVD HOSVD TT 3D TT 4D LS HOSVD2

80

Orl 97.42% 94.44% 96.65% 96.69% 95.81% 97.63%
COIL-20 99.95% 97.50% 99.35% 99.35% 99.17% 99.95%
Faces95 90.00% 86.56% 87.15% 91.03% 86.44% 88.87%
Faces96 100% 97.68% 100% 98.50% 97.23% 99.36%

Ext’d Yale shrunk 59.59% 99.08% 99.24% 98.72% 99.78% 69.04%
MNIST 62.55% 92.27% 91.05% 91.03% 92.69% 87.95%

Fashion MNIST 49.19% 78.63% 79.20% 77.74% 84.76% 45.91%
MIT-CBCL 23.52% 100% 100% 100% 100% 39.77%

50

Orl 94.84% 91.38% 92.96% 92.75% 89.93% 95.20%
COIL-20 99.84% 96.10% 98.90% 96.71% 98.04% 99.24%
Faces95 96.25% 96.25% 83.90% 87.50% 80.24% 88.87%
Faces96 98.66% 97.34% 97.94% 99.33% 96.87% 98.04%

Ext’d Yale shrunk 99.87% 98.70% 98.74% 98.99% 99.64% 99.91%
MNIST 71.25% 90.87% 89.12% 89.12% 89.83% 37.68%

Fashion MNIST 40.34% 74.58% 75.22% 74.57% 81.31% 33.16%
MIT-CBCL 100% 100% 100% 100% 100% 99.98%

Table 7.1: Success rate (as percentage) of all classification algorithms.

Table 7.1 shows that SVD works well only when ni > ne, i.e. with the Orl,
COIL-20, Faces95 and Faces96 datasets. However, in many applications it happens
that ni < ne because of the huge number of features available. This suggests that
alternative strategies should be considered whenever the number of, say, expressions
ne is significantly larger than the number of pixels ni or that the dataset is so hetero-
geneous that few columns are not enough to describe the whole dataset. As we can
see from Table 7.1, some tensor methods (i.e. HOSVD, TT3D and TT4D) provide
viable strategies. It is also interesting to observe that LS works quite well for the
datasets where the third variable does not provide a real classification feature, that is
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for the two MNIST sets. HOSVD2 works well when ni < ne if r and s are set equal
to ni and ne respectively (i.e. no truncation is performed on S) or as long as Bp is a
tall matrix.

Memory requirements of the tensor methods can be quite different. Given the
tensor A ∈ Rni×ne×np , the following table summarizes the minimum storage require-
ments:

Method Memory allocations
HOSVD ninenp + n2i + n2e + n2p
TT 3D n2i + ninenp + n2p

In particular, HOSVD requires to store the core tensor S ∈ Rni×ne×np and three
orthonormal matrices U (1) ∈ Rni×ni , U (2) ∈ Rne×ne and U (3) ∈ Rnp×np . On the
other hand, TT 3D needs to store G1 ∈ Rni×ni , G2 ∈ Rni×ne×np and G3 ∈ Rnp×np ,
thus leading to lower memory requirements.
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Fig. 7.1: C

PU time (secs) required by the tensor-based algorithms. Left: time to classify a
person p in a specific expression e. Right: time to train the algorithms.

The two plots of Figure 7.1 report on the computational costs of the tensor-
based methods on the four most time consuming datasets; for the very large dataset
Fashion-MNIST runs were performed on a more powerful computer and therefore they
are not reported. In Figure 7.1(left) the reported CPU time (in logarithmic scale)
is the time required for the classification of a person p, in an expression e whenever
appropriate. The plot shows that the CPU time of TT 3D and HOSVD2 is lower
than for all other tensor-based methods. In Figure 7.1(right) the training time for
all the tensor algorithms is reported. As we can observe the Tensor-Train algorithms
require less CPU time than the other methods. Hence, this performance measure
can help discriminate among methods whenever the classification success rate and
memory requirements are comparable. Notice that the LS algorithm is not reported
because there is no training time for this algorithm.

