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Abstract
We propose a new dense method for determining the numerical solution to a class of third
order tensor linear equations. The approach does not require the use of the coefficientmatrix in
Kronecker form, thus it allows the treatment of structured very large problems. A particular
version of the method for symmetric matrices is also discussed. Numerical experiments
illustrate the properties of the proposed algorithm.

Keywords Tensors · Linear algebraic equations · Schur decomposition

Mathematics Subject Classification 65F10

1 Introduction

We are interested in the numerical computation of the unique solution X ∈ R
n×n×n to the

nonsingular system Ax = b written in the following tensor form

(M1 ⊗ A1 ⊗ H + A2 ⊗ M ⊗ H + H3 ⊗ M ⊗ A3)vec(X) = b3 ⊗ b2 ⊗ b1 (1.1)

where all coefficient matrices are real and have the same n × n dimensions. Here ⊗ denotes
the Kronecker product (to be recalled later) and vec(X) stacks the components of the tensor
X one after the other. In particular, in (1.1) two terms share the same matrices, either M
or H (purposely in bold face), while all other matrices Ai ,i = 1, 2, 3 and H3, M1 have no
relation to each other. The only assumption on the coefficient matrices, in addition to the
nonsingularity ofA, is that M, H and M1, H3 be nonsingular. The unknown solution tensor
will also be highlighted in bold face, to emphasize that this is the array to be determined.

This tensor equation is representative of a large class of problems that can be described by
means of tensors and formulated as linear array equation. For instance, the discretization of
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430 V. Simoncini

three dimensional partial differential equations by means of a tensor basis, as is the case for
finite differences on parallelepipedal domains or certain spectral methods, can lead to tensor
equations of type (1.1). Tensor equations have become a fundamental algebraic ingredient for
the numerical treatment ofmathematicalmodels depending onmany parameters, as is the case
in uncertainty quantification and parameter-dependentmodel order reductionmethodologies;
see, e.g., [1,4,5,15,20,23]. In typical situations, tensor equations with many terms occur, and
each term may have a number of Kronecker products. In a simplified context, for instance,
the following tensor equation is of interest (see, e.g., [17])

�∑

i=1

(
I ⊗ · · · ⊗ i

Ai ⊗ · · · ⊗ I

)
x = ⊗�

i=1 bi

For � = 3 this is a special case of our problem (1.1), where all matrices except Ai , i = 1, 2, 3
are equal to the identity matrix I . Finally, we explicitly remark that if the right-hand side in
(1.1) were the sum of rank-one tensors, then the solution could be expressed as the sum of
solutions to tensor equations with right-hand sides of rank one.

The literature on tensors - their analysis and the associated approximation methods - has
grown tremendously in the past twenty years. Different tensor representations and decom-
positions have been analyzed. We refer the reader to [16] for an introductory and historical
account, and to [11] for a literature survey up to 2013. Numerous different decomposi-
tions have allowed the developments of various problem dependent strategies, see, e.g.,
[7,12,14,18,24].

More recently, methods for solving linear equations in tensor format have been proposed
and analyzed. In most cases, the authors have been interested in the presence of many sum-
mands and many Kronecker products, for which iterative methods appear to be mandatory.
In this context, most approaches try to take into account the Kronecker structure and the
possible low rank of the involved iteration matrices, see, e.g., [2,3,6,13,19–21]. However,
little has been said on “direct” dense methods for low order tensor equations, without the
explicit use of the Kronecker form. Here we close this gap for the special case of (1.1), which
nonetheless appears to be a feasible algebraic formulation of a quite large set of differential
problems.

2 A closed form solution

The numerical solution to (1.1) can be given in closed form by unfolding the 3-mode tensor
in one of the three directions. In particular, a tensor X ∈ R

n1×n2×n3 can be written using the
mode-1 unfolding as (see, e.g., [16])

X(1) = [X1, X2, . . . , Xn3 ], X j ∈ R
n1×n2 , j = 1, . . . , n3;

each X j is called a slice, and X(1) is a matrix inRn1×n2n3 . Some additional standard notation
needs to be recalled. The Kronecker product of two matrices X , Y is defined in the standard
block form as

X ⊗ Y =
⎡

⎢⎣
X1,1Y · · · X1,n2Y

...
. . .

...

