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Abstract
In a recent paper (2019 Phys. Rev. A 99, 053617), the total number of fermion pairs in a
spin-balanced two-component Fermi gas of 6Li atoms was experimentally probed in the normal
phase above the superfluid critical temperature, in order to investigate the sectors of pseudogap
and preformed-pair in the temperature–coupling phase diagram. Here, we present a theoretical
account of these experimental results in terms of an ab initio self-consistent t-matrix calculation,
which emphasizes the role of the pair-correlation function between opposite-spin fermions at
equilibrium. Good agreement is found between the available experimental data and the theoretical
results obtained with no adjustable parameter.

1. Introduction

Preformed pairs are meant to be bound states which form above the critical temperature of a fermionic
superfluid [1, 2]. They are usually associated with the occurrence of a pseudo-gap which can be viewed as a
carry-over of the pairing gap in the superfluid phase to the normal phase [3]. Although in the limit of low
density and strong fermionic attraction, a preformed pair can be approximately described by a bound state
of two fermions of opposite spin, in general it has intrinsically a many-body nature. In order to take into
account the many-body character of a pair, it is convenient to describe the pair problem in terms of
correlations between the fermions. These correlations are a non-trivial function of temperature, particle
density, and the inter-particle coupling.

Preformed pairs were recently studied in an experiment with a spin-balanced two-component Fermi gas
of 6Li in the normal phase [4], where the number of fermion pairs Np was determined by converting all
atom pairs to tightly-bound diatomic molecules which afterward were detected. The pairing fraction Np/Nσ

(where Nσ is the number of all atoms per spin-state) was reported for various temperatures and couplings
on the BEC side of the BCS–BEC crossover.

A preliminary theoretical account of the pairing fractions was already presented in reference [4], which
was obtained by a statistical model of non-interacting atoms and molecules at equilibrium [5, 6] as well as
by an ab initio diagrammatic t-matrix approach [7]. However, the comparison between experiment and
theory presented in reference [4] called for further improvements, because the statistical model could not
be confidently extended to the crossover region and the t-matrix calculation was lacking refinements which
turned out to be important for the crossover region.

Here, we present an improved account of the theoretical approach. We investigate correlations between
spin-up and spin-down fermions at thermal equilibrium. On the basis of this, we derive a meaningful
definition and measure for preformed pairs. We calculate thermodynamic quantities such as the pairing
fraction, rather than dynamical quantities such as the pseudo-gap. Nevertheless, the pseudo-gap physics is
well contained in our approach. As a consequence, the results of our quantum many-body approach in the
crossover region differ significantly from the ones of the statistical atom–molecule model where the
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fermionic character of the pairs is neglected. In general, we find good agreement between theory and
experiment, giving us confidence on the validity of our approach.

Our detailed theoretical interpretation of the experimental data of reference [4] and new insights on the
separation between the molecular and pseudo-gap regimes are the main results of this paper. In addition,
we calculate for a homogeneous Fermi gas (i) the pair correlation function, (ii) Tan’s contact (a quantity
that sets the overall scale of the pair correlation function), and (iii) the pairing fraction. These three
quantities are calculated for different temperatures and couplings across the BCS–BEC crossover. For a
trapped system, we also report density profiles and compare them to experimental measurements, and we
provide the superfluid critical temperature across the BCS–BEC crossover.

It should be mentioned that the temperature dependence of the contact in the homogeneous case and of
the density profiles in the trapped case were already reported in references [8, 9] within the same
self-consistent t-matrix approach of our work, albeit only for the unitary case. We have verified that for this
case our results fully agree with the published ones.

The paper is organized as follows. Section 2 describes the theoretical approach. Section 3 presents
calculated pair fractions Np/Nσ for the homogeneous system. Section 4 compares these results to the
experimental data of reference [4] after suitable averaging for the trap. Section 5 presents our conclusions.
Appendix A discusses the use of conserving approximations for the many-body structure of the pair
fraction. Appendix B highlights the circumstances under which the many-body approach to the pair
fraction reduces to that of the statistical model. Finally, appendix C obtains the critical temperature of a
trapped low-density Bose gas. Throughout the paper, we set � = 1.

2. Theoretical approach

The theoretical approach that we set up to account for the experimental results of reference [4] on the pair
fraction builds on the following ingredients: (i) the definition of the many-body propagator for composite
bosons introduced in appendix A of reference [10]; (ii) the formalism developed in reference [11] to
calculate the pair correlation function of opposite-spin fermions also in the normal phase; (iii) the
experience recently nurtured in reference [7] on the fully self-consistent solution of the t-matrix approach
to a Fermi gas with an attractive inter-particle interaction.

This Fermi gas is made to span the BCS–BEC crossover by varying the (dimensionless) coupling
parameter (kFaF)−1, where kF = (3π2n)1/3 is the Fermi wave vector associated with the number density n
and aF is the scattering length of the two-fermion problem [12]. In practice, the crossover between the BCS
and BEC regimes is exhausted within the range −1 � (kFaF)−1 � +1 about unitarity where (kFaF)−1 = 0.
In the following, we shall mostly be interested in the coupling region 0 � (kFaF)−1 � +1.5 on the BEC side
of unitarity for which the experimental data of reference [4] are available.

2.1. Outline of the theoretical expressions to be related with the experimental data
Strictly speaking, a pair of spin-up and spin-down fermions can be regarded as a purely bosonic entity only
in the BEC regime and at sufficiently low temperatures. In all other cases, one should search for correlations
between fermions and define the occurrence of pairing accordingly. Adopting this point of view, which
applies also to the so-called Cooper pairs in the BCS regime, is definitely required on the BEC side of
unitarity in the normal phase, where the experimental data reported in reference [4] were collected. To this
end, a suitable definition is needed of what would loosely speaking be referred to as a ‘preformed pair’ in
the normal phase of a fermionic superfluid. This definition should be based on a quantum many-body
approach where fermions are the elementary constituents of the theory, with no a priori reference to the
preformed pairs themselves.

We begin by introducing the bosonic propagator

GB(x, x′) = −〈Tτ [ΨB(x)Ψ†
B(x′)]〉, (1)

where x = (r, τ) groups the spatial position r and imaginary time τ , ΨB(r) is a bosonic field operator, Tτ

the time-ordered operator, and 〈· · ·〉 a thermal average taken at temperature T [13]. In terms of this
propagator, the total number of bosons is given by

Np = −
∫

drGB(x, x+)

= −
∫

dr

∫
dq

(2π)3

1

β

∑
ν

eiΩνη GB(q,Ων), (2)

2
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where q is a wave vector, Ων = 2πν/β (ν integer) a bosonic Matsubara frequency with β = (kBT)−1 and kB

the Boltzmann constant, and η = 0+. In the last line of equation (2) a homogeneous system has been
assumed, for which one may simply write Np = V np where V is the volume occupied by the system and np

the boson density.
To the extent that the bosonic entities we are considering are made up of fermion pairs, the bosonic

operator ΨB(r) has to be related to its fermionic counterparts ψσ(r), where σ = (↑, ↓) is the spin projection.
This can be achieved by setting

ΨB(r) =

∫
dρφ(ρ)ψ↓(r − ρ/2)ψ↑(r + ρ/2) (3)

where φ(ρ) is a suitable function that should itself embody the correlations within a fermion pair we are
after.

On physical grounds, at sufficiently low temperature in the BEC regime it is reasonable to take φ(ρ) as
the (normalized) bound-state wave function of the fermionic two-body problem in vacuum, namely,

φ(ρ) =
1√

2πaF

e−ρ/aF

ρ
(4)

where ρ = |ρ|, whose Fourier transform reads

φ(p) =

√
8π

aF

1

p2 + a−2
F

. (5)

As already mentioned, the definition (3) together with the expression (4) was originally used in reference
[10] to describe condensed composite bosons well below the superfluid transition temperature Tc with
fermions treated within the mean-field approximation [14]. The same combination of the expressions (3)
and (4) was then utilized in reference [4], aiming to account for the quantity Np of equation (2) on the BEC
side of unitarity in the normal phase above Tc, even up to a few times the Fermi temperature TF. In
addition, in this case fermions were treated within the self-consistent t-matrix approach [7], with a further
trap averaging to comply with the experimental procedure of reference [4].

