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ORDER REDUCTION METHODS FOR SOLVING LARGE-SCALE1

DIFFERENTIAL MATRIX RICCATI EQUATIONS ∗2

GERHARD KIRSTEN† AND VALERIA SIMONCINI‡3

Abstract. We consider the numerical solution of large-scale symmetric differential matrix Ric-4
cati equations. Under certain hypotheses on the data, reduced order methods have recently arisen5
as a promising class of solution strategies, by forming low-rank approximations to the sought after6
solution at selected timesteps. We show that great computational and memory savings are obtained7
by a reduction process onto rational Krylov subspaces, as opposed to current approaches. By specif-8
ically addressing the solution of the reduced differential equation and reliable stopping criteria, we9
are able to obtain accurate final approximations at low memory and computational requirements.10
This is obtained by employing a two-phase strategy that separately enhances the accuracy of the11
algebraic approximation and the time integration. The new method allows us to numerically solve12
much larger problems than in the current literature. Numerical experiments on benchmark problems13
illustrate the effectiveness of the procedure with respect to existing solvers.14

Key words. Differential Matrix Riccati, Rational Krylov, Extended Krylov, Linear Quadratic15
Regulator, Low-rank, BDF16

1. Introduction. We consider the solution of the continuous-time differential17

matrix Riccati equation (DRE in short) of the form18

(1.1) Ẋ(t) = ATX(t) +X(t)A−X(t)BBTX(t) + CTC, X(0) = X0,19

in the unknown matrix X(t) ∈ Rn×n, where X0 = ZZT and t ∈ [0, tf ]. Here,20

A ∈ Rn×n, B ∈ Rn×s, C ∈ Rp×n and Z ∈ Rn×q are time invariant, and s, p, q � n.21

The matrix A is assumed to be large, sparse and nonsingular, whereas B, C and Z22

have full rank. In particular, we consider low-rank DREs, where both matrices CTC23

and X0 have very low rank compared to n. Even though the matrix A is sparse,24

the solution X(t) is typically dense and impossible to store when n is large. Under25

the considered hypotheses, numerical evidence seems to indicate that X(t) usually26

has rapidly decaying singular values, hence a low-rank approximation to X(t) may27

be considered, see e.g., [48]. For completeness, we also refer the reader to [21, 20] for28

results on the existence of low-rank solutions for the algebraic Sylvester and Lyapunov29

equations.30

The DRE plays a fundamental role in optimal control theory, filter design theory,31

model reduction problems, as well as in differential games [2, 7, 11, 13, 38]. Equa-32

tions of the form (1.1) are crucial in the numerical treatment of the linear quadratic33

regulator (LQR) problem [2, 13, 29]: given the state equation34

(1.2) ẋ(t) = Ax(t) +Bu(t), y(t) = Cx(t), x(0) = x035

consider the finite horizon case, where the finite time cost integral has the form36

(1.3) J(u) = x(tf )TPfx(tf ) +

∫ tf

0

(
x(t)TCTCx(t) + u(t)Tu(t)

)
dt.37

The matrix Pf is assumed to be symmetric and nonnegative definite. Assuming that38

the pair (A,B) is stabilizable and the pair (C,A) is detectable, the optimal input39
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2 G. KIRSTEN AND V. SIMONCINI

ũ(t), minimizing (1.3), can be determined as ũ(t) = −BTP (t)x̃(t), and the optimal40

trajectory is subject to ˙̃x = (A − BBTP (t))x(t). The matrix P (t) is the solution to41

the DRE42

(1.4) Ṗ (t) = ATP (t) + P (t)A− P (t)BBTP (t) + CTC, P (tf ) = Pf .43

Using a common practice, we can transform (1.4) into the initial value problem (1.1)44

via the change of variables X(tf − t) = P (t).45

Under certain assumptions, the exact solution of (1.1) can be expressed in integral46

form as (see e.g., [28, Theorem 8])47

(1.5) X(t) = etA
T

ZZT etA +

∫ t

0

e(t−s)AT (
CTC −X(s)BBTX(s)

)
e(t−s)Ads,48

so that when t→∞ the DRE reaches a steady state solution satisfying the algebraic49

Riccati equation (ARE)50

(1.6) 0 = ATX∞ +X∞A−X∞BBTX∞ + CTC.51

In the framework of differential equations, the DRE is characterized by both fast52

and slow varying modes, hence it is classified as a stiff ordinary differential equa-53

tion (ODE). The stiffness and the nonlinearity of the DRE are responsible for the54

difficulties in its numerical solution even on a small scale (n < 103). Several stiff55

integrators have been investigated, including the matrix generalizations of implicit56

ODE solvers [15, 12], linearization methods [14] and more recently matrix versions of57

splitting methods [35, 46, 47]. These methods are feasible on a small scale but fail58

to be efficient when n is large. In [41], iterative methods are implemented within the59

matrix generalization of standard implicit methods allowing for the computation of60

an approximate solution to the DRE when n � 103. These algorithms require the61

solution of a large algebraic Riccati equation at each timestep, which again raises big62

concerns as of storage and computational efforts.63

A promising idea is to rely on a model order reduction strategy typically used64

in linear and nonlinear dynamical systems. In this setting, the original system is65

replaced with66

(1.7) ˙̂x(t) = Amx̂(t) +Bmu(t), y(t) = Cmx̂(t), x̂(0) = x̂067

where Am, Bm and Cm are projections and restrictions of the original matrices onto68

a subspace of small dimension. The differential Riccati equation associated with this69

reduced order problem is solved, yielding an optimal corresponding cost function.70

This strategy allows for a natural low-rank approximation to the sought after DRE71

solution X(t), obtained by interpolating the reduced order solution at selected time72

instances. One main feature is that a single space is used for all time snapshots,73

so that the approximate solutions can be kept in factored form with few memory74

allocations. We refer the reader to, e.g., [4] for a general presentation of algebraic75

reduction methods for linear dynamical systems, and to [43] for a detailed discussion76

motivating the reduction approach in the context of the algebraic Riccati equation.77

A key ingredient for the success of the reduction methodology is the choice of the78

approximation space onto which the algebraic reduction is performed; [4] presents a79

comprehensive description of various space selections in the dynamical system setting.80

Following strategies already successfully adopted for the algebraic Riccati equations,81

the authors of [27] and [23] have independently used polynomial and extended Krylov82
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subspaces as approximation space, respectively, in the differential setting. A major83

characteristic of these spaces is that their dimension can be expanded iteratively, so84

that if the determined approximate solution is not sufficiently accurate, the Krylov85

space can be enlarged and the process continued. Several questions remain open in86

the methods proposed in [27],[23]. On the one hand, it is well known that polynomial87

Krylov subspaces require a very large dimension to satisfactorily solve real application88

problems, thus destroying the reduction advantages. On the other hand, the multiple89

timestepping proposed in the method in [23] only provides an accurate approximation90

at t = tf , except when X0 = 0. For X0 = ZZT 6= 0 of low rank, memory require-91

ments of the extended method grow significantly. These problems can be satisfactorily92

solved by using a general rational Krylov subspace, which is shown in various appli-93

cations to be able to supply good spectral information on the involved matrices with94

much smaller dimensions than the polynomial and extended versions. Such gain has95

been experimentally reported in the literature in the solution of the algebraic Riccati96

equation. We show that great computational and memory savings can be obtained97

when projecting onto the fully rational Krylov subspace, and that with an appropriate98

implementation the extended Krylov subspace may also be competitive with certain99

data.100

A related issue that has somehow been overlooked in the available literature is the101

expected final accuracy and thus the stopping criterion. Time dependence of the DRE102

makes the reduced problem trickier to handle than in the purely algebraic case; in103

particular, two intertwined issues arise: i) The accuracy of the approximate solution104

may vary considerably within the time interval [0, tf ]; ii) Throughout the reduction105

process the reduced ODE cannot be solved with high accuracy and, quite the opposite,106

low-order methods should be used to make the overall cost feasible. We analyze these107

difficulties in detail, and by exploiting the inherent structure of the reduced order108

model, we derive a two-phase strategy that first focuses on the reduction and then on109

the integration, in a way that is efficient for memory and CPU time usage, but also110

in terms of final expected accuracy.111

We also discuss several algebraic properties of the approximate solution and its112

relation both with the solution X(t) for t ∈ [0, tf ], and with the steady state solution113