Xn1,1Y · · · Xn1,n2Y

⎤

⎥⎦ ,

where Xi, j denotes an element of X . Moreover, vec(X) is the operator stacking all columns
of the matrix X one after the other. In the case of third order tensors, we will apply the vec
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Numerical solution of a class of third order tensor linear equations 431

operator to the mode-1 unfolding. The reverse operation, for known dimensions of the vector
x , will be denoted by mat(x, n1, n2), so that x = vec(X) and X = mat(x, n1, n2). Similarly,
X = tensor(1)(x, n1, n2, n3) will fold a long vector into a tensor via the mode-1 unfolding.
A standard property of the Kronecker product that will be used repeatedly is the following

vec(AXB) = (BT ⊗ A)vec(X), (2.1)

(BT denotes the real transpose of B), which allows one to go back and forth between the
vector and matrix notations. Other properties used in the sequel are i) (A⊗ B)T = AT ⊗ BT ,
ii) (A ⊗ B)(C ⊗ D) = (AC ⊗ BD) for compatible matrix dimensions, iii) if A and B are
both invertible, then A⊗ B is invertible and (A⊗ B)−1 = A−1 ⊗ B−1; see, e.g., [9, Ch.12].

The following result holds. Here Q∗ denotes the conjugate transpose of the complex
matrix Q, while H−T = (H−1)T and T denotes transposition.

Theorem 2.1 Let AT
3 H

−T = QRQ∗ be the Schur decomposition of AT
3 H

−T , and
[γ1, . . . , γn] := bT1 H

−T Q. Using the mode-1 unfolding, the solution X to (1.1) is given
by

X(1) = [Q−T Z̃ T
1 , . . . , Q−T Z̃ T

n ] ∈ R
n×n2 ,

where for j = 1, . . . , n, the matrix Z̃ j solves the generalized Sylvester equation

MZ(HT
3 R j, j + AT

2 ) + A1ZM
T
1 = b2γ j b

T
3 − mat(Z̃ j−1R1: j−1, j , n, n)HT

3 .

where R j, j denotes the ( j, j) element of the upper triangular matrix R and R1: j−1, j the first
j − 1 components of its j th column; we define mat(Z̃ j−1R1: j−1, j , n, n)HT

3 to be an empty
array for j = 1.

Proof Using (2.1) for the unfolded tensor we have

HX(1)(A2 ⊗ M + M1 ⊗ A1)
T + A3X(1)(H3 ⊗ M)T = b1(b3 ⊗ b2)

T

X(1)(A2 ⊗ M + M1 ⊗ A1)
T (H3 ⊗ M)−T + H−1A3X(1) = H−1b1(b3 ⊗ b2)

T (H3 ⊗ M)−T

X(1)(A
T
2 H−T

3 ⊗ I + MT
1 H−T

3 ⊗ AT1 M−T ) + H−1A3X(1) = H−1b1(b
T
3 H−T

3 ⊗ bT2 M−T )

For later readability, let us transpose both sides and set Y = (X (1))
T . Then we obtain

(H−1
3 A2 ⊗ I + H−1

3 M1 ⊗ M−1A1)Y + Y (H−1A3)
T = (H−1

3 b3 ⊗ M−1b2)b
T
1 H

−T .

Using (H−1A3)
T = QRQ∗ and multiplying the equation by Q from the right, we can write

(H−1
3 A2 ⊗ I + H−1

3 M1 ⊗ M−1A1)Y Q + Y QR = (H−1
3 b3 ⊗ M−1b2)b

T
1 H

−T Q.

Let bT1 H
−T Q =: [γ1, . . . , γk] and Y Q =: [ẑ1, . . . , ẑn]. Thanks to the upper triangular form

of R, for the first column ẑ1 it holds

(H−1
3 A2 ⊗ I + H−1

3 M1 ⊗ M−1A1)ẑ1 + ẑ1R1,1 = (H−1
3 b3 ⊗ M−1b2)γ1. (2.2)

For the subsequent columns j = 2, . . . , n, taking into account once again the triangular form
of R, we set w j−1 = [ẑ1, . . . , ẑ j−1]R1: j−1, j so that

(H−1
3 A2 ⊗ I + H−1

3 M1 ⊗ M−1A1)ẑ j + ẑ j R j, j = (H−1
3 b3 ⊗ M−1b2)γ1 − w j−1. (2.3)
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432 V. Simoncini