To account for the experimental data of reference [4] in a comprehensive way, however, the function
φ(ρ) with which the projection is performed in equation (3) should acquire a more general form than the
expression (4), which is expected to be valid only in the BEC regime at low temperature. Accordingly, in
what follows (cf section 3.1) we will replace the expression (4) by a more general form obtained from the
pair correlation function studied in reference [11], a form which can thus be utilized even past unitarity
toward the BCS regime and up to a temperature of even several times TF.

In addition, we shall see below (cf section 2.2) that in the diagrammatic expansion of the expressions (1)
and (3) one should also retain an ‘unbound’ term that was disregarded in the analysis of reference [4] since
it is negligible in the BEC limit.

It turns out (cf section 4.2) that both these refinements (namely, the inclusion of the above unbound
term and the improvement of the expression (4) in terms of the pair correlation function) improve the
comparison with the experimental data of reference [4], especially just on the BEC side of unitarity. This
comparison will also make it possible to distinguish between the pseudo-gap and the molecular regimes
mentioned in the Introduction. Specifically, we argue that the molecular regime should be reached when the
unbound term contributes in a negligible way to the quantity Np of equation (2).

2.2. Diagrammatic approach to the pair fraction
We pass now to describe the diagrammatic approach that we have adopted for the calculation of the
expressions (1)–(3). Although we are interested in the normal phase above Tc which the experimental data
of reference [4] are restricted to, we find it convenient to adopt the Nambu representation of the fermionic
field operators

Ψ(r) =

(
ψ↑(r)

ψ†
↓(r)

)
, (6)

in terms of which the diagrammatic approach for the superfluid phase below Tc is usually formulated [15].
This is mainly because the concept of fermion pairing originates from the superfluid phase [14], from
which it can be extrapolated to the normal phase in the context of the BCS–BEC crossover [12] under
suitable circumstances, like in the present case. In addition, through the Nambu representation (6) one
finds it easier to deal with the issue of conserving approximations for a fermionic superfluid [16]. This

3
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proves important when one selects the set of diagrams that would describe at best the physical problem of
interest, with the condition that their numerical implementation remains affordable. We shall discuss this
issue in appendix A.

In terms of the Nambu representation (6), one writes for the fermionic single-particle Green’s function

G(1, 2) = −〈Tτ [Ψ(1)Ψ†(2)]〉 (7)

and for the fermionic two-particle Green’s function

G2(1, 2; 1′, 2′) = 〈Tτ [Ψ(1)Ψ(2)Ψ†(2′)Ψ†(1′)]〉, (8)

with the short-hand notation 1 = (r1, τ 1, �1) and so on, where the Nambu index � = (1, 2) refers to the
upper or lower component in the expression (6). Here, G2 is related to the two-particle correlation
function

L(1, 2; 1′, 2′) = G2(1, 2; 1′, 2′) − G(1, 1′)G(2, 2′) (9)

which satisfies the Bethe–Salpeter equation [10, 16, 17]

L(1, 2; 1′, 2′) = −G(1, 2′)G(2, 1′) +

∫
d3456 G(1, 3)G(6, 1′)Ξ(3, 5; 6, 4)L(4, 2; 5, 2′) (10)

where

Ξ(1, 2; 1′, 2′) =
δΣ(1, 1′)

δG(2′, 2)
(11)

is an effective two-particle interaction with Σ the fermionic self-energy. Equation (10) can be formally
solved in terms of the many-particle T-matrix, defined as the solution to the equation [10, 16, 17]

T(1, 2; 1′, 2′) = Ξ(1, 2; 1′, 2′) +

∫
d3456 Ξ(1, 4; 1′, 3)G(3, 6)G(5, 4)T(6, 2; 5, 2′), (12)

by writing

− L(1, 2; 1′, 2′) = G(1, 2′)G(2, 1′) +

∫
d3456 G(1, 3)G(6, 1′)T(3, 5; 6, 4)G(4, 2′)G(2, 5). (13)

The above equations hold quite generally, regardless of the specific approximation for the kernel Ξ
defined in equation (11). In particular, to the BCS approximation ΣBCS for the self-energy there
corresponds the kernel:

ΞBCS(1, 2; 1′, 2′) =
δΣBCS(1, 1′)

δGBCS(2′, 2)

= −τ 3
�1�2′

δ(x1 − x2′)v(x+1 − x1′)δ(x1′ − x2)τ 3
�1′ �2

(1 − δ�1�1′ ) (14)

where only the off-diagonal terms of the BCS self-energy have been retained following a common practice.
In the expression (14), τ 3 is the third Pauli matrix [15], x1 = (r1, τ 1) and so on, and v(x+1 − x1′) =
δ(τ+1 − τ1′)v(r1 − r1′) is the attractive fermionic interaction. For the ultra-cold Fermi atoms of interest, one
takes v(r1 − r1′) = v0δ(r1 − r1′) of the contact form, where the (negative) strength v0 is further eliminated
in favor of the scattering length aF through a standard regularization procedure [12].

We return at this point to the expression (1) of the bosonic propagator GB with the definition (3) for the
bosonic field, which we rewrite in the Nambu representation (6). The following compact form then results
for GB in terms of the two-particle correlation function (9):

GB(rτ , r′τ ′) = −
∫

dρ

∫
dρ′φ(ρ)φ∗(ρ′) L(1, 2; 1′, 2′) (15)

with the identification 1 = (r + ρ/2, τ , � = 1), 2 = (r′ − ρ′/2, τ ′, � = 2), 1′ = (r − ρ/2, τ+, � = 2), and
2′ = (r′ + ρ′/2, τ ′+, � = 1). Hereafter, it will be understood that only the terms that survive once carried
over from below to above Tc will be retained in the expression (15). Accordingly, in passing from
equation (9) to equation (15) we have neglected the second term on the right-hand side of equation (9),
which corresponds to the (square magnitude of the) condensate amplitude and thus vanishes above
Tc [10].

In addition, it will be shown in appendix A that, due to the specific identification of the Nambu indices
relevant to equation (15), the many-particle T-matrix of equation (12) which solves the Bethe–Salpeter
equation for L can be built only in terms of the effective two-particle interaction Ξ of the form (14) [18].

4
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This leaves us with the freedom of endowing the fermionic single-particle Green’s function G of
equation (7) with a suitable additional self-energy Σ to be selected on physical grounds, without being
forced to introduce at the same time related additional terms in the kernel Ξ via equation (11).

With these considerations in mind, we have selected this additional self-energy of the form of the fully
self-consistent t-matrix approach, whose performance in the normal phase above Tc has been recently
tested against those of the non-self-consistent as well as of other partially self-consistent t-matrix
approaches [7], with the result that the fully self-consistent one performs best at least as far as
thermodynamic quantities are concerned. To the extent that the quantity Np given by the expression (2) of
interest here is itself a thermodynamic quantity (consistently with the fact that no analytic continuation
from Matsubara to real frequencies is required to calculate it), this choice for Σ within the fully
self-consistent t-matrix approach appears to be adequate for our purposes. In addition, the BCS self-energy
ΣBCS, which has served to obtain the kernel ΞBCS of equation (14), vanishes identically in the normal phase
and no longer needs to be considered in what follows.

