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Abstract: Emerging cyber-physical systems, such as robot swarms, crowds of augmented people,
and smart cities, require well-crafted self-organizing behavior to properly deal with dynamic
environments and pervasive disturbances. However, the infrastructures providing networking
and computing services to support these systems are becoming increasingly complex, layered
and heterogeneous—consider the case of the edge–fog–cloud interplay. This typically hinders the
application of self-organizing mechanisms and patterns, which are often designed to work on flat
networks. To promote reuse of behavior and flexibility in infrastructure exploitation, we argue
that self-organizing logic should be largely independent of the specific application deployment.
We show that this separation of concerns can be achieved through a proposed “pulverization approach”:
the global system behavior of application services gets broken into smaller computational pieces
that are continuously executed across the available hosts. This model can then be instantiated in
the aggregate computing framework, whereby self-organizing behavior is specified compositionally.
We showcase how the proposed approach enables expressing the application logic of a self-organizing
cyber-physical system in a deployment-independent fashion, and simulate its deployment on
multiple heterogeneous infrastructures that include cloud, edge, and LoRaWAN network elements.

Keywords: self-organization; decentralized control; deployment independence; declarative
programming; aggregate computing

1. Introduction

Among the many approaches proposed to engineer systems featuring distributed intelligence,
a relevant one is self-organization [1], by which global structure and behavior are robustly
achieved by continuous local interaction of simple individual components. This is generally
meant to promote inherent adaptation to unexpected (or not completely foreseeable) contingencies,
supporting applications in contexts such as human social behavior, swarm robotics, and task
allocation. Therefore, in this paper we deal with artificial (software-based) self-organizing systems.
Self-organization was first observed in nature, in natural systems such as ant colonies or bird flocks,
and the first mechanisms for self-organization engineering were largely inspired by such systems [1].
In recent decades, the engineering of self-organization has been widely researched in various areas
including multi-agent systems [2], autonomic computing [3], self-managing and adaptive systems [4],
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and resource management [5]. Self-organization is generally understood as the ability of a system
to sustain its internal order, in face of change and without any external control—few formalization
attempts exist, e.g., via a notion of entropy of the population of system components [6]. Often, it is
common in the literature to refer to artificial systems endowing the ability to self-regulate their internal
structures and behavior (e.g., by mimicking self-organization mechanisms observed in nature) as
simply self-organizing [3,6–9]. Following this convention, in this paper we use term “self-organizing
(cyber-physical) system” to mean an “artificial (cyber-physical) system featuring self-organizing logic”.

When self-organizing approaches are applied to distributed cyber-physical systems (CPS),
they are essentially used to collect and process information generated by sensors distributed over the
environment, and use it to control the system behavior itself [10]—often in a purely decentralized
fashion. There, individual system components form a flat space that interact with each other based on
physical proximity. In these settings, direct communications with centralized servers are unpractical,
expensive, or even impossible.

Recent advances in technology foster pervasiveness of computing and communication,
providing opportunities for novel services and applications, which then turn into new engineering and
research challenges. Current trends are making modern CPS increasingly large-scale, heterogeneous,
and dynamic, requiring increasingly complex and heterogeneous infrastructures [11]. On the one
hand, remote clouds provide virtually unlimited on-demand resources (computing, storage, services),
provided that costs (both in money and latency) and data protection procedures can meet the
requirements of the application at hand. On the other hand, edge computing brings resources closer
to users, reducing latency (increasing reactivity) and managing concerns about data dissemination.
These two complementary architectures are often intertwined with other communication technologies,
such as proximity interaction (e.g., Bluetooth or Near-field communication), and long-range wireless
communication (e.g., Sigfox [12] or LoRaWAN [13]).

Such intricate and dynamic infrastructures complicate the task of solid engineering of distributed
intelligent systems, whose logic tends to be significantly dependent on it. In particular, this hampers
the possibility of reusing design elements across different application scenarios, and exploiting the
available ICT resources opportunistically (e.g., for optimization, graceful degradation, or customization
purposes). To that end, in this paper we investigate the following problem:

How to design and implement the self-organization logic of CPS in a deployment-independent way?

With “deployment-independent” we mean a separation of concerns between the self-organization
logic and the deployment context. In particular, the behavioral description of the self-organization
logic remains unchanged regardless of the specifics of the deployment context.

