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Abstract: A number of different defects in the process of ribosome production can lead to a diversified
spectrum of disorders that are collectively identified as ribosomopathies. The specific factors
involved may either play a role only in ribosome biogenesis or have additional extra-ribosomal
functions, making it difficult to ascribe the pathogenesis of the disease specifically to an altered
ribosome biogenesis, even if the latter is clearly affected. We reviewed the available literature in
the field from this point of view with the aim of distinguishing, among ribosomopathies, the ones
due to specific alterations in the process of ribosome production from those characterized by a
multifactorial pathogenesis.

Keywords: ribosome biogenesis; rare diseases; Diamond Blackfan anemia; X-linked dyskeratosis
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1. Introduction

Specific defects in the process of ribosome production lead to a heterogeneous group of human
disorders that are well known today as ribosomopathies [1,2]. The term ribosomopathy, with its
correspondent meaning, was first suggested [3] for the skin and bone marrow failure syndrome X-linked
dyskeratosis congenita (X-DC), in which the human pseudouridine synthase dyskerin is mutated [4].
Among its functions, dyskerin mediates the modification of approximately 100 specific uridine residues
to pseudouridines in rRNA, an essential step of ribosomal biogenesis. Soon after, it was discovered that
approximately one fourth of Diamond Blackfan anemia (DBA) patients harbor a mutation in the gene
encoding the ribosomal protein (RP) S19 (or eS19 according to the new nomenclature [5]) [6], suggesting
that the term ribosomopathy could be shared by more than a single disease. The list of recognized
ribosomopathies then grew rapidly to include Schwachman-Diamond syndrome (SDS), cartilage hair
hypoplasia (CHH), and Treacher Collins syndrome (TCS) [7–9]. Ever since the earliest classification
attempts, these five disorders have been considered examples of known or suspected inherited
ribosomopathies [10]. Their number continued to grow further, coming to include a list of other less
characterized inherited disorders, as well as acquired conditions such as the 5q− myelodysplastic
syndrome [11] and cancer [12,13]. To understand the molecular mechanism underlying most of these
disorders, it may be helpful to quickly review the fundamental steps in ribosome production in
human cells.
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Ribosomes are ribonucleoprotein complexes dedicated to messenger RNA translation and
protein synthesis. Human cytoplasmic ribosomes are made of four ribosomal RNA molecules
and approximately 80 proteins divided into two subunits: the large subunit (60S) and the small subunit
(40S). The first accounts for three rRNAs, 5S, 5.8S, and 28S together with 47 ribosomal proteins (RPs).
The small subunit is made up of 18S rRNA and 33 RPs.

Ribosome biogenesis is an intricate and coordinated process (reviewed in [14,15]) that occurs in
the nucleolus and later in the cytoplasm (Figure 1); it involves more than 200 trans-acting factors [16]
that are required during the numerous steps of ribosomal subunits maturation. All three RNA
polymerases are required in this process: RNA polymerase I is needed for the transcription of
28S, 5.8S, and 18S rRNAs [17], RNA pol II produces the mRNAs of the 80 ribosomal proteins and
numerous ribosomal processing factors, and RNA pol III synthetizes 5S rRNA [18]. In the nucleolus,
RNA polymerase I, complexed with different transcription initiation factors, synthetizes a large
polycistronic transcript (47S) from the rDNA genes present in hundreds of copies within the cell [19].
The pre-rRNA 47S obtained is made up of two external transcribed spacers (ETS) positioned at 5’ and
3′ of the molecule, while the sequence of 18S, 5.8S, and 28S are separated by two internal transcribed
spacers (ITS1 and ITS2).