For a homogeneous system, we can further make use of the Fourier representation and rewrite
equation (15) as:

GB(q,Ων) = −
∫

dp

(2π)3

1

β

∑
n

∫
dp′

(2π)3

1

β

∑
n′

φ(p + q/2)φ(p′ + q/2) L11
22(pωn, p′ωn′ ; qΩν) (16)

where ωn = (2n + 1)π/β (n integer) is a fermionic Matsubara frequency (the conventions for the Nambu
indices are specified in figure A1 of appendix A). The expression (16) will be utilized in equation (2) to
obtain the number of pairs Np. Solving then for the many-particle T-matrix of equation (12) as described
above and entering the result in equation (13) for L, equation (16) reduces eventually to the form:

GB(q,Ων) = −F2(q,Ων) −F1(q,Ων)2 Γ(q,Ων). (17)

Here,

Fj(q,Ων) =

∫
dp

(2π)3
φ(p + q/2)j 1

β

∑
n

G(p + q,ωn +Ων)G(−p,−ωn) (18)

are ‘form factors’ associated with the particle–particle bubble where j = (1, 2), and

Γ(q,Ων) = −
(

m

4πaF
+ Rpp(q,Ων)

)−1

(19)

is the particle–particle propagator in the normal phase where

Rpp(q,Ων) =

∫
dp

(2π)3

1

β

∑
n

G(p + q,ωn +Ων)G(−p,−ωn) −
∫

dp

(2π)3

m

p2
(20)

is the regularized particle–particle bubble [12]. We emphasize again that the fermionic single-particle
Green’s functions G entering the expressions (18) and (20) are meant to be obtained within the
self-consistent t-matrix approach in the normal phase [7].

What is still left to be specified is the form of the wave function φ(p) that enters equation (18). We have
already mentioned that, in the theoretical diagrammatic approach to Np presented in reference [4], φ(p)
was taken of the form (5) corresponding to the fermionic two-body problem. With this choice, however,
meaningful results could be obtained only toward the BEC edge of the BEC side of the unitary region. To
overcome this limitation, here we adopt a more general form for φ(p) which will be obtained from the pair
correlation function, as discussed in section 3.1 below.

In addition, in reference [4] the first term on the right-hand side of equation (17) was not retained. As
anticipated in section 2.1, this term will be referred to as the ‘unbound’ term as opposed to the ‘bound’
term discussed below. Here, we are going to keep this ‘unbound’ term and show that it gives a
non-negligible contribution to Np, through the pairing correlations contained both in the fermionic
single-particle Green’s function G and in the wave function φ(p) that enter the expression (18) with j = 2.
Accordingly, through this term spin-↑ and spin-↓ fermions correlate with each other indirectly via their
separate interaction with the environment.

In contrast, the second term on the right-hand side of equation (17) is referred to as the ‘bound’ term,
because in this case spin-↑ and spin-↓ fermions correlate with each other directly through their
inter-particle attractive interaction. The result for Np obtained from this term will be shown to reduce to
that of the statistical model of atom–molecule equilibrium introduced in references [5, 6], past the BEC
side of the unitary region and for not too high temperatures above Tc. The reasons for the success of the
statistical atom–molecule model in this sector of the phase diagram will be discussed in appendix B.

5



New J. Phys. 22 (2020) 083008 M Pini et al

2.3. Single-particle Green’s function
As discussed in section 2.2, the single-particle Green’s function G(p,ωn) that enters the expressions (18) and
(20) is taken within the fully self-consistent t-matrix approach. It then reads:

G(p,ωn) =
[
G0(p,ωn)−1 − Σ(p,ωn)

]−1
(21)

where G0(p,ωn) = [iωn − ξ(p)]−1 is the non-interacting counterpart with ξ(p) = p2/(2m) − μ (m being
the fermion mass and μ the chemical potential) and

Σ(p,ωn) = −
∫

dq

(2π)3

1

β

∑
ν

Γ(q,Ων)G(q − p,Ων − ωn) (22)

is the self-energy with Γ(q,Ων) given by equations (19) and (20). The chemical potential is eventually
obtained from the fermionic density nσ via the relation

nσ =

∫
dp

(2π)3

1

β

∑
n

eiωnη G(p,ωn) (23)

where n↑ = n↓ = n/2 like in reference [4]. The numerical calculation of the expressions (21)–(23) will be
implemented by taking advantage of the detailed procedures recently reported in reference [7].

In addition, the strong-coupling (BEC) limit of the expressions (21)–(23), together with that of the
expressions (2) and (17)–(20), will be examined in appendix B, to determine under what circumstances the
results for np and nσ obtained by our diagrammatic quantum many-body theory reduce to those of the
statistical model of atom–molecule equilibrium developed in references [5, 6].

3. Results for a homogeneous gas

In this section, we implement the calculation of the bosonic density np obtained from equations (2) and
(17) for a homogeneous gas, as a function of coupling and temperature. The information gathered in this
way will be used in section 4 when dealing with a trapped gas, by performing a trap average within a
local-density approximation. At that point it will be possible to compare the theoretical results with the
experimental data of reference [4].

The main ingredients of the calculation of np are the single-particle Green’s function G(p,ωn) and the
wave function φ(p) that enter equations (18)–(20). The calculation of G(p,ωn) was already considered in
section 2.3. It thus remains to consider the calculation of the wave function φ(p), as discussed next.

3.1. Pair correlation function
Our interpretation of the experimental data of reference [4] rests on the occurrence of correlations between
spin-up and spin-down fermions at equilibrium. The preliminary theoretical account of those experimental
data presented in reference [4] took the wave function φ(p) entering equation (18) of the form (5)
associated with the fermionic two-body problem. This form, however, proves able to account for the
correlations between spin-up and spin-down fermions only in the BEC regime of coupling and at low
enough temperature. As anticipated in section 2.2, we now consider a more general form for φ(p) which is
obtained from the pair correlation function

g↑↓(ρ) =
〈
ψ†
↑

(ρ
2

)
ψ†
↓

(
−ρ

2

)
ψ↓

(
−ρ

2

)
ψ↑

(ρ
2

)〉
−
(n

2

)2
. (24)

This function contains information about correlations between fermions of opposite spins at a distance
ρ = |ρ| apart. This quantity was studied in detail in reference [11] throughout the BCS–BEC crossover,
both in the superfluid phase below Tc and in the normal phase above Tc. Here, we consider the formalism
of reference [11] above Tc and rephrase it in terms of the fully self-consistent t-matrix approach that was
summarized in section 2.3.

Within the fully self-consistent t-matrix approach, the expression (24) for g↑↓(ρ) can be cast in the form
[11]:

g↑↓(ρ) =

∫
dq

(2π)3

1

β

∑
ν

eiΩνη Γ(q,Ων)

∫
dp

(2π)3
eip·ρ Π̃(p; q,Ων)

∫
dp′

(2π)3
e−ip′·ρ Π̃(p′; q,Ων) (25)

where

Π̃(p; q,Ων) =
1

β

∑
n

G(p + q,ωn +Ων)G(−p,−ωn). (26)

6
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Figure 1. Spatial profiles of ρ2g↑↓(ρ) are shown vs ρ (in units of k−1
F ), for several couplings about unitarity and different

temperatures in the normal phase. In each panel, the inset gives the dependence of the contact C over an extended range of
temperature (in units of the Fermi temperature TF), where the dots correspond to the temperatures reported in the same panel.
In panels (c) and (d), the expression (2πaF)ρ2|φ(ρ)|2 = e−2ρ/aF corresponding to the two-body bound state (4) is reported for
comparison (long dash-dotted lines).

Here, the fully self-consistent G’s are considered, while in the original reference [11] non-interacting G0

corresponding to the non-self-consistent approximation were utilized.
It was also shown in reference [11] that g↑↓(ρ) given by the expression (25) recovers the short-range

behavior related to Tan’s contact C [20–22]

g↑↓(ρ) −−−−→
(ρ→0)

C

(4π)2

(
1

ρ2
− 2

ρ aF
+ · · ·

)
, (27)

such that limρ→0
(4π)2

C ρ2 g↑↓(ρ) = 1 irrespective of coupling and temperature. We have reproduced here these
analytic results within our fully self-consistent t-matrix approach, with the numerical values of C obtained
in agreement with reference [7].