X∞. These results continue a matrix analysis started in [27], where positivity and114

monotonicity properties of the approximate solution obtained by certain reduction115

methods are explored.116

The paper is organized as follows. In section 2 we introduce reduction methods117

and discuss the use of Krylov subspace based strategies. Matrix-oriented BDF meth-118

ods are recalled for the solution of the projected problem in section 3. In section 4119

we devise a stopping criterion for the order reduction methods and illustrate its key120

role in the implementation. Section 5 is devoted to the analysis of matrix properties121

of the solution, as well as the reduced model, from a control theory perspective. Sev-122

eral numerical experiments are reported in section 6, where the new methods are also123

compared with state-of-the-art procedures. Our conclusions are discussed in section 7.124

Finally, in Appendix A and Appendix B we review some properties of the extended125

and rational Krylov subspaces.126

Notation and definitions. Throughout the paper, the matrix In will denote the127

n × n identity matrix. In terms of norms, ‖ · ‖ refers to any induced matrix norm,128

where in particular the Frobenius norm is denoted by ‖ · ‖F . A matrix A is stable129

(sometimes also called Hurwitz) if all its eigenvalues are contained in the left half130

open complex plane. A linear dynamical system, ẋ = Ax, is called dissipative if the131

real matrix A has its field of values contained in the left half open complex plane.132



4 G. KIRSTEN AND V. SIMONCINI

All reported experiments were performed using MATLAB 9.4 (R2018b) ([33]) on133

a MacBook Pro with 8-GB memory and a 2.3-GHz Intel core i5 processor.134

2. Order reduction with Krylov-based subspaces. In this section, we re-135

view Krylov-based order reduction methods and show how they are applied to the136

DRE. Krylov subspaces that have been explored in the past years have the form137

Km(A,N) = range
{

[N,AN,A2N, . . . , Am−1N ]
}

polynomial138

EKm(A,N) = Km(A,N) +Km(A−1, A−1N) extended139

RKm(A,N,sss) = range

{
[N, (A− s2I)−1N, . . . ,

m∏
i=2

(A− siI)−1N ]

}
rational.140

where N is a tall matrix associated with the given problem. In the rational subspace,141

sss = {s2, . . . , sm} is a set of properly chosen real or complex shifts, whose computation142

can be performed a priori or dynamically during the generation of the subspace; we143

refer the reader to [44, 18] for more complete descriptions.144

Krylov-based projection methods (in short generically denoted as Km) were first145

applied to ARE’s in [25] (polynomial spaces) and later improved in [24] (extended146

space) and [45] (rational spaces). The two rational spaces prove to be far superior147

to the polynomial Krylov space in most reduction strategies where they are applied148

in the literature, as long as solving linear systems at each iteration is feasible. The149

differential Riccati equation has been attacked in [23] with the extended space, and in150

[27] with the polynomial space; here we close the gap, as far as Krylov subspaces are151

concerned. In addition, we address several implementation issues to make the final152

method computationally reliable and, to the best of our knowledge, a great competitor153

among the available methods for large-scale DRE problems.154

While for the algebraic Riccati equation N = CT , in the differential context the155

starting matrix for generating these spaces is given by N = [CT , Z], where X0 = ZZT .156

Both matrices C and Z play a crucial role in the closed-form DRE solution matrix and157

are thus included to generate the projection space. The idea of reduction methods is158

to first project the large DRE onto the smaller subspace Km, then solve the projected159

equation, and finally expand the solution back to the original space.160

Let the columns of Vm ∈ Rn×d span the considered Krylov subspace. Then the161

following Arnoldi-type relation holds,162

(2.1) ATVm = VmT T
m + νm+1τ

T
m,163

where the actual values of νm+1 ∈ Rn and τTm depend on the chosen subspace. More-164

over, setting Vm+1 = [Vm, νm+1] we have that Km+1 = range(Vm+1), which shows165

that Krylov subspaces are nested, that is Km ⊆ Km+1, resulting in a dimension in-166

crease after each iteration. Matrix relations leading to (2.1) for the extended and167

rational Krylov subspaces are recalled in Appendix A.168

Assume that Vm has orthonormal columns. Following similar reduction methods169

in the dynamical system contexts, see, e.g., [4], the reduction process consists of first170

projecting and restricting the original data onto the approximation space as171

Tm = VT
mAVm, Bm = VT

mB, Zm = VT
mZ and Cm = CVm.172

Then the following low order differential Riccati equation needs to be solved,173

Ẏm(t) = T T
m Ym(t) + Ym(t)Tm − Ym(t)BmB

T
mYm(t) + CT

mCm

Ym(0) = ZmZ
T
m,

(2.2)174
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for t ∈ [0, tf ]. This low-dimensional DRE admits a unique solution for tf < ∞ ,175

see e.g., [28]. Restrictions on the data to allow for positive, stabilizing solutions are176

discussed in more detail in section 5.1. An approximation to the sought after solution177

is then written as178

(2.3) Xm(t) = VmYm(t)VT
m ≈ X(t), t ∈ [0, tf ].179

We stress that Xm(t) is never explicitly computed, but always referred to via the180

matrix Vm and the set of matrices Ym(t) at given time instances. In fact, the matrices181

Ym(t) may also be numerically low rank, so that at the end of the whole process a182

further reduction can be performed by truncating the eigendecomposition of Ym(t)183

for each t.184

Remark 2.1. The approach we have derived is solely based on the order reduction185

of the dynamical system (1.2). Nonetheless, and with some abuse of notation, the186

reduced DRE could have been formally obtained by means of a Galerkin condition on187

the differential equation. For t ∈ [0, tf ] let188

Rm (t) := Ẋm(t)−ATXm(t)−Xm(t)A+Xm(t)BBTXm(t)− CTC189

be the residual matrix for Xm(t) = VmYmVT
m. The matrix Ym(t) is thus determined190

by imposing that the residual satisfies the following Galerkin condition191

(2.4) VT
mRm (t)Vm = 0, t ∈ [0, tf ],192

that is, Rm(t) ⊥ Km in a matrix sense, so that the residual is forced to belong to a193

smaller and smaller subspace as Km grows. Substituting Xm(t) = VmYm(t)VT
m into194

the residual matrix, the application of the Galerkin condition results in the projected195

system196

VT
m

(
VmẎm(t)VT

m−ATVmYm(t)VT
m−VmYm(t)VT

mA+VmYm(t)VT
mBB

TVmYm(t)VT
m−CTC)Vm = 0,

which corresponds to (2.2). This is rigorous as long as Ẋm = VmẎmVT
m holds. �197

It is crucial to realize that, as opposed to some available methods in the literature198

(such as, for instance, [41],[47] and the time-invariant algorithms in [30]), the approx-199

imation space is independent of the time stepping, that is a single space range(Vm)200

is used for all time steps. This provides enormous memory savings whenever the201

approximate solution is required at different time instances in [0, tf ]. Theoretical202

motivation for keeping the approximation space independent of the time-stepping is203

contained in [5], where it is shown that the solution of the DRE lives in an invariant204

Krylov-subspace1.205

The class of numerical methods we used for solving the reduced DRE is described206

in the next section. In the rest of this paper, we specialize the generic derivation207

above to the extended and rational Krylov subspaces, which greatly outperformed208

polynomial spaces both in terms of CPU time and memory requirements. More infor-209

mation on these spaces and their properties are given in Appendix A; in particular,210

we discuss the generation of a real rational Krylov basis in the presence of non-real211

shifts.212

1 We also refer the reader to the recent manuscript [6], which appeared on-line briefly before the
first round of our revision.
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3. BDF methods for the DRE. The numerical solution of the small-scale213