Consider as a motivating example, the problem of a smart-city CPS that consists of a computing
ecosystem with devices that monitor and aggregate pollution levels and household temperatures
to promote eco-friendly living. One typical approach to implement the application logic of such
systems is through self-organizing algorithms—see for instance [14]. Such algorithms employ the
spatiotemporal proximity of devices to regulate the flow of information in the system in a scalable
way, ultimately promoting the emergence of smart collective behavior. Evidently, such applications
can be set up using different heterogeneous sets of computing and networking devices. Depending on
the concrete technology at hand, the communication between physically close devices may need
to be implemented in different ways, for instance, based on direct device-to-device interaction or
communication via intermediaries such as fog servers or the cloud. Ideally, the application logic should
not be affected by the heterogeneity of the underlying technology or the specific deployment choices
(cf., cost, performance, and reliability considerations). We use this example as a case in Section 6.

To tackle this type of problems, we propose a framework to design distributed adaptive
behavior for large-scale CPSs rooted on what we call the pulverization approach. This approach
breaks the overall system behavior into tiny pieces of computation logically linked to sensors,
actuators, and neighboring components, each continuously scheduled and executed across space
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(i.e., the computational devices available) and time.This “network” can then be smoothly mapped
onto a variety of multi-layered deployment infrastructures. In other words, we provide a schema for
engineering the self-organizing logic in CPSs: it is based on a flexible logical model which can be
decomposed into a set of sub-components with well-defined relationships that can be deployed and
wired separately (i.e., they work as “logical units of deployment”). Such a schema is to be properly
instantiated and filled with details to actually drive self-organization. To that end, we show how
this approach can be implemented in the framework of Aggregate Computing [15], where global
self-organizing behavior can be specified declaratively, i.e., by composing pure functions expressing
increasingly complex distributed algorithms. As a key benefit, the approach can make the Aggregate
Computing toolchain [16,17], distributed algorithms and systems [18,19], readily available to work in
the larger class of complex ICT infrastructures [20].

To showcase the pulverization proposal, we evaluate the approach by simulating a situated CPS,
whose software components are deployed using a synergy of technologies including edge servers,
low-power/long-range communication via LoRaWAN [13], MQTT (Message Queuing Telemetry
Transport) [21,22], and cloud offloading. We run the system over different deployment configurations,
exploiting the edge and cloud layers. Then, we verify that its self-organizing logic, written once and
orthogonal to the specifics of deployment, always produce the same functional behavior—although,
non-functional aspects such as performance (e.g., network response time) or operating cost are affected
by the underlying deployment at hand. The evaluation is performed on an evolved version of
the DingNet exemplar [23], augmented with Aggregate Computing support and features to select
deployment schemes.

After discussing background and related work (Section 2), this paper describes the following
key contributions:

1. A novel model for self-organizing cyber-physical systems that fosters “pulverized” execution to
realize deployment independence, formalized by a structural operational semantics defining a
transition system for logical and physical network of devices (Section 3);

2. An instantiation of the model for the aggregate computing framework (Section 4);
3. An evaluation of the pulverization approach (Section 6) on a simulated smart-city case comprising

multiple deployments of a CPS for pollution-aware household heating control.

2. Background and Related Work

This section is structured in three parts that introduce the main related efforts and positions our
work on this landscape: self-organization, decentralized self-adaptation, and flexible deployments of
adaptive systems.

2.1. Self-Organization

A self-organizing system consists of (simple) components that realize the system goals
through repeated local interaction. Self-organization [24] often draws inspiration from natural
systems and promotes emergence [25,26], i.e., the creation of novel macro-level effects out of
decentralized micro-level activity. Swarm intelligence exhibited by ants is probably the best-known
example [27]. Such macro-effects are often connected with the ability of the system to be resilient to
environmental perturbations (ranging from human in-the-loop effects to faults in physical devices or
communications—which are the norm in large-scale distributed systems), or to deal with changing
functional/non-functional requirements that have to be satisfied in a wide variety of conditions.
Relevant application of self-organization include: study of human social behavior [28], crowd tracking
and steering [15], energy demand allocation [29], terrain exploration [30], smart camera coverage [31],
task allocation of autonomous vehicles [32], and ICT resources coordination [33].