Examples of the spatial profiles of the pair correlation function g↑↓(ρ) are shown in figure 1, for several
couplings and temperatures above Tc. Reported in each inset are also the respective values of the contact C
[23], from which the numerical values of g↑↓(ρ) can be explicitly reconstructed. Note the oscillatory
behavior of g↑↓(ρ), which is present on the BCS side at low temperatures but quickly fades away either by
moving toward the BEC side or by increasing temperature. Due to this oscillatory behavior, g↑↓(ρ) may
acquire negative values which correspond to a weaker correlation with respect to the uncorrelated value
n↑n↓ = (n/2)2 [11]. This behavior, however, will not affect our argument below, whereby the oscillations
about zero (whenever present) will be averaged out.

It can be verified from the expression (25) that, in the BEC limit at sufficiently low temperatures, g↑↓(ρ)
reduces to the product of the density nσ = n/2 of a single fermionic species times the square of the wave
function (4) corresponding to the fermionic two-body problem. It can be also verified that, within mean
field in the superfluid phase, the square of the pair wave function obtained from the two-particle reduced
density matrix [26] corresponds to g↑↓(ρ) [11, 27]. This suggests that the function φ(p), to be utilized in the
form factors (18), can be quite generally extracted from the pair correlation function g↑↓(ρ). To this end, we
adopt the following strategy.
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Figure 2. Temperature dependence of the parameter b of the expressions (29)–(31) for several values (reported above each line)
of the coupling (kFaF)−1 across the BCS–BEC crossover. The inset shows the derivative of b with respect to T for the same
couplings of the main panel to better evidence the high-temperature behavior.

We begin by fitting the spatial profiles of the function (4π)2

C ρ2g↑↓(ρ) of figure 1 with the expression

ρ2φ(ρ)2 = exp(−2ρ/aF) exp(−2bρ2), (28)

where b is a parameter that depends on coupling and temperature (note that the function (28), too, has unit
value at ρ = 0). We then take the square root of the expression (28) to extract φ(ρ), and multiply the result
by a suitable normalization factor N , thus writing:

φ(ρ) = N (aF, b)
e−ρ/aF

ρ
exp(−bρ2) (29)

with

N (aF, b) =
1

π3/4

(
b

2

)1/4 exp

[
− 1

4ba2
F

]
√

erfc
[

1√
2baF

] (30)

where erfc(z) is the complementary error function of (complex) argument z [28]. Note that the two-body
wave function (4) is recovered for b → 0. Finally, we take the Fourier transform of the expression (29) and
obtain the desired result:

φ(p) =
2π3/2N (aF, b)√

b p
Im

{
exp

[(
a−1

F − ip
)2

4b

]
erfc

(
a−1

F − ip

2
√

b

)}
(31)

where p = |p|. This expression recovers equation (5) in the limit b → 0.
Figure 2 shows the behavior of the parameter b obtained in this way, over a wide range of coupling and

temperature relevant to the experiment of reference [4]. In particular, for sufficiently high temperature and

irrespective of coupling, b is expected to become proportional to λ−2
T where λT =

√
2π

mkBT is the thermal

wavelength. To evidence this linear behavior of b vs T at high temperature, the inset of figure 2 plots the
derivative of b with respect to T for the same temperature range and couplings of the main panel. In all
cases, we have found that, at high temperature, this derivative is well reproduced by the expression
kB

2 m
∂b
∂T = 0.25 − 0.175(kFaF)−1

√
TF/T.

The fitting function φ(ρ) given by equation (29) focuses on the short-range part of the pair-correlation
function g↑↓(ρ) given by equation (24), which is dominated by the intra-pair correlations of relevance here.
It thus disregards a possible long-range part of g↑↓(ρ) which may include correlations between spin-↑ and
spin-↓ fermions belonging to different pairs (although this long-range part does not occur within the
t-matrix approach adopted here).

3.2. Pair fraction
We are now in a position to calculate the pair density np given by

np = −
∫

dq

(2π)3

1

β

∑
ν

eiΩνη GB(q,Ων) (32)

together with the fermionic density nσ given by equation (23), for a homogeneous system as a function of
coupling and temperature.
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Figure 3. Pair fraction np/nσ at Tc vs (kFaF)−1, obtained by the fully self-consistent (full line) and non-self-consistent (dashed
line) t-matrix approaches. In both cases, φ(p) in the form factors (18) is obtained from the expression (31) within the respective
approximations for the pair correlation function. Also shown is the result obtained by the fully self-consistent calculation, with
φ(p) approximated instead by the two-body form (5) (dashed-dotted line).

Figure 4. Pair fraction np/nσ vs T/TF for four couplings, obtained by the fully self-consistent t-matrix approach including (full
lines) or neglecting (dashed lines) the ‘unbound’ term in equation (17). In the latter case, only the ‘bound’ term is retained in
equation (17), as specified in the panels.

To begin with, figure 3 compares the pair fraction np/nσ at Tc over a wide range of the coupling
(kFaF)−1, as obtained by the fully self-consistent and non-self-consistent t-matrix approaches. As for other
thermodynamic quantities [7], also in this case the fully self-consistent approach proves superior to the
non-self-consistent one, to the extent that the ratio np/nσ should never exceed unity. Accordingly, from now
on results obtained by the fully self-consistent approach will only be presented. In addition, the use of the
two-body form (5) for φ(p) in the form factors (18) is seen to lead to unstable results upon entering the
unitary regime with (kFaF)−1 � +1. Abandoning the two-body form (5) in favor of the expression (31)
associated with the pair correlation function is thus expected to yield a definite improvement over the
theoretical analysis made in reference [4] when accounting for the experimental values of the pair fraction
for the trapped system (cf section 4.2 below).

In figure 4 the pair fraction np/nσ is shown over a wide range of temperature and a selected number of
couplings across unitarity. In particular, this figure compares the results obtained by including (full lines) or
neglecting (dashed lines) the ‘unbound’ term represented by the term −F2 on the right-hand side of
equation (17). One sees that inclusion of this unbound term over and above the bound term (represented
by the second term on the right-hand side of equation (17)) leads to substantial differences, especially in the
unitary regime at low temperature. The unbound term was not included in the diagrammatic approach to

9
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Figure 5. Contour plots of the pair fraction np/nσ in the temperature–coupling phase diagram of the homogeneous system,
obtained by the fully self-consistent t-matrix approach by including (full lines) or neglecting (dashed lines) the ‘unbound’ term
in equation (17). Also shown are the results of the statistical model obtained from equation (33) (dotted lines). In each panel, the
coupling dependence of the critical temperature Tc (in units of TF) is reported (dashed-dotted line), which sets the boundary of
the normal phase for the homogeneous system. Note that a different vertical scale is used in each of the three panels.

the pair fraction presented in reference [4]. It will be shown in section 4.2 that the agreement with
experimental data will be definitively improved by its inclusion.

In preparation for this comparison, figure 5 shows three contour plots where a given value of the pair
fraction np/nσ is seen to evolve in the T-vs-(kFaF)−1 phase diagram. Similarly to what was done in figure 4,
for each of the three values of np/nσ here reported the numerical results have been obtained by including
(full lines) or neglecting (dashed lines) the unbound term in equation (17). In all cases, the difference
between these two sets of results turns out to be substantial as soon as entering the unitary regime with
(kFaF)−1 � +1. This implies that, in this regime of most physical interest, the fermionic character of the
constituent particles reveals itself.

To confirm this point of view, figure 5 also shows for comparison the contour plots of np/nσ

corresponding to the statistical model (dotted lines), as obtained from the law of mass action

n2
f

np
=

1

8

(
mkBT

π

)3/2

e−ε0/kBT (33)

where ε0 = (ma2
F)−1 is the two-body binding energy, which results from the integrals in equation (B11) of

appendix B by neglecting ±1 in the denominators therein. It turns out that the results of the statistical
model coincides with those of the quantum many-body approach that includes only the bound term, but
only at most up to (kFaF)−1 ≈ 0.6 after which the molecular regime with the two-body wave function (4)
loses its meaning.

