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Abstract: Sentiment analysis to characterize the properties of Bitcoin prices and their forecasting
is here developed thanks to the capability of the Fuzzy Transform (F-transform for short)
to capture stylized facts and mutual connections between time series with different natures.
The recently proposed Lp-norm F-transform is a powerful and flexible methodology for data analysis,
non-parametric smoothing and for fitting and forecasting. Its capabilities are illustrated by empirical
analyses concerning Bitcoin prices and Google Trend scores (six years of daily data): we apply
the (inverse) F-transform to both time series and, using clustering techniques, we identify stylized
facts for Bitcoin prices, based on (local) smoothing and fitting F-transform, and we study their time
evolution in terms of a transition matrix. Finally, we examine the dependence of Bitcoin prices on
Google Trend scores and we estimate short-term forecasting models; the Diebold–Mariano (DM)
test statistics, applied for their significance, shows that sentiment analysis is useful in short-term
forecasting of Bitcoin cryptocurrency.
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1. Introduction

The notion of a fuzzy transform (F-transform) as a tool for modeling with fuzzy rules as specific
transformation and for general approximation of functions has been introduced by Perfilieva in [1]
(see also [2]) and is now recognized as a powerful technique with important properties and potentials
for various applications, as developed in several papers and special issues (see, e.g, [3–5] and the
references therein).

In the present paper, we will focus on the use of quantile and expectile F-transform (and,
more generally, on Lp-norm-based fuzzy-valued F-transforms) in modeling time series. In particular,
we will show the application of direct and inverse Lp-norm F-transform to analyze the connection
between Bitcoin returns and the level of interest in the world wide web. The Bitcoin observed time
series is modeled through fuzzy-valued functions, whose level-cuts can be interpreted in the setting of
expectile and quantile fuzzy regressions; these last are introduced in [6,7] as non-parametric smoothing
methodologies and are constructed by defining fuzzy-valued Lp-norm extensions of the F-transforms
(in particular, expectile or L2-norm and quantile or L1-norm).

Quantile regression is also applied in [8] to show that Bitcoin reacts positively to uncertainty at
both higher quantiles and shorter frequency movements of Bitcoin returns.

Following recent research on financial time series, where the properties of quantile and
expectile modeling are discussed with respect to coherent and elicitable risk measures (see [9,10]),
expectile methods seem to compete favourably with quantiles; furthermore, some recent papers
(e.g., [11]) suggest to adopt Lp-norm-based procedures with p between 1 and 2 (e.g., p ∈
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{1.25, 1.5, 1.75}), in order to consider (probabilistic) tail behaviour according, e.g., to robust Extreme
Value Theory.

Literature about Bitcoin has hugely grown in recent years and some papers deserve a citation.
An exhaustive analysis of Bitcoin and its statistical properties are explored in [12] by a comparison
with standard currencies dynamics. Yermack in [13] shows that Bitcoin does not satisfy the three main
properties called medium of exchange, unit of account and store of value, concluding that it is not a
currency but rather a speculative asset. However, a debate is still open about the nature of Bitcoin and
many hints can be found in [14–16]. A shared property by financial instruments is the day-of-the-week
effect and in [17] the same effect is proved for Bitcoin returns and volatility through OLS and GARCH
model. The possibility of global economic policy uncertainty to produce valid information to improve
the prediction of returns and volatility in the Bitcoin market is detailed in [18].

Research on possible forecasting models to be used as decision support tools in investment
strategies is more recent; in [19], monthly data are considered and it is shown that the predictive
ability of the internet-based economic uncertainty related queries index is statistically stronger than
the measure of uncertainty derived from newspapers in predicting Bitcoin returns.

The nexus between Bitcoin prices and market sentiment is further studied in many papers: in [20]
sentiment is shown to explain about 2.5% to 5% of the unusual level of price clustering in Bitcoin. In [21]
the cross-correlations between Google Trends and Bitcoin market is analyzed through the Multifractal
Detrended Cross-correlation Analysis (MF-DCCA) method and in [22], within the more general context
of Dow Jones Industrial Average, it is shown that Google searches are power-law correlated with
Hurst exponents between 0.8 and 1.1; the authors conclude that globally on time domain, there is
no relationship between the on-line search queries and some financial measures. In [23] investor
sentiment regarding Bitcoin is introduced because of its significant information for explaining changes
in Bitcoin volatility for future periods; on this basis Bitcoin is proved to be an investment asset with
high volatility and dependence on investor sentiment rather than a monetary asset.

In a more general framework, in [24], interactions between (mass) media reporting and financial
market movements are measured with particular focus on the property of sentiment as a predictors of
securities prices.

The existing high correlation between Bitcoin prices and Google Trend scores is discovered and
documented since the origins of digital currencies (see, e.g., [25]) and several pieces of research have
discussed about its characteristics (see [26]) and about predicting prices using sentiment analysis (see
references numbered from 23 to 27 in [26]). On the other hand, there is evidence that a bi-directional
causal relationship exists between Bitcoin web-attention and Bitcoin returns, in particular for data in
the left tail (poor performance) and the right tail (superior performance) of the observed statistical
distribution (see [27]).

A non-parametric forecasting model based on technical analysis is presented in [28], focusing on
the presence of predictive local non-linear trends that reflect the speculative nature of cryptocurrency
trading. In [29] a computational intelligence technique that uses a hybrid Neuro-Fuzzy controller is
introduced to forecast the direction in the change of the daily price of Bitcoin and its performance
is shown to be good when compared with two other computational intelligence models based on a
simpler neuro-fuzzy model and an artificial neural network.

Forecasting of Bitcoin risk measures is developed in [30] by comparing predictability of the
one-step-ahead volatility with Value-at-Risk using several volatility models.

Many other authors approach general cryptocurrency properties. For example, in [31] there is
evidence that Bitcoin is the most influential among digital coins both as a transmitter toward digital
currencies and as a receiver of spillovers from virtual and traditional instruments. An extended
analysis is also presented in [32] where the four cryptocurrencies Bitcoin, Ethereum, Ripple and
Litecoin are predicted through a combination of eight models revealing that a combination of stochastic
volatility and a student-t distribution gives the best results. The same topic of Bitcoin-realized volatility
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forecasting is studied in [33] where conventional regression models are substituted by least-squares
model-averaging methods and no investor sentiment is modeled.

In [34,35] a continuous time model for Bitcoin price dynamics is studied to detect bubbles;
regarding the existence of a bubble, in [36] it is proved it holds from early 2013 to mid-2014, but, not in
late 2017 as supposed. Evidence of bubbly Bitcoin behaviour, mainly in the 2017–2018 period, is shown
in [37], where it is also proved that economic policy uncertainty and stock market volatility play the
most important role in Bitcoin values.

The evidence for the Bitcoin bubble is confirmed in [38] through the empirical validation of
three properties: volume of trading is mainly explained in terms of price dynamics, trading is based
exclusively on past prices and the price of Bitcoin is an explosive process.

In [39] a thorough analysis is conducted: several alternative univariate and multivariate models
for point and density forecasting of crypto-series are compared, finding statistically significant
improvements in point forecasting when using combinations of univariate models, and in density
forecasting when relying on the selection of multivariate models.

Various deep learning-based Bitcoin price prediction models are studied in [40] using Bitcoin
block-chain information; regression and classification problems are addressed in the sense that the
first predicts the future Bitcoin price and the second one predicts whether the future price will go up
or down.

In the case of Bitcoin prices using high frequency data, in [41] it is shown that it exists a large
degree of multi-fractality in all examined time intervals which can be attributed to the high kurtosis
and the fat distributional tails of the series returns; in [42] there is evidence about the leverage effect
as the most powerful effect in volatility forecasting; volatility is also analyzed in [43] in terms of the
property of the long memory parameter to be significant and quite stable for both unconditional
and conditional volatilities at different time scales. Extending the study to several high frequency
cryptocurrencies data, in [44] the investigation on stylized facts is developed in terms of the Hurst
exponent of dependence between four different cryptocurrencies.

Also in [45] multi-fractality of Bitcoin time series is investigated, confirming that both temporal
correlation and the fat-tailed distribution are the main sources, in addition in [46] a possible use of
multi-fractal parameters in Technical Analysis is suggested.

