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Dimension elevation is not always corner-cutting

Carolina Vittoria Beccaria,⇤, Giulio Casciolaa, Marie-Laurence Mazureb

aDipartimento di Matematica, Alma Mater Studiorum Università di Bologna, Piazza di Porta San Donato 5, 40126
Bologna, Italy

bUniversité Grenoble Alpes, Laboratoire Jean Kuntzmann, CNRS, UMR 5224, BP 53, F-38041 Grenoble 9, France

Abstract

Degree elevation is a typical corner-cutting algorithm. It refers to the process transforming control polygons
when embedding a polynomial space of some degree into any polynomial space of higher degree. Dimension
elevation similarly refers to the transformation of control polygons when embedding an Extended Chebyshev
space possessing a Bernstein basis into another one, of higher dimension. Unlike degree elevation, this cannot
always be split into successive (corner-cutting) steps elevating the dimension by one. What happens when
it is not possible is investigated here. We shall see that the new control points can even be located outside
the initial control polygons, giving evidence that dimension elevation is not always corner-cutting.

Keywords: Extended Chebyshev spaces; Bernstein bases; dimension elevation; critical length; shape
preservation; corner cutting.

1. The problematic

Throughout the paper, we work on a given closed bounded interval [a, b], a < b. An (n+1)-dimensional
space En ⇢ Cn([a, b]) is said to be a W-space on [a, b] if any Taylor interpolation problem in (n+ 1) data is
unisolvent in En. It is said to be an Extended Chebyshev space (for short, EC-space) on [a, b] if any Hermite
interpolation problem in (n+ 1) data is unisolvent in En. There is a strong link between the two classes of
W- and EC-spaces on [a, b]. Of course, an EC-space on [a, b] is a W-space on [a, b], but the converse is not
true, except for n = 0. Nevertheless, given an (n + 1)-dimensional W-space En on [a, b], its critical length
(on [a, b]) is the supremum of all positive h such that En is an EC-space on any interval J ⇢ [a, b] of length
h. Because we are working on a closed bounded interval, it is a positive number ` 6 b � a, and ` = b � a
means that En is an EC-space on [a, b], see [11]. The following crucial result too is specifically due to the
fact that we are working on a closed bounded interval, see [8].

Theorem 1.1. Let En be an (n + 1)-dimensional W-space on [a, b]. Then, En is an EC-space on [a, b] i↵
there exists a nested sequence

E0 ⇢ E1 ⇢ · · · ⇢ En�1 ⇢ En, (1)

where, for i = 0, . . . , n� 1, Ei is an (i+ 1)-dimensional W-space on [a, b].

Given a nested sequence (1) of W-spaces on [a, b], select any sequence (U0, . . . , Un) such that Ui 2 Ei\Ei�1

for i = 0, . . . , n, with E�1 := {0}. Then, it is usual to introduce the non-vanishing functions

wi :=
W (U0, ..., Ui�2) W (U0, ..., Ui)

W (U0, ..., Ui�1)2
, 0 6 i 6 n, (2)

⇤
Corresponding author.
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1



where W (U0, ..., Ui) denotes the Wronskian of the sequence (U0, . . . , Ui) with the convention that W (;) = 1I.
With this sequence of functions, it is classical to associate a sequence of di↵erential operators L0, . . . , Ln

recursively defined on Cn([a, b]) by

L0F :=
F

w0
, LiF :=

1

wi
DLi�1F, 1 6 i 6 n, (3)

where D denotes the ordinary di↵erentiation. As is well known, the space En is then composed of all
F 2 Cn([a, b]) such that LnF is constant on [a, b]. It is called the EC-space associated with the sequence
(w0, . . . , wn) and denoted as En = EC(w0, . . . , wn).