Most of these works show a trend in self-organization, shifting from natural inspiration to
the identification of “artificial” mechanisms for engineering the collective part of adaptive systems,
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namely to develop so-called collective adaptive systems (CASs). Research on CASs [34] study how
a collective (i.e., a dynamic group of “similar” autonomous entities—e.g., a swarm of robots) can
support macro-level adaptivity and how such insights can be leveraged for engineering large-scale
socio-technical systems.

The approach studied in this paper takes somewhat inspiration from these latter approaches,
looking for ways to abstract from the actual deployment of physical systems, hence aiming to apply
self-organization techniques in heterogeneous deployment settings such as those relying on multiple
layers of cloud/fog/edge computing.

2.2. Decentralized Self-Adaptation

A self-adaptive system is one that is equipped with an external feedback loop that tracks the state
of the system and its environment and, through adapting it to changes, ensures that a set of goals is
achieved, or if necessary, the system is gracefully degraded [35–39]. In this paper, we are concerned with
self-adaptive software systems [40] as well as their deployment, in particular cyber-physical systems.

Research on self-adaptive software relates to the field of autonomic computing [41]. A self-adaptive
(or autonomic) system can be thought as consisting of three main pieces [38]: (i) a managed system,
which provides the application logic and should be adapted to satisfy its requirements in different
circumstances; (ii) an operating environment, which is generally characterized by uncertainty in terms of
changes that are difficult to predict; and (iii) a managing system, (also known as autonomic manager [41]
or adaptation engine [40]), that is responsible for the management of the managed system. A common
approach to realize self-adaptation is architecture-based adaptation [37,42,43], which leverages
architectural models of the system at runtime [44]. The managing system is usually organized around
in a feedback loop that realizes four main functions [41]: Monitoring, Analysis, Planning, and Execution,
that share common Knowledge, MAPE-K in short.

The work presented in this paper is in particular related to decentralized self-adaptive systems,
i.e., systems in which there is not a single component responsible for adaptation, but adaptation control
is distributed among multiple components [45]. In contrast to a self-organizing system, a decentralized
self-adaptive system consists of components that are equipped with feedback loops that interact locally
to adapt the underlying components to realize the system goals.

Decentralization in control fosters scalability (avoiding bottlenecks), robustness (avoiding single
points of failure), and efficiency through the exploitation of locality (avoiding the overhead of non-local
interactions). Sometimes, centralized control is simply not an option for a large class of modern
distributed systems, because of cost of impact on quality attributes [4,46].

Despite the high relevance of decentralization of control in self-adaptive systems, existing work
remains limited. We highlight a few representative approaches. Malek et al. [47] use an auction-based
coordination mechanism to find the appropriate deployment architecture under changing operating
conditions. Vromant et al. [48] extends MAPE loops with support for inter-loop and intra-loop
coordination. Vogel and Giese [49] present EUREMA (ExecUtable RuntimE MegAmodels) that offers
support for specifying interacting feedback loops models that then can be directly deployed and
interpreted by an interpreter. A related, but formally founded approach is presented in [50]. Calinescu
et al. [51] present DECIDE (DEcentralized Control In Distributed sElf-adaptive software), an approach to
decentralize feedback loops that uses quantitative verification at runtime to assure Quality-of-Service
(QoS) requirements in the presence of change. The approach demonstrates better scalability compared
to a centralized approach, but only for small component models.

Weyns and Georgeff [52] apply self-adaptation in a multi-agent system application for automated
guided vehicles. An example of self-adaptive middleware architecture for dynamic service composition
is described in [53], and GoPrime [54] offers a decentralized middleware for self-assembly of distributed
services. A gossip protocol realizes decentralized data dissemination to maintain an assembly of
services that fulfils global QoS goals.
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Although these approaches offer complementary contributions to tackle the complex problem of
decentralization of control in self-adaptation, none of these approaches targets large-scale adaptive
systems nor their deployment independence, which is exactly the contribution of this paper.

2.3. Flexible Deployment

In distributed systems, software components are deployed to hardware elements, and this affects
the notion of “locality”, and the connection of computations to physical space, in ways that deserve
attention. We generally refer to the hardware and the media supporting communication between
hardware elements (in general, these hardware element are part of the communication network and
the physical environment, where principles of stigmergy are applied [55] to support the exchange of
information of sensors and actuators) as (ICT) infrastructure. The problem of deployment is about how
to map (components of) the system to available infrastructure. We use the same terminology of major
literature [4,56], where term “distribution” refers to deployment and term “decentralization” refers
to the degree by which adaptation control is handled by multiple interacting components rather than
by a single, central component. Notice that decentralization of control is orthogonal to distribution
(i.e., to deployment) [4,56]: this is indeed the main theme of this article, where we show how this
principle can actually be implemented, methodologically. Though deployment is considered a research
challenge for self-adaptive systems [56], few works address the tension between application logic,
adaptation control, and deployment.