Each column can be obtained in sequence by further unmaking the Kronecker product as
follows. Let us reshape each ẑ j so that ẑ j = vec(Ẑ j ). By using (2.1) in (2.2) for j = 1, we
can write

M−1A1 Ẑ1(H
−1
3 M1)

T + Ẑ1(R1,1 I + (H−1
3 A2)

T ) = M−1b2γ1(H
−1
3 b3)

T ,

which can be written as

M−1A1 Ẑ1 + Ẑ1(R1,1H
T
3 M−T

1 + AT
2 M

−T
1 ) = M−1b2γ1b

T
3 M

−T
1 , j = 2, . . . , n. (2.4)

Analogously, for j = 2, . . . , n and letting Wj−1 = mat([ẑ1, . . . , ẑ j−1]R1: j−1, j ), from (2.3)
we first obtain

M−1A1 Ẑ j (H
−1
3 M1)

T + Ẑ j (R j, j I + (H−1
3 A2)

T ) = M−1b2γ j (H
−1
3 b3)

T − Wj−1H
−T
3 ,

or equivalently, for j = 2, . . . , n, as

M−1A1 Ẑ j + Ẑ j (R j, j H
T
3 M−T

1 + AT
2 M

−T
1 ) = M−1b2γ1b

T
3 M

−T
1 Wj−1M

−T
1 . (2.5)

Multiplying both sides by M1 (from the right) and by MT (from the left), the result follows.

We notice that the use of the mode-1 unfolding is related to the specific location of the
repeatedmatrices H ,M. Different unfoldings could be used if thesematrices occupy different
positions. We also remark that the same procedure could be applied if data were complex,
without any particular change in the proof, or in the algorithm below, except that one should
keep in mind that property (2.1) uses real transposition, even if data are complex.

3 The new algorithm

The proof used for Theorem 2.1 is constructive, as it provides an explicit way to generate
the tensor solution, one slice at the time. The complete procedure is described in the algo-
rithm below, in the following called the Three-Term-Tensor Sylvester (T3- Sylv) method.
Algorithm T3- Sylv.

Input: A1, A2, A3, M1, M, H, H3 of size n × n, b1, b2, b3 of length n
For k = 1, . . . , n

Compute Q, R such that AT
3 H

−T = QRQ∗ (Schur decomposition)
Compute the vector g = bT1 H

−T Q
Set F = M−1b2gkbT3 M

−T
1

if k > 1, Wk−1 = mat(Ẑ :,1:k−1R1:k−1,k, n, n), and F = F − Wk−1HT
3 M−T

1
Solve M−1A1 Ẑ + Ẑ(Rk,k HT

3 M−T
1 + AT

2 M
−T
1 ) = F to get Ẑk

end
Set X(1) = Q[vec(Ẑ1), . . . , vec(Ẑn)]T
Set X = tensor(1)(x, n, n, n)

Output: X solution to (1.1)
In practice, using appropriate transformations, the method is a nested Sylvester solver,

which treats one slice at the time, and updates the corresponding coefficient matrix and
right-hand side F . The solvability of the Sylvester equations is related to that of the original
problem, and in particular to the nonsingularity of A.

The algorithm relies on the initial Schur decomposition, which provides robust unitary
transformations. Moreover, for each slice, a matrix Sylvester equation needs to be solved,
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Numerical solution of a class of third order tensor linear equations 433

Table 1 CPU times (in secs) of
T3- Sylv for increasing
dimensions of the coefficient
matrices, having uniformly
distributed random entries

n CPU Time

8 1.36e-02

16 8.01e-03

32 4.81e-02

64 3.00e-01

128 3.48e+00

256 3.41e+01

whose solution also involves the Schur decompositions of the coefficient matrices, see, e.g.,
[26]; its sensitivity has been analyzed in [8, sec.4.1]. Stability of the overall algorithm is also
affected by the presence of several inverses, which can be harmful in case of ill-conditioned
matrices. Indeed, if some of the involved matrices are severely ill-conditioned, the solution
may lose accuracy. This fact was experimentally observed in our experiments, some of which
are reported in Example 4.3.

3.1 Numerical experiments

In this section we report on some numerical experiments with the T3- Sylv method. All
experiments were performed using Matlab [22].

Example 3.1 To test the efficiency of the method, we consider dense matrices with random
entries (taken from a uniform distribution in the interval (0,1), Matlab function rand) of
increasing size n. The same is used for the vectors b1, b2, b3. We stress that the Kronecker
form of the problem would involve a dense matrix A of size n3 × n3, which could not even
be stored.