The paper is organized into six sections. Preliminary facts on our methodology concerning
F-transform are presented in section two. Our empirical experiments and analyses concerning Bitcoin
prices and Google Trend scores are detailed in sections three and four: in section three, we apply the
expectile and quantile (inverse) F-transforms to both time series and we examine their relationship
on pre-clustered subsets of observations, subdivided in terms of three different clustering criteria;
in section four we identify stylized facts for Bitcoin prices, based on local (low-order polynomial)
trends obtained by direct F-transform, we study their clustering to obtain (centroid) typical forms and
we use them to reconstruct the time series and to analyze their time evolution in terms of a transition
matrix. Possible short-term forecasting models of Bitcoin prices using Google Trends are shown in
section five and the Diebold–Mariano (DM) test statistics is applied for their significance. Section six
closes with some comments and hints for future research paths.

2. Fuzzy-Transform Smoothing

We introduced in [47] and then we enhance in [6] two non-parametric smoothing methodologies
called expectile and quantile fuzzy-transform; the first one is based on the classical direct F-transform
and it is obtained by minimizing a least-squares (L2-norm) operator while the second one is based on
the L1-type direct F-transform and it is obtained by minimizing an L1-norm operator.

Some preliminary notions compose the research framework: a fuzzy set is a mapping u : R −→
[0, 1] and a fuzzy interval is a fuzzy set on R with the properties that the mapping u is (i) normal (∃x̂ ∈ R
with u(x̂) = 1), (ii) upper semi-continuous, (iii) fuzzy convex (u(λx′+ (1− λ)x′′) ≥min{u(x′), u(x′′)}
for all λ ∈ [0, 1]), (iv) cl{x|u(x) > 0} is a compact interval. A consequence of (ii) and (iii) is that the
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α-cuts [u]α = {x|u(x) ≥ α} = [u−α , u+
α ] are compact intervals for all α ∈]0, 1]. The 1-cut is the core

[u]1 = {x|u(x) = 1} of u; the interval [u]0 = cl({x|u(x) > 0}) is the 0-cut of u. A fuzzy interval is a
fuzzy number if its core is a singleton [u]1 = {û} with û ∈ R.

The space of real fuzzy intervals is denoted RF and the mapping u ∈ RF satisfies what follows:

u(x) =

{
0 if x /∈ [u]0

sup{α|x ∈ [u]α} if x ∈ [u]0.
(1)

For a given real compact interval [a, b], a generalized r-partition is defined by a triplet (P,A, r)
where r ≥ 1 is integer, P =

{
xj = a + j−1

n−1 (b− a); j = 1, 2, ..., n
}

, n ≥ 2, is a uniform decomposition

of [a, b]; for simplicity of notation, if r > 1 we extend P by adding r− 1 points x1−j = a− j b−a
n−1 , j =

1, ..., r− 1 on the left of a and r− 1 points xn+j = b + j b−a
n−1 , j = 1, ..., r− 1 on the right of b. The second

term of the triplet is a family A = {A−r+2, ..., A1, A2, ..., An, ..., An+r−1} of n + 2r− 2 continuous fuzzy
sets on R, called basic functions, that satisfy the following condition for all x ∈ [a, b]

n+r−1

∑
k=−r+2

Ak(x) = r (2)

and are such that Ak(xk) = 1, for k = 2− r, ..., 1, 2, ..., n, ..., n + r− 1, Ak(x) = 0 for all x /∈ ]xk−r, xk+r[.
If r = 1, the partition (P,A, 1) will be simply denoted by (P,A).
Families of basic functions can be obtained in terms of increasing shape functions such as rational

splines of the form

L(t; β0, β1) =
t2 + β0t(1− t)

1 + (β0 + β1 − 2)t(1− t)
, t ∈ [0, 1] (3)

with real parameters β0 ≥ 0, β1 ≥ 0; the Hermite-type conditions L(0) = 0, L(1) = 1, L′(0) = β0,
L′(1) = β1 are satisfied and L′(t) ≥ 0 for all t ∈ [0, 1]. By any pair of non-negative values β0, β1, a large
number of shape functions can be generated; for example, if β0 + β1 = 2 (with 0 ≤ β0 ≤ 2, β1 = 2− β0)
we have a quadratic function L(t) = (1− β0)t2 + β0t, e.g., L(t; 2, 0) = 2t − t2, L(t; 0, 2) = t2 and
L(t; 1, 1) = t is linear.

Each basic function Ak, k = 2− r, ..., 1, 2, ..., n, ..., n + r− 1, increasing on [xk−r, xk] and decreasing
on [xk, xk+r], is obtained by translating t → L(t, β0, β1) and t → L(1 − t, β0, β1) from [0, 1] onto
[xk−r, xk] and [xk, xk+r], respectively (each Ak is finally extended to R by setting Ak(x) = 0 on the left
of xk−r and on the right of xk+r).

2.1. L2-Norm F-Transform in Expectile Smoothing

We just recall the discrete version of the direct F-transform.

Definition 1. (from [1]) Given a set of m values Y = {(ti, fi)| ti ∈ [a, b], i = 1, ..., m} of a function
f : [a, b] −→ R and a fuzzy partition (P,A) of [a, b] such that each subinterval [xk−1, xk+1] contains at least
one point ti in its interior (so that ∑m

i=1 Ak(ti) > 0 for all k), then the discrete direct L2-type F-transform of Y
with respect to (P,A) is the n-tuple of real numbers (F1, ..., Fn) where each component Fk minimizes the function

Φk(y) =
m
∑

i=1
| fi − y|2 Ak(ti), k = 1, 2, ..., n. The associated inverse F-transform function (iF-transform for

short) is defined by f̂(P,A)(x) =
n
∑

k=1
Fk Ak(x) for all x ∈ [a, b].

More generally, we consider a r−partition (P,A, r) and substitute the direct F-transform
components Fk, with an (n + 2r− 2)-tuple of polynomials of order q ≥ 0, say (ϕ2−r(x), ..., ϕn+r−1(x))
with ϕk(x) = Fk,0 + Fk,1(x − xk) + ... + Fk,q(x − xk)

q, k = 2 − r, ..., n + r − 1. The q +

1 coefficients Fk,j, j = 0, 1, ..., q are obtained, for fixed k, by minimizing the function
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Φk(y0, ..., yq) =
m
∑

i=1

∣∣ fi −
(
y0 + y1(ti − xk) + ... + yq(ti − xk)

q)∣∣2 Ak(ti) with respect to the parameters

y0, ..., yq, under the assumption that for each k, the data points (ti, fi) with ti in the interval[
xmax(a,k−r), xmin(b,k+r)

]
produce a unique optimal solution. The details are shown in [6].

The corresponding (inverse) iF-transform function is given by

f̂ (q)
(P,A,r)(x) =

1
r

n+r−1

∑
k=2−r

Ak(x)ϕk(x; Fk,0, ..., Fk,q) for x ∈ [a, b]. (4)

Consider for simplicity the F-transform of order zero (q = 0).
The iF-transform function becomes

f̂(P,A,r)(x) =
1
r

n+r−1

∑
k=2−r

Fk Ak(x) for x ∈ [a, b] (5)

with the (n + 2r− 2)-tuple of the direct F-transform (F2−r, ..., Fn+r−1).
We recall from [6] that the expectile direct F-transform components are defined to be the minimizers

of the strictly convex functions, for k = 2− r, ..., 1, ..., n, ..., n + r− 1 and ω ∈]0, 1],

Φk,ω (µ) =
m

∑
j=1

wj (ω; µ)
(

f j − µ
)2 Ak

(
tj
)

(6)

where

wj (ω; µ) =

{
ω if f j > µ

1−ω if f j ≤ µ
. (7)

The value µk = µk (ω) (depending on ω) is the expectile for the asymmetry parameter ω ∈]0, 1]
and if ω = 1

2 we obtain the direct F-transform component Fk in Equation (5).