Presently, infrastructure is increasingly heterogeneous, complex, and dynamic: computers range
from low-powered, thin devices to large supercomputers; telecommunications technology can be wired
or wireless, with many subtypes providing a wide range of capabilities and guarantees; storage and
computational resources may be close, distant, or very distant to a communication endpoint—cf. edge,
fog, and cloud computing; and finally, failures, interferences, replacements, extensions, can make the
infrastructure dynamic. This richness is an opportunity but also a challenge for distributed computing
paradigms, as typically each of them tends to address a specific deployment style.

At a first instance, applications should aim at being agnostic with respect to the underlying
infrastructure and deployment. This is supported by abstraction, hiding unnecessary details for better
focusing on the problem at hand, and by a middleware that makes the abstraction operational—filling
the “gap” with the underlying platform or infrastructure where the details do matter.

This paper addresses the problem of identifying a suitable abstraction level to support deployment
independence, or deployment agnosticism, in self-organizing systems. Instead of trying to match
specific self-organizing models or patterns to the deployment at hand, we aim at a model by
which general self-organizing strategies can be mapped to a variety of contexts. The key idea,
inherited by approaches of so-called macro-programming [15,57,58], is to consider system behavior as
a conceptually global computation performed on the whole set of system devices, and being effectively
independent on details such as number and (mutual) location of devices. Declarative programming
approaches can naturally be applied to promote the specification of what the computational system
should perform, abstracting from concrete aspects pertaining lower-level details. Facilitated by
declarativity, one such macro-behavior should then be “pulverized” into smaller pieces or chunks of
behavior, each to be executed in a continuous way across “space”, i.e., across all the devices of a system.
According to the self-organization principle, such chunks affect only a logical locality, in terms of
perception/action over the local portion of the environment, and exchange of messages with neighbors.
Deployment independence is then achieved by a suitable mapping of a general self-organization
problem to the actual platform, and performed by spreading such chunks in the available devices.

Large-scale distributed and self-adaptive systems as envisioned in forthcoming CPS and the
Internet-of-Things (IoT) make a case for distributed declarative programming promoting self-organization,
while at the same time leaving degrees of freedom [59] to designers and deployment. We highlight
several representative research efforts on deployment and automatic reconfiguration of systems.
Osmotic computing [11] is an approach to opportunistic deployment of microservices on the
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edge-fog-cloud platform. An osmotic platform aims to reach and maintain an “osmotic equilibrium”
between infrastructural and application requirements by automatically migrating microservices
to deployment locations. However, the approach mainly targets centrally orchestrated systems.
Other approaches leverage component-based, architectural descriptions to decouple application
logic and deployment. For instance, DR-BIP (Dynamically Reconfigurable Behavior Interaction Priority
model) [60] and DReAM (Dynamically Reconfigurable Architectural Modelling) [61] use components
(capturing behavior), connectors (capturing interaction between components’ ports), maps (logical
topologies), and deployments (associating components to map locations), overall organized in motifs
(dynamic architectural configurations), to model and analyze dynamic architectures.

These approaches have some similarity with the approach presented in this paper, but they are
arguably more complex and our approach explicitly addresses self-organizing CPS.

3. A Model of Deployment-Independent, Self-Organizing, Cyber-Physical Systems

In this paper, we present an approach to conceive self-organization in distributed systems
that facilitates deployment independence, i.e., the ability of an application to run with no change
on various deployments while retaining its original functional semantics. It is rooted in the idea
(illustrated in Figure 1) to organize the structure and behavior of a system so that (i) the developer
can focus on a logical model that mostly abstracts details concerning deployment, scheduling and
communication; and (ii) the logical model can be straightforwardly partitioned into a set of deployable
software components, which deployers (e.g., devops team members or automated systems) can
“freely” distribute on available infrastructure. The application logic will obtain the functional goals
independent of the actual deployment, yet the choice of the deployment at hand typically affects
non-functional properties, such as performance and cost.