The maturation of this polycistronic transcript occurs in the nucleolus and starts with the action
of a series of small nucleolar ribonucleoprotein complexes, namely C/D and H/ACA box snoRNPs [20].
C/D box snoRNPs are made up of fibrillarin and accessory proteins such as Nop56, Nop58, 15.5K/NHPX,
and the small nucleolar RNAs (snoRNA) characterized by box C and D. This complex, guided by
the complementary hybridization with the sequence of the snoRNA, catalyzes the site-specific
2′-O-methylation of the ribose of rRNA [21]. Moreover, the complex is also involved in rRNA
processing and folding [20]. Recently, a new class of specialized C/D box snoRNA, which are able
to guide cytosine rRNA acetylation has been reported [21]. On the other hand, the H/ACA snoRNP
complex is made up of dyskerin, Nhp2, Nop10 and Gar1, and the H/ACA snoRNA component.
This complex acts similarly to the C/D box snoRNPs: the H/ACA box snoRNA guides the complex to a
specific uridine in rRNA, while dyskerin catalyzes the conversion of this uridine into pseudouridine [22].
These modifications can be found in functionally important regions of the ribosome, some of them being
essential to regulate translational efficiency [23] and fidelity [24]. In addition, numerous C/D boxes or
H/ACA boxes snoRNA not involved in ribose 2′-O-methylation or in rRNA pseudouridylation, like U3,
U8, U14, U22, U17, and some long non-coding RNAs like RMRP are involved in rRNA processing and
maturation [25].

The ribosomal RNA also undergoes a series of processes and assembly events that give rise
to ribosome subunits. Some alternative processing pathways are described, although the most
common one starts with the cleavage at the 5′ETS end (at the so-called site 01), removal of 3′ETS and,
subsequentially, cleavage at site 2 of ITS1 (as extensively described in [15]). This last cleavage by RNAse
MRP has the important function of separating the maturation of the two ribosome subunits: the small
subunit containing 18S rRNA, and the large subunit containing 5.8S and 28S rRNA. After exonucleolytic
and endonucleolytic cleavages at the 3′ of pre-18S rRNA, this RNA and the ribosomal proteins of the
small subunit constituting pre-40S particles are exported to the cytoplasm to complete their maturation.
On the other hand, the maturation of the large subunit rRNA continues in the nucleolus. It has been
reported that, in mammals, two different forms of 5.8S are present: a short (5.8Ss) and a long (5.8Sl) form
both originating after the cleavage at site 2 of ITS1 operated by RNase MRP, as is the case with yeast.
However, the alternative pathway leading to the formation of 5.8Sl is still unclear, while the trimming
of the 5′ end of 5.8S sequence operated by XRN2 leads to the formation of the short form. A second
endonucleolytic cleavage occurs in ITS2 and leads to the maturation of 28S rRNA. After the cytoplasmic
assembly and nucleolar import of 5S RNP, pre-60S subunits also containing ribosomal proteins can
be exported to the cytoplasm to fully complete their maturation process. After this important step,
the missing ribosomal proteins are added to the two subunits while completing their maturation [26].
The activation for translation of the nascent 60S subunit occurs when the anti-association factor eIF6 is
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removed from the large subunit thanks to the activity of EFL1 (elongation factor-like GTPase1) and its
cofactor SBDS (Shwachman Bodian Diamond Syndrome) [27]. The correct dissociation of the different
assembly factors from both 60S and 40S subunits consist of the final structural quality control and
allows the formation of the complete ribosome in presence of a messenger RNA and the translation
initiation complex [27,28].
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Figure 1. Schematic representation of the ribosome biogenesis process in human cells. The red
flags highlight the steps where mutations in genes encoding for ribosomal proteins or for factors
involved in ribosome biogenesis give rise to the five ribosomopathies originally identified: Treacher
Collins syndrome (TCS), X-linked dyskeratosis congenita, cartilage hair hypoplasia-anauxetic dysplasia
(CHH-AD), Diamond Blackfan anemia (DBA) and Schwachman-Diamond syndrome (SDS).

A few years ago, in an attempt to provide a definition, De Keersmaecker, Sulima and Dinman
suggested that a ribosomopathy is “any disease associated with a mutation in a ribosomal protein
or biogenesis factor impairing ribosome biogenesis in which a defect in ribosome biogenesis or
function can be clearly linked to disease causality” [29]. The intention of the Authors was to provide a
conservative definition that would not include disorders in which ribosomal defects were not causative.
Still, this definition, in addition to “pure” ribosomal disorders, leaves room for disorders in which the
defect in ribosome biogenesis only concurs to the pathophysiology of the disease. According to this
definition, ribosomopathies can be further classified as disorders whose pathogenesis could be fully
ascribed to the defect in ribosome biogenesis and/or ribosomal functions on the one hand, and disorders
deriving from defects in multiple cellular functions including ribosome biogenesis on the other. Table 1
shows examples of ribosomopathies following this classification.
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Table 1. Congenital/Inherited ribosomopathies.