A Bernstein basis relative to (a, b) is a normalised sequence (B0, . . . , Bn) in Cn([a, b]) such that, for
i = 0, . . . , n, the function Bi is positive on ]a, b[ and it vanishes exactly i times at a and exactly (n � i)
times at b. The normalisation requirement means that

Pn
i=0 Bi = 1I, where 1I denotes the constant function

1I(x) = 1 for all x 2 [a, b].
If the space En is an EC-space on [a, b] containing 1I, then the (n-dimensional) space DEn is a W-space

on [a, b], but not necessarily an EC-space on [a, b]. The following result was proved in [10].

Theorem 1.2. Given n > 1, let En be an (n+1)-dimensional EC-space on [a, b], containing the constants.
Then, En possesses a Bernstein basis relative to (a, b) i↵ the space DEn is an EC-space.

An EC-space En on [a, b] which possesses a Bernstein basis (B0, . . . , Bn) relative to (a, b) is said to be
good for design on [a, b]. In such a case, any points P0, . . . , Pn 2 IRd, d > 1, are called the Bézier points (or
control points) relative to (a, b) of the function F 2 En

d defined by

F (x) :=
nX

i=0

Bi(x)Pi, x 2 [a, b].

Clearly, an (n+ 1)-dimensional W-space En on [a, b] is an EC-space good for design on [a, b] i↵ it contains
a nested sequence (1) with E0 = span(1I), that is, i↵ it is of the form En = EC(1I, w1, . . . , wn).

Theorem 1.3. Let En ⇢ En+1 be two W-spaces on [a, b], of dimension (n + 1) and (n + 2), respec-
tively. Assume that En is an EC-space good for design on [a, b]. Then, so is En+1. Moreover, there exists
↵1, . . . ,↵n 2]0, 1[ such that, for any F 2 En

d, the Bézier points P ?
0 , . . . , P

?
n+1 2 IRd of F considered as an

element of En+1
d, are obtained from its initial Bézier points P0, . . . , Pn 2 IRd as follows

P ?
0 = P0, P ?

i = (1� ↵i)Pi�1 + ↵iPi for i = 1, . . . , n, P ?
n+1 = Pn. (4)

The first claim is an obvious consequence of Th. 1.1. For the rest, see [13], [8]. We refer to the situation
addressed in Theorem 1.3 as an elementary step of dimension elevation, and to (4) as elementary dimension
elevation formulæ. The passage from P0, . . . , Pn to P ?

0 , . . . , P
?
n+1 is corner-cutting. As a consequence, it is

shape preserving: a planar polygon [P0, . . . , Pn] (control polygon) which is monotone in one direction (resp.
convex) is transformed into a polygon having the same property.

The general context we want to address in the present note is the following one:

En ⇢ En+r, for some r > 2, (5)

where En is an (n + 1)-dimensional EC-space good for design on [a, b], while En+r is only known to be an
(n+r)-dimensional W-space on [a, b]. How does Th. 1.3 extend to this situation? The first natural question
to consider is

(Q0) Does this situation automatically imply that En+ris an EC-space on [a, b]?

The trivial example of the space E3 spanned on [a, b] by the functions 1, x, cosx, sinx, clearly shows that the
answer to (Q0) is negative: indeed, for E3 to be an EC-space (or an EC-space good for design) on [a, b], we
have to require that b� a < 2⇡, while there is no limitation for the space E1 of all a�ne functions on [a, b].
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From now on, assume that En+r too is an EC-space good for design on [a, b]. What can we say about
the dimension elevation process associated with (5), that is, as previously, the passage from the Bézier points
P0, . . . , Pn 2 IRd (relative to (a, b)) of a given function F 2 En

d, to its Bézier points P ?
0 , . . . , P

?
n+r 2 IRd

(relative to (a, b)) when viewing F as an element of En+r
d? Let us write En as En = EC(1I, w1, . . . , wn) and

let Ln be the associated order (n+ 1) di↵erential operator. Then, due to (5), the space Fr := DLnEn+r is
r-dimensional and it is a W-space on [a, b], but not necessarily an EC-space on [a, b].

Proposition 1.4. [9] The space Fr defined above is an EC-space on [a, b] i↵ we can go from En to En+r

through r elementary dimension elevation steps.