2
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1

(a) Logical system (b) Platform system

2

3

4

5

1

3

4 5

1

2

(c) Pulverization and binding

Figure 1. Deployment independence via pulverization. Designers of the business logic target the
logical system (a), whose abstractions are identifiable nodes and neighbors. Once the deployment
target (composed of hosts and communication channels) is identified (b), logical devices are pulverized
into sub-components, which are then mapped to hosts (c). In the latter figure, green dashed lines
represent network interactions between single-device sub-components.
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Let us consider a cyber-physical system consisting of: a cyber system (Section 3.1), which provides
a logical model for the system; and a platform system, which models networks of hosts for deployment
(hence subsuming physical systems as well as simulation platforms) and to which the cyber system
can be mapped to by a so-called deployment (Section 3.2). In the following, we describe this model
informally at first and then formally by a structural operational semantics [62], e.g., in the style of calculi
like π-calculus [63] (the quintessential process algebra for mobility) or the field calculus [64] (the main
foundation of aggregate computing). The main goal of the formalization, presented incrementally in the
following, is to provide an unambiguous specification of what constitutes pulverization, clarify subtle
aspects of the model, and state the deployment-independence property rigorously. The model will
then be instantiated in the macro-programming approach of aggregate computing in Section 4.

3.1. Cyber System

A cyber system is a collection of logical devices (or devices for short), each with the ability of
connecting to other devices, called neighbors—generally, such connections (logical neighboring links)
define a structure that can change over time. A device (Figure 2) is a logical entity with the
following components:

• A set σ of logical sensors.
• A set α of logical actuators.
• A state κ, representing the device’s local knowledge (where we abstract the particular

representation chosen for a state).
• A communication component χ handling interaction with neighbors, holding information on the

identity of neighbors and how to reach them, managing input channels used to receive external
messages into the device’s state, and output channels for emitting messages to all its neighbors
(i.e., the output channel of a device is connected to the input channels of all its neighbor devices
as per the neighboring relationship).

• A computation function β modelling the device behavior, which maps the state of the device to (i) a
new state, (ii) a “prescriptive” set of actuations to be performed, and (iii) coordination messages
to be emitted.

logical
device

β
behaviour

χ
communication

κ state

σ
sensors

α

actuators

neighbour
device

χ β

κ

σ α

Figure 2. A logical device, split into sub-components, and one of its neighbors.

Each individual device of the cyber system performs a MAPE-like cycle that includes the following
steps and that defines the interactions between the device’s subcomponents as depicted in Figure 2
(with arrows denoting message flow).

1. Context acquisition. In this step, the device retrieves information from context sources (sensors and
communications) and stores them in the device state.

2. Computation. The behavior function is applied against (data inferred from) the device state;
its (possibly processed) output is stored in the device state.
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3. Coordination data propagation. From the device state, coordination data is sent to all neighbors.
4. Actuation. Actuators are activated to execute a set of actions inferred from the device

state (these actions are, e.g., prescribed through the device behavior or mere sensor
data-driven reactions).

3.1.1. Formalization: Device Semantics

We formalize the main structure and behavioral elements of a cyber system by an operational
semantics describing how the various components of a logical device interact with each other (and then
how the whole logical network correspondingly evolves—Section 3.1.2). In doing so, we specifically
identify how inner components are abstracted, hence clarifying their boundary, role and interactions.

We adopt several mathematical conventions frequently used in works in process algebras [63]
and core calculi for programming languages and concurrent systems [64], which we here briefly recap.
To capture the behavior of interactive systems we use labelled transition systems [63] which are triples
〈State,−→, Label〉 of a set State of states, a ternary relation→⊆ State× Label× State, and a set Label of

labels. We write st `−→ st′ as a shorthand for (st, `, st′) ∈→, meaning that the modelled system moves
from state st to st′ by an observable action `. To describe interactive behavior we then give axioms and
rules defining the triples in the relation→.

We introduce meta-variables for the various element types of the model, which are used both as
non-terminal symbols in grammars and in rules of the operational semantics: we let meta-variable
s range over values produced by sensors, a over values sent to actuators, x over states, e over
coordination messages (also called exports) providing an internal representation of the set of messages
to send/receive, i over logical device identifiers, and v over message values exchanged with other
devices. We abstract away the syntax of the elements that such meta-variables range over; on the other
hand, when other elements need an abstract syntax, we introduce their meta-variables by non-terminal
symbols of grammars instead. As additional notation, for any meta-variable, say v, we let decorations
(v′, v′′, va, and so on) range over the same elements as v, let Set(v) be the set of elements it ranges
over, v⊥ ∈ Set(v) be used as default value for Set(v)—unless differently specified, it is assumed that
different meta-variables have disjoint sets of elements they range over.