Proposition 1. ([6])Given the set of minimizers {µk (ω) |ω ∈]0, 1[} of Φk,ω (µ), consider α ∈ [0, 1] ; then
the compact intervals

Uk,α =



{
µk

(
1
2

)}
if α = 1[

µk
(

α
2
)

, µk
(
1− α

2
)]

if α ∈]0, 1[

cl

( ⋃
β>0

Uk,β

)
if α = 0

(8)

define the α-cuts of a fuzzy number uk ∈ RF with membership function

uk(x) =

{
sup{α|x ∈ Uk,α} if x ∈ Uk,0
0 if x /∈ Uk,0

. (9)

Definition 2. Given a set of m points Y = {(ti, fi); ti ∈ [a, b], i = 1, ..., m} and a fuzzy r-partition (P,A, r)
of [a, b], the (n + 2r− 2)-vector of fuzzy numbers

F(P,A,r) = (F2−r, ..., Fn+r−1), (10)

where each fuzzy interval Fk has α-cuts Uk,α given by (8) in Proposition 1, is called the discrete direct expectile
fuzzy-valued F-transform of f with respect to (P,A, r), based on the dataset Y. The corresponding inverse
expectile fuzzy-valued iF-transform is the fuzzy-valued function defined by

f̂(P,A,r) (x) =
1
r

n+r−1

∑
k=2−r

Fk Ak (x) for x ∈ [a, b]. (11)
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The fuzzy-valued function f̂(P,A,r) (x) is well defined as indeed each basic function Ak has
non-negative values for each x ∈ [a, b]. The α-cuts Uk,α of Fk will be denoted by

[Fk]α =
[

F−k,α, F+
k,α

]
, k = 2− r, ..., n + r− 1, α ∈ [0, 1] (12)

and the α-cuts of the fuzzy-valued function f̂(P,A,r) (x), x ∈ [a, b], will be given by

[
f̂(P,A,r) (x)

]
α
=

[
1
r

n+r−1

∑
k=2−r

F−k,α Ak (x) ,
1
r

n+r−1

∑
k=2−r

F+
k,α Ak (x)

]
, α ∈ [0, 1]. (13)

When α = 1 we obtain the standard direct F−transform and the standard iF−transform function,
corresponding to the core of the fuzzy-valued iF-transform.

2.2. L1-Norm F-Transform in Quantile Smoothing

The L1-norm direct and inverse F-transform are defined as follows.

Definition 3. Given a set of m values Y = {(ti, fi)| ti ∈ [a, b], i = 1, ..., m} of a function f : [a, b] −→ R
and a fuzzy partition (P,A) of [a, b] such that each subinterval [xk−1, xk+1] contains at least one point ti in its
interior, then the discrete direct L1-type F-transform of Y with respect to (P,A) is the n-tuple of real numbers

(G1, ..., Gn) where each component Gk minimizes the function Ψk(y) =
m
∑

i=1
| fi − y| Ak(ti), k = 1, 2, ..., n.

The associated inverse F-transform function (iF-transform for short) is defined by f̃(P,A)(x) =
n
∑

k=1
Gk Ak(x) for

all x ∈ [a, b].

Also in this case, we consider a generalized r−partition (P,A, r) and substitute the direct
F-transform components Gk with an (n + 2r − 2)-tuple of polynomials of order q ≥ 0,
say (ψ2−r(x), ..., ψn+r−1(x)) with ψk(x) = Gk,0 + Gk,1(x − xk) + ... + Gk,q(x − xk)

q, k = 2− r, ..., n +

r − 1. The q + 1 coefficients Gk,j, j = 0, 1, ..., q are obtained, for fixed k, by minimizing the function

Ψk(y0, ..., yq) =
m
∑

i=1

∣∣ fi −
(
y0 + y1(ti − xk) + ... + yq(ti − xk)

q)∣∣ Ak(ti) with respect to the parameters

y0, ..., yq (see details in [6]).
The corresponding L1-type inverse F-transform function is given by

f̃ (q)
(P,A,r)(x) =

1
r

n+r−1

∑
k=2−r

Ak(x)ψk(x; Gk,0, ..., Gk,q) for x ∈ [a, b]. (14)

The iF-transform function of order zero (p = 0) becomes

f̃(P,A,r)(x) =
1
r

n+r−1

∑
k=2−r

Gk Ak(x) for x ∈ [a, b] (15)

with the (n + 2r− 2)-tuple of the L1-type direct F-transform (G2−r, ..., Gn+r−1).
We recall from [6] that the quantile direct F-transform is defined in terms of the minimizers of the

convex functions, for k = 1, ..., n and ω ∈]0, 1],

Ψk,ω (η) =
m

∑
j=1

wj (ω; η)
∣∣ f j − η

∣∣ Ak
(
tj
)

(16)
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where

wj (ω; η) =

{
ω if f j > η

1−ω if f j ≤ η
. (17)

As detailed in [6], the minimization of Ψk,ω (η) produces the family of compact intervals, for α ∈
[0, 1] and ω ∈

{
α
2 , 1− α

2
}

,

Vk,α =



{
ηk

(
1
2

)}
if α = 1[

ηk
(

α
2
)

, ηk
(
1− α

2
)]

if α ∈]0, 1[

cl

( ⋃
β>0

Vk,β

)
if α = 0;

(18)

and we obtain the α-cuts of a fuzzy number vk ∈ RF with membership function

vk(x) =

{
sup{α|x ∈ Vk,α} if x ∈ Vk,0
0 if x /∈ Vk,0.

(19)

Definition 4. Given a set of m points Y = {(ti, fi); ti ∈ [a, b], i = 1, ..., m} and a fuzzy r-partition (P,A, r)
of [a, b], the (n + 2r− 2)-vector of fuzzy numbers

G(P,A,r) = (G2−r, ..., Gn+r−1), (20)

where each fuzzy interval Gk has α-cuts Vk,α, is called the discrete direct quantile fuzzy transform of Y with
respect to (P,A, r).

The corresponding (inverse) quantile iF-transform of f is the fuzzy-valued function defined by

f̃(P,A,r) (x) =
1
r

n+r−1

∑
k=2−r

Gk Ak (x) for x ∈ [a, b]. (21)

Denoting the α-cuts Vk,α of Gk by

[Gk]α =
[

G−k,α, G+
k,α

]
, k = 2− r, ..., n + r− 1, α ∈ [0, 1], (22)

then, the α-cuts of the corresponding fuzzy-valued function f̃(P,A,r) (x), x ∈ [a, b], will be given by

[
f̃(P,A,r) (x)

]
α
=

[
1
r

n+r−1

∑
k=2−r

G−k,α Ak (x) ,
1
r

n+r−1

∑
k=2−r

G+
k,α Ak (x)

]
, α ∈ [0, 1]. (23)

2.3. General Lp-Norm-Based Discrete F-Transform

The general Lp-norm-based F-transform has been analyzed in detail in [48] for the continuous case.
Its interest in time series applications is motivated by recent literature on tail behaviour of economic
and financial time series (see, e.g., [11]) and in modeling risk measures ([9,10]): Lp-norm estimation
with 1 < p < 2 has been suggested to balance robustness and fitting properties.

For a dataset of m values Y = {(ti, fi)| ti ∈ [a, b], i = 1, ..., m} and a generalized r−partition
(P,A, r), the Lp-norm direct F-transform is an (n + 2r − 2)-tuple of polynomials of order q ≥ 0
(ϑ2−r(x), ..., ϑn+r−1(x)) with ϑk(x) = θk,0 + θk,1(x − xk) + ... + θk,q(x − xk)

q, k = 2− r, ..., n + r − 1,
where this time, the q + 1 coefficients θk,j, j = 0, 1, ..., q, are obtained by minimizing the functions
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Θ
(p)
k (θ0, ..., θq) =

m
∑

i=1

∣∣ fi −
(
θ0 + θ1(ti − xk) + ... + θq(ti − xk)

q)∣∣p Ak(ti) with respect to the parameters

θ0, ..., θq.
If q = 0, the direct fuzzy-valued F-transform components, for a fixed p ∈]1, 2[, are obtained by

minimizing the strictly convex functions, for k = 2− r, ..., 1, ..., n, ..., n + r− 1 and ω ∈]0, 1],

Θ
(p)
k,ω (θ) =

m

∑
j=1

wj (ω; θ)
∣∣ f j − θ

∣∣p Ak
(
tj
)

(24)

where

wj (ω; θ) =

{
ω if f j > θ

1−ω if f j ≤ θ
. (25)

The minimizers ϑk = ϑk(ω) (depending on ω) define the Lp-norm direct F-transform components
for the asymmetry parameter ω ∈]0, 1]. We have (the proof is similar to the case p = 2 in [6])

Proposition 2. Given the set of minimizers {ϑk(ω)|ω ∈]0, 1[} of Θ
(p)
k,ω (θ), consider α ∈ [0, 1]; then,

the compact intervals

Wk,α =



{
θk

(
1
2

)}
if α = 1[

θk
(

α
2
)

, θk
(
1− α

2
)]

if α ∈]0, 1[

cl

( ⋃
β>0

Wk,β

)
if α = 0

(26)

define the α-cuts of a fuzzy number wk ∈ RF with membership function

wk(x) =

{
sup{α|x ∈Wk,α} if x ∈Wk,0
0 if x /∈Wk,0

. (27)

Definition 5. Given a set of m points Y = {(ti, fi); ti ∈ [a, b], i = 1, ..., m} and a fuzzy r-partition (P,A, r)
of [a, b], the (n + 2r− 2)-vector of fuzzy numbers