We readily observe that the method is able to solve a (random) structured dense problem
of size n3 = 16, 777, 216 in about 34 seconds on a standard laptop. The CPU times in Table 1
show that the computational cost of the method approximately grows between six and ten
times as the dimension n doubles. However, going from n to 2n, the problem dimension in the
full space would grow from n3 to 23n3. Hence, the actual cost appears to grow linearly with
n3. Since data are dense, Gauss elimination on A would instead require O((n3)3) floating
point operations.

4 The symmetric case

If all matrices are symmetric and positive definite, the solution is also symmetric and positive
semidefinite, in the appropriate tensor representation; see, e.g., [10] for a general discussion.
With these hypotheses, the derivation of the solution procedure simplifies accordingly, as
shown in the following result. We stress that many problems can be brought to this setting.
Consider for instance the differential equation−�u = f on the unit cube with zero Dirichlet
boundary conditions. By discretizing using linear finite elements in each direction (this may
be seen as a linear finite element discretization using Q1 brick elements), we obtain

(M ⊗ A ⊗ M + A ⊗ M ⊗ M + M ⊗ M ⊗ A)vec(X) = F,
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434 V. Simoncini

with M = tridiag(−1, 4,−1) ∈ R
n×n and A = tridiag(−1, 2,−1) ∈ R

n×n (the underlined
number corresponds to the diagonal entry in the two symmetric and tridiagonal matrices). If
f can be well approximated by a separable function in spatial dimensions, then F will have
the desired Kronecker form, see, e.g., [10,17] for a similar description1.

Analogously, one could consider the equation L(u) = f (x, y, z), (x, y, z) ∈ � ⊂ R
3

and

L(u) = −m(z)h3(y)φ1(x)uxx − m1(x)h(z)φ2(y)uyy − h(x)m(y)φ3(z)uzz,

while f (x, y, z) = f1(x) f2(y) f3(z). Finite difference discretization leads to the Kronecker
form in (1.1), where,M is a diagonalmatrix containing the coefficients inm(zk) at the interior
nodes zk in the z-direction; similarly for the other coefficients. The matrices Ai , i = 1, 2, 3
contain the three-point stencil of the discretized second order derivative in each direction,
respectively, together with the coefficient φi ; see, e.g., [25].

We do not report numerical results with data stemming from these discretizations, as they
would not significantly differ from those shown in our examples, for dense data.

We then describe the specialized result for symmetric and positive definite matrices. This
leads to better stability properties of the algorithm (see Example 4.3).

Proposition 4.1 Assume all coefficient matrices in (1.1) are symmetric and positive definite,
and assume that b ≡ b1 = b2 = b3. Let H = LH LT

H , M = LMLT
M , H3 = L3LT

3 and
L−1
3 M1L

−T
3 = L1LT

1 be the Cholesky factorizations of the corresponding matrices. Let
Â3 = Q�QT be the eigenvalue decomposition of Â3 = L−1

H A3L
−T
H and [γ1, . . . , γn] :=

bT L−1
H Q. Using the mode-1 unfolding, the solution X to (1.1) is given by

X(1) = L−1
H Q[vec(LM Ẑ1L

−1
3 ), . . . , vec(LM Ẑn L

−1
3 )]T ,

where for j = 1, . . . , n, Ẑ1 = Z̃ j L
−1
1 and the matrix Z̃ j solves the generalized Sylvester

equation

Z̃ j L
−1
1 (λ j I + Â2)L

−T
1 + Â1 Z̃1 = L−1

M bγ j (L
−1
3 b)T L−T

1 , j = 1, . . . , n,

with Â2 = L−1
3 A2L

−T
3 and Â1 = L−1

M A1L
−T
M .

Proof. Consider the following Cholesky factorizations of the given matrices

H = LH LT
H , H3 ⊗ M = (L3 ⊗ LM)(LT

3 ⊗ LT
M).