To describe the components of a cyber system we introduce the following abstract grammar:

C ::= α
∣∣ σ

∣∣ β
∣∣ κ

∣∣ χ component

κ ::= pre(x, e, s)
∣∣ post(x, e, a)

∣∣ emit(x, e) state

m ::= i : v message

The five kinds of components, of which only κ has a defined structure, are modelled as follows:

• Actuators define a labelled transition system 〈Set(α),→a, Set(a)〉: a transition α
a−→a α′ models an

actuator component (generally made of a set of physical actuators) that moves from state α to α′

receiving actuation value a.
• Sensors define a labelled transition system 〈Set(σ),→s, Set(s)〉: a transition σ

s−→s σ′ models a
sensor component (generally made of a set of physical sensors) that moves from state σ to σ′

emitting sensor value s.
• Behavior component β is a pure function of the kind β(x, e, σ) = (x′, e′, α), namely it consumes a

state, input export, and sensed value, producing a new state, output export, and actuation values.
• Communication interfaces define a labelled transition system 〈Set(χ),→c, (Set(e) ∪ Set(m))× {↑

, ↓}〉: a transition χ
↓e−→c χ′ models a communication interface component that moves from state

χ to χ′ internally receiving export e, χ
↑e−→c χ′ internally producing export e, χ

↓m−→c χ′ receiving

message m from outside (namely from another device), and finally χ
↑m−→c χ′ sending message

m outward—note that an export is a general representation of neighbor values (either imported
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or exported), and the interface component is in charge of turning it into a set of messages for
neighbors, and vice-versa.

• State component κ is as described in the grammar: it keeps track of the status of a component,
of the information useful in that status, and evolves as detailed by the rules in the following.

The semantics of a whole logical device (also called a node in this semantics) can be defined
in terms of the behaviors and interactions of its logical components, which we associate to node
identifiers to form situated components. Interactions between two such situated components can
produce an observable action o:

S ::= 〈i, C〉 situated component

l ::= act(a)
∣∣ sense(s) ∣∣ put(e) ∣∣ get(e) ∣∣ comm(v) ∣∣ compute(e, a) action label

o ::= i B l B i observable action

The semantics of such interaction is given by a labelled transition system 〈Set(S)× Set(S),→N

, Set(o)〉, where 〈S1 : S2〉 iBlBi′−−−→N 〈S′1 : S′2〉 is used to mean the two situated components S1, S2 interact
by action l from device i to i′ moving to S′1, S′2. This is defined by the following rules:

〈i, σ〉 : 〈i, pre(x, e, s)〉 iBsense(s′)Bi−−−−−−−−→N 〈i, σ′〉 : 〈i, pre(x, e, s′)〉 if σ
s′−→s σ′

〈i, χ〉 : 〈i, pre(x, e, s)〉 iBput(e′)Bi−−−−−−→N 〈i, χ′〉 : 〈i, pre(x, e′, s)〉 if χ
↑e′−→c χ′

〈i, β〉 : 〈i, pre(x, e, s)〉 iBcompute(e′ ,a)Bi−−−−−−−−−−→N 〈i, β〉 : 〈i, post(x′, e′, a)〉 if β(x, e, s) = (x′, e′, a)

〈i, α〉 : 〈i, post(x, e, a)〉 iBact(a)Bi−−−−−−→N 〈i, α′〉 : 〈i, emit(x, e)〉 if α
a−→a α′

〈i, χ〉 : 〈i, emit(x, e)〉 iBget(e)Bi−−−−−−→N 〈i, χ′〉 : 〈i, pre(x, e⊥, s⊥)〉 if χ
↓e−→c χ′

〈i, χa〉 : 〈i′, χb〉
iBcomm(v)Bi′−−−−−−−→N 〈i, χ′a〉 : 〈i′, χ′b〉 if χa

↑i′ :v−−→c χ′a, χb
↓i:v−−→c χ′b

That is, the node acquires context information via σ and χ in status pre, then computes according
to its behavior β, moving to status post, performs actuations via α, moving to status emit where it
finally loads the export into χ, going back to status pre for another cycle. This kind of loop provides
a proper pace for self-organization through MAPE-based “rounds” involving context monitoring,
reasoning, and action. Notice that action i B comm(v)B i′ is the only one involving two distinct devices
i and i′; in other words, all the other actions are logically local to a given device.