From figure 5 one also notes that the pairing fraction is still appreciable on the BCS side of unitarity,
especially with the inclusion of the unbound term. This is because the pairing fraction, as obtained in terms
of the expression (17), is meant to count correlated fermionic pairs that are present throughout the
BCS–BEC crossover, and not only the bosonic dimers that exist in isolation only in the BEC limit at low
temperature. The above larger than expected value of the pairing fraction could appear surprising, since
other physical quantities, like the single-particle density of states or the single-particle spectral function [7,
29, 30], present less marked effects of pairing correlations on the BCS side of unitarity above Tc. To support
our results, it may be remarked that also the pair correlation function of figure 1 shows a similar persistence
of pairing like the pairing fraction in the same temperature and coupling region. It may thus be concluded
that the pairing fraction, which is defined in terms of a two-particle Green’s function, is more sensitive to
pair correlations than single-particle quantities.
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4. Results for a trapped gas and comparison with experimental data

The results obtained in section 3 for np given by equation (32) and for nσ given by equation (23) refer to a
homogeneous system. In order to compare with the experimental data of reference [4], these theoretical
results need to be averaged over the trap that contains the Fermi gas.

4.1. Trap average
When considering a Fermi gas trapped in an anisotropic harmonic potential of the type

V(r) =
1

2
m
(
ω2

x x2 + ω2
y y2 + ω2

z z2
)

, (34)

one can adopt a local-density approximation and obtain the total number Np of pairs and the total number
Nσ of fermions in the trap in the following way. One first replaces the fermionic chemical potential μ
entering the single-particle Green’s function G(p,ωn) of equation (21) by μ→ μ− V(r), thereby obtaining
the local function G(p,ωn; r). One then replaces G(p,ωn) →G(p,ωn; r) everywhere this function occurs,
namely, in the expressions (17)–(20) for pairs and the expressions (21)–(23) for fermions. Finally, one
integrates the expressions of the local densities np(r) and nσ(r) obtained in this way over the spatial variable
r, to get the total number of pairs Np and the total number of fermions Nσ with spin σ. The value of the
fermionic chemical potential μ for the trap is eventually determined for given coupling and temperature by
solving for μ as a function of Nσ . In practice, in the experiment of reference [4] typical values of ωx = ωy

range from 2π × 300 Hz to 2π × 1.6 kHz, while ωz = λωx = 2π × 21 Hz (with λ < 1).
In the theoretical expressions, it is convenient to map at the outset the anisotropic potential (34) into a

spherical one by rescaling the variables from (x, y, z) to (x′ = λ−1/3x, y′ = λ−1/3y, z′ = λ2/3z), such that the
trapping potential becomes

V(x′, y′, z′) =
1

2
mω2

0 r′2 (35)

where r′ =
√

x′2 + y′2 + z′2 and ω0 = (ωxωyωz)1/3 = λ1/3ωx is the average trap frequency. Accordingly, the
original spatial distribution n(x, y, z) of the fermionic density with an ellipsoidal shape is mapped onto a
spherical distribution n′(x′, y′, z′) = n′(r′) through the rescaling n(x, y, z) = n′(λ−1/3x,λ−1/3y,λ2/3z) (with
both spin components included).

Profiles of the total fermion isotropic density n′(r ′) = n′
↑(r ′) + n′

↓(r ′) obtained from equation (23) in
this way are shown in figure 6, for several couplings across unitarity and temperatures in the normal phase.
The coupling parameter (kt

FaF)−1 associated with the trap is expressed in terms of kt
F =

√
2 mEt

F, where
Et

F = ω0(3N)1/3 is the Fermi energy in the trap and N = N↑ + N↓ is the total number of fermions. (In the
experiment of reference [4], typical values of N range from 3 × 104 to 3 × 105).

The values of the critical temperature Tc for the trap case, reported in figure 6 only for three specific
couplings, can be obtained throughout the whole BCS–BEC crossover. This information is important also
to verify whether the experimental values of the pair fraction in the trap of reference [4] were measured in
the normal phase. To calculate Tc for the trap, we adopt again a local-density approximation and define a

local Fermi temperature TF(r) such that kBTF(r) =
[
3π2n(r)

]2/3
/(2 m). This implies that the local Fermi

temperature, like the density n(r), has its maximum value at r = 0, to which there corresponds a minimum
value of T/TF(r) for given temperature T. Accordingly, the central portion of the cloud density is where
superfluidity is first established upon lowering the temperature from the normal phase.

To obtain Tc for the trapped system, we then apply the Thouless criterion

Γ(q = 0,Ων = 0;μ(r = 0), Tc)−1 = 0 (36)

in terms of the particle–particle propagator (19) in the normal phase, where now
μ(r = 0) = μ− V(r = 0) = μ is the fermionic chemical potential for the trap calculated at the critical
temperature Tc. Details on how the variables (Tc,μc) have been determined by solving the Thouless
criterion in conjunction with the density equation are given in appendix B of reference [7].

Figure 7 shows the results of our calculation for Tc in the trap across the BCS–BEC crossover. The
results of the fully self-consistent t-matrix approach (full line) are also compared with those of its
non-self-consistent counterpart (dashed line). While the two calculations essentially coincide with each
other in the BCS regime (kt

FaF)−1 � −1, they differ considerably on the BEC side of unitarity. We attribute
this difference to the occurrence of a residual interaction between composite bosons in the BEC regime
(kt

FaF)−1 �+ 1, which is present within the fully self-consistent but absent within the non-self-consistent
calculation [7].
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Figure 6. Total fermion isotropic radial density n′(r ′) vs r′ for couplings: (a) (kt
FaF)−1 = −0.5; (b) (kt

FaF)−1 = 0.0; (c)
(kt

FaF)−1 = +0.5. In each panel, the results for T = Tc (dots), T = 0.5Tt
F (squares), T = Tt

F (diamonds) are shown. Lengths are
in units of the Thomas–Fermi radius RTF given by 1

2 mω2
0 R2

TF = Et
F where Et

F = ω0(3N)1/3 is the trap Fermi energy, such that
8N/(π2R3

TF) is the value of n(r = 0) for the non-interacting gas at T = 0 within a local-density approximation.

Figure 7. Critical temperature Tc (in units of the Fermi temperature Tt
F = Et

F/kB) vs (kt
FaF)−1 for the trapped system. Results are

shown for the fully self-consistent (full line) and for the non-self-consistent (dashed line) t-matrix approaches. In the BEC
regime, the results of a model calculation for trapped bosons with a mean-field-type interaction (cf appendix C) are also shown
with the value aB = 1.16aF for the bosonic scattering length (dashed-dotted line). The inset shows the results of additional
bosonic calculations with different values of aB (see text).

To make a check on the results of our numerical calculation, also shown in figure 7 are the results for Tc

(dashed-dotted line) obtained for a low-density trapped Bose gas with a residual interaction specified by the
scattering length aB (cf appendix C), where for internal consistency the approximate value aB = 1.16aF that
results from the fully self-consistent t-matrix approach [7] was considered. In this way, we can confirm
quantitatively the effects of aB on Tc for the trapped system in the BEC regime, which are contained in the
fully self-consistent t-matrix approach. For comparison, the inset reports additional bosonic calculations
for: (i) aB = 2.0aF which corresponds to the residual bosonic interaction being treated at the level of the
fermionic exchange diagrams [31]; (ii) aB = 0.75aF when the T-matrix for the dimer–dimer scattering built
on these exchange diagrams is further considered [31]; (iii) the exact value aB = 0.6aF obtained either by a
numerical solution of the four-body Schrödinger equation [32] or by a full diagrammatic treatment in the
zero-density limit [33].
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Figure 8. Comparison between the axial densities along the main axis of the trap, as observed experimentally (full lines) and
calculated with the self-consistent t-matrix approach (dashed lines) and the statistical atom–molecule model (dotted lines),
when (a) T/Tt

F = 0.51(4) and (kt
FaF)−1 = 0.20(3), (b) T/Tt

F = 0.49(4) and (kt
FaF)−1 = 0.49(3), and (c) T/Tt

F = 0.99(6) and
(kt

FaF)−1 = 1.00(5). The ratio λ between the axial and radial trap frequencies equals 0.0435(8) in (a), 0.0424(7) in (b), and
0.0272(4) in (c). The axial Thomas–Fermi radius Ra

TF = λ−2/3 RTF is used for normalization.