Using (2.1) for the unfolded tensor we have

HX (1)(A2 ⊗ M + M1 ⊗ A1) + A3X (1)(H3 ⊗ M) = b(b ⊗ b)T

LT
H X(1)(A2 ⊗ M + M1 ⊗ A1)(L

−T
3 ⊗ L−T

M ) + L−1
H A3L

−T
H LT

H X(1)(L3 ⊗ LM)

= L−1
H b(b ⊗ b)T (L−T

3 ⊗ L−T
M )

X̂ (1)( Â2 ⊗ I + M̂1 ⊗ Â1) + Â3 X̂ (1) = b̂(bT L−T
3 ⊗ bT L−T

M )

where we have defined b̂ = L−1
H b, X̂ (1) = LT

H X(1)(L3 ⊗ LM), Â3 = L−1
H A3L

−T
H , Â2 =

L−1
3 A2L

−T
3 , M̂1 = L−1

3 M1L
−T
3 and Â1 = L−1

M A1L
−T
M . Note that all these “hat” coefficient

1 We recall that for this and other specialized settings, cyclic reduction and Fourier analysis could be classical
viable effective alternatives; see, e.g., [27,28].
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matrices are still symmetric and positive definite. For later readability, let us transpose both
sides and set Y = (X̂ (1))

T . Then we obtain

( Â2 ⊗ I + M̂1 ⊗ Â1)Y + Y Â3 = (L−1
3 b ⊗ L−1

M b)̂bT .

Using Â3 = Q�QT and multiplying the equation by Q from the right, we can write

( Â2 ⊗ I + M̂1 ⊗ Â1)Y Q + Y Q� = (L−1
3 b ⊗ L−1

M b)̂bT Q.

Let b̂T Q =: [γ1, . . . , γk] and Y Q =: [ẑ1, . . . , ẑn]. Thanks to the diagonal form of�, namely
� = diag(λ1, . . . , λn), for each column ẑ j it holds

( Â2 ⊗ I + M̂1 ⊗ Â1)ẑ j + ẑ jλ j = (L−1
3 b ⊗ L−1

M b)γ j . (4.1)

Each column can then be obtained in sequence by further unmaking the Kronecker product
as follows. Let us reshape each ẑ j so that ẑ j = vec(Ẑ j ). By using (2.1) in (4.1), we can write

Ẑ j (λ j I + Â2) + Â1 Ẑ1M̂1 = L−1
M bγ j (L

−1
3 b)T ,

which, upon factorization of M̂1 as M̂1 = L1LT
1 can be written as

Z̃ j L
−1
1 (λ j I + Â2)L

−T
1 + Â1 Z̃1 = L−1

M bγ j (L
−1
3 b)T L−T

1 , j = 1, . . . , n, (4.2)

where Z̃ j = Ẑ j L1. The matrix equation (4.2) is a standard Sylvester equation, which can be
solved for each j . Once Ẑ j is recovered, we obtain

X(1) = L−1
H Q[vec(LM Ẑ1L

−1
3 ), . . . , vec(LM Ẑn L

−1
3 )]T .

We will call the corresponding algorithm t3- sym- sylv. Its Matlab implementation is
reported in the Appendix.

We notice that the proof does not require all matrices to be positive definite, and A3 only
needs to be symmetric. In fact, the matrices A2 and A1 do not even need to be symmetric,
although the current proof omits the corresponding transpositions. The proof could be easily
adapted to treat this setting. Indeed, for A1, A2 nonsymmetric the Sylvester equation (4.2)
could be written as

Z̃ j L
−1
1 (λ j I + ÂT

2 )L−T
1 + Â1 Z̃1 = L−1

M bγ j (L
−1
3 b)T L−T

1 , j = 1, . . . , n.

The rest of the derivation would follow as before.

Remark 4.2 We stated Proposition 4.1 for the right-hand side b⊗b⊗b to maintain symmetry
in the overall problem. Nonetheless, the “symmetric” simplifications still hold also in the
more general situation where the right-hand side is b1 ⊗ b2 ⊗ b3. In this case, the proof goes
through in the same way, with obvious modifications to the right-hand side terms, following
the steps in the proof of Theorem 2.1.