Congenital/Inherited Ribosomopathies

Disease Gene Mutated Role in Ribosome
Biogenesis Clinical Manifestations Type of

Ribosomopathy

Diamond Blackfan
anemia

RPS19, RPS26, RPS17,
RPS29 [30]
RPS28 [31]

RPS24, RPL5, RPL11 [32]
RPL35, RPL18 [33]

RPL26 [34]
RPL15 [35]

RPS27, RPL27 [36]

40S and 60S subunits protein

Macrocytic anemia,
skeletal abnormalities,

short stature, cardiac and
genitourinary

malformations,
cancer predisposition

Pure

Shwachman-Diamond
syndrome

SBDS [7]
DNAJC21 [37]

EFL1 [38]
SRP54 [39]

Assembly of 60S and 40S
subunits in active 80S

ribosomes

Bone marrow failure,
skeletal dysplasia,

cognitive impairment,
and risk of developing

myelodysplastic syndrome

Pure

Treacher Collins
syndrome

TCOF1 [40]
POLR1C, POLR1D [41]

POLR1B [42]

Ribosomal RNA
transcription

Severe craniofacial defects
and mental retardation Pure

Cartilage Hair
Hypoplasia-Anauxetic
dysplasia spectrum

RMRP [8]
POP1 [43] Ribosomal RNA processing

Short-limbed dwarfism,
sparse hypoplastic hair,

immunodeficiency,
hypoplastic anemia,
and predisposition

to cancer

Mixed

Dyskeratosis
Congenita

DKC1 [4,44]
PARN [45,46]

NHP2, NOP10 [47–49]
NPM1 [50]

Ribosomal RNA
pseudouridylation and

processing

Abnormal skin
pigmentation, dystrophy

of the nails,
oral leukoplakia, bone

marrow failure, and cancer
predisposition

Mixed

The present review aims to classify the disorders due to a defect in ribosome production, highlighting their features
as pure or mixed ribosomopathies.

2. Pure Ribosomopathies

2.1. Diamond Blackfan Anemia

Diamond Black anemia (DBA) is frequently present in early childhood as a red cell failure,
defined by macrocytic anemia with low reticulocytes and decreased red cell precursors in the bone
marrow [51]. Patients may also display a series of skeletal abnormalities and cardiac and genitourinary
malformations, together with an increased cancer susceptibility. A very large proportion of patients
diagnosed with DBA harbors heterozygous mutations of genes encoding for ribosomal proteins either
of the small ribosomal subunit or of the large ribosomal subunit (see Table 1) [33]. The presence of
mutated ribosomal proteins could impair ribosome biogenesis at different levels during ribosome
assembly, this depends on the single ribosomal protein and the step in which it is involved. In general,
these mutations lead to haploinsufficiency for ribosomal protein function, affecting the maturation
of the ribosomal subunit containing the protein and ultimately reducing the amount of available
functional 80S ribosomes within the cells [52–54]. In red cell precursors, this lack of ribosomes impinges
the translation of mRNAs encoding key regulators of erythropoiesis such as, for instance, GATA1 [52].
The definition of the pathogenetic mechanisms underlying DBA clearly identifies this disorder as
a pure ribosomopathy, in which the defect in a ribosome component clearly causes a misfunction,
which can be considered responsible for most of the clinical features of the disease.

Interestingly, a few ribosomal proteins involved in DBA also have extra-ribosomal functions,
in addition to their function in ribosome biogenesis. This is the case of RPL11 and RPL5 which play
an important role in p53 stabilization [55–58] and appear to be mutated in approximately 40% of all
DBA cases [32,59]. The presentation and severity of the anemia observed in these patients is not clearly
different from that due to mutations in genes encoding other ribosomal proteins, confirming that this
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aspect can be ascribed to the ribosomal defect. Skeletal abnormalities, however, are more frequently
associated with RPL5 and RPL11 mutations, which may suggest that the extra-ribosomal functions
of these proteins may be involved [32,59] in these traits. On the other hand, skeletal development is
known to require high protein synthesis. Therefore, mutations in RPL5 and RPL11 could provoke a
severe impairment of ribosome biogenesis such as to cause the skeletal abnormalities associated with
these mutations.