H(P,A,r) = (H2−r, ..., Hn+r−1), (28)

where each fuzzy interval Hk has α-cuts Wk,α given by (26) in Proposition 2, is called the discrete direct
Lp-norm fuzzy-valued F-transform with respect to (P,A, r), based on the dataset Y. The corresponding
inverse Lp-norm fuzzy-valued iF-transform is the fuzzy-valued function defined by

f (p)
(P,A,r) (x) =

1
r

n+r−1

∑
k=2−r

Hk Ak (x) for x ∈ [a, b]. (29)

The α-cuts Wk,α of Hk will be denoted by

[Hk]α =
[

H−k,α, H+
k,α

]
, k = 2− r, ..., n + r− 1, α ∈ [0, 1] (30)

and the α-cuts of the fuzzy-valued function f (p)
(P,A,r) (x), x ∈ [a, b], are

[
f (p)
(P,A,r) (x)

]
α
=

[
1
r

n+r−1

∑
k=2−r

H−k,α Ak (x) ,
1
r

n+r−1

∑
k=2−r

H+
k,α Ak (x)

]
, α ∈ [0, 1]. (31)

When α = 1 we obtain the Lp-norm direct F-transform and (inverse) iF-transform function,
corresponding to the core of the fuzzy-valued Lp-norm iF-transform.
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3. Analysis of Bitcoin Prices and Google Trends By F-Transform

To focus on the strength of fuzzy-valued Lp-norm F-transform smoothing, we will apply the
proposed models to the time series of Bitcoin prices, which has received much attention by regulators
and investors in the last decade.

Bitcoin was released at the beginning of 2009 as a digital currency in the market; it remained
under $0.20 for three years and it began to increase during the first quarter of 2013. By the end of 2017,
Bitcoin was valued at nearly $18,000 per “coin”. In 2018, the price plummeted $4000 and it grew again
in 2019.

The second dataset we consider is Google Trends, the search index that measures what people are
currently interested in and curious about. In particular, we consider Google Trends with value 100 out
of 100 meaning that trend (word Bitcoin) is on its peak in the considered time period.

Here, we work on two daily time series, as in Figure 1, from April 2013 to June 2019: Bitcoin prices
(from www.blockchain.info) and Google Trends (from https://trends.google.com). The label time in
the figures refers to daily observation number (t = 1 corresponds to the first observation considered);
the labels Bitcoin and GT100 denote the arrays with the data.

Figure 1. Daily Bitcoin prices (blue color, left scale) and daily Google Trends series (red color, right
scale) from 28.04.2013 to 17.06.2019.

Remark that the F-transform (direct and inverse) is linear with respect to the data-set, in particular
it is homogeneous and scale invariant: we can normalize the two time series and the direct F-transform
components (or the iF-transform function) are multiplied by the same factor. In this way, we can
compare the F-transform results for the two series in terms of the obtained smoothing effect and by
visualizing the scatter-plots of the of each series and the obtained iF-transform reconstructions.

The degree of smoothness of a given time series ft, t = 1, 2, ..., M is measured in terms of its (average)
absolute variation, given by

V( f ) =

M−1
∑

t=1
| ft+1 − ft|

M− 1
; (32)

on the other hand, it is well known that the inverse Lp-norm F-transform function, for a fixed r-partition
(P,A, r), allows the computation of the smoothing values

f (r)t =
1
r

n+r−1

∑
k=2−r

ϑk(t)Ak (t) for t = 1, 2, ..., M (33)
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corresponding to the estimated (local) polynomials of order q, ϑk(t) = θk,0 + θk,1(t− xk) + ... + θk,q(t−
xk)

q, k = 2− r, ..., n + r− 1. The corresponding absolute variation, given by

V( f (r)) =

M−1
∑

t=1
| f (r)t+1 − f (r)t |

M− 1
, (34)

is in general smaller than V( f ); the ratio

L( f , f (r)) =
V( f (r))

V( f )
(35)

represents the proportion of absolute variation which remains in the smoothed time series f (r) with
respect to the original data f , while 1− L( f , f (r)) is the amount of removed variation.

We have computed the Lp-norm F-transforms for different values of p ∈ {1, 1.25, 1.5, 1.75, 2} and
orders q ∈ {0, 1, 3}. The excellent performance of the smoothing based on F-transform are strongly
confirmed for these two special time series, as summarized in Tables 1 and 2.

Table 1. Lp-norm F-transform of Bitcoin and GT100 time series For five values p and three orders
q ∈ {0, 1, 3} the table shows ratios L( f , f (r)) with f ∈ {Bitcoin, GT100}.

p q Bitcoin GT100

1 0 0.3526 0.1646
1 1 0.4298 0.2643
1 3 0.5813 0.4922

1.25 0 0.3493 0.1628
1.25 1 0.4315 0.2677
1.25 3 0.5693 0.4813

1.5 0 0.3465 0.1649
1.5 1 0.4282 0.2702
1.5 3 0.5558 0.4785

1.75 0 0.3448 0.1777
1.75 1 0.4250 0.2783
1.75 3 0.5483 0.4798

2 0 0.3428 0.1715
2 1 0.4221 0.2859
2 3 0.5432 0.4815

All computations are performed with a 1-partition (r = 1), a decomposition P of [1, M] into

n = 326 equispaced nodes and basic functions obtained from L(τ) =
τ2

1− 2τ(1− τ)
, τ ∈ [0, 1].

For both series, covering the same time period, we have M = 2276 so that each subinterval [xk, xk+1],
k = 1, ..., n − 1 of P has exactly 8 observations (13 observations internal to intervals ]xk−1, xk+1[,
k = 2, ..., n− 1 on which basic function Ak is non-zero); remark that the two series are observed all
days of the week, including holidays, so that all internal nodes xk of P correspond to the same day in
the week.

For the results of Table 1, the observed values are normalized in the range [0, 1000]; on this
common range, the computed absolute variations are V(Bitcoin) = 4.6354 and V(GT100) = 6.9986
and Bitcoin is 66.23% less fluctuating (on average) than GT100. For all values of p, the reduction in total
variation expressed by the ratios L( f , f (r)), for both series, is more depending on the order q than on
the used norm Lp; this is not surprising, because increasing the degree of local polynomials will reduce
the average fitting errors but increase their variation.
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In Table 2 the smoothing and fitting of the time series by Lp-norm F-transforms are compared in
terms of three well-known indices: the mean square error MSE, the mean absolute percentage error
%MAE and the Kendall τ rank correlation.

Table 2. Approximation indices for Lp-norm F-transform of Bitcoin and GT100 For five values
p ∈ {1, 1.25, 1.5, 1.75, 2} and three orders q ∈ {0, 1, 3} the table shows indices MSE, %MAE,
and Kendall τ correlation for the pairs ( f , f (r)) with f ∈ {Bitcoin, GT100}.

Bitcoin GT100

p q MSE %MAE τ MSE %MAE τ

1 0 363.98 2.5173 0.9766 2.7670 7.8219 0.8897
1 1 201.66 2.0152 0.9815 1.8610 6.7139 0.9049
1 3 148.75 1.4739 0.9860 1.5614 4.8293 0.9331

1.25 0 219.72 2.5171 0.9768 2.3939 7.9307 0.8911
1.25 1 191.58 2.0315 0.9817 1.8211 6.8342 0.9074
1.25 3 139.34 1.4874 0.9863 1.4556 4.9210 0.9345

1.5 0 217.61 2.5641 0.9765 2.3339 8.1374 0.8910
1.5 1 190.20 2.0805 0.9814 1.8027 7.0240 0.9068
1.5 3 137.72 1.5284 0.9861 1.4169 5.1172 0.9331

1.75 0 217.79 2.6232 0.9762 2.3020 8.3932 0.8896
1.75 1 191.26 2.1298 0.9810 1.7920 7.2505 0.9057
1.75 3 137.75 1.5734 0.9858 1.4031 5.3430 0.9311

2 0 219.41 2.6859 0.9757 2.2855 8.6858 0.8877
2 1 192.74 2.1778 0.9708 1.7964 7.4879 0.9038
2 3 138.46 1.6155 0.9856 1.4040 5.5762 0.9289

Here the series are not normalized (in particular, the value of index MSE depends on the scale of
the series). In all cases, the F-transform fitting for Bitcoin series has significantly smaller errors than for
GT100, as demonstrated by indices %MAE and τ (the Kendall τ is always significantly positive with
p-value less than 10−8).