Remark 7.1. To explore a different methodology, we have tested a simple Neural
Network architecture (using the Matlab Deep Learning Toolbox [?]) with the following
structure:

- One convolutional layer composed by 32 3× 3 filters;
- A pooling layer (with a pooling region of width and height 2, and stride (2,2));
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- A fully connected layer.
On the MNIST database, this approach yielded a better classification performance
(around 95%) than the tensor-based methods. As already mentioned, the lower per-
formance of tensor-based methods on this dataset is expected, since one of the modes
does not refer to a true feature. On the other hand, the CPU time required to train
the Network and classify a single digit is around 35 seconds, almost 100 times the
CPU time required for the new algorithm.

We also tested the same Network on the Orl database, obtaining significantly
lower classification performance (77.38%) than our algorithm (96.65%) with higher
CPU time (0.0043 sec for our algorithm, 18.9 sec for the Neural Network)

In spite of these negative results, we expect that more sophisticated Neural Net-
work architectures may further improve performance, whereas computational costs
may remain significantly higher than for the tensor-oriented approaches. �.

7.2. A Classification test in higher dimensional setting. In the previous
experiments we have considered only two features per person, however in realistic
applications a higher number of features may be available. In such situations the
Tensor-Train format enables one to still store only third order tensors, whereas the
HOSVD requires to allocate memory for a core tensor of the same order as A.

In this section we analyze the classification performance of the Tensor-Train al-
gorithm for a fifth-order tensor. To this end, we consider the Weizmann face image
database composed by 28 subjects taken in 5 different view angles, 3 illumination
conditions and 2 facial expressions. Each image size has been reduced from 352× 512
to 14× 20. In Figure 7.2 subject 1 in different conditions is represented.

Fig. 7.2: Subject 1 of the Weizmann database.

The training set is stored as the tensor A ∈ Rni×nv×nill×ne×np . In a first clas-
sification test the testset is composed by np persons in ne facial expressions, nill
illuminations and 2 view angles. This means that 80% of the database is used for
training and the remaining 20% is used as test set. In this setting 87.05% of the
test images are correctly classified. Notice that TensorFaces with this dataset only
achieves 80% success (for further details see [23]). In a second classification test the
split between training and test sets is set to 90%/10% (i.e., just one view angle is used
as test set). In this setting 91.07% of the examples are correctly classified.

7.3. Numerical experiments with truncated methods. In this section we
report on our experiments with a truncated version of the 3D classification algorithms.
We compare the truncated TT-SVD described in section 3 with the classification
algorithms based on truncated SVD and truncated HOSVD2.

Figure 7.3 shows the percentage of success of the truncated procedure on eight
databases, when different values of the truncation threshold π are used (see section 3).
The displayed curves only report results for π such that k ≥ 1. In HOSVD2 the
truncation is applied to the columns of Bp, p = 1, · · · , np according to the truncation

parameter π. Furthermore, following [18], S in (4.2) is replaced with Ŝ = S(1 : 48, 1 :
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Fig. 7.3: Percentage of success of the truncated methods for different values of the
truncation parameter π, tested on different databases.

64, :).
Several comments are in order. We observe that for some databases such as Orl,

methods can behave quite differently for the same value of π. The decrease in the
SVD performance for high values of π is related to the resulting dimensions of the
singular vector matrix Up: for π ≤ 0.9 the matrix Up is tall while for higher values
of π it is square, leading to a projection failure. A similar reasoning holds for the
performance degradation of HOSVD2: to express 90% of the variance (i.e. π ≥ 0.9)
of the MIT-CBL, COIL-20, MNIST and Fashion MNIST datasets we have to take all
columns of Bp, making it square. Thus, for these algorithms there is an additional
constraint on the truncation parameter, to ensure a good classification performance
for several databases.

Figure 7.3 shows that the classification performance is not monotonic with respect
to π. Nonetheless, for TT3D any π ≥ 0.6 leads to a good classification performance.

The higher efficiency in terms of computational costs (CPU time), memory re-
quirements together with the good recognition rate, favor the TT3D truncated version
compared to the untruncated one. For instance, for π = 0.9 in the Extended Yale
Database only 32% of the singular values are retained, yielding large memory savings.