2.2. Shwachman-Diamond Syndrome

Shwachman-Diamond syndrome (SDS) is a rare autosomal recessive disease characterized by bone
marrow failure and multiple developmental abnormalities, such as short stature, skeletal dysplasia,
and cognitive impairment. Patients diagnosed with SDS can present an increased risk of transformation
to myelodysplastic syndrome (MDS) or acute myeloid leukemia (AML) accurately reviewed in [60,61].
The disease was first identified by Shwachman, Bodian and Diamond in 1964 [62]. In 2003 it was
reported that the biallelic mutation of the Shwachman Bodian Diamond Syndrome (SBDS) gene is
the molecular cause for SDS [7]. The protein encoded by this gene is reported to be a cofactor of
the elongation factor-like GTPase1 (EFL1). In the final step of the cytoplasmic ribosome maturation,
EFL1 removes the anti-association factor eIF6 from the large ribosomal subunit, thus permitting
the entry of 60S subunit in the actively translating pool and in the end, the association with the
small ribosomal subunit and the formation of an active ribosome [63]. Therefore, mutations in the
SBDS gene can impair ribosome assembly, indicating that SDS may be classified as a ribosomopathy.
Recently, mutations in other genes associated with SBDS have been reported to cause SDS-like diseases.
In particular, these genes are DNAJC21, EFL1, and SRP54, which are all involved, together with SBDS,
in the removal of eIF6 from the ribosome large subunit [37–39].

As we have seen, mutations in SBDS and related genes cause reduced ribosome assembly, which,
similarly to what occurs in DBA, could affect the global translation but also reduce the tissue-specific
translation of selected mRNAs contributing to the development of the disease. This could be the case of
highly proliferative tissues in embryonic development. Moreover, the impaired ribosome maturation
can induce the activation of the ribosomal stress pathway and p53 stabilization, resulting in different
tissue-specific outcomes. For example, loss of the Sbds gene in murine pancreas induced p53 activation
and loss of digestive enzymes, resulting in an atrophy of post-natal acinar cells due to the induction of
cell senescence [64].

2.3. Treacher Collins Syndrome

Treacher Collins syndrome (TCS) is an extremely rare congenital disease occurring in 1 out of
50,000 live births. It presents as an autosomal dominant disorder and is characterized by severe
craniofacial defects. The symptoms include hypoplasia of the jaw and cheek bones, downward slant of
palpebral fissures, cleft palate, and deformity of the ear [9]. The first gene reported to be responsible
when mutated for the development of TCS was TCOF1, encoding for the protein Treacle. Treacle is a
nucleolar protein that co-localizes with the Upstream Binding Factor (UBF) and Pol I and is involved
in the transcription of ribosomal DNA [65]. All the different types of mutations reported result in
the expression of a truncated protein. However, no correlations between genotype and severity
of the disease have been reported [40]. In addition, in 2011, mutations in two genes encoding for
Pol I subunits (POLR1D and POLR1C) were found mutated in a small number of TCS patients [41].
More recently, the work of Sanchez et al. [42] reported mutations connected with TCS also in the
POLR1B gene. Therefore, all these genes are involved in ribosome biogenesis, and especially in
rRNA transcription, so Treacher Collins syndrome may be rightly classified as a pure ribosomopathy.
With the help of mice and zebrafish carrying mutations for the genes involved, researchers showed
that deficient ribosome biogenesis caused a reduced proliferation of the progenitors of the craniofacial
skeleton cells, called neural crest cells (NCC) [42,66–68]. It is well known that impaired ribosome
biogenesis triggers nucleolar stress with the stabilization of p53 and consequent apoptosis. Therefore,
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the reduced proliferation and apoptosis of NCC could be caused by nucleolar stress, as demonstrated
by the improvement of symptoms in Tcof1+/− mice embryos upon treatment with p53 inhibitor or p53
knockdown [69].