3.1.2. Formalization: Logical Network Semantics

On top of the formalization of interactions between pairs of situated components as presented
in the previous subsection, we now define the model of a whole logical network, starting from the
following grammar:

N ::= 0
∣∣C

∣∣ (N|N) node configuration

L ::= 0
∣∣ 〈i, N〉

∣∣ (L|L) logical network

A node configuration N is defined as a composition of components C by operator “|”, and a logical
network is defined as a composition of terms of the kind 〈i, N〉, describing a configuration N situated
at a logical device with identifier i. As common in process algebraic approaches [63], we find it useful
to define the network semantics first by introducing a congruence relation (i.e., an equivalence relation
applicable at any level of depth), equating network configurations defined to be equivalent. This is
used to define symbol “|” as multiset composition operator (associative, commutative, and absorbing
configuration 0), and to allow blocks 〈i, N〉 to freely break by splitting N; namely:
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N|N′ ≡ N′|N, 0|N ≡ N, N|(N′|N′′) ≡ (N|N′)|N′′
L|L′ ≡ L′|L, 0|L ≡ L, L|(L′|L′′) ≡ (L|L′)|L′′

〈i, N|N′〉 ≡ 〈i, N〉|〈i, N′〉, 〈i, 0〉 ≡ 0

We then introduce a non-deterministic operational semantics for logical networks by the transition

system 〈Set(L),→L, Set(o)〉. As with transition→N described in Section 3.1.1, we write L iBlBi′−−−→L L′ to
mean that logical network L moves to L′ by executing action l from device i to i′. As already discussed,
actions of the kind i B l B i represent interaction localized inside device i, while i B l B i′ with i 6= i′

represents an interaction through the neighboring link connecting i to i′. The transition relation is
defined by the following rules:

(L-CONG) La
o−→L Lb if La ≡ L′a, L′a

o−→L L′b, Lb ≡ L′b
(L-PAR) La|L o−→L L′a|L if La

o−→L L′a
(L-INT) La|Lb

o−→L L′a|L′b if La : Lb
o−→N L′a : L′b

The former two rules are standard: the first simply states that transitions work modulo the
congruence relation; the second states that transitions can be applied to a network sub-part. The key
rule is the third one: it selects two logical network pieces La and Lb which can interact by transition
→N and action o, and then derives their new states L′a and L′b.

A logical network L is said complete if it is congruent to a network of the kind:

L ≡ 〈i1, α1|σ1|χ1|κ1|β1〉|〈i2, α2|σ2|χ2|κ2|β2〉| . . . |〈in, αn|σn|χn|κn|βn〉

namely if every logical device ik in the network has associated precisely five components, one per kind:
αk, σk, χk, κk, and βk. A network evolution is then defined as a sequence of transitions of the kind:

L0
o0−→L L1

o1−→L L2
o2−→L . . .

where L0 is complete. It is trivially shown that all Li are complete, since all rules of the transition
system leaves the location of components unchanged.

3.2. Platform System and Deployment as a Cyber-Physical Mapping

We represent the platform as a collection of physical hosts, connected by a possibly dynamic
graph of physical network links, representing communication channels connecting a source host with
a target host. A host is an entity with a network identity (e.g., a URI resource or an IP address); it can
be, e.g., a computer system, a device holding a sensor, an actuator, a virtual machine, or a software
container. The actual nature of the communication channel may also vary as well, depending on
the network architecture and protocols. The sole relevant property is the availability of a directional
channel allowing for application-level communication. Additionally, we distinguish: thin hosts,
which are resource-constrained and may host sensors/actuators but not computations; from thick hosts,
which instead can compute and may even do so on behalf of multiple logical devices.

We then define a deployment as an allocation map placing logical components of each device to
specific hosts in the platform system, the arranging platform-level connections to support expected
logical connections. An example of a deployment is pictorially shown in Figure 3. For simplicity in
presentation, we assume that all the sensors and all the actuators of a device are deployed together (into
a single σ- and α-component), though individual sensors and actuators may potentially be placed to
different hosts. In Figure 4, we provide examples of notable deployments, showing a progression where
increasing numbers of responsibilities are centralized (e.g., to a cloud or fog service layer). Of course,
depending on the specifics of the actual system being deployed, some cyber-physical mappings may
not be actually supported by the platform. For instance, in sensor networks whose sensing devices are
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designed to operate for a long time using solely battery power, such devices may not be equipped with
enough computation power to host a β-component, making the deployment depicted in Figure 4a
practically unfeasible.