For the fitting F-transform functions obtained by Lp-norm with p = 1.5 and q = 0, the scatter-plots
of time series ( ft, f r

t ) are pictured in Figure 2; Figure 3 plots ft and f r
t with respect to time. Remark that

peaks in the series tend always to be smoothed, as a characteristics of the smoothing effect produced
by F-transform.

Figure 2. Scatter-plots of ( ft, f r
t ) for daily Bitcoin prices (left picture) and daily GT100 trends (right),

from April 2013 to June 2019.



Axioms 2020, 9, 139 12 of 32

Figure 3. Lp-based smoothing for Bitcoin (top picture, blue points) and GT100 (bottom, blue points)
series, obtained with p = 1.5 and q = 0. The green curves plot the observed series.

Assuming a bi-directional dependence between GT100 and Bitcoin time series, empirically
demonstrated, e.g., in [27], and focusing on the impact of GT100 on Bitcoin, we want now to investigate
the form of dependence by use of expectile (fuzzy-valued) F-transform; in particular, we see that while
the fitting of iF-transform obtained on the totality of observed values (BitCoint, GT100t) presents a
high dispersion, a very big improvement in the fitting quality is obtained if F-transform is applied to
clustered subsets of observed data. A relatively small number of clusters (from 20 to 24) in sufficient to
obtain a fitting with correlation coefficient greater than 0.99.

First of all, a scatter plot of the pairs is pictured in Figure 4 (the two time series are normalized in
the range [0, 1000] and GT100 appears in horizontal axis); observations in our data-set cover the cited
time period 2013-2019, are concentrated on the bottom-left part of the positive quadrant and have rare
points with big values in both series. At a first look, no evident functional relationships emerge from
the data; they simply show a tendency to be co-monotonic, but the points are very sparse.

Figure 4. Scatterplot (GT100t, BitCoint) of daily Bitcoin prices vs daily GT100 series. For this
visualization, the two time series are normalized to the common range [0, 1000].
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For a deeper analysis, we propose a model based on F-transform, relating the pairs of data
(GT100t, BitCoint). F-transform is thus used to model BitCoin as a function of GT100. The L1-norm and
L2-norm-based inverse iF-transforms of the data-set (GT100t, BitCoint), t = 1, 2, ..., M are computed;
taking into account the sparsity of the values GT100t (in particular above the threshold 40), we use
a non-uniform 1-partition (P,A) of the range [0, 100] of the observed GT100t, namely the set of
25 nodes {0, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 35, 40, 45, 50, 60, 100}, as pictured in
Figure 5. The two curves give the predominant relationship between BitCoin and GT100. It is evident
that both iF-transforms of BitCoint are not increasing on the whole range of GT100 (in particular,
they decrease when GT100 is around 7–8, around 20 and 40). On the other hand, observing the
dispersion of points in Figure 4, both iF-transforms are not good fitting of the complete data-set and
it appears that the points can be “clustered”, e.g., for different levels of Bitcoin prices, and better
sub-fittings can be attempted.

Figure 5. The figure shows (inverse) L1-norm (on top) and L2-norm (on bottom) iF-transform functions
obtained for the observations (GT100t, BitCoint); here, the daily Bitcoin prices are considered to be
functions in the domain [0, 100] of GT100.

This can be better analyzed by applying the quantile and the expectile F-transforms to our data-set
(GT100t, BitCoint), pictured in Figure 6, which shows the fuzzy-valued expectile F-transform of
Bitcoin as a function of GT100 for five different α-cuts corresponding to α ∈ {0.01, 0.25, 0.5, 0.75, 1}
(i.e., ten values ω ∈ { α

2 , 1− α
2 ; all α} for the asymmetry expectile parameter ω).

Figure 6. Fuzzy-valued Espectile F-transform function of the data-set (BitCoint, GT100t); the five
computed α-cuts correspond to α ∈ {0.01, 0.25, 0.5, 0.75, 1}.

We see that corresponding to different values of α, i.e., corresponding to subintervals in the range
of Bitcoin prices, the relationship between our time series changes significantly.
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This suggests that possibly, the clustering of the data into subsets may significantly improve the
quality of fitting.

Clearly, there are several procedures and criteria to cluster the observed data (GT100t, BitCoint);
we use the well-known k-means method and the number of clusters is selected according to the
silhouette measures available in MATLAB R2018b. We have performed three types of clusters, the first
on the basis of variable BitCoin, the second using the pair (BitCoin, GT100) and the third using
observations (BitCoin, GT100, ∆BitCoin, ∆GT100) where ∆ is the first difference operator ∆ ft = ft −
ft−1. The clustering measure is the standard Euclidean distance.

Let nCl denote the number of clusters and let j = 1, 2, ..., nCl be the labels of cluster Sj.
Each observation (BitCoint, GT100t) is assigned to cluster Sc(t), i.e., the observation t is assigned
to cluster labelled c(t) ∈ {1, 2, ..., nCl}.

For a given clustering, identified by clusters S1, S2, ..., SnCl , the L2-norm-based F-transform is
applied (independently) on each subset of data, for j = 1, 2, ..., nCl,

Sj = {(BitCoint, GT100t)|c(t) = j} . (36)

Finally, for the observations of each cluster, the inverse iF-transform is computed and the fitted
values, for each cluster, are obtained and recomposed to obtain the fitted values for the whole dataset.

If all the data are collected in a unique cluster and the F-transform is applied to the whole data-set,
we obtain the fitted Bitcoin series pictured in Figure 7: the green points give the observed BitCoint,
the red points are the GT100t series and in blue is the fitting of BitCoint. We see that the fitting
preserves the qualitative (gross) form of the observed Bitcoin prices, but in several portions of time
period the fitting is not good.

Figure 7. The fitted BitCoin time series (blue color) is obtained from L2-norm iF-transform function
applied to the data-set (GT100t, BitCoint); the observed BitCoint values are green and the observed
GT100t values are red.

Significant improvements are obtained by adopting the three described pre-clustering, denoted
respectively by labels A, B and C.

The computations are performed on the second half portion of the time period, starting with
observation time t1121; the first part is less interesting because, from observation t350 to t1220 both time
series have small variations and relatively flat curves. Without performing pre-clustering, the L2-norm
F-transform reconstruction (of order 1) of BitCoin in terms of GT100 has Kendall rank correlation
τ = 0.6049 and Spearman correlation ρ = 0.7830. We will compare τ and ρ indices as preliminary
evaluation of the effect of pre-clustering on the fitting quality.
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Clustering A. Clusters are based on variable BitCoin: the number of clusters is nCl = 20.
The L2-norm F-transform reconstruction (of order 1) of BitCoin in terms of GT100 with pre-clustering
A has much higher Kendall rank correlation τ = 0.9457 and Spearman correlation ρ = 0.9956.

In Figure 8 we plot the observed and fitted Bitcoin series for the second half of observations,
with evidence that clustering A allows a much better fitting. The 20 clusters are pictured and expanded
in Figure 9 where also the sub-fittings are visible.

Figure 8. Clustering A: the fitted BitCoin time series (blue colour) is obtained from L2-norm
iF-transform function applied to the data-set (GT100t, BitCoint); the observed BitCoint values are
green and the observed GT100t values are red.

Figure 9. Clustering A: for each cluster, the fitted BitCoin subseries (blue colour) are obtained from
L2-norm iF-transform function applied to the subset of data assigned to each cluster; the observed
(GT100t, BitCoint) values are green.

Clustering B. Clusters are based on both variables (BitCoin, GT100): the number of clusters
is nCl = 21. The L2-norm F-transform reconstruction (of order 1) of BitCoin in terms of GT100
with pre-clustering B has high Kendall correlation τ = 0.9447 and Spearman correlation ρ = 0.9954,
similar to clustering A.

In Figure 10 we plot the observed and fitted Bitcoin series for the second half of observations,
with evidence that clustering B allows a good fitting. The 21 clusters are pictured and expanded in
Figure 11 where also the sub-fittings are visible.
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Figure 10. Clustering B: the fitted BitCoin time series (blue colour) is obtained from L2-norm
iF-transform function applied to the data-set (GT100t, BitCoint); the observed BitCoint values are
green and the observed GT100t values are red.

Figure 11. Clustering B: the fitted BitCoin time series is in blue colour; the observed BitCoint values
are green.

Clustering C. Clusters are based on variables (BitCoin, GT100, ∆BitCoin, ∆GT100); the number
of clusters is nCl = 24. The L2-norm F-transform reconstruction (of order 1) of BitCoin in terms of
GT100 with this pre-clustering has high Kendall correlation τ = 0.9183 and Spearman correlation
ρ = 0.9905, similar but not better than pre-clustering A and B.