In recent years, however, new studies have reported that Treacle is involved in other cellular
functions that may contribute to the development of TCS. In particular, Treacle seems to be involved in
DNA damage response (DDR) pathway [70,71]. In NCC cells, the haploinsufficiency of Treacle could
also impair the repair of DNA damage caused by high ROS production and activate p53-mediated
apoptosis, thus contributing to the development of craniofacial abnormalities in TCS [72]. Nevertheless,
despite the important role played by Treacle in DNA damage response, the fact that mutations in
Pol I subunits cause symptoms similar to TCOF1 mutations enables us to say that Treacher Collins
syndrome mainly develops due to impaired ribosome biogenesis.

3. Mixed Ribosomopathies

3.1. Dyskeratosis Congenita

On the opposite side of the spectrum of ribosomopathies lies dyskeratosis congenita (DC).
DC is a rare and severe inherited multisystemic syndrome known since the beginning of the last

century [73–75]. The disorder initially came to the attention of dermatologists because it is characterized
by a typical muco-cutaneous triad: abnormal skin pigmentation, dystrophy of the nails, and oral
leukoplakia. However, the most severe problem occurring in almost all the DC patients is a progressive
bone marrow failure [76]. In addition to these skin and blood defects, one additional relevant aspect of
DC is an increased susceptibility to cancer. The overall incidence of malignant tumors in DC patients
can reach 50% by the age of 50 [77].

The most frequent form of DC is the X-linked variant, caused by mutations of the DKC1 gene
encoding dyskerin. Dyskerin (aka rat NAP57, Drosophila minifly, yeast Cbf5) is a nucleolar protein
endowed with pleiotropic functions, all fundamental to basic cellular events including growth,
proliferation, and gene expression control. The functions of dyskerin can be explained considering
its ability to bind to H/ACA box snoRNAs [44]. Together with the three other core proteins (namely
GAR1, NHP2, and NOP10), dyskerin binds to each snoRNA, guiding the complex to the specific
uridine residue for its isomerization to pseudouridine. Most of these modifications occur in ribosomal
RNA (rRNA) and small nuclear RNA (snRNA) [78–80]. On the other hand, always in association
with core proteins, dyskerin binds to the telomerase RNA component (TERC), which also hosts a
H/ACA sequence element. This enables TERC stabilization and proper telomerase complex function.
DC-associated DKC1 mutations strongly reduce TERC levels and impair telomerase activity [81].
Importantly, other bone marrow failure syndromes classified as DC are due either to mutations of
genes encoding for exclusive components of the telomerase complex such as TERC [82] and TERT [83]
or to telomere binding proteins [84]. For this reason, most of the clinical features of DC are ascribed
to a defect in telomerase function and the disorder is often considered more a telomeropathy than a
ribosomopathy [85].

While accepting the fact that the impairment in telomerase activity and the consequent telomere
attrition are clearly well-established effects of X-DC-associated DKC1 mutations, this view may,
however, appear too simplistic after a careful look at the available evidence. In fact, in all the
experimentally generated in vivo models based on DKC1 gene targeting, a clear defect in the rate
of rRNA processing and/or rRNA pseudouridylation was observed [86,87]. In particular, the Dkc1
hypomorphic mouse recapitulates the signs of DC that have been reported in humans, while Terc
homozygous deletion in mice induces a clearly much milder phenotype [88]. This indicates that the
telomerase-independent effects consequent to a DKC1 defect are sufficient to raise a spectrum of
signs consistent with DC in mice. Also, data from DC patients indicate that their cells harbor altered
snoRNA regulation and rRNA modification. Although there are forms of DC due to mutations of genes
encoding exclusive telomerase complex components or telomere binding proteins, what is reported for
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X-DC appears to be true also for autosomal recessive forms of DC such as those due to mutations of
genes encoding the pseudouridylation core proteins NHP2 and NOP10 [47–49]. In addition, DC has
been also reported to develop in consequence of NPM1 gene mutations [50]. In further support of the
fact that alterations in rRNA modification are causative of DC, NPM1 mutations found in DC patients
cause altered rRNA 2′-O-methylation [50]. In summary, the defect in ribosome biogenesis should be
considered to contribute, at least to some extent, to the pathogenesis of DC.