1)- Suppose that Fr is an EC-space on [a, b]. According to Prop. 1.4, among all possible nested sequences

En ⇢ En+1 ⇢ · · · ⇢ En+r�1 ⇢ En+r, with dimEn+i = n+ i+ 1, i = 1, . . . , r � 1, (6)

we can choose one (and in fact, infinitely many) so that each intermediate space En+i, i = 1, . . . , r � 1, is
a W-space on [a, b]. For such a sequence, apply the first part of Th. 1.3 successively to each elementary
dimension elevation step En+i ⇢ En+i+1, i = 0, . . . , r � 1. This ensures that En+r is in turn an EC-space
good for design on [a, b]. Moreover, repeated application of elementary dimension elevation formulæ shows
that the passage from the initial to the final Bézier points can be summarised as follows:

for i = 0, . . . , n+ r, P ?
i is a strictly convex combination of the points Pmax(0,i�r), . . . , Pmin(i,n), (7)

with coe�cients independent of F . Being the result of an r step corner cutting algorithm, this process is
shape preserving.

2)- We now suppose that Fr is not an EC-space on [a, b]. Given any nested sequence (6), there exists at
least one integer i 2 {1, . . . , r � 1} such that En+i is not a W-space on [a, b]. Let ` < b � a be the critical
length on [a, b] of the W-space Fr. For each selected subinterval [c, d] ⇢ [a, b] such that 0 < d� c < `, we are
in the previously examined situation, but after restriction to [c, d]. However, restriction to small intervals is
not what we are interested in here. The problem we want to tackle is: what can we say on the global interval
[a, b] itself? It is easily checked that each final Bézier point P ?

i is automatically an a�ne combination of
the initial Bézier points Pmax(0,i�r), . . . , Pmin(i,n), with coe�cients independent of F . Now, on [a, b], can we
always answer a�rmatively the natural questions below (from the least to the most demanding):

(Q1) Is this a�ne combination a strictly convex one, i.e., is (7) valid?

(Q2) Is dimension elevation shape preserving?

(Q3) Does it result from an r-step corner cutting algorithm?

(8)

We will see in next section that even the weakest among these properties is not always satisfied.

2. Dimension elevation beyond nested sequences of W-spaces

Kernels of linear di↵erential operators with constant coe�cients are classical examples of W-spaces on
the whole real line. They are invariant under translation, and therefore they are closed under di↵erentiation.
They will serve to illustrate dimension elevation, in particular in the absence of a nested sequence (6) of
W-spaces in order to try to answer the questions (8). Given such an operator Ln = pn(D), where the
characteristic polynomial pn of degree (n+1) has unit leading coe�cient, the critical length of En := kerLn

is defined as in the previous section, but now on the whole real line [5, 11]. It is the real number `n 2]0,+1]
such that En is an EC-space on [0, h] i↵ if h < `n, and, from now on, we will always be working on some
[a, b] = [0, h]. Moreover, `n = +1 i↵ all roots of pn are real. The space En contains the constants i↵ if

pn(0) = 0. If so, the critical length è
n of the space DEn is called the critical length for design of En. We

thus know that En is an EC-space good for design on [0, h] i↵ if h < è
n (see Th. 1.2). The numerical test

to determine finite critical lengths, built in [3] (see also [2]), will be of crucial help below.
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h = 3 h = 5 h = 3 h = 5

Figure 1: Corner cutting algorithms on [0, h], obtained by inserting E4 = span(E3, U) between E3 and E5, respectively spanned

by 1, x, cosx, sinx and 1, x, cosx, sinx, coshx, sinhx. Left: U(x) := ex. Right: U(x) := sinhx+ sinh(h� x). See Ex. 2.2.

If Ln+r = pn+r(D) is another operator, of order (n + r + 1), with r > 1, the inclusion En ⇢ En+r is
satisfied i↵ if pn is a divisor of pn+r. This is why, in order to illustrate the problematic stated in Section 1,
throughout the rest of the section we assume that

pn(0) = 0, pn+r = pnqr, where qr is a real polynomial of degree r. (9)

The simplest situation is described in the proposition below.