Finally, it should be mentioned that the value Tc/Tt
F = 0.2074, which we have obtained at unitarity by

the fully self-consistent calculation, coincides with that obtained in reference [9] by the same approach.
However, our calculation for Tc is extended to the whole BCS–BEC crossover while that of reference [9] was
limited to unitarity only.

4.2. Comparison between theory and experiment
A first quantity to be compared with the experimental data of reference [4] is the axial density na(z) where z
runs along the main axis of the trap, which is obtained by integrating the total fermion density n(x, y, z)
over the radial directions x and y. Specifically, the experimental profiles na(z) can be compared with their
theoretical counterparts n′

a(z′), obtained by integrating over x′ and y′ the isotropic profiles
n′(r′) = n′(x′, y′, z′) (like those shown in figure 6) and then performing the rescaling

na(z) = λ2/3 n′
a(λ2/3z). (37)

Figure 8 shows this comparison for three sets of values of temperature, coupling, and anisotropy λ. In all
cases, excellent agreement results between the experiment and the quantum many-body approach with no
adjustable parameter. The figure shows also the comparison with the fermion axial density profiles
calculated within the statistical atom–molecule model [34], for which notable deviations from the
experiment occur, as expected, for low temperature and close to unitarity.

Note that the comparison shown in figure 8, between the experimental and theoretical fermion axial
density profiles, does not provide a test on the validity of the pairing fraction theory described in
section 2.2. It is only meant to be an independent check on the fully self-consistent t-matrix approach for a
thermodynamic property which is an essential ingredient of the trap averaging procedure.

Finally, figure 9 presents the comparison of the pairing fraction Np/Nσ obtained by our ab initio
quantum many-body calculation with the experimental data of reference [4] over the temperature–coupling
phase diagram (where kt

F and Tt
F now refer to the trapped system). The comparison is made for three
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Figure 9. Contour plots of the pair fraction Np/Nσ in the temperature–coupling phase diagram of the trapped system, obtained
by the fully self-consistent t-matrix approach by including in equation (17) (i) both bound and unbound terms (full lines), (ii)
only the bound term (dashed lines), and (iii) only the bound term with the two-body form (4) of φ(ρ) (dashed-dotted lines). The
theoretical curves are compared with the experimental data of reference [4] (diamonds with vertical error bars). For
(kt

FaF)−1 � 0.3 the results of the statistical model obtained from equation (B15) of appendix B are also shown (dotted lines). In
each panel, the coupling dependence of the critical temperature Tc (in units of Tt

F) is reported (long dashed-dotted line), which
sets the boundary of the normal phase for the trapped system.

characteristic values of Np/Nσ . In all cases, good agreement is obtained between theory and experiment (we
emphasize that the theoretical results have been obtained with no adjustable parameter).

In particular, this comparison shows that both the inclusion of the unbound term and the improvement
in the description of φ(ρ) in terms of the pair correlation function (with respect to the preliminary
description in terms of the two-body bound state of reference [4]) significantly improve the agreement of
our calculations with the experimental data. And this is despite the presence of the trap, which acts to
suppress the contribution of the unbound term (as evident by comparing figures 5 and 9). This suggests
that the experimental data probe indeed the pairing correlations between spin-up and spin-down fermions
as defined by our formalism.

From this comparison one can argue that the crossover, between the pseudo-gap regime (where the
fermionic character of the constituent particles matters) and the molecular regime (where only the presence
of bosonic pairs is relevant), sets in about where the theoretical results for Np/Nσ , obtained with and
without the unbound term, start departing from each other. This argument cannot be made in terms of the
statistical atom–molecule model [4], that misses the contribution of the unbound term.

Finally, we have performed a χ2 test to better quantify the agreement between the experimental data
and the theoretical many-body predictions of figure 9. To this end, we have adopted the standard
definition

χ2 =
1

nexp − 1

nexp∑
i=1

(yth
i − yexp

i )2

(σexp
i )2

, (38)

where yth
i is the theoretical prediction corresponding to each of the nexp experimental points yexp

i and σ
exp
i

are the (symmetrized) errors. The results of the test for the three values of Np/Nσ of figure 9 are reported in
table 1. They clearly show that the full bound + unbound calculation better agrees with the experimental
data than the bound and bound (φ two-body) calculations, since it minimizes the χ2 test function of
equation (38) in each case. (Consistently with figure 9, for Np/Nσ = 0.75 the two experimental points
closest to unitarity have not been taken into account in the χ2 test when the unbound term is not included
in the theoretical calculation).
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Table 1. χ2 test on the theoretical contour plots of figure 9 with
given pairing fraction Np/Nσ against the corresponding
experimental data.

Np/Nσ Bound + unbound Bound Bound (φ two-body)

0.25 2.92 3.75 4.26
0.50 1.33 2.37 2.85
0.75 0.54 1.57 1.74

5. Concluding remarks

In this paper, we have provided a detailed account of a theoretical approach to interpret the experimental
data reported in reference [4] in a quantitative way. By this approach, from the data reference [4] we have
been able to unravel how the occurrence of pairing correlations between spin-up and spin-down fermions
at equilibrium develops, as a function of temperature in the normal phase and of coupling on the BEC side
of unitarity. What we claim to have learned from this is how the pseudo-gap regime (where fermions
matter) and the molecular regime (where only composite bosons matter) separate from each other. This
should be considered rather remarkable, since this result was extracted from experiment [4] where an
equilibrium quantity was measured (i.e. the number of fermion pairs) and not a dynamical quantity (the
excitation gap).

From the theoretical side, to account for the experimental data we have taken advantage of several
favorable circumstances. On the one hand, since the number of fermion pairs in a Fermi gas undergoing the
BCS–BEC crossover is an equilibrium quantity, it can be accounted for quite well in terms of the fully
self-consistent t-matrix approach [7]. On the other hand, this physical quantity that was measured
experimentally by its own nature does not require one to endow the theory with a series of complicated
Aslamazov–Larkin and Maki–Thompson diagrams, which should otherwise be included to fulfill
conservation criteria when addressing dynamical response functions [16], to the extent that the
single-particle self-energy is treated within the fully self-consistent t-matrix approach. In addition, our
emphasis here on fermionic correlations has drawn on our previous experience on the pair-correlation
function in the normal phase, which was addressed in detail in reference [11] within the non-self-consistent
t-matrix approach and here extended to the fully self-consistent one.

Along these lines, future perspectives, that could reinforce our argument about the evidence for the
separation between the (fermionic) pseudo-gap and the (bosonic) molecular regimes, may hinge on the
possibility of extending the measurements of the ratio Np/Nσ toward unitarity at temperatures close
enough to Tc.

In addition, to highlight experimentally the relevance of the correlations induced indirectly by the
environment between spin-↑ and spin-↓ fermions, which are embodied in the ‘unbound’ term in the
expression (17), it could be worth to consider repeating the experiment of reference [4] by replacing the
harmonic trap with a box trap along the lines of reference [35]. In this way, one should be able to amplify
the difference between the values of the pair fraction obtained with and without the inclusion of the
unbound term, as one may anticipate by comparing the results of figure 5 for the homogeneous case with
those of figure 9 for the trapped case.