3.2. Cartilage Hair Hypoplasia-Anauxetic Dysplasia (CHH-AD) Spectrum

Cartilage hair hypoplasia (CHH) is an autosomal recessive inherited disease reported first by Victor
McKusick in 1965 in a population of Old Order Amish [89]. This pleiotropic disorder is characterized
by short-limbed dwarfism, sparse hypoplastic hair, defective T-cell immunity, hypoplastic anemia,
increased risk of developing malignancies [90,91], and other symptoms [92–95]. Many of these
symptoms, including immunodeficiency and cancer predisposition, are considered responsible for a
shorter life expectancy in these patients [96]. In 2001, the study by Ridanpaa et al. [8] first described
how mutations in the RMRP (RNA component of RNase MRP) gene are the molecular cause for CHH.
Mutations in this gene are also responsible for other disorders connected with skeletal abnormalities
known as the CHH-AD spectrum. Recently a second form of anauxetic dysplasia (AD) not caused by
mutations in RMRP but by mutations in POP1, a protein included in the RNase MRP complex [43],
has been reported.

RMRP is a long non-coding RNA (lncRNA) that contributes to the formation of the RNase MRP
complex with at least seven different proteins, some of which (e.g., POP1) shared with the RNase
P complex and implied in tRNA maturation [97]. This complex has many functions in cell nucleus,
cytoplasm, and mitochondria that were originally identified in yeast but also described in human cells.
In fact, the RMRP complex is an endoribonuclease responsible for the cleavage of mitochondrial RNA,
which functions as a primer for mitochondrial DNA replication [98], the cleavage of the 5′UTR of the
cyclin B2 mRNA, which leads to a reduction in cyclin B2 synthesis, and cell cycle progression [99].
Recently, viperin (RSAD2) has been described as a novel mRNA substrate for RMRP cleavage [100].
An additional important function of RMRP lncRNA consists of the formation of a complex with
the telomerase-associated reverse transcriptase (TERT), which produces a double-stranded RNA
with RMRP sequence. These RNA duplexes are cleaved in siRNA by Dicer with the outcome of
downregulating the level of RMRP [101]. At this regard, although this latter mechanism does not
appear to affect telomerase function, it is worth noting that in two mixed ribosomopathies such as DC
and in CHH components of the telomerase complex are involved. Lastly, RMRP is reported to cleave
the precursor ribosomal RNA in the ITS1 sequence, leading to the formation of the 5′ end of 5.8S rRNA
(as described previously) [102]. This has been confirmed in a recent study in which the disruption of
RMRP by CRISPR/Cas9 in HeLa cells led to the accumulation of uncleaved ITS1 [103]. The impairment
of this function can cause an altered ribosome biogenesis that makes possible to classify CHH as
a ribosomopathy.

Although it is clear that CHH is caused by mutations in the RMRP gene, the molecular mechanism
underlying the development of the disease is still unclear. A significant number of mutations in the
RMRP gene have been identified in patients with CHH [104,105], which can involve, in particular,
the promoter of RMRP or the transcribed region [8]. The first consists of insertions or duplications
in the region between the transcription starting site and the TATA box, with the outcome of altering
the correct distance between the promoter and the transcription starting site, while reducing the
transcription level of RMRP. These types of mutations were found mainly in compound heterozygous
patients [102], suggesting that at least a minimum level of RMRP is essential for cell life [106]. On the
other hand, point mutations or the insertion/deletion of a few nucleotides in the RMRP sequence,
in evolutionarily conserved regions important for RNA-protein interaction [107] or for the catalytic
activity, result in either a reduced efficiency of the complex or an alteration of RMRP stability [108].
For instance, it has been reported that the most common mutation among the Amish and Finnish
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patients, but also the most prevalent in the European population, 70A > G, can be found in the putative
catalytic pocket, thus reducing the RNase activity [99,109]. In addition, the 70A > G mutation found in
CHH patients introduced in the yeast ortholog NME1 resulted in a 5.8Ss/l ratio of 2:3 in comparison
with the 10:1 ratio of wild type strains [109].