Proposition 2.1. Suppose that the polynomial qr in (9) has only real roots. Then, the corresponding

critical lengths for design satisfy è
n 6 è

n+r and, for any h < è
n there exists an r step corner cutting

algorithm transforming the Bézier points (relative to [0, h]) of any F 2 En
d into its Bézier points (relative

to [0, h]) in En+r
d.

Proof. Let us write qr as qr(x) =
Qr

k=1(x � ak), with a1, . . . , ar 2 IR. Then, for i = 1, . . . , r � 1, consider

the polynomial pn+i(x) := pn(x)
Qi

k=1(x � ak), and denote by En+i the kernel of the operator Ln+i with
characteristic polynomial pn+i. This yields the nested sequence En ⇢ En+1 ⇢ · · · ⇢ En+r�1 ⇢ En+r. On
[0, h], with h < è

n, it represents r elementary dimension elevation steps. The claims follow from Th. 1.3.

Example 2.2. Take p3(x) := x(x2+1) and p5(x) := x(x2+1)(x2�1). The spaces E3 and E5 are respectively
spanned by the four functions 1, x, cosx, sinx, and the six functions 1, x, cosx, sinx, coshx, sinhx. Their
critical lengths for design are è

3 = 2⇡, è5 ⇡ 7.853, see [3]. Between E3 and E5 we can insert the space E4,
with characteristic polynomial either p4(x) = p3(x)(x � 1) or p4(x) = p3(x)(x + 1). The two step corner
cutting algorithm corresponding to the first case is shown in Fig. 1, with h = 3 and h = 5, the second
case being obtained symmetrically. Note that the value h = 5 is already too close to è

3 to permit clear
visualization of the “strict” corner cutting. These are the only two possibilities if we want to keep within
the framework of kernels of linear di↵erential operators with constant coe�cients. However, for each h 6 è

3

there are infinitely many possible ways to define intermediate five-dimensional EC-spaces (or, equivalently,
W-spaces) E4 on [0, h], namely all spaces spanned by the functions 1, x, cosx, sinx,↵ sinhx+ � sinh(h� x),
where ↵,� are any positive numbers. For ↵ = � = 1, the space E4 is symmetric, and it yields the symmetric
corner cutting algorithm shown in Fig. 1, right.

Factorising qr on IR, we can repeatedly elevate the dimension by one as in Prop. 2.1, as many times as
the number of real roots of qr, and then elevate it two by two. This is the reason why we subsequently focus
on the case r = 2, the degree two polynomial q2 having no real root.

Proposition 2.3. Let a ± ib, a 2 IR, b > 0, be the roots of q2. Then, we can go from En to En+2 through
two elementary dimension elevation steps i↵ if h < ⇡/b.

Proof. We know that LnEn+2 = ker q2(D). Let us use the notations introduced for Prop. 1.4. Due to (3) we
have Ln = (

Qn
i=1 wi)DLn. Accordingly, ker q2(D) = (

Qn
i=1 wi)F2. This space is thus an EC-space on [0, h]

i↵ so is F2. Now, ker q2(D) being spanned by the two functions eax cos(bx), eax sin(bx), its critical length is
⇡/b. Accordingly, the claim results from Prop. 1.4.

4



h = 5 h = 8.9 h = 9.8 h = 10.5

h = 6 h = 8.2 h = 10.8 h = 11.36

Figure 2: Dimension elevation En ⇢ En+2 on [0, h]: En is the degree n polynomial space, En+2 is spanned by En and cos, sin,

for n = 5, 6. Loss of shape preservation and convex combinations as h increases in ]⇡, èn+2[=]⇡, 11.5268[. See Ex. 2.4.