DRE is a well-studied topic, see, e.g., [34, 14, 35, 46]. Among the explored methods214

are matrix generalizations of the BDF methods [34, 15], which are computationally215

appealing only for small problems. Due to the reduction strength of rational Krylov216

subspaces, we expect the reduced DRE in (2.2) to be small enough to allow for efficient217

use of matrix-based BDF methods, which we are going to summarize next. For218

simplicity of exposition, in the rest of this section we omit the subscript in Ym, and219

denote Y (k+1) = Y (tk+1). If we define220

(3.1) F
(
Y (k+1)

)
= T T

m Y
(k+1) + Y (k+1)Tm − Y (k+1)BmB

T
mY

(k+1) + CT
mCm,221

the approximation of Y (k+1) is given by the implicit relation222

(3.2) Y (k+1) =

b−1∑
i=0

αiY
(k−i) + hβF(Y (k+1)),223

where h = tk+1 − tk is the stepsize and the respective αi’s and β are the coefficients224

of the b-step BDF method for b ≤ 3 and are given below.225

p β α0 α1 α2

1 1 1
2 2/3 4/3 −1/3
3 6/11 18/11 −9/11 2/11

226

Substituting (3.1) into (3.2) results in the following nonlinear matrix equation227

−Y (k+1) + hβ
(
T T
mY (k+1) + Y (k+1)Tm − Y (k+1)BmB

T
mY

(k+1) + CT
mCm

)
+

b−1∑
i=0

αiY
(k−i) = 0,228

which can be reformulated as the following continuous-time ARE229

(3.3) T̂ T
m Y

(k+1) + Y (k+1)T̂m − Y (k+1)B̂mB̂
T
mY

(k+1) + Q̂m = 0.230

The coefficient matrices are given by231

T̂m = hβTm −
1

2
Im, B̂m =

√
hβBm, Q̂m = hβCT

mCm +

b−1∑
i=0

αiY
(k−i).232

The Riccati equation (3.3) can be solved using “direct” methods; see, e.g., [9]. In our233

experiments we used the MATLAB solver care from the control systems toolbox. A234

brief sketch of the b-step BDF method is reported in Algorithm 3.1; other approaches235

are discussed, e.g., in [34, 30].236

We conclude the section by depicting the typical convergence behavior of the BDF237

methods in our context. We consider an example from [35], where the n × n matrix238

A stems from the spatial finite difference discretization of the following advection-239

diffusion equation240

∂tw = ∆w − 10xwx − 100ywy, w|∂Ω = 0241

on Ω = (0, 1)2 with homogeneous Dirichlet boundary conditions. The choices of242

B ∈ Rn×1 and C ∈ R1×n are given binomially as described in [35]. The initial243

condition is taken to be the zero matrix, that is Z = 0n×1. We compare the obtained244
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Algorithm 3.1 b-step BDF method – BDF(b, `)

Require: Tm ∈ Rd×d, Bm ∈ Rd×s, Cm ∈ Rp×d, Zm ∈ Rd×q, final time tf , number of
timesteps `, initial approximations Y (0), . . . , Y (b−1).

1: h = tf/`, T̂m = hβTm − 1
2Im, B̂m =

√
hβBm

2: for k = 0 to ` do
3: Q̂m = hβCT

mCm +
∑b−1

i=0 αiY
(k−i)

4: Solve T̂ T
m Y

(k+1) + Y (k+1)T̂m − Y (k+1)B̂mB̂
T
mY

(k+1) + Q̂m = 0
5: end for
6: return Y (k) ≈ Y (tk), tk = 0, h, . . . , tf

solution with a “reference” numerical solution Yref (t) computed by an accurate but245

expensive method (the MATLAB function ode23s in our experiments), so that n is246

kept small, n = 49. The convergence behavior for b = 1, 2, 3 and ` timesteps, with ` =247

10, 100, 1000 is displayed in Figure 3.1. The left plot shows the error ‖Y (t)−Yref (t)‖248

as a function of t, for different values of `. The right plot shows the evolution of249

the (1,1) component of the solution throughout the time span for the most accurate250

choice of BDF method, compared with that of the reference solution. These plots
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Fig. 3.1. Typical convergence behavior of BDF methods (left) and evolution of the X1,1 com-
ponent of the reference and BDF(3, 1000) solution (right).

251

illustrate that we cannot expect an overall high accuracy of the projection method as252

long as the reduced differential equation is not solved with sufficiently good accuracy.253

The importance of this is discussed in more detail in the following section.254

4. Stopping criterion and the complete algorithm. To complete the re-255

duction algorithm of section 2, we need to introduce a stopping criterion. We found256

that it is crucial to take into account the accuracy of the numerical method employed257

to solve the reduced DRE, as discussed in section 3.258

To derive our stopping criterion we were inspired by those in [27, 23], however,259

we made some important modifications. In both cited references, the authors assume260

that the inner problem (2.2) is solved exactly, which is not true in general. We thus261

consider that the numerical method solves the reduced problem with residual matrix262

R
(I)
m (t) := Ẏm(t) − F(Ym(t)), so that the final DRE residual can be split into two263

components.264

Proposition 4.1. Let Xm(t) = VmYm(t)V T
m be the Krylov-based approximate265

solution after m iterations, where Ym(t) approximately solves the reduced problem266
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(2.2). With the previous notation, the residual matrix Rm(t) = Ẋm(t) − F(Xm(t))267

satisfies268

(4.1) ‖Rm(t)‖2F = ‖R(I)
m (t)‖2F + 2‖R(O)

m (t)‖2F ,269

where R
(I)
m (t) = Ẏm(t)− F(Ym(t)) and R

(O)
m (t) = τTmYm(t) with τm as in (2.1).270

Proof. Substituting (2.3) into the residual Rm(t) we obtain271

Rm(t) = VmẎm(t)VT
m −ATVmYm(t)VT

m − VmYm(t)VT
mA

+ VmYm(t)VT
mBB

TVmYm(t)VT
m − CTC.

(4.2)272

Since CT belongs to range(Vm), we can write CT = VmCT
m. Using (2.1), we get273

Rm(t) = VmẎm(t)VT
m − (VmT T

m + νm+1τ
T
m)Ym(t)VT

m − VmYm(t)(TmVT
m + τmν

T
m+1)

+ VmYm(t)VT
mBB

TVmYm(t)VT
m − VmCT

mCmVT
m.

274

Since Vm+1 = [Vm, νm+1], we can write Rm(t) = Vm+1Jm(t)VT
m+1, where275

Jm(t) =

[
Ẏm(t)− T T

mYm(t)− Ym(t)Tm + Ym(t)BmB
T
mYm(t)− CT

mCm Ym(t)τm
τTmYm(t) 0

]
.276

Let R
(I)
m (t) be the residual of the numerical ODE inner solver. Then277

Jm(t) =

[
R

(I)
m (t) Ym(t)τm

τTmYm(t) 0

]
.278

Since the columns of Vm+1 are orthonormal,279

‖Rm(t)‖2F = ‖Vm+1Jm(t)VT
m+1‖2F = ‖Jm(t)‖2F

= Tr
(
R(I)

m (t)TR(I)
m (t) + 2(Ym(t)τm)(τTmYm(t))

)
,

280

that is, ‖Rm(t)‖2F = ‖R(I)
m (t)‖2F + 2‖τTmYm(t)‖2F , and the result follows.281

The expression for Jm(t) emphasizes that at each iteration m the matrix Ym(t) is the
exact solution of

Ẏm(t)− T T
m Ym(t)− Ym(t)Tm + Ym(t)BmB

T
mYm(t)− CmC

T
m −R(I)

m (t) = 0.