In Figure 12 we plot the observed and fitted Bitcoin series for the second half of observations,
with evidence that also clustering C allows a good fitting. The 24 clusters are pictured (blue colours) in
Figure 13 and expanded in Figure 14 where also the sub-fittings are pictured.

The overall result is that pre-clustering of the data, even based on very simple clustering strategies
and a relatively small number of clusters (from 20 to 24) significantly improves the fitting ability
of F-transform.

It is also interesting to see that the form of relationships between BitCoin and GT100 is very
different for each cluster; this has important consequences on the analysis and modeling of Bitcoin
time series as, in particular, it follows different paths in various sub-periods of time and in cases of rare
values of the data (e.g., big values and/or big absolute changes).
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Figure 12. Clustering C: the fitted Bitcoin time series (blue color) is obtained from L2-norm iF-transform
function applied to the data-set (GT100t, Bitcoint); the observed Bitcoint values are green and the
observed GT100t values are red.

Figure 13. The blue points correspond to the observations (GT100t, BitCoint) assigned to each cluster
by clustering C. The red points give the centroid values relative to two variables GT100 and BitCoin.

Figure 14. The fitted BitCoin time series (blue color) is obtained from L2-norm iF-transform function
applied to the data-set (GT100t, BitCoint); the observed BitCoint values are green and the observed
GT100t values are red.
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4. Stylized Facts of Bitcoin Prices Identified by F-Transform Components

The empirical identification of stylized facts, emerging from the analysis of financial time series,
is a common tool in data-based approaches to time series modeling (see [49]) and is consolidated by
availability of large data-sets and by application of computer-intensive efficient methods for analyzing
their properties. In this section, we will analyze the local F-transform components, in particular the
form of polynomials ϕk of L2-norm F-transform, of orders q = 1 and q = 2 described in Section 2.1,
applied to the Bitcoin time series.

We have selected the number m of daily observations such that m− 1 is a multiple of 7 (BitCoin
and GT100 are observed all the days in the year): in this way, the available data are m = 2276.

Consider an r-partition (P,A, r) with nodes xk, k = 1, 2, ..., n; denoting the time points of
observations simply by t = 1, 2, ..., m (or tj = j for j = 1, ..., m) we consider two uniform (P,A, r):

(Pa) - a dense partition with n = m and xk = k (i.e., each observation is a node) and the bandwidth
r is chosen such that each open interval I(r)k =]xk−r, xk+r[ contains (internally) a prescribed sufficient

number of data. E.g., with r = 4 each I(r)k contains all data of the week centred at xk; with r = 7, I(r)k
contains the two weeks ending and starting with xk.

(Pb) - a sparse partition with n = 326 and xk = 1 + 7(k − 1) (i.e., there is a node every
7 observations) and the bandwidth r = 3 is chosen. The (direct) F-transform components will span 21
observed values on each side (left or right) of the nodes.

4.1. F-Transform Fitting with Dense r-Partition

In the dense partition case, we obtain the best L2-norm F-transform components ϕk(t) associated
with all observations (indeed, xk = k corresponds to all observed times k = 1, ..., n = m); in this way,
we are able to estimate the local trend around every observation and se can follow the time evolution
of trends by plotting ϕk(t) around xk on subintervals I(r)k (see Figures 15 and 16).

On the other hand, if we translate vertically the polynomials ϕk(t), the polynomials ϕ̂k(t) =

ϕk(t)− φk,0 are such that ϕ̂k(xk) = 0 for all k and, if q > 0, we can cluster the ϕ̂k by clustering the set
of vectors (φ1,k, ..., φq,k) of the estimated coefficients. If q = 1 we obtain a set of lines through the origin
with different slopes (in terms of a single variable φ1,k); if q = 2 we obtain a set of parabolic functions
through the origin, in terms of two variables φ1,k and φ2,k.

Figure 15. L2-norm F-transform components of order 1 for Bitcoin series. The fuzzy r-partition is Pa

with r = 4 (top picture) and r = 7 (bottom).
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Figure 16. L2-norm F-transform components of order 2 for Bitcoin series. The fuzzy r-partition is Pa

with r = 4 (top picture) and r = 7 (bottom).

Using the k-means clustering method with the Euclidean distance and testing the number of
clusters using the silhouette values, we have that the best number of clusters is nCl = 9 when q = 1
and nCl = 15 when q = 2.

The interpretation of nCl = 9 clusters (characterized by variable φ1,k) is interesting, because we
have a central cluster of local trends with slope around 0 and other eight clusters characterized by
slopes ranging from very negative values (cluster 1) to intermediate negative values (cluster 3) up to
intermediate positive (cluster 7) to very positive slopes (cluster 9).

Analogous interpretation is applied to the case of nCl = 15 clusters (and q = 2), where again
cluster 1 corresponds to the most negative slope, cluster 8 to almost zero slope and cluster 15 to the
most positive slope; clearly, also the degrees of concavity and convexity (represented by the second
variable φ2,k) are taken into account in this case.

Figure 17 pictures, for each cluster S(1)
c , c = 1, 2, ..., 9, the first order shifted polynomials ϕ̂k(t) =

φ1,k(t− xk) assigned to S(1)
c (red colors) and the centroid polynomial (blue color) obtained by averaging

the parameters φ1,k.

Similarly, Figure 18 pictures, for each cluster S(2)
c , c = 1, 2, ..., 15, the second order shifted

polynomials φ1,k(t − xk) + φ2,k(t − xk)
2 assigned to S(2)

c (red colors) and the centroid polynomial
(blue color) obtained by averaging the pairs of parameters (φ1,k, φ2,k).

As we have said, the nCl centroid polynomials, identified by averaging the parameters of all
elements assigned to each cluster S(1)

c or S(2)
c , can be considered to be the stylized forms of the local

trends. If we identify each estimated trend by the centroid of its cluster, we then have nCl stylized
forms, one for each cluster, that form the possible typical trends around the observed points of the
time series.
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Figure 17. Clustering of L2-norm F-transform components (polynomials) of order 1 for Bitcoin series.
The clusters correspond to the fuzzy r-partition Pa with r = 4 (bottom picture) and r = 7 (top).

Figure 18. Clustering of L2-norm F-transform components (polynomials) of order 2 for Bitcoin series.
The clusters correspond to the fuzzy r-partition Pa with r = 4 (bottom picture) and r = 7 (top).
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As a last step, we can produce a simple analysis of how good the stylized trends represent the
effective observations: let’s denote by f q

(Pa ,A,r)(tj) the standard inverse iF-transform values at times tj

obtained with estimated direct F-transform (polynomial) components ϕk(t), i.e.,

f q
(Pa ,A,r)(t) =

1
r

n+r−1

∑
k=2−r

ϕk(t)Ak(t); (37)

denote by f q
c,(Pa ,A,r)(tj) the analogous expression obtained by substituting each local polynomial ϕk(t)

by ϕ̂k(t) = φ0,k + φ̂1,k(t− xk) + ... + φ̂q,k(t− xk)
q (here q = 1 or q = 2), where the parameters φ̂1,k

or the pairs (φ̂1,k, φ̂2,k) are the ones that identify the centroid of cluster containing time k, i.e., if an
observation belongs to cluster Sc we substitute the computed local trend with the local trend of the
corresponding centroid:

f q
c,(Pa ,A,r)(t) =

1
r

n+r−1

∑
k=2−r

ϕ̂k(t)Ak(t). (38)

Essentially, we identify the elements of each cluster by its centroid and we estimate its goodness in
terms of the vicinity between the modified version f q

c,(Pa ,A,r)(t) at times tj = 1, ..., M and the observed

data f j = BitCoinj. In Figures 19 and 20 the data f j (green colors) and f q
c,(Pa ,A,r)(tj) (black colors) are

plotted for all the data with r = 4 and r = 7, respectively; remark in particular that the iF-transform
values and the modified values have a very high correlation and the two values are very near each
other on the whole range of small and big values of observed prices.

Figure 19. L2-norm modified iF-transform values f q
c,(Pa ,A,r)(tj) (top: q = 1, bottom: q = 2) for Bitcoin

series. The fuzzy r-partition is Pa with r = 4.

Finally, it is interesting to observe the time evolution of the different clusters (see Figure 21).
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Figure 20. L2-norm modified iF-transform values f q
c,(Pa ,A,r)(tj) (top: q = 1, bottom: q = 2) for Bitcoin

series. The fuzzy r-partition is Pa with r = 7.