It is, finally, interesting to draw a physical connection between our finding about the indirect
correlations established between spin-↑ and spin-↓ fermions through their environment and the recent
results of reference [36] about the way the quark-gluon structure of a nucleon bound in an atomic nucleus
is modified by the surrounding nucleons. In both cases, it is the environment that plays an important role
in modifying the properties of what would be a bound system in isolation.
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Appendix A. About the use of conserving approximations for the pair fraction

In section 2.2 we have argued that only the form (14) of the effective two-particle interaction Ξ is of
relevance for the calculation of the bosonic propagator GB(q,Ων) of equation (16) (and thus of the quantity
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Figure A1. (a) Ladder diagrams for the T-matrix in the superfluid phase, where dots delimiting potential (dashed) lines
represent τ 3 Pauli matrices. (b) Corresponding diagram for the t-matrix fermionic self-energy. Examples of (c) MT and (d) AL
diagrammatic contributions to the pair propagator GB, which are bound to vanish when carried over to the normal phase owing
to the presence of two anomalous fermionic single-particle Green’s functions which connect 1 ↔ 2. For simplicity, only Nambu
spin indices have been explicitly indicated in all diagrams.

Np of experimental interest). We have also anticipated that the reason for this is to be found in the specific
sequence of Nambu indices appearing in the expression (15) from which equation (16) is derived. Here, we
show specifically how the diagrammatic contributions to Ξ, that would derive from the t-matrix approach
for the fermionic self-energy Σ, cannot modify this result. Under different circumstances, like for the
calculation of the density and spin response functions, on the other hand, the diagrams for Ξ corresponding
to the Aslamazov–Larkin (AL) and Maki–Thomson (MT) contributions would instead result from the
t-matrix approach for Σ (see, e.g., figure 3 of reference [37]). In our case, the importance of introducing the
t-matrix approach for Σ arises from the need of obtaining an accurate description of the thermodynamic
properties of the Fermi gas in the normal phase [7].

Probably the simplest way to convince oneself that the AL-type and MT-type contributions to Ξ, which
would result from the t-matrix self-energy taken below Tc, do not contribute to the expression (15) of the
pair propagator GB once carried over to the normal phase above Tc, is to draw these contributions in a
diagrammatic way. This is done in figure A1. Here, the series of ladder diagrams that approximate the
many-particle T-matrix in the broken-symmetry phase is reported in panel (a), while the corresponding
t-matrix self-energy is shown in panel (b). For simplicity, in these diagrams only the Nambu indices have
been explicitly indicated, while the space and imaginary time variables are not reported since they are not
essential to the following argument. The crucial point is that for the T-matrix of panel (b) only
combinations with Nambu indices �L �= �′L and �R �= �′R occur, owing to the inter-particle interaction of the
contact form that we have adopted (cf also reference [10]). In addition, only combinations with �L = �R and
�′L = �′R will survive when these diagrams are extrapolated to the normal phase. As a consequence, a typical
example of MT contribution is shown in figure A1(c), while a typical example of AL contribution is shown
in figure A1(d). In all cases, it turns out that at least two single-particle Green’s functions with off-diagonal
Nambu indices would be required to match these contributions to Ξ with the Nambu indices appearing in
the expression (15). Since the off-diagonal (anomalous) single-particle Green’s functions vanish in the
normal phase above Tc, the MT- and AL-type contributions to Ξ vanish, too, and do not affect the
expression (15) which is relevant for the calculation of Np above Tc. This proves our statement.

Appendix B. Comparison between the quantum many-body approach and the
statistical atom–molecule model for the pair fraction

It is interesting to determine under what physical circumstances the expressions for the total
number of bosons Np and for the total number of spin-σ fermions Nσ of our fully quantum
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many-body approach reduce to those of a statistical model of a fermion–boson mixture at equilibrium
[5, 6].

To this end, we consider a homogeneous system, for which Np = V np and Nσ = V nσ are expressed in
terms of the respective densities. By our quantum many-body approach, np is given by equation (32) with
GB given by the expression (17), while nσ is given by the expression (23). To recover the physics of a
fermion–boson (or atom–molecule) mixture, one requires the fermionic coupling to be sufficiently strong
in the BEC regime and the temperature sufficiently low, for the internal structure of the composite bosons
(dimers) to become irrelevant.

In this limit, the fermionic chemical potential μ becomes the largest energy scale of the problem and is
written in the form μB = 2μ+ ε0, where ε0 = (ma2

F)−1 is the dimer binding energy and μB the dimer
chemical potential [12]. The expression (26) then reduces to

Π̃(p; q,Ων)  1

2ξ(p)
, (B1)

which, together with the expression (5) for φ(p) appropriate to this limit, yields the following approximate
form for the form factors (18) [10]:

F1(q,Ων) 
√

m2aF

8π
, F2(q,Ων)  ma2

F

4
. (B2)

This implies that, in the BEC limit where aF → 0+, the ‘unbound’ term F2 vanishes faster than F1 and can
thus be neglected in the expression (17). In addition, in the same limit the particle–particle propagator
Γ(q,Ων) of the ‘bound’ term in the expression (17) acquires the polar form [12]:

Γ(q,Ων)  − 8π

m2aF

1

iΩν − q2

4 m + μB

. (B3)

Combining these results together, one gets eventually for the bosonic density:

np  −
∫

dq

(2π)3

1

β

∑
ν

eiΩνη

iΩν − q2

4 m + μB

=

∫
dq

(2π)3

1

eβξB(q) − 1
(B4)

in terms of the Bose–Einstein distribution of argument ξB(q) = q2

4 m − μB.
To determine nσ in the BEC limit at sufficiently low temperature, we consider the expression (23) where

we expand the single-particle Green’s function (21) in series of the self-energy Σ

G(p,ωn)  G0(p,ωn) + G0(p,ωn)Σ(p,ωn)G0(p,ωn) + · · · (B5)

where G0(p,ωn) = [iωn − ξ(p)]−1 is the non-interacting single-particle Green’s function, by again relying
on the fact that the fermionic chemical potential μ entering ξ(p) = p2/(2m) − μ is the largest energy scale
in the problem. We thus obtain:

nσ 
∫

dp

(2π)3

1

β

∑
n

eiωnη G0(p,ωn)

+

∫
dp

(2π)3

1

β

∑
n

G0(p,ωn)2 Σ(p,ωn) + · · ·

≡ n(0)
σ + n(1)

σ . (B6)

Here,

n(0)
σ =

∫
dp

(2π)3

1

β

∑
n

eiωnη G0(p,ωn)

=

∫
dp

(2π)3

1

eβξ(p) + 1
(B7)

coincides with the density nf of unpaired fermions (atoms) with spin σ and expressed in terms of the
Fermi–Dirac distribution of argument ξ(p), and
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n(1)
σ =

∫
dp

(2π)3

1

β

∑
n

G0(p,ωn)2 Σ(p,ωn)

 −
∫

dp

(2π)3

1

β

∑
n

G0(p,ωn)2 G0(−p,−ωn)

×
∫

dq

(2π)3

1

β

∑
ν

eiΩνη Γ(q,Ων) (B8)

owing to the approximate form for the self-energy (22) which is valid in this limit. With the polar
approximation (B3) for Γ(q,Ων) and the further approximate result (cf, e.g., section 3.1 of reference
[12]) ∫

dp

(2π)3

1

β

∑
n

G0(p,ωn)2 G0(−p,−ωn)  − m2 aF

8π
, (B9)

the expression (B8) reduces to

n(1)
σ =

∫
dq

(2π)3

1

eβξB(q) − 1
(B10)

which coincides with the density np of bosons (molecules) given by equation (B4). A combination of
equations (B6), (B7), and (B10) yields eventually the result:

nσ = nf + np =

∫
dp

(2π)3

1

eβξ(p) + 1

+

∫
dq

(2π)3

1

eβξB(q) − 1
. (B11)

At this point, the fermionic chemical potential μ can be eliminated from equation (B11) by fixing the value
of nσ therein, with the bosonic chemical potential μB = 2μ+ ε0 following in a consistent way.