Hence, as long as ‖R(I)
m (t)‖F is not very small, the increase ofm aims at more and more282

accurately approximating a “nearby” differential problem to the truly projected one,283

with a term R
(I)
m (t) that varies with m. Hence, Xm(t) = VmYmVT

m is an approximation284

not to X(t), but to the solution of a differential problem with an additional term whose285

projection onto the space is R
(I)
m (t).286

Proposition 4.1 also implies that we cannot expect an overall small residual norm287

if either of the two partial residual norms ‖R(I)
m (t)‖F , ‖R(O)

m (t))‖F is not small. In par-288

ticular, we observe that the two residuals can be made small independently. Therefore289

we propose the following practical strategy:290

(i) Run the algorithm as presented, with a low-order cheap ODE inner solver (i.e.,291

BDF(1, `) with ` relatively small) and use R
(O)
m (t) in the stopping criterion;292
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(ii) Once completed step (i) after m̂ iterations, use the matrices Tm̂, Cm̂, Bm̂ and293

Zm̂ to refine the ODE inner solution by using a higher-order ODE solver for the294

projected system.295

The final matrix Ym̂(t) obtained in step (ii) will provide a more accurate solution296

matrix than what would have been obtained at the end of step (i). We emphasize297

that any ODE method for small and medium scale DREs could be used at steps (i)298

and (ii). Our choice of BDF(1, `) is due to its good trade-off between accuracy and299

computational effort; other approaches could be considered.300

To complete the description of the stopping criterion, we recall that R
(O)
m (t) de-301

pends on t, so that we need to estimate the integral over the whole time interval by302

means of a quadrature formula, that is303

(4.3)

∥∥∥∥∫ tf

0

R(O)
m (γ)dγ

∥∥∥∥
F

=

∥∥∥∥τTm ∫ tf

0

Ym(γ)dγ

∥∥∥∥
F

≈

∥∥∥∥∥∥τTm
∑̀
j=1

tf
`
Ym(tj)

∥∥∥∥∥∥
F

=: ρm.304

where the interval [0, tf ] has been divided into ` intervals with nodes tj .305

The overall algorithm2 based on the rational Krylov subspace method is reported306

in Algorithm 4.1, while the algorithm based on the extended method is postponed307

to Appendix B. Several implementation issues of Algorithm 4.1 are also described in308

Appendix A, such as the use of a real basis in case of complex shifts sj in the basis309

construction.310

Algorithm 4.1 RKSM-DRE

Require: A ∈ Rn×n, B ∈ Rn×s, C ∈ Rp×n, Z ∈ Rn×q, tol, tf , `, s0 = {s(1)
0 , s

(2)
0 }

(i) Perform reduced QR: [CT , Z] = V1Λ1

Set V1 ≡ V1

for m = 2, 3 . . .
Compute the next shift and add it to s0
Compute the next real basis block Vm
Set Vm = [Vm−1, Vm]
Update Tm = VT

mAVm and Bm = VT
mB, Zm = VT

mZ and Cm = CVm
Integrate (2.2) from 0 to tf using BDF(1, `)
Compute ρm using (4.3) where τTm = GT

m

if ρm < tol
go to (ii)

end if
end for

(ii) Refinement: solve (2.2) with a more accurate integrator

Compute Ym(tj) = Ŷm(tj)Ŷm(tj)
T , j = 1, . . . , ` using the truncated SVD

return Vm ∈ Rn×m(p+q) and ` factors Ŷm(tj) ∈ Rm(p+q)×r, j = 1, . . . , `

5. Stability analysis and error bounds. In this section, we provide a few311

results on the spectral and convergence properties of the obtained approximate solu-312

tion We first inspect some properties of the asymptotic matrix solution, which solves313

2A Matlab implementation of Algorithm 4.1 can be downloaded from
either https://github.com/Gerhard-Kirsten/Differential-Riccati-RKSM or
http://www.dm.unibo.it/ s̃imoncin/software.
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the algebraic Riccati equation. Then we propose a bound for the error matrix, in an314

appropriate functional norm.315

5.1. Properties of the (steady state) algebraic Riccati equation. Prop-316

erties associated with the algebraic Riccati equation – as asymptotic solution to the317

DRE – are well known in linear quadratic optimal control, see, e.g., [29, 13]. In par-318

ticular, classical uniqueness and stabilization properties of the solution (see, e.g., [13,319

Lemma 12.7.2]), can directly be extended to the reduced DRE (2.2).320

Corollary 5.1. Let (Tm, Bm, Cm) be stabilizable and detectable system. Let321

Ym(t) be the solution of (2.2) at time t and let Y∞m = limt→∞ Ym(t). Then Y∞m322

is the unique symmetric nonnegative definite solution and the only stabilizing solution323

to the (reduced) algebraic Riccati equation324

(5.1) 0 = T T
m Y

∞
m + Y∞m Tm − Y∞m BmB

T
mY
∞
m + CT

mCm.325

Moreover, if the pair (Cm, Tm) is observable, Y∞m is strictly positive definite.326

We notice that the stabilizability and detectability properties of (Tm, Bm, Cm)327

are not necessarily implied by those on (A,B,C). Nevertheless, it is shown in [43]328

that if there exists a feedback matrix K, such that the linear dynamical system ẋ =329

(A−BK)x is dissipative, then the pair (Tm, Bm) is stabilizable. A similar result can330

be formulated for the detectability of (Cm, Tm), since by duality reasoning, (Cm, Tm)331

is detectable if (T T
m , C

T
m) is stabilizable. The question regarding the existence of such332

a feedback matrix, with respect to A and B (AT and CT ), is addressed in [22].333

With these results, we can relate the asymptotic solution of the original and334

projected problems. Let Xm(t) = VmYm(t)VT
m and Xa

m = VmY∞m VT
m respectively be335

approximate solutions to (1.1) and (1.6) by a projection onto range(Vm). If there336

exist matrices K and L such that the systems ẋ = (A−BK)x and ẋ = (AT −CTL)x337

are dissipative, then338

(5.2) lim
t→∞

Xm(t) = Vm lim
t→∞

Ym(t)VT
m = VmY∞m VT

m = Xa
m,339

that is, Xa
m is the steady state solution of Xm(t) when projected onto the same basis.340

Under the hypotheses that (A,B,C) is a stabilizable and detectable system, there341

exists a unique non-negative and stabilizing solution X∞ to (1.6) (see, e.g., [28, The-342

orem 5]). In [43] a bound was derived for the error X∞ −Xa
m in terms of the matrix343

residual norm. Here we complete the argument by stating that in exact arithmetic344

and if the whole space can be spanned, the obtained approximate solution equals X∞.345

Proposition 5.2. Suppose (A,B,C) is stabilizable and detectable. Assume it is346

possible to determine m∗ such that dim(range(Vm∗)) = n, and let Xa
m∗ = Vm∗Y∞m∗V

T
m∗347

be the obtained approximate solution of (1.6) after m∗ iterations. Then, Xa
m∗ = X∞.348

Proof. Since Vm∗ is square and orthogonal the projected ARE is given by

0 = VT
m∗A

TVm∗Y∞m∗ + Y∞m∗V
T
m∗AVm∗ − Y

∞
m∗V

T
m∗BB

TVm∗Y∞m∗ + VT
m∗C

TCVm∗ .