Figure 21. Time evolution of clusters obtained with the L2-norm F-transform smoothing of order 1 for
Bitcoin series. The fuzzy r-partition is Pa with r = 4.

Remark that in the first part of the time series, the data (i.e., the local trends) persist into the
quasi-zero slope (quasi-constant time series); after observation 1400, frequent changes in the local
trends appear evident, but changes seem to be gradual from one class to a near one and only rarely the
local trends jump from a form to a very different one. This appears clearly from the transition matrix
P = [prob(i, j)], i, j = 1, 2, ..., 9 given below (prob(i, j) is the probability that local trend of cluster i
moves to class j): we see that matrix P is essentially tridiagonal.
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P =

1 2 3 4 5 6 7 8 9

1 0.57 0.29 0.14 0 0 0 0 0 0

2 0.08 0.44 0.44 0 0.04 0 0 0 0

3 0.02 0.12 0.39 0.25 0.12 0.03 0.05 0.02 0

4 0 0.02 0.10 0.50 0.31 0.04 0.01 0.01 0

5 0 0 0 0.03 0.93 0.03 0 0 0

6 0 0 0.1 0.04 0.32 0.53 0.10 0.01 0

7 0 0 0 0.03 0.04 0.27 0.56 0.10 0

8 0 0.05 0.09 0.05 0 0.09 0.18 0.50 0.05

9 0 0 0 0 0 0 0 0.50 0.50

4.2. F-Transform Fitting with Sparse r-Partition

The results obtained with the dense r-partition Pa are confirmed when using the sparse r-partition
Pb. The computations are performed only for the bandwidth r = 3, corresponding to n = 326 nodes of
Pb and 42 = 2 ∗ 7 ∗ 3 data belonging to each interval [xk−r, xk + r].

Figures 22 and 23 plot the local trends of orders q = 1 and q = 2, respectively (we have plotted
only the second part of the Bitcoin time series).

Figure 22. L2-norm F-transform components of order 1 for Bitcoin series. The fuzzy r-partition is Pb
with r = 3.

Figure 23. L2-norm F-transform components of order 2 for Bitcoin series. The fuzzy r-partition is Pb
with r = 3.

The local trends are clustered into nCl = 9 groups when q = 1 and nCl = 15 groups when q = 2,
pictured in Figures 24 and 25. It appears that , for q = 1, clusters 8 and 9 (and clusters 1, 13, 14, 15,
when q = 2) contain very few elements and possibly, in this sparse case, the number of clusters should
be reduced to 7 and 11.
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Figure 24. Clustering of L2-norm F-transform components (polynomials) of order 1 for Bitcoin series.
The fuzzy r-partition is Pb with r = 3.

Figure 25. Clustering of L2-norm F-transform components (polynomials) of order 2 for Bitcoin series.
The fuzzy r-partition is Pb with r = 3.

The substitution of estimated local trends with the ones obtained from centroids of each cluster,
produces the smooth reconstructions represented in Figures 26 and 27, respectively; the scatter-plots
of the data and their smoothing with standard F-transform and the modified versions, are plotted
in Figures 28 and 29. We remark that corresponding to a stronger smoothing effect obtained with a
smaller number of nodes in the decomposition (now it is sparse) the quality of the fitting is reduced.

Figure 26. L2-norm modified iF-transform values f q
c,(Pb ,A,r)(tj) for Bitcoin series. Here, q = 1 and the

fuzzy r-partition is Pb with r = 3.
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Figure 27. L2-norm modified iF-transform values f q
c,(Pb ,A,r)(tj) for Bitcoin series. Here, q = 2 and the

fuzzy r-partition is Pb with r = 3.

Figure 28. Pairwise scatter-plots of values f j, f q
(Pb ,A,r)(tj) and f q

c,(Pb ,A,r)(tj) using L2-norm F-transform
smoothing of order q = 1 for Bitcoin series. The fuzzy r-partition is Pb with r = 3.

Figure 29. Pairwise scatter-plots of values f j, f q
(Pb ,A,r)(tj) and f q

c,(Pb ,A,r)(tj) using L2-norm F-transform
smoothing of order q = 2 for Bitcoin series. The fuzzy r-partition is Pb with r = 3.

5. Forecasting Bitcoin Prices with Gt100 Index

As described in the Introduction, there is empirical evidence that causal relationship between
Bitcoin prices/returns and Google Trend scores is bi-directional and, we expect, this will be useful in
designing short-term models that relate BitCoin(t) to GT100(t− l) for small values of lag l ≥ 1. Clearly,
as illustrated in sections three and four, the type of functional relationship will change with time and,
in particular, the form of local polynomials is expected to persist only for short times around the actual
time t and we can estimate their form (coefficients) from the data up to the last available observations.

In the setting of Lp-norm F-transform, we suggest using the (polynomial) direct F-transform
components ϑk such as

ϑk(t) = θk,0 + θk,1(t− xk) + ... + θk,q(t− xk)
q + θk,q+1g1(t) + θk,q+2g2(t) + ... + θk,q+sgs(t) (39)

where ϑk, k = ..., N − 2, N − 1, N is the k-th local trend function (k-th direct F-transform component)
and g1(t), ..., gs(t) are delayed versions of the Google Trends GT100(t) and/or BitCoin(t) series.
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We are interested to a forecasting model by which, with available observations of BitCoin(t) and
GT100(t) at times t = ..., T − 2, T − 1, T up to time T, we like to construct a forecast of BitCoin(T + l)
for l steps ahead. To do this, we estimate the direct F-transform components (39) with appropriate q, s
and values g1(t− l), ..., gs(t− l), obtained from observed values of Bitcoin(t− l) and/or GT100(t− l)
for t = ..., T − 2, T − 1, T; then, e.g., using the last estimated trend function ϑN(t) we approximate
BitCoin(T + l) with ϑN(T + l). This is always possible if the fuzzy r-partition is such that T + l ∈
]T = xN , xN+r[. Alternatively, if r > 1, we can approximate BitCoin(T + l) by computing the inverse
F-transform at time T + l as the combination of local trends ϑk(T + l) that have positive weights
Ak(T + l), the basic functions active at time T + l.

Clearly, this construction may be good and reasonable only for short-term forecasting. In our
experiments we have used the first approximation only to forecast Bitcoin prices BitCoin(T + l) with
l ∈ {1, 2, 3, 4, 5}. The reported results are given for the last 1200 values of the available time series.
We have used q ∈ {0, 1, 2}, r ∈ {1, 2} and two cases of functions gj(t):

Model A: s = 1 and g1(t) = GT100(t);
Model B: s = 2 and g1(t) = GT100(t), g2(t) = BitCoin(t − 1), i.e., by adding an

autoregressive term.
Our simple forecasting model is obtained by the following three steps:
Step 1. We start with one of the fitting model obtained in the analysis in previous sections

and we chose the pair of values (r, mr) where r ≥ 1 is the bandwidth of the r-partition and the
associated value mr is the number of time observations used to estimate the parameters of local trend
functions ϑk(t). We have found that mr observations on each subinterval of the partition, in the range
mr = 11, ..., 25, produces in general the best fitting results: two or three weeks of data are sufficient to
obtain the forecast.

Step 2. The parameters in ϑk(t) are estimated using the Lp-norm-based criterion: we assume
p = 1.5 as a good intermediate value between quantile (p = 1) and expectile (p = 2) estimators.

Step 3. Each l-steps ahead forecast value fT+l for the last more recent 1200 available observations
ending at time Tf inal = 2242 is obtained from ϑN(t), where N = 2 + r is the number on intervals
in the partition covering mr data that terminate at time T: forecast fT+l is then estimated from data
BitCoint, t = T − mr + 1, ..., T, GT100t, t = T − mr − l + 1, ..., T − l for g1(t − l) and, in Model B,
BitCoint, t = T −mr − l + 1, ..., T − l for g1(t− l). In this way, we can compute fT+l = ϑN(T + l) as
the needed values g1(T + l) = GT100T and g2(T + l) = BitCoinT are available from observations.

For the fitting (i.e., with l = 0) and forecasting models (with l > 0) we report the mean square

error ( MSE = 1
m

m
∑

i=1
( fi − f r

i )
2), the mean absolute percentage error (%MAE = 100

m

m
∑

i=1

∣∣ fi − f r
i

∣∣
fi

) and

the well-known Kendall τ rank correlation (a measure of ordinal association between fi and f r
i ).