Example 2.4. Consider the inclusion En ⇢ En+2, n > 2, where En := Pn is the degree n polynomial
space and En+2 is the cycloidal space spanned by Pn and the two functions cos and sin. In terms of
characteristic polynomials we thus have pn+2(x) = pn(x)(x2 + 1) = xn+1(x2 + 1). The critical lengths of
cycloidal spaces En are now well known, see [6, 1]. Prop. 2.3 ensures that, on [0, h], we can go from En to
En+2 through two elementary dimension elevation steps for any positive h < ⇡. By contrast, for h > ⇡, no
(n+ 2)-dimensional space inserted between En and En+2 is a W-space on [0, h]. We thus have numerically
investigated the passage from given initial Bézier points P0, . . . , Pn relative to (0, h) to the corresponding

final Bézier points P ?
0 , . . . , P

?
n+2, for increasing values of h 2]⇡, èn+2[ and increasing values of n > 2. As

h increases, we successively lose shape preservation (negative answer to (Q2) and therefore to (Q3)), then
the strict convex combinations (7) (negative answer to (Q1)). This is illustrated in Fig. 2 with n = 5 and

n = 6. When approaching è
n+2, the central (two) point(s) even explode(s) much further away from the

initial control polygon than shown in Fig. 2, this not being due to numerical problems. The behaviour
is similar for any other value of the integer n > 2, depending on its parity. To provide the reader with a
brief analysis of this phenomenon, consider the function �? :=

�
S, S0 . . . , S(n+1)

�
, where S 2 En+2 satisfies

S(0) = S0(0) = · · · = S(n+1)(0) = 0, S(n+2)(0) = 1. Taking account of the invariance of the W-space En+2

under translation, we know from Th. 2.2 in [7] that è
n+2 is the supremum of all positive h such that the

Bézier points ⇧?
i (0, h), i = 1, . . . , n + 1, of �? relative to (0, h) exist, obtained by intersecting convenient

osculating flats of �? at 0 and h. In other words, the functions

�i,j(x) := det
⇣
�?0(x), . . . ,�?(i)(x),�?0(0), . . . ,�?(j)(0)

⌘
, i, j > 0, i+ j = n+ 2,

do not vanish on ]0, èn+2[, and there is at least one such pair (i, j) for which �i,j(x)(èn+2) = 0. From the

results in [6, 1], we can more precisely say that, if n = 2k, only �k+1,k+1 vanishes at è
n+2, which means

that the central Bézier point ⇧?
k+1(0,

è
n+2) do not exist, or is located at infinity. Through a�ne images, this

explains the second row in Fig.2. The same holds true for odd values of n, but now with the two central
final Bézier points.

Example 2.5. Some additional examples first inclined us to conjecture that the answer to (Q1), (Q2) was

always positive i↵ è
n < è

n+2. However the conjecture was proved to be false by considering the simple
inclusion E2 ⇢ E4, with p2(x) = x(x2 + 1) and p4(x) = p2(x)(x2 + b2), with b > 1. In that case è

2 = ⇡ and
è
4 is known, see [3] and references therein. In particular è

4 = ⇡ for b = 2 and b = 3. For h = ⇡�, the curve
visually coincides with the segment [P0, P2], and when we additionally have b close to 1, so does the final

5



control polygon. Therefore, a clear answer to (Q1), (Q2) requires the exact computation of the final Bézier

points as a�ne combinations of the initial ones for h < min(è2, è4). This is done when P0, P1, P2 are the
Bézier points relative to (0, h) of the function �(x) = (cosx, sinx), its final ones, P ?

0 , . . . , P
?
4 , being the first

two components of the Bézier points ⇧?
0, . . . ,⇧

?
4 of the function �?(x) =

�
�(x), cos(bx), sin(bx)

�
. The latter

being obtained as intersections of convenient osculating flats of �? at 0 and h, we know that (see [13, 8])

⇧?
1 �⇧?

0 = �?
1,1�

?0(0), ⇧?
2 �⇧?