From (A,B,C) stabilizable and detectable it follows that (VT
m∗AVm∗ ,V

T
m∗B,CVm∗) is349

also stabilizable and detectable, so that Y∞m∗ ≥ 0 and stabilizing. Multiplying by Vm∗350

(by VT
m∗) from the left (right), we obtain 0 = ATXa

m∗+Xa
m∗A−X

a
m∗BB

TXa
m∗+CTC,351

that is, Xa
m∗ ≥ 0 is a solution to the original ARE. Since X∞ is the unique nonnegative352

definite solution, it must be Xa
m∗ = X∞.353
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5.2. Error bound for the differential Riccati equation. In this section we354

derive a bound for the maximum error obtained by the reduction process, in terms of355

the residual356

Rm(t) = ATXm(t) +Xm(t)A−Xm(t)BBTXm(t) + CTC − Ẋm(t).(5.3)357

Note that Rm(t) is the residual matrix with respect to the exact solution of the reduced358

differential problem, that is, it also includes the discretization error. A similar bound359

on the error has been derived for the nonsymmetric DRE in [3], which used matrix360

perturbation techniques from [26].361

Proposition 5.3. For t ∈ [0, tf ] let Em(t) = X(t) − Xm(t) and assume that
A(t) := A−BBTX(t) is stable for all t ∈ [0, tf ]. Denote

ν := max
t∈[0,tf ]

{∫ t

0

‖ΦAT (t, s)‖ ‖ΦA(t, s)‖ds
}
,

whereΦA is the state-transition matrix satisfying ∂ΦA(t,s)
∂t =A(t)ΦA(t, s),ΦA(s, s) = I.362

If 4ν2‖B‖2‖Rm‖∞t
< 1, then

‖Em‖∞t
≤ 2ν‖Rm‖∞t

,

where ‖L‖∞t
= maxt∈[0,tf ] ‖L(t)‖ for any continuous matrix function L(t).363

Proof. By subtracting (5.3) from (1.1) and manipulating terms we obtain

Ėm(t) = (A−BBTX(t))TEm(t) + Em(t)(A−BBTX(t)) + Em(t)BBTEm(t) +Rm(t),

with Em(0) = 0. Therefore, by the variation of constants formula (see, e.g., [28])

Em(t) =

∫ t

0

ΦAT (t, s)
(
Rm(s) + Em(s)BBTEm(s)

)
ΦA(t, s)ds.

Taking norms yields

‖Em(t)‖∞t ≤ max
t∈[0,tf ]

∫ t

0

‖ΦAT (t, s)‖ ‖ΦA(t, s)‖
(
‖Rm(s)‖+ ‖Em(s)‖2‖B‖2

)
ds,

so that ‖Em(t)‖∞t
≤ ν

(
‖Rm(t)‖∞t

+ ‖Em(t)‖2∞t
‖B‖2

)
. Solving this quadratic in-

equality yields

‖Em(t)‖∞t ≤
1−

√
1− 4ν2‖B‖2‖Rm‖∞t

2ν‖B‖2
.

The result follows from multiplying and dividing by (1+
√

1− 4ν2‖B‖2‖Rm‖∞t
) and364

noticing that at the denominator this quantity can be bounded from below by 1.365

We conclude with a remark on the intuitive fact that if the approximation space366

spans the whole space, the obtained solution by projection necessarily coincides with367

the sought after solution of the DRE.368

Remark 5.4. If it is possible to determine m∗ such that dim(Vm∗) = n, then the
approximate solution Xm∗(t) coincides with X(t) for all t ≥ 0. Indeed, let us write
Xm∗(t) = Vm∗Ym∗(t)VT

m∗ , where Vm∗ is square and orthogonal. The reduced DRE is
given by

Ẏm∗ = VT
m∗A

TVm∗Ym∗ + Ym∗VT
m∗AVm∗ − Ym∗V

T
m∗BB

TVm∗Ym∗ + VT
m∗C

TCVm∗
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with Ym∗ = Ym∗(t). Multiplying by Vm∗ (by VT
m∗) from the left (right), we obtain369

Ẋm∗(t) = ATXm∗(t) +Xm∗(t)A−Xm∗(t)BB
TXm∗(t) + CTC,370

hence, Xm∗(t) ≥ 0 is a solution of (1.1). Since X(t) is the unique nonnegative definite371

solution of (1.1) for any X0 ≥ 0 (see, e.g., [28]), then Xm∗(t) = X(t) for t ≥ 0. �372

6. Numerical experiments. In this section we report on our numerical ex-373

perience with the developed techniques. We consider two artificial symmetric and374

nonsymmetric model problems, as well as three (of which two are nonsymmetric)375

standard benchmark problems. Information about the considered data is contained376

in Table 1. For the first two datasets displayed in Table 1, the matrix A stems from377

the finite difference discretization with homogenous Dirichlet boundary conditions on378

the unit square and unit cube, respectively. The first matrix (sym2d) comes from379

the finite difference discretization of the two-dimensional Laplace operator in the unit380

square with homogeneous boundary conditions, while the second matrix (nsym3d)381

stems from the finite difference discretization of the three-dimensional differential382

operator383

L(u) = exy(ux)x + exy(uy)y + (uz)z + (1 + x)e−xux + y2uy + 10(x+ y)uz,384

in the unit cube, with homogeneous boundary conditions. For both datasets, the
matrices B,C and Z are selected randomly with normally distributed entries. The
realizations of the random matrices are fixed for both examples using the MATLAB
command rng: for B,C and Z we use rng(7), rng(2) and rng(3), respectively. The
following two datasets ( chip and flow) are taken from [1], and all coefficient matrices

(Â, B̂, Ĉ and Ê) are contained in the datasets, which stem from the dynamical system

Ê ˙̂x = Âx̂+ B̂u, ŷ = Ĉx̂.

Since Ê is diagonal and nonsingular, it is incorporated as A = Ê−
1
2 ÂÊ−

1
2 , while385

B̂ and Ĉ are updated accordingly to form B and C.386

The final considered dataset (rail) stems from a semi-discretized heat transfer
problem for optimal cooling of steel profiles3 [8]. We consider the largest of the

four available discretizations (file rail 79841 c60 containing Â, B̂, Ĉ and Ê) with

n = 79841. The symmetric and positive definite mass matrix Ê has a sparsity pattern
very similar to Â. Both matrices are therefore reordered by the same approximate
minimum degree (rksm-dre) or reverse Cuthill-McKee (eksm-dre) permutation to
limit fill-in. The state-space transformation is done using the Cholesky factorization
of Ê. More precisely, let Ê = ÊLÊ

T
L with ÊL lower triangular, and consider the

transformed state x = ÊT
L x̂. Then

ẋ = Ax+Bu, y = Cx,

with A = Ê−1
L ÂÊ−TL , B = Ê−1

L B̂ and C = ĈÊ−TL . These matrices are never explicitly387

formed, rather they are commonly applied implicitly by solves with the factor ÊL at388

each iteration; see, e.g., [18, 42].389

The initial low-rank factors are selected as the zero vector for flow, Z = sin g390

for chip and Z = cos g for rail, where g ∈ Rn×1 is a vector with entries in [0, 2π].391

Other sufficiently general choices were tried during our numerical investigation how-392

ever results did not significantly differ from the ones we report.393

3Data available at http://modelreduction.org/index.php/Steel Profile
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Table 1
Relevant information concerning the experimental data

Name n p/s/q ||A||F ||B||F ||C||F ||Z||F ||E||F
sym2d 640000 5/1/1 3.6 · 103 8.0 · 102 1.8 · 103 8.0 · 102 8 · 102

nsym3d 64000 6/1/3 2.0 · 103 2.5 · 102 6.2 · 102 2.8 · 102 2.5 · 102

Name n p/s/q ||Â||F ||B̂||F ||Ĉ||F ||Z||F ||Ê||F
chip 20082 5/1/1 2.2 · 106 1.7 · 102 3.3 · 104 1.0 · 102 2 · 10−4

flow 9669 5/1/1 4.5 · 106 2.0 · 104 1.2 · 103 − 6.8 · 100

rail 79841 7/6/1 7 · 10−3 1 · 10−7 6.2 · 100 1.9 · 102 8 · 10−4

Performance of the projection methods. We first investigate the convergence be-394

havior of the outer solver. The quantity we monitor in our stopping criterion is the395

backward error in an integral norm given by396

(6.1)
ρm

tf‖C‖2F + 2ξm + ψm
,397

with ρm as in (4.3) and

ξm =

∥∥∥∥ATVm
∫ tf

0

Ym(γ) dγ

∥∥∥∥
F

and ψm =

∥∥∥∥∫ tf

0

Ym(γ)VT
mBB

TVmYm(γ)dγ

∥∥∥∥
F

.