Example 4.3 We investigate the accuracy of the symmetric procedure, compared with that
of the general algorithm t3- sylv, as the condition number of the given matrices increases.
We consider 5× 5 symmetric and positive definite matrices with random entries taken from
a uniform distribution in the interval (0,1). To this end, we define each coefficient matrix
by using the Matlab function sprandsym with density 1 (giving a full matrix), type 1
(positive definite), and the same reciprocal condition number κ−1 = .2 10−k , with k =
0, 0.2, 0.4, . . . , 10. The results are reported in Fig. 1, where the relative errors

‖x∗ − xnonsym‖
‖x∗‖ ,

‖x∗ − xsym‖
‖x∗‖
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436 V. Simoncini

Fig. 1 Dependence of the symmetric and nonsymmetric solver accuracy on the matrices condition number

are displayed, with xnonsym obtained by algorithm t3-sylv and xsym by t3-sym- sylv; here
x∗ is a reference solution, obtained by using the Matlab direct solver “\” on the Kronecker
form of the problem with coefficient matrix of size 125 × 125. The figure also displays the
quantities 10−15κ3/2 and 10−15κ5/2,which appear tomatch the dependence of the error on the
matrices conditioning when employing either of the two methods, respectively. Clearly, the
possibility of using the symmetric solver significantly improves the accuracy of the obtained
solution,with respect to the problemcondition number. The sensitivity of themethod deserves
a deeper analysis that will be performed in future work.

5 Conclusions

We have proposed a new method for solving order-3 tensor linear equations. We derived a
general approach relying on the Schur decomposition, and a specialized one that effectively
exploits the symmetric positive definiteness of the coefficient matrices.

Although the considered class of tensor equations is restricted by the role and position of
the two matrices H and M, our presentation shows that this setting is sufficiently general
to represent a good variety of practical problems. On the other hand, the repeated presence
of M and H forced us to use the same dimensions in all modes. We will try to relax this
constraint in future work. We also remark that the algebraic problem could be formulated
with these two repeated matrices located in other (different) positions in the tensor equation,
in a way that a similar solution derivation could be devised.
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Numerical solution of a class of third order tensor linear equations 437

Since the right-hand side has low numerical tensor rank, we expect X to have low tensor
rank [10], [20, Th.3.6]. Tensor-based truncation strategies could be employed to satisfacto-
rily approximate the obtained solution. This would avoid storing the whole dense tensor, if
dimensions become large.

The proposed strategy allows us to solve with an essentially direct method problems
of structured large dimensions. Nonetheless, if n is required to be significantly larger and
the coefficient matrices are sparse, then an iterative variant of the proposed method could be
considered. As an alternative, the newmethod can serve as workhorse for solving the reduced
equation in projection type procedures for large and sparse third order tensor equations; see
similar strategies in [26] for linear matrix equations.
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Appendix

We report the Matlab code of the symmetric version of the algorithm, t3- sym- sylv, as
derived in Proposition 4.1.

function [xfinal,X]=T3_sym_Sylv(A1,A2,A3,M1,M2,H1,H3,b,check_res)
%function [xfinal,X]=T3_sym_Sylv(A1,A2,A3,M1,M2,H1,H3,b,check_res)
%
% Solve G * xfinal - f = 0
% G = kron(kron(M1,A1),H1)+kron(kron(A2,M2),H1)+kron(kron(H3,M2),A3) ]
% f = kron(kron(b,b),b))
%
% All coeff matrices are nxn, symmetric and positive definite
%
% X = tensor(xfinal,n,n,n)
%

L_H=chol(H1,’lower’);
L_M=chol(M2,’lower’);
L3=chol(H3,’lower’);
[Q,Lambda]=eig(full( L_H\A3/L_H’ ));

nrmrhs=norm(kron(kron(b,b),b));
g = (b’/L_H’)*Q; % row vector
ng=length(g);
[n1,n2]=size(A1);
I=eye(n1,n2);
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A2hat=L3\A2/L3’;
M1hat=L3\M1/L3’;
A1hat=L_M\A1/L_M’;
L1=chol(M1hat,’lower’);

for k=1:ng
rhs = L_M\b*g(k)*(b’/L3’)/L1’;
Ztilde=lyap(A1hat, L1\(Lambda(k,k)*I + A2hat)/L1’, -rhs);
Zhat=L_M’\Ztilde/L1/L3;
zz(:,k)=reshape(Zhat,n1*n2,1);

end

xx=L_H’\Q*zz’;
xfinal=real(xx(:));
X=reshape(real(xx),n1,n2,n2);

if check_res
G=kron(kron(M1,A1),H1)+kron(kron(A2,M2),H1)+kron(kron(H3,M2),A3);
normres=norm(G*xfinal- kron(kron(b,b),b))/nrmrhs;
fprintf(’final full relative residual: %d\n’,normres)

end
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