7.4. Performance using statistical classification measures. Using an ap-
plied statistics terminology, the Face Recognition problem can be thought of as a
multiclass classification problem, where the classes are the different persons of a spe-
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cific database. For a database of np persons in ne different expressions, we consider
the splitting in a training set (np persons in 0.75ne expressions) and a test set (np
persons in 0.25ne expressions). After the classification of all images in the test set has
been completed, for each person p the following quantities can be computed, giving
rise to the so-called “confusion matrix”:

- true positive(tpp): number of subjects correctly classified as person p;
- true negative (tnp): number of correctly recognized subjects that are not

person p;
- false positive (fpp): number of subjects incorrectly classified as person p;
- false negative (fnp): number of subjects not recognized as person p.

Using these four quantities, the following classifier parameters can be computed:

Accuracy =
1

np

np∑
p=1

tpp + tnp
tpp + tnp + fpp + fnp

, P recision =
1

np

np∑
p=1

tpp
tpp + fpp

,

Recall =
1

np

np∑
p=1

tpp
tpp + fnp

,

These parameters provide a measure of reliability of the employed algorithm: the
closer the parameter is to 100% the more robust the corresponding classification
strategy is. Depending on the realistic application for which we want to use the
classification algorithm, one can be interested in maximizing one of these three quan-
tities. For example, in situations such as border controls or medical tests, one may
be interested in maximizing the recall, since this means minimizing the number of
images of person p that are not recognized as person p.

In Table 7.2 precision, accuracy and recall are displayed, using macro-averaging
(for further details see [20]). The results show an overall different ranking of the
methods when these measures are considered, with respect to the percentages in
Table 7.1. HOSVD appears to be the most reliable strategy for all three parameters
for the MNIST database, whereas for all other datasets tensor-train based algorithms
have better performance. It is also interesting that, although the three parameters
measure truly different things, the relative ranking of all algorithms does not change
much going from, say, Accuracy to Recall.

HOSVD2 was not included in the tests in Table 7.2, because its classification
performance strongly depends on the truncation parameter.

Orl coil Faces95 Faces96 Ext’d MNIST Fashion
measure method -20 Yale MNIST

Accuracy
hosvd 99.71% 99.77% 99.66% 99.97% 99.93% 98.18% 95.26%
tt 3d 99.78% 99.77% 99.71% 99.98% 99.94% 97.83% 95.39%
tt 4d 99.77% 99.77% 99.60% 99.98% 99.94% 97.67% 95.39%

Precision
hosvd 76.62% 98.03% 91.10% 98.60% 99.06% 91.18% 78.30%
tt 3d 96.73% 98.03% 92.53% 99.07% 99.17% 89.89% 78.53%
tt 4d 96.58% 98.03% 90.01% 99.20% 99.20% 89.00% 78.53%

Recall
hosvd 94.29% 97.67% 87.67% 98.29% 99.01% 90.90% 76.31%
tt 3d 95.62% 97.69% 89.60% 98.85% 99.12% 89.10% 76.93%
tt 4d 95.50% 97.69% 85.62% 99.01% 99.16% 88.32% 76.93%

Table 7.2: Accuracy, precision and recall for the HOSVD, TT3D and TT4D classifi-
cation algorithms.
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8. Conclusions and perspectives. Based on the Tensor-Train decomposition
of the given dataset, we have proposed a new algebraic strategy for face and object
recognition, both in a three-dimensional and four-dimensional setting. The use of the
TT form allows one to easily treat truncation, which reduces both CPU time and
memory requirements, without sacrificing the recognition success rate. Moreover, the
TT-based algorithm is preferable to those based on HOSVD since it does not suffer
from the curse of dimensionality; in particular, it naturally extends to more than three
dimensions, thus allowing for the inclusion of additional features as extra dimensions,
as we did for the Weizmann database. Indeed, for face recognition other features
could be considered, such as different age or backdrop image sets.

Our computational experiments on nine different datasets seem to show that using
the Tensor-Train form allows one to achieve good classification success for comparable
memory requirements (in the full case) and smaller CPU time with respect to the now
classical tensor based HOSVD.

Due to the relatively low computational costs of the TT methodology, we also
envision using the proposed classification algorithm as a preliminary first pass to
a significantly more expensive but even more accurate procedure, e.g., within deep
learning methodology, to narrow the classification dataset.
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