The integrals are approximated by a quadrature formula in a similar fashion to (4.3),398

and we note that ξm can be cheaply computed by using the Arnoldi-type relation.399

For all datasets, the stopping tolerance was chosen as 10−7. For the first four400

datasets, tf = 1 and bdf(1,10) is used as inner solver. For rail, tf = 4500 (see e.g., [8]401

for further details about the setting) and bdf(1,45) is used as inner solver. Figures 6.1402

to 6.5 display the convergence of the rational Krylov subspace method (Algorithm 4.1,403

rksm-dre) and of the extended Krylov subspace method (Algorithm B.1, eksm-dre).404

The left plots report the history of the backward error as the approximation space405

dimension increases, while the right plots display the same history versus the total406

computational time (in seconds) as the iterations proceed. We notice that the cost of407

the refinement step is not taken into account in these first tests.
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Fig. 6.1. sym2d: Convergence history for eksm-dre and rksm-dre. Left: backward error
versus space dimension. Right: backward error versus computational time.

408
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Fig. 6.2. nsym3d: Convergence history for eksm-dre and rksm-dre. Left: backward error
versus space dimension. Right: backward error versus computational time.
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Fig. 6.3. chip: Convergence history for eksm-dre and rksm-dre. Left: backward error versus
space dimension. Right: backward error versus computational time.
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Fig. 6.4. flow: Convergence history for eksm-dre and rksm-dre. Left: backward error versus
space dimension. Right: backward error versus computational time.
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Fig. 6.5. rail: Convergence history for eksm-dre and rksm-dre. Left: backward error versus
space dimension. Right: backward error versus computational time.

For the dataset sym2d, the large algebraic linear system in rksm-dre was iter-409

atively solved by implementing a block conjugate gradient algorithm, with an inner410

tolerance of 10−10, preconditioned with an incomplete Cholesky factorization with411

drop tolerance 10−4. For all other datasets, the MATLAB built-in backslash operator412

was used. For eksm-dre the coefficient matrix A used to generate the Krylov space413

remains constant, hence a sparse reordered Cholesky (for sym2d and rail) or LU414

(for all other datasets) factorization was performed once and for all at the start of415

the algorithm. Therefore, only sparse triangular solves are required at each iteration.416

Clearly, the cost of the initial factorization depends on the size and density of the417

coefficient matrix. These two cost stages are particularly noticeable in the right plots418

of Figure 6.2 and Figure 6.3, where the eksm-dre curve starts towards the right of419

the plot, while the rest of the computation throughout the iterations is significantly420

faster.421

In the implementation of rksm-dre it is possible to decide a priori whether to use422

only real or generically complex shifts. Our experiments showed that complex shifts423

were unnecessary for sym2d and nsym3d and, in fact, slowed down convergence when424

used. On the other hand, the use of general complex shifts proved to be crucial for425

the efficient convergence of rksm-dre for chip and flow. For the symmetric data426

in rail no complex shifts were used. We mention in passing that both algorithms427

are implemented so that the inner solves of (2.2) and the residual computations are428

performed at each iteration; for more demanding data we would advise a user to429

perform these computations only periodically to save on computational time.430

Comparing performance, we observe that the two algorithms have alternating431

leadership in terms of computational time, but that rksm-dre almost consistently432

requires half the space dimension of eksm-dre. This is expected as the space di-433

mension of eksm-dre increases with twice the number of columns per iteration, in434

comparison to rksm-dre. This observation is crucial at the refinement step, where435

it could be considerably more expensive to accurately integrate a DRE of dimension436

2m(p+ q) in comparison to a DRE with approximately half the dimension.437

To have a clearer picture of how the various steps influence the performance of438

the methods, Table 2 depicts the overall computational time for the system solves, the439

orthogonalization steps and the integration of the reduced systems for each algorithm.440

For eksm-dre the CPU time required for the Cholesky and LU factorizations are441
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included in the solving time, but indicated in brackets as well. It is particularly442

interesting to notice the small percentage of time required by rksm-dre in comparison443

to eksm-dre for integrating the reduced system, confirming the comment made in444

the previous paragraph.445

Table 2
A breakdown of the computational time for the considered methods for the first two datasets.

System Orthogonalisation Integration
Data Method solves (s) steps (s) steps (s)

sym2d
rksm-dre 6.1 6.9 0.4
eksm-dre 8.6 (2.7) 12.1 1.3

nsym3d
rksm-dre 38.3 0.9 0.8
eksm-dre 48.6 (43.5) 1.6 4.0

446

Comparisons with other BDF based methods. We compare the two projection447

methods rksm-dre and eksm-dre with low-rank methods that have been developed448

following different strategies. The package m.e.s.s. [41], for instance, can solve Lya-449

punov and Riccati equations, and perform model reduction of systems in state space450

and structured differential algebraic form, with time-variant and time-invariant data.451

For our purposes, the solvers in m.e.s.s. first discretize the time interval, and then452

solve the algebraic Riccati equation resulting from the ODE solver at each time step.453

Therefore, the approximation strategy employed at each time iteration to solve the454

algebraic problem is completely independent, and the obtained low-rank numerical455

solution needs to be stored separately. More precisely, if ` timesteps are performed,456

the procedure requires solving at least ` AREs of large dimensions, delivering the457

corresponding low-rank approximate solutions. Moreover, the rank of the constant458

term in the ARE increases with the time step, due to the way the ODE solver is459

structured, further increasing the complexity of the ARE numerical treatment. In460

our experiments with m.e.s.s. we only requested the approximate solution at the461

final stage. If the whole approximate solution matrix is requested at different time462

instances, the memory requirements will grow linearly with that. The overall strategy463

appears to be memory and computational time consuming, therefore we considered464

datasets of reduced size for our comparisons, as displayed in Table 3. The considered465

timespans were left unchanged.466

Table 3
Data information for comparisons between projection-based methods and m.e.s.s.

Name n p/s/q ||A||F ||B||F ||C||F ||Z||F ||E||F
sym2d 40000 5/1/1 1.3 · 103 3.0 · 102 6.7 · 102 3.0 · 102 2 · 102

nsym3d 8000 6/1/3 6.1 · 102 7.7 · 101 1.9 · 102 8.3 · 101 2.8 · 102

Name n p/s/q ||Â||F ||B̂||F ||Ĉ||F ||Z||F ||Ê||F
flow 9669 5/1/1 4.5 · 106 2.0 · 104 1.2 · 103 0 6.8 · 100

rail 20209 7/6/1 4 · 10−3 2.1 · 10−7 6.2 · 100 1.9 · 102 2 · 10−4

Our experimental results are displayed in Tables 4 to 7; we remark that now also467

the refinement cost is taken into account in the projection methods. In all tables, the468

code bdf(b, `) refers to the BDF method implemented in the refinement procedure of469

the reduction methods and in the time discretization procedure of m.e.s.s.470
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Table 4
sym2d: Storage and computational time comparison of rksm-dre, eksm-dre and m.e.s.s..

Reduction phase performed with bdf(1,10), refinement phase with bdf(2,100). In m.e.s.s. only the
approximate solution at the final time is stored, with no solutions at intermediate time instances
returned.

# n-long Min/Max Reduction Refine Tot CPU
Method Vecs rank phase(s) phase(s) time(s)
rksm-dre 54 23/43 1.4 0.15 1.6
eksm-dre 120 23/43 1.7 1.9 3.6
m.e.s.s.-bdf(1,10) 988 58/75 319.9
m.e.s.s.-bdf(2,100) 1032 58/86 4005.4

471

The tables show the storage requirements in terms of n-length vectors, the min-472

imum and maximum approximate solution rank (with a truncation tolerance 10−8473

for the projection methods) within the set of solutions, the CPU time break out of474

projection and refinement phases for the two projected methods, and finally the total475

CPU time. The stopping tolerance for all algebraic methods – that is the two pro-476

jection methods and the Newton–Kleinmann-type method used in m.e.s.s. to solve477

each ARE – is set to 10−7.478

In the m.e.s.s. software the user can either select a stopping tolerance (to be479

used for all solvers within the Newton–Kleinmann strategy) or a maximum number480

of iterations. We have experimented with both cases, where the maximum number of481

iterations was detected (a-posteriori) as the maximum number of iterations required482

within m.e.s.s to reach the tolerance of 10−7. It was observed that, in the majority of483

cases, avoiding the residual computation may, in fact, slow down the computational484

procedure. This is due to the possibility of performing several unnecessary iterations485

at some timesteps after the desired accuracy has in fact been reached. We therefore486

only report the results of the more realistic, reliable case where a stopping tolerance487

is selected beforehand. Galerkin acceleration is used to boost the performance of488

Newton–Kleinmann.489

Table 5
nsym3d: Storage and computational time comparison of rksm-dre, eksm-dre and m.e.s.s..