In the attempt to find a potential causative relationship between the different functions of RMRP
and CHH development, it has been reported that RMRP is expressed during the hypertrophic phase of
chondrocyte differentiation in mice, and that the trans-differentiation in the chondrocytes from CHH
patients’ fibroblasts is impaired in comparison with control fibroblasts. Moreover, CHH fibroblasts
show an increase in the ITS1 pre-rRNA processing intermediate, suggesting a reduced ribosome
biogenesis [110]. On the other hand, other functions of RMRP can contribute to the development
of the pathology. As it was previously described, viperin is a substrate for the endoribonucleolytic
activity of RMRP. This protein appears to be involved in the activation of a chondrogenesis regulatory
pathway accountable for the reduced chondrocyte differentiation of fibroblasts from CHH patients with
mutated RMRP [111]. Moreover, the sequencing analysis of RNA from fibroblasts of CHH patients
compared to controls revealed a downregulation in the genes involved in the cell cycle, resulting in a
delay in the progression from phase G2 to G1 [112]. Lastly, a recent study reported that the processing
of RMRP by Dicer originates two small RNAs with silencing activity on the genes associated with
CHH-phenotype [113].

The studies reported on so far highlight the numerous aspects in which RMRP is involved, and all
of them can contribute to the pathophysiology of the CHH-AD spectrum: therefore, CHH can rightly
be considered a mixed ribosomopathy.

4. Recently Identified Ribosomopathies

In recent years, there has been an increase in the number of diseases identified as novel congenital
ribosomopathies. These extremely rare diseases are characterized by mutations in ribosomal proteins
or in factors involved in ribosome biogenesis, but further studies are necessary to fully understand
the contribution of altered ribosome production in their pathophysiology. These ribosomopathies are
heterogeneous diseases showing generalized multisystemic symptoms or, alternatively, more specific
manifestations selective for one tissue or organ. An example of multisystemic disease is Bowen-Conradi
syndrome, a rare autosomal recessive disorder first described by Bowen and Conradi [114] in the
Hutterite population, which is characterized by mental retardation, microcephaly, micrognathia,
prominent nose, rocker bottom feet, and flexion contractures of the joints [115]. This severe disease is
the cause of early death in children; in fact, the average death age is 13 months. Recently, it has been
reported that the cause of Bowen-Conradi syndrome is a mutation in the gene EMG1, coding for a
ribosome assembly protein, thus including this disease in the list of ribosomopathies [116]. The mutation
in EMG1 causes 18S rRNA processing delay, with the result of reduced cell proliferation rates and
G2/M arrest [117].

A more limited and specific effect is that caused by mutations in a ribosomal protein of the small
subunit, RPS20. The mutation in RPS20 has been associated with a subtype of hereditary colorectal
cancer (CRC) called Familial colorectal cancer type X (FCCTX), in which no mutation in mismatch repair
genes was reported, but several pathogenic variants of predisposing genes were observed [118,119].
Two different heterozygous mutations of RPS20 were reported in a CRC-affected family and in a patient
with hereditary CRC. The experiment conducted on samples from the CRC-affected family showed that
the haploinsufficiency of RPS20 caused a reduced ribosome biogenesis and consequent stabilization
of p53, which is probably responsible for the selection of cells that escape p53 regulation [118,119].
Since, for the two examples mentioned above at present, no additional extra-ribosomal functions
of the products of the genes involved have been reported, they may be considered putative pure
ribosomopathies although further research is necessary to confirm this definition.

A further example of the tissue-specific effect of mutations in ribosomal protein is represented
by the outcome of mutations in RPL10. In fact, it has been reported that missense mutations causing
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an alteration in protein sequence can lead to a rare form of autism [120] or microcephaly [121,122].
A defective nervous system development can be caused by a decreased translational capacity of
the cell coupled with an increased apoptosis due to the activation of ribosomal stress response.
For RPL10, however, extra-ribosomal functions have also been reported [123]. Ribosomal protein L10
in mitochondria serves as a regulator for the ROS level in pancreatic cancer cells [123–125]; therefore,
pending a more detailed characterization of the molecular pathogenesis of this disorder, it may be
considered a putative mixed ribosomopathy.

In addition to the above-mentioned disorders, other recently identified ribosomopathies have
been described. These conditions are listed in Table 2.

Table 2. Recently identified ribosomopathies.