There remains to find an explicit connection with the expressions of the fermion–boson
(atom–molecule) model, which were obtained in references [5, 6] in the classical limit and used in reference
[4] to account for the experimental data in the BEC regime of the phase diagram. To this end, we consider
the classical limit of the expressions (B11) by neglecting ±1 in the denominators, and perform the trap
average by replacing μ→ μ− Vf (r) and μB → μB − Vp(r) and integrating over the space variable r,
similarly to what was done in section 4.1. Here,

Vf/p(r) =
1

2
Mf/p

(
ω2

x x2 + ω2
y y2 + ω2

z z2
)

(B12)

is the (anisotropic) harmonic oscillator potential commonly considered for ultra-cold gases, with Mf = m
for fermions (atoms) and Mp = 2m for bosons (molecules). The results for the total number of unpaired
fermions Nf (per spin component) and the total number of bosons Np then become:

Nf 
∫

dr

∫
dp

(2π)3
e
−β

[
p2

2 m+Vf(r)−μ

]
=

(
kBT

ω0

)3

eμ/kBT (B13)

and

Np 
∫

dr

∫
dq

(2π)3
e
−β

[
q2

4 m+Vp(r)−μB

]
=

(
kBT

ω0

)3

eμB/kBT (B14)

where ω0 = (ωxωyωz)1/3 is the average trap frequency (cf, e.g., references [38, 39]). From these results it
follows that

N2
f

Np
=

(
kBT

ω0

)3

e(2μ−μB)/kBT =

(
kBT

ω0

)3

e−ε0/kBT , (B15)

from which, by replacing ω0 = Et
F/(6Nσ)1/3 where Et

F is the Fermi energy for the trap, one recovers the
expression reported in appendix A of reference [4]. More generally, Np and Nf for the trapped case could be
obtained in closed form directly from equations (B4) and (B7), in terms of Li3(eβμB ) for bosons and
Li3(−eβμ) for fermions (where Lin(z) is the poly-logarithmic function of index n and argument z). The
expression (B15) generalizes to a harmonically trapped system the law of mass action valid for a
homogeneous system [40].

Finally, it is worth summarizing what is lost when passing from the fully quantum many-body approach
to its simplified version obtained above. To get this simplified version, in equation (17) we have (i)
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Figure B1. Temperature dependence of the relative difference δnp/n(Q)
p with δnp = n(Q)

p − n(C)
p between the quantum

many-body (Q) and classical statistical (C) calculations of the pair density np for the homogeneous system at various couplings.
The vertical lines indicate the corresponding binding energies ε0 (in units of EF), for increasing coupling from left to right.

neglected the ‘unbound’ term −F2(q,Ων), (ii) approximated φ(p) in the expression (18) for F1(q,Ων) by
the two-body form (5) and taken μ = −ε0/2 therein with ε0 � kBT, and (iii) approximated Γ(q,Ων) by
the polar form (B3); while in equation (23) we have performed the expansion (B5) with the typical
approximations that apply to the BEC limit at low temperature when μ is the largest energy scale in the
problem. None of these approximations, however, is valid either away from the BEC limit when
approaching unitarity at any temperature, or in the BEC limit itself for sufficiently high temperature. In
both these cases, the fermionic nature of the ‘preformed pairs’ manifests itself and only fermionic
correlations remain physically relevant. On physical grounds, the results of the quantum many-body
approach and of the statistical fermion–boson model differ from each other to the extent that the latter
bears essentially on the chemical reaction (dimer ↔ spin-↑ + spin-↓) for molecules that break up into atom
pairs and vice versa, with no regard on the way the molecules are formed by the laws of quantum
mechanics and on the effects that the surrounding environment might exert on them through inter-particle
collisions.

In this context, it is interesting to explicitly verify to what extent the results of the quantum many-body
approach (Q) and of the classical statistical model (C) differ from each other in the BEC limit of the
homogeneous system at sufficiently high temperature. To this end, figure B1 shows the temperature
dependence of the relative difference δnp/n(Q)

p for the couplings (kFaF)−1 = (0.5, 1.0, 1.5), where

δnp = n(Q)
p − n(C)

p . One sees that this relative difference can be substantial in all cases. In particular, for
kBT � ε0 the relative difference increases with increasing temperature and decreases with increasing
coupling, as expected. The following apparent reduction of the relative difference for kBT�ε0 then turns
into a substantial increase (in absolute value) when kBT � ε0. Again in favor of the results obtained by the
quantum many-body (t-matrix) approach, one should recall that in the high-temperature limit this
approach correctly recovers the controlled high-temperature (virial) expansion to second order [41].
Specifically, when this high-temperature expansion is made on the self-energy, keeping both the
bound-state (pole) and scattering (continuum) contributions to the particle–particle propagator Γ of
equation (19) turns out to be essential to correctly recover the virial expansion. Since the statistical model
includes only the bound-state contribution, it unavoidably fails in the high-temperature limit.

Appendix C. Critical temperature of a low-density trapped Bose gas

In this appendix, we calculate the superfluid critical temperature of a low-density Bose gas in a trap, where
the interaction is treated at the level of the two-body t-matrix specified by the scattering length aB. Similarly
to what we did in section 4.1 for the trapped Fermi gas, we adopt a local-density approximation whereby
the bosonic chemical potential μB is replaced by a local chemical potential μB(r). We thus write for the
bosonic density

nB(r) =

∫
dq

(2π)3

1

e
β

[
q2

2mB
−μB(r)

]
− 1

(C1)

where μB(r) = μB − VB(r) − 2t0nB(r). Here, VB(r) is the trapping potential of the form (34) with m → mB

(we also assume ωx = ωy = ωz = ω0 for simplicity), and 2t0nB(r) is the leading approximation to the
self-energy of a dilute Bose gas in the normal phase where t0 = 4πaB/mB [42]. Note that, owing to the
presence of the local self-energy 2t0nB(r), equation (C1) is a self-consistent condition for nB(r). Once nB(r)
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is known, the total number of bosons is obtained as follows:

NB =

∫
dr nB(r). (C2)

We are interested in determining the dependence on NB of the critical temperature Tc for the transition
to the superfluid phase. Similarly to what happens for a trapped Fermi gas (cf section 4.1), also for a
trapped Bose gas the central portion of the cloud density is where superfluidity first manifests itself upon
lowering the temperature from the normal phase. At r = 0, the Hugenholtz–Pines condition [43] for Tc

then yields
μB = 2 t0 nB(r = 0) (C3)

for the thermodynamic bosonic potential in the trap. At Tc, we can then write μB(r) = −VB(r) − 2t0 δnB(r)
with δnB(r) = [nB(r) − nB(r = 0)], such that equation (C1) becomes:

nB(r) =

∫
dq

(2π)3

1

e
βc

[
q2

2mB
+VB(r)+2t0δnB(r)

]
− 1

(C4)

where βc = (kBTc)−1. For any given value of r, this equation is solved self-consistently for the variable nB(r)
by fixing an arbitrary value of nB(r = 0) to start with, in such a way that nB(r) never exceeds nB(r = 0).
Once the entire density profile nB(r) is obtained in this way, one calculates NB from equation (C2) so as to
obtain Tc as a function of NB and aB. In addition, upon measuring the values of Tc obtained in this way in

units of the critical temperature for non-interacting trapped bosons kBTBEC
c = ω0

[
NB/ζ(3)

]1/3
(where ζ(z)

is the Riemann zeta function of argument z), one finds that Tc/TBEC
c is a function only of the scaling

variable aB

√
kBTBEC

c /mB. By translating back into the language of the BCS–BEC crossover of the main text,
one gets eventually that Tc/Tt

F is a function of the coupling parameter (kt
FaF)−1 in the trap since aB is

proportional to aF (cf figure 7).
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