Reduction phase performed with bdf(1,10), refinement phase with bdf(2,100). In m.e.s.s. only the
approximate solution at the final time is stored, with no solutions at intermediate time instances
returned.

# n-long Min/Max Reduction Refine Tot CPU
Method Vecs rank phase(s) phase(s) time(s)
rksm-dre 90 36/66 2.4 2.8 5.2
eksm-dre 180 36/66 2.6 5.4 8.0
m.e.s.s.-bdf(1,10) 1116 71/90 431.0
m.e.s.s.-bdf(2,100) 1152 67/94 4965.0

490

All numbers in the tables illustrate the large computational costs of m.e.s.s., as491

expected by the strategy “first time-discretize, then solve”, whereas both projection492

methods require just a few seconds of CPU in most cases.493

The storage requirements of both reduction methods is independent of the number494

of timesteps where the solution is required. This is due to the fact that only a few495

n-long basis vectors need to be generated and stored, while only the reduced problem496
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solution Ym(t) changes at the timesteps t. The memory requirements of m.e.s.s. are497

measured as the dimensions of the low-rank factor returned by the Newton-Kleinmann498

procedure, before column compression, at the final timestep. The dimension decreases499

significantly with the column compression. In our experiments we only stored the500

approximate solution at the last time step, however memory will be correspondingly501

higher if the whole approximation matrix is required at more instances (memory will502

thus grow linearly with the number of time instances to be monitored).503

Between the two projection methods, we observe that the extended space yields a504

significantly larger basis than the actual approximate solution rank it produces. This505

means that the approximate solution belongs to a much smaller space than the one506

constructed by eksm-dre. This is far less so with rksm-dre. The different behavior507

confirms what has been already observed for the two methods in the ARE case [45].508

Table 6
flow: Storage and computational time comparison of rksm-dre, eksm-dre and m.e.s.s.. Re-

duction phase performed with bdf(1,10), refinement phase with bdf(2,100). In m.e.s.s. only the
approximate solution at the final time is stored, with no solutions at intermediate time instances
returned.

# n-long Min/Max Reduction Refine Tot CPU
Method Vecs rank phase(s) phase(s) time(s)
rksm-dre 175 95/100 11.8 4.5 16.3
eksm-dre 350 95/100 27.4 23.5 50.9
m.e.s.s.-bdf(1,10) 1280 87/106 431.7

509

Table 7
rail: Storage and computational time comparison of rksm-dre, eksm-dre and m.e.s.s.. Re-

duction phase performed with bdf(1,10), refinement phase with bdf(2,100). In m.e.s.s. only the
approximate solution at the final time is stored, with no solutions at intermediate time instances
returned.

# n-long Min/Max Reduction Refine Tot CPU
Method Vecs rank phase(s) phase(s) time(s)
rksm-dre 168 153/160 6.4 3.3 9.7
eksm-dre 462 153/160 39.2 5.7 44.9
m.e.s.s.-bdf(1,10) 6345 151/158 705.3
m.e.s.s.-bdf(2,100) 4023 124/158 3396.5

510

Comparisons with splitting methods. We next compare rksm-dre with the fourth511

order additive splitting method (split-add4(`)) developed in [47]. The method is512

based on splitting the DRE into the linear and non-linear subproblems, for which513

respective closed form solutions exist and are explicitly approximated. The numer-514

ical solutions to the subproblems are then recombined to approximate the solution515

to the full problem, by means of an additive splitting scheme. The main computa-516

tional effort is due to the repeated evaluation of matrix exponentials, which has been517

resolved by using a Krylov-based matrix exponential approximation. Similar to the518

issue discussed with m.e.s.s. in the previous section, the ` (factored) solution ma-519

trices are independently calculated at each timestep, leading to significant memory520

requirements.521
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To ensure that we are comparing methods with similar approximation accuracies,522

we generate reference solutions Xref (tj) for the selected time instances tj . This is523

done by using rksm-dre with a stopping tolerance of 10−10, plus a refinement process524

with bdf(4, 104) from [41]. To allow for such accurate approximations, we consider525

slightly smaller problem dimensions for the first two datasets, and we set p = s = 1526

and X0 = 0.527

The input parameters are tailored so that the approximate solutions from different
methods have relatable accuracies. In particular, rksm-dre is solved with an outer
stopping tolerance of 10−6 and with bdf(3,1000) in the refinement process. The
number of timesteps utilized in split-add4 is selected as ` = 500. The expected
approximation errors relative to the reference solution, measured as

‖Xapprox(t)−Xref (t)‖F
‖Xref (t)‖F

,

are illustrated in Figure 6.6 (dataset sym2d in the left plot, dataset nsym3d in the528

right plot). The figures indicate that we compare methods having approximation
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Fig. 6.6. Expected approximation error for rksm-dre and split-add4(500). Left: Dataset
sym2d. Right: Dataset nsym3d.

529
errors of similar order. The performance results are contained in Table 8 for two530

different discretizations of sym2d and nsym3d.531

532

All numbers indicate the competitiveness of rksm-dre in terms of storage and com-533

putational time. The memory requirements for split-add4 is measured as the di-534

mension of the solution factor at the final timestep, before column compression. If535

the solution is required at more time instances, then these memory requirements will536

increase accordingly.537

We also mention that we have experimented with the dynamic splitting methods538

introduced in [35], however the algorithms proposed by the authors4 in [35] appeared539

to be better suited for small to medium size problems.540

Discussion on the refinement step. In previous sections, we have stressed that541

the two approximation stages of the projection method are independent, and we have542

focused on determining an effective approximation space. Here we linger over the543

4We thank Chiara Piazzola for providing us with her Matlab implementation of the method.
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Table 8
Storage and computational time comparison of rksm-dre and split-add4(500). Reduction

phase performed with bdf(1,10), refinement phase with bdf(3,1000). In split-add4 only the ap-
proximate solution at the final time is stored.

# n-long Min/Max Tot CPU
Data (n) Method Vecs rank time (s)

sym2d (104)
rksm-dre 8 3/6 0.6

split-add4(500) 28 3/7 34.9

nsym3d (8 · 103)
rksm-dre 10 4/7 2.2

split-add4(500) 36 3/9 37.9

sym2d (9 · 104)
rksm-dre 6 3/4 1.2

split-add4(500) 28 3/7 330.0

nsym3d (2.7 · 104)
rksm-dre 10 4/8 10.1

split-add4(500) 36 3/9 127.8

Table 9
sym2d (of size 106): Results with rksm-dre, using different refinement strategies. Reduction

phase performed with bdf(1,10) and tolerance 10−8.