We see from Table 3 that the fitting of Bitcoin and GT100 time series become significantly better
by increasing the order q; it is also interesting to remark that GT100 fitting is much less precise that
Bitcoin fitting (with the same p and q). On the other hand, polynomials of orders q > 1 are not useful
for extrapolation as they tend to be highly oscillating for a lag l > 1.

For these reasons, only three pairs (p, q) as in Tables 4 and 5 are considered and we see that
for forecasting, q = 1 gives good results for small lag l while q = 0 is better for higher lags.

The forecast Bitcoin time series for lags l = 1, 2 obtained with model A are pictured in Figure 30;
for lags l = 4, 5 and model B are plotted in Figure 31.

To conclude this section on forecasting Bitcoin time series, we shortly explore the statistical
significance of the proposed models A and B. Following some ideas in [28], we compare our forecast
estimates with the so-called random walk model, assumed as a benchmark for single step forecasting,
i.e., with lag l = 1. Defining the return series as f Rett = log( f Sert

f Sert−1
), the random walk forecast r̂T of the

returns at time T is defined in terms of a fixed time horizon of s observations f Rett, t = T − s + 1, ..., T
ending at time T by

Rett = r̂T + εt, εt ∼ ID(0, σT), t = T − s + 1, ..., T. (40)
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Table 3. Approximation indices for Lp-norm F-transform of Bitcoin and GT100 For five values
p ∈ {1, 1.25, 1.5, 1.75, 2} and three orders q ∈ {0, 1, 3} the table shows indices MSE, %MAE,
and Kendall τ correlation for the pairs ( f , f (r)) with f ∈ {Bitcoin, GT100}.

Bitcoin GT100

p q MSE %MAE τ MSE %MAE τ

1 0 363.98 2.5173 0.9766 2.7670 7.8219 0.8897
1 1 201.66 2.0152 0.9815 1.8610 6.7139 0.9049
1 3 148.75 1.4739 0.9860 1.5614 4.8293 0.9331

1.25 0 219.72 2.5171 0.9768 2.3939 7.9307 0.8911
1.25 1 191.58 2.0315 0.9817 1.8211 6.8342 0.9074
1.25 3 139.34 1.4874 0.9863 1.4556 4.9210 0.9345

1.5 0 217.61 2.5641 0.9765 2.3339 8.1374 0.8910
1.5 1 190.20 2.0805 0.9814 1.8027 7.0240 0.9068
1.5 3 137.72 1.5284 0.9861 1.4169 5.1172 0.9331

1.75 0 217.79 2.6232 0.9762 2.3020 8.3932 0.8896
1.75 1 191.26 2.1298 0.9810 1.7920 7.2505 0.9057
1.75 3 137.75 1.5734 0.9858 1.4031 5.3430 0.9311

2 0 219.41 2.6859 0.9757 2.2855 8.6858 0.8877
2 1 192.74 2.1778 0.9708 1.7964 7.4879 0.9038
2 3 138.46 1.6155 0.9856 1.4040 5.5762 0.9289

Table 4. Model A: Lp-norm Fitting and Forecasting results For p = 1.5, the table shows indices %MAE
and Kendall τ correlation for the fitting (columns 4,5 with label f it) and the forecasting (columns
6,7 with label f or) corresponding to five lags l ∈ {1, 2, 3, 4, 5} and three pairs (q, r) of order q and
bandwidth r.

q r l %MAE-fit τ-fit %MAE-for τ-for

0 1 1 1.65 0.98 3.30 0.96
2 1.67 0.98 4.41 0.95
3 1.67 0.98 5.35 0.94
4 1.58 0.98 6.17 0.93
5 1.58 0.98 6.88 0.92

1 1 1 0.62 0.99 3.15 0.96
2 0.59 0.99 5.08 0.94
3 0.60 0.99 6.59 0.93
4 0.60 0.99 8.09 0.91
5 0.60 0.99 10.13 0.89

0 2 1 2.24 0.97 3.70 0.95
2 2.28 0.97 4.77 0.94
3 2.31 0.97 5.65 0.93
4 2.22 0.97 6.43 0.92
5 2.21 0.97 7.11 0.92

Then, considering that the return values f Rett are known up to time T, the random walk forecast

of f Ret at time T + 1 is simply the average r̂T = 1
s

T
∑

t=T−s+1
Rett, we can estimate the random walk

forecast of f SerT+1 from the definition of return at time T + 1 and obtain f rw
T+1 = exp(r̂T) f SerT .

This calculations are performed for T being each of the last 730 available observations (two years).
As in [28], the Diebold–Mariano (DM) test statistics is applied to test the significance of the MSE

measures for our forecasts (with models A and B) in comparison with the random walk forecast.
The results are reported in Table 6.
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Table 5. Model B: Lp-norm Fitting and Forecasting results For p = 1.5, the table shows indices %MAE
and Kendall τ correlation for the fitting (columns 4,5 with label f it) and the forecasting (columns 6,7
with label f or) corresponding to five lags l ∈ {1, 2, 3, 4, 5} and three pairs of order q and bandwidth r.

q r l %MAE-fit τ-fit %MAE-for τ-for

0 1 1 1.56 0.98 3.21 0.96
2 1.57 0.98 4.33 0.95
3 1.56 0.98 5.31 0.93
4 1.57 0.98 6.12 0.93
5 1.57 0.98 6.83 0.92

1 1 1 1.17 0.98 3.16 0.96
2 1.20 0.98 4.54 0.94
3 1.17 0.98 5.84 0.93
4 1.16 0.98 6.98 0.92
5 1.18 0.98 7.89 0.91

0 2 1 1.56 0.98 3.21 0.96
2 1.57 0.98 4.34 0.95
3 1.56 0.98 5.31 0.93
4 1.57 0.98 6.12 0.93
5 1.57 0.98 6.83 0.92

Figure 30. Model A: Lp-norm F-transform forecast (denoted as fFor) for the last 1200 days of available
data for Bitcoin series (observed time series is denoted as fSer). Here, p = 1.5, q = 1 and two lags l = 1
(top two pictures), l = 2 (bottom). The percent errors 100 f Sert− f Fort

f Sert
are also plotted.
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Figure 31. Model B: Lp-norm F-transform forecast (denoted as fFor) for the last 1200 days of available
data for Bitcoin series (observed time series is denoted as fSer). Here, p = 1.5, q = 1 and two lags l = 4
(top two pictures), l = 5 (bottom). The percent errors 100 f Sert− f Fort

f Sert
are also plotted.

Table 6. Diebold–Mariano test statistics for Lp-norm forecasting results The table shows indexes
sMSE =

√
MSE and Kendall rank correlation τ, corresponding to lag l = 1 forecasts for Models A and

B, obtained with p = 1.5, q = 1 and bandwidth r = 1.

sMSE DM-stat P-value τ

Model A 488.2 -2.9468 0.0016 0.9265

Model B 487.0 -3.8301 0.000064 0.9186

Random Walk 585.1 - - 0.9078

Table 6 (in particular the small p-value) confirm that Bitcoin prices can be forecasted using
F-transform of order q = 1, as indeed both (simple) short-term models A and B outperform the random
walk model.

6. Final Comments and Conclusions

In this paper, we apply the F-transform setting to analyze Bitcoin and the associated Google Trend
time series. The direct and inverse F-transforms provide flexible and highly adaptive non-parametric
smoothing in data analysis and they are adopted to develop a quantitative approach to sentiment
analysis; considering empirical evidence, demonstrated in recent literature, that there is a bi-directional
causal relationship between the two time series, we suggest a model to evaluate the dependence
of Bitcoin prices on Google Trends scores and we show how and at which extend it is useful for
short-term forecasting.

This research topic has rapidly increased in recent years and however deserves more investigation.
Thanks to the high flexibility of smoothing techniques and modeling based on F-transform, we show
that the web interest (querying) in Bitcoin phenomenon has an influence on the values of Bitcoin
prices; the type and form of relationship has an essentially local nature as it may change from one
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period to the other. Remark that the reverse relationship remains important, but its interest is clearly
less interesting.

In Section 3 and 4 the two time series are deeply analyzed in terms of non-parametric smoothing
techniques, different clustering methodologies and efficient stylized fact research. Our results confirm
the general hypothesis that short-term local trends characterize the Bitcoin time series, including the
possibility to forecast its values at least for small steps ahead (from 1 to 5, daily, in our study).

Future research directions include improved clustering models identified by specific forms of
local trends such as, e.g., exponential functions or other dependencies more suitable and stable for
extrapolation than polynomials.

In the paper we do not argue about the superiority of forecasting based on F-transform with
respect to many other methodologies; however, a comparison may be the opportunity to better
investigate the theoretical properties in future research.
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