0 = �?
2,1�

?0(0) + �?
2,2�

?00(0), (10)

with positive �?
1,1,�

?
2,2. Taking account of the symmetry of the space E4, we have

�?
1,1 =

det
�
�?0(0),�?00(0),�?000(0),�?(h)� �?(0)

�

det
�
�?0(0),�?00(0),�?000(0),�?0(h)

� , �?
2,2 =

det
�
�?0(0),�?00(0),�?(h)� �?(0),�?0(h)

�

det
�
�?0(0),�?00(0),�?0(h),�?00(h)

� ,

that is,

�?
1,1 =

1

b

b2(1� cosh) + cos(bh)� 1

b sinh� sin(bh)
,

�?
2,2 =

1

b

(b2 + 1)
⇥
1� cosh cos(bh)

⇤
+ (b2 � 1)

⇥
cos(bh)� cosh

⇤
� 2b sinh sin(bh)

2b
⇥
1� cosh cos(bh)

⇤
� (b2 + 1) sinh sin(bh)

.

We similarly have P1 � P0 = �1,1�0(0) and P2 � P0 = �2,1�0(0) + �2,2�00(0), with

�1,1 =
det (�0(0),�(h)� �(0))

det (�0(0),�0(h))
=

1� cosh

sinh
, �2,2 =

det (�0(0),�(h)� �(0))

det (�0(0),�00(0))
= 1� cosh.

Combining this with the relations obtained from (10) by projection onto the first two components and with
the symmetry of E4, we obtain

P ?
1 = (1�A)P0 +AP1, P ?

2 = CP0 + (1� 2C)P1 + CP2, with A :=
�?
1,1

�1,1
and C :=

�?
2,2

�2,2
.

It is easily checked that shape preservation is obtained i↵ g(h) := 2C + A � 1 < 0. Now, the various
expressions above indicate that g(h) = 0 for bh = ⇡. On the other hand, from Prop. 2.3 we know that
g(h) < 0 for h < ⇡/b. Accordingly, ⇡/b is the first positive zero of the function g, i.e., h < ⇡/b is the

necessary and su�cient condition for shape preservation. Whether è
2 < è

4 ( i.e., b < 2) or è
2 = è

4 ( i.e.,

b = 2 or b = 3), or è2 > è
4 ( i.e., b 2]2,+1[\{3}), we lose shape preservation when h approaches min(è2, è4),

namely above the blue hyperbola branch h = ⇡/b in Fig. 3, middle. The green curve shows the first positive
zero of the function g1(h) := 2C� 1, determined numerically. Above it, the answer to (Q1) is negative. The
previous comments are illustrated in Fig. 3, left and right, at two di↵erent points (h, b).

Let us now consider the limit case b = 1, where E4 is spanned by the functions 1, cosx, sinx, x cosx, x sinx,
with è

4 ⇡ 4.4934. Fig. 3, middle, suggests that shape preservation is obtained for any value of h <
min(è2, è4) = ⇡. This is confirmed by calculating the corresponding quantities on ]0,⇡[:

�?
1,1 =

2(1� cosh)� h sinh

sinh� h cosh
, �?

2,2 =
h� sinh

h+ sinh
, g(h) =

�(1 + cosh)(h� sinh)2

(1� cosh)(h+ sinh)(sinh�h cosh)
,

the function g being indeed negative on ]0,⇡[.

Through the test built in [3] we could investigate numerically many more examples. In most cases, when

h approaches min
�è

n, èn+2

�
, we loose shape preservation and even (7). Even though we are not able to

conjecture in which examples this occurs, the previous few illustrations give indisputable evidence that the
answer to any of the questions (Qi), i = 1, 2, 3, is not always a�rmative.

Readers interested in the subject are referred to [4] where additional examples are presented and com-

mented. In particular, they will see why, in all situations è
n > è

n+2, we necessarily lose shape preservation
when h approaches è�

n+2, which is consistent with the brief analysis in Ex. 2.4.
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Figure 3: E2 ⇢ E4, with p2(x) = x(x2
+ 1), p4(x) = p2(x)(x2

+ b2), b > 1. Middle: in function of b, min(è2, è4) (red); limit

value of the length h for shape preservation (blue); limit value of h for convex combinations (green). Dimension elevation at:

⇤ (left), ⇤ (right). See Ex. 2.5.
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