Refinement # n-long Soln. Reduction Refinement Tot CPU
Method Vecs rank phase(s) phase(s) time(s)
bdf(2,100) 72 55 37.7 1.1 38.8
bdf(3,1000) 72 55 37.7 9.6 47.3
bdf(4,10000) 72 55 37.7 95.5 133.2
split-add4(500) 72 55 37.7 1.9 39.6
split-add8(500) 72 55 37.7 5.1 42.8
split-adapt8 72 55 37.7 23.1 60.8

accuracy of the second stage, the refinement step. Exploiting the far smaller problem544

size of the reduced problem, it is possible to allow for a much more accurate integration545

phase than what was done during the iteration of the reduction step. This crucial546

fact is already illustrated in the time break down of Tables 4 to 6, where especially547

for rksm-dre the refinement phase employs a fraction of the overall computational548

time, while still allowing for a rather accurate final solution.549

We next explore in more detail these advantages with rksm-dre on sym2d,550

where the discretization was further refined to get a coefficient matrix of dimension551

106. The dimensions of the other corresponding matrices remain as presented in552

Table 1. We investigate the time taken by DRE solvers with different accuracies to553

emphasize the advantages and flexibility of the refinement procedure. Table 9 reports554

the timings for a refinement step performed by three different bdf methods and three555

splitting methods. The 8th order adaptive splitting method (split-adapt8) also556

comes from [47] and is performed with a tolerance of 10−7. We emphasize that in557

the refinement phase we have utilized some of the most accurate integrators available,558

and nevertheless the high-dimensional (n = 106) problem is approximated in less than559

150 seconds for all integrators.560

561

7. Conclusions and open problems. We have devised a rational Krylov sub-562

space based order reduction method for solving the symmetric differential Riccati563

equation, providing a low-rank approximate solution matrix at selected time steps. A564
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single projection space is generated for all time instances, and the space is expanded565

until the solution is sufficiently accurate. We stress that our approach is very general,566

and that it could be applied to subspaces other than Krylov-based ones, as long as the567

spaces are nested, so that they keep growing as the iterations proceed. This methodol-568

ogy could then be employed for more complex settings, such as parameter dependent569

problems, where the involved approximation space may require the inclusion of some570

parameter sampling.571

Like in typical model order reduction strategies, in our methodology time step-572

ping is only performed at the reduced level, so that the integration cost is drastically573

lower than what one would have by applying the time stepping on the original large574

dimensional problem. We have derived a new stopping criterion that takes into ac-575

count the different approximation behavior of the algebraic and differential portions576

of the problem, together with a refinement procedure that is able to improve the final577

approximate solution by using a high-order integrator. These enhancement strategies578

have also been applied to the extended Krylov subspace approach. We have ana-579

lyzed the asymptotic behavior of the reduced order solution, so as to ensure that the580

generated approximation behaves like the sought after time-dependent solution.581

Although our numerical results are promising, there are still several open issues582

associated with the reduced order solution of the DRE. In particular, while stability583

and other matrix properties associated with the solutions X(t) have been thoroughly584

studied [10, 19, 37, 16], the analysis of corresponding properties for the approximate585

solutionXm(t) = VmYm(t)VT
m for t ∈ [0, tf ] is still a largely open problem. In [27] some586

interesting monotonicity properties have been shown when the polynomial Krylov587

subspace is used together with particular ODE solvers; a complete analysis for Xm(t)588

in a more general setting would be desirable.589
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Appendix A. Krylov subspace properties. In this Appendix we review603

some properties of extended and rational Krylov subspaces. As in section 2 we denote604

N = [CT , Z].605

Extended Krylov subspace. The extended Krylov subspace EKm(AT , N) takes the606

form discussed in section 2. The orthonormal basis Vm ∈ Rn×2m(p+q) spanning the607

subspace is formed using the extended Arnoldi algorithm [17]. Let608

(A.1) T̃ T
m = VT

m+1A
TVm =

[
T T
m

tm+1,mE
T
2m

]
∈ R2(m+1)(p+q)×2m(p+q),609

where Vm+1 = [Vm Vm+1] ∈ Rn×2(m+1)(p+q) and E2m is the last 2(p + q) columns of610
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I2m(p+q). The extended Arnoldi algorithm produces the Arnoldi-type relation611

ATVm = Vm+1T̃ T
m = VmT T

m + Vm+1tm+1,mE
T
2m.(A.2)612

Rational Krylov subspace. The rational Krylov subspace was originally proposed613

in the eigenvalue context in [39]. Its use in our context is motivated by [45] and later614

[43], where its effectiveness in the solution of the algebraic Riccati equation is amply615

discussed.616

Assume that A is Hurwitz. Given sss = {s1, s2, . . . }, with sj ∈ C+, the rational617

Krylov subspace is given by RKm(A,N,sss) as defined in section 2. The approximation618

effectiveness of this subspace depends on the choice of shifts sss, and this issue has been619

investigated in the literature; see, e.g., [36], [18]. The adaptive choice of shifts was620

tailored to the ARE in [32] by the inclusion of information of the term BBT during621

the shift selection; see also [43] for a more detailed discussion5. In our numerical622

experiments we used this last adaptive strategy, where the approximate solution at623

timestep tf is used.624

The algorithm presented in [18] forms a complex basis, when the shifts are not all625

real. In short, when sj ∈ C+, the original approach would be to use the shift sj to form626

the next block Vj and to then let the following shift be given by sj+1 = sj , where sj627

denotes the complex conjugate of sj . This results in both Vj and Vj+1 being complex.628

As a consequence, the reduced DRE has complex coefficient matrices, although the629

final resulting approximations Xm(t) will be real. Standard ODE solvers do not630

handle complex arithmetic well, hence we implemented an all-real basis using the631

method introduced in [40], which works as follows. If the shift sj is complex then the632

block Wj = (A−sjI)−1Vj−1 is also complex, hence we split it into its real and complex633

parts, that is Wj = W
(r)
j +W

(c)
j ı. The block Vj is then formed by orthogonalizing W

(r)
j634

with respect to all vectors in the already computed basis, after which Vj+1 is formed by635

orthogonalizing W
(c)
j with respect to all previous vectors in in the computed basis, and636

in Vj . This determines the same space, since span{Wj , W̄j} =span{Vj , Vj+1}. The637

resulting real basis of the rational Krylov subspace is given by Vm = [V1, . . . , Vm] ∈638

Rn×m(p+q). We also define the matrices Vm+1 = [Vm, Vm+1] ∈ Rn×(m+1)(p+q) and the639

matrix640

(A.3) H̃m =

[
Hm

rm+1,mE
T
m

]
∈ R(m+1)(p+q)×m(p+q),641

where rm+1,m ∈ R(p+q)×(p+q) and Em holds the last (p+ q) columns of Im(p+q). The642

matrix H̃m contains the orthogonalization coefficients obtained during the rational643

Arnoldi algorithm.644

Let T T
m = VT

mA
TVm ∈ Rm(p+q)×m(p+q). The rational Krylov basis satisfies the645

Arnoldi-type relation646

(A.4) ATVm = VmT T
m + V̂m+1G

T
m,647

where GT
m = γrm+1,mE

T
mH−1

m and the matrix V̂m+1 is an orthonormal matrix such648

that649

(A.5) V̂m+1γ = Vm+1sm − (In − VmVT
m)ATVm+1650

5The Matlab code of the rational Krylov subspace method for ARE is available at
http://www.dm.unibo.it/ s̃imoncin/software
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is the QR decomposition of the matrix on the right (see [18, 31]). The rational Krylov651

procedure requires as an extra input the (usually real) values s
(1)
0 , s

(2)
0 , which form a652

rough approximation of a spectral region used to compute the next shift. The reader653

is referred to [18, 43] for implementation details. Further, for the computation of654

the term GT
mYm(t) contained in the residual computation of rksm-dre, we follow an655

accelerated computation technique presented in [18].656

Appendix B. Extended Krylov subspace based method. The extended657

Krylov (eksm-dre) subspace method for solving (1.1) is presented in Algorithm B.1.658

Algorithm B.1 EKSM-DRE

Require: A ∈ Rn×n, B ∈ Rn×s, C ∈ Rp×n, Z ∈ Rn×q, tol, tf , `
(i) Perform reduced QR:

(
[CT , Z], A−1[CT , Z]

)
= V1Λ1

Set V1 ≡ V1

for m = 2, 3 . . .
Compute the next basis block Vm
Set Vm = [Vm−1, Vm]
Update Tm as in [42] and Bm = VT

mB, Zm = VT
mZ and Cm = CVm

Integrate (2.2) from 0 to tf using BDF(1, `)
Compute ρm using (4.3) where τTm = tm+1,mE

T
2m

if ρm < tol
go to (ii)

end if
end for

(ii) Refinement: solve (2.2) with a more accurate integrator

Compute Ym(tj) = Ŷm(tj)Ŷm(tj)
T , j = 1, . . . , ` using the truncated SVD

return Vm ∈ Rn×2m(p+q) and ` factors Ŷm(tj) ∈ R2m(p+q)×r, j = 1, . . . , `.

659
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