Recently Identified Ribosomopathies

Disease Gene Mutated Role in Ribosome Biogenesis Clinical Manifestations

Alopecia, neurologic defects,
and endocrinopathy syndrome RBM28 [126] Ribosomal RNA processing

Alopecia, mental retardation,
progressive motor

deterioration, central
hypogonadotropic

hypogonadism and short
stature, microcephaly,

gynecomastia, and hypodontia

North American Indian
Childhood Cirrhosis

CIRHIN [127]
NOL11 [128] 18S rRNA processing

Transient neonatal jaundice
that evolves into biliary

cirrhosis requiring hepatic
transplantation

Bowen-Conradi syndrome EMG1 [116] Ribosome assembly

Mental retardation,
microcephaly, micrognathia,

rocker bottom feet, and flexion
contractures of the joints;

causes early death

Familial colorectal cancer type X RPS20 [118] 40S subunit protein
Hereditary colorectal cancer

without mutations in
mismatch repair genes

Congenital asplenia RPSA [129] 40S subunit protein Absence of spleen

Aplasia cutis congenita BMS1 [130] Ribosomal GTPase,
18S rRNA processing

Skin defect and alopecia of
the scalp

RPS23-related ribosomopathy RPS23 [131] 40S subunit protein

Microcephaly, hearing loss,
dysmorphic features,
intellectual disability,

and autism spectrum disorder

Leukoencephalopathy,
intracranial calcifications,

and cysts (LCC)
SNORD118 [132] C/D box snoRNA U8 involved

in ribosome biogenesis

Neurological disorder with
leukoencephalopathy,

intracranial calcifications,
and cysts

Autism RPL10 [120] 60S subunit protein Autism spectrum disorder

Microcephaly RPL10 [121,122] 60S subunit protein
Microcephaly, intellectual

disability, epilepsy,
and growth retardation

5. Acquired Ribosomopathies

In addition to inherited ribosomopathies, a defect in the gene encoding for a ribosomal protein
is also an underlying factor in an acquired myelodysplastic disorder termed 5q deletion (or 5q−)
syndrome. This disorder, which is more frequently found in women over 75 years of age, is due to
the somatic deletion of the short arm of chromosome 5, leading to macrocytic anemia and erythroid
hypoplasia, which may subsequently progress to AML in some patients [133]. The haploinsufficiency
of the RPS14 gene has been identified by means of an RNA interference-based screening as the
predominant cause of the myelodysplastic phenotype in 5q− syndrome [11], indicating that the
alteration in the ribosome biogenesis process may also be at the root of acquired disorders. Since for
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RPS14 no additional extra-ribosomal functions have been reported, 5q− syndrome may be considered
a pure acquired ribosomopathy.

It has long been known that the process of ribosome biogenesis is highly deregulated
in cancer [12,13], suggesting that a subset of human tumors may also be considered acquired
ribosomopathies. Mutations of NPM1 gene encoding the multifunctional ribosome processing factor
nucleophosmin have been described as the most frequent mutation in acute myeloid leukemia [133,134].
Whereas mutations of genes encoding for ribosomal proteins have been reported for the first time in
pediatric acute lymphoblastic leukemia, where recurrent mutations of RPL10 and RPL5 genes have
been found in approximately 10% of all cases [135]. Very interestingly, a large-scale study on more
than 10,000 genomes from human tumors of different origins indicated that the hemizygous deletions
of ribosomal protein genes occur in more than 40% of the cases [136]. In addition, a growing amount
of data has become available on snoRNA mutations and expression alterations in human multiple
cancer types [137,138]. All these studies indicate that as ribosome biogenesis deregulation is a frequent
feature in cancer. In many cases, cancer itself may be considered, at least to some extent, an acquired
ribosomopathy. The exact role of most of these ribosome biogenesis alterations, however, still remains
to be determined.

A list of acquired ribosomopathies is also shown in Table 3.

Table 3. Acquired ribosomopathies.

Acquired Ribosomopathies

Disease Gene Mutated Role in Ribosome Biogenesis Clinical Manifestations

5q− syndrome RPS14 [11] 40S subunit protein Macrocytic anemia and erythroid
hypoplasia; may progress to AML

Acute myeloid leukemia (AML) NPM1 [139] Ribosome processing AML with normal karyotype

Pediatric acute lymphoblastic
leukemia (T-ALL)

RPL5, RPL10,
RPL22 [135] 60S subunit proteins T-ALL

Relapsed CLL RPS15, RPSA, RPS20 [140] 40S subunit proteins Relapse after first-line treatment
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