Host (thick)

Host (thin)

Logical component (device)

σ Device’s sensor set
α Device’s actuator set
χ Device’s communication interface
κ Device’s state
β Device’s behaviour

Host-to-host link
Logical, neighbouring link

β1
α1σ1

χ1κ1
α2

χ2

σ2β2
κ2

α3σ3

χ3β3
κ3

α4σ4

χ4

β4
κ4

α5σ5

χ5

β5

κ5

Figure 3. Example instantiation of the CPS model. Dotted graphical elements denote
logical components/connections, while solid-line elements denote platform or physical
components/connections. Different subscripts (or colors) map to different logical devices. Intra-device
connections (Figure 2) are not shown but they can cross host boundaries by following direct
host-level links.

σ χ

αβ
κ

χ α

σβ
κ

σ α

χβ
κ

σ α

βχ
κ

(a)

σ α

κβ

χ

σ α

κβ

χ

σ α

κβ

χ

(b)

σ α

χ

β

κ

σ α

χ

β

κ

σ α

χ

β

κ

(c)

σ α

χβ

κ

σ α

χβ

κ

σ α

χβ

κ

(d)

Figure 4. Examples of notable deployments. Refer to Figure 3 for a legend of the graphical symbols.
(a) Peer-to-peer style; (b) Broker-based, as found in IoT publish/subscribe protocols (e.g., MQTT);
(c) Big data in the cloud; (d) Thin hosts with only sensors/actuators.
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Details on how to perform the mapping of a dynamic logical system upon a changing network
of hosts go beyond the scope of this work. Possible approaches from literature are, e.g., in the
context of virtual network embedding [65]. A further opportunity enabled by the proposed model
is self-(re)configuration: i.e., the autonomous process by which the platform system (re)arranges
components and connections into new deployment configurations. This is a very interesting and
important direction for future work.

3.2.1. Formalization: Deployed Network Semantics

We now incrementally formalize the semantics of a network deployed on a platform system.
Let meta-variable h range over host identifiers (uniquely identifying physical or virtual devices being
targets for deployment). A deployed network is a composition of terms [h]L, modelling a (complete
or incomplete) logical network L located at a host with identifier h. Although evolving due to the
interaction of logical components, deployed networks will then exhibit so-called global labels, providing
information on both the logical and physical links. As in previous sections, we introduce syntax

D ::= 0
∣∣ [h]L ∣∣ (D|D) deployed network

g ::= (h, i)B l B (h, i) global labels

and corresponding congruence:

D|D′ ≡ D′|D, 0|D ≡ D, D|(D′|D′′) ≡ (D|D′)|D′′
[h](L|L′) ≡ [h]L|[h]L′, [h]0 ≡ 0

We then introduce a non-deterministic operational semantics for deployed networks, by the

transition system 〈Set(D),→D, Set(g)〉. Write D
(h,i)BlB(h′ ,i′)−−−−−−−−→D D′ to mean that deployed network D

moves to D′ by executing action l from device i at host h to i′ at host h′—when h and h′ are the same it
means this is an action internal to a host, otherwise it pertains communication across a network link.
The transition relation is defined by the following rules:

(D-CONG) Da
g−→D Db if Da ≡ D′a, D′a

g−→D D′b, Db ≡ D′b
(D-PAR) Da|D

g−→D D′a|D if Da
l−→D D′a

(D-INT) [ha]La|[hb]Lb
(ha ,ia)BlB(hb ,ib)−−−−−−−−−→D [ha]L′a|[hb]L′b if La : Lb

iaBlBib−−−−→N L′a : L′b

Again, while the former two are standard, the third is the key one, capturing the 1-to-1
correspondence with logical network evolution.

3.2.2. Formalization: Deployment

Given a deployed network D, its corresponding logical network L(D) ∈ Set(L) can be simply
obtained by erasing all sub-terms [h]L to L, namely:

L(D|[h]L) := L(D)|L L(0) := 0

We say that a deployed network D is complete if its logical network L(D) is complete.
We analogously define with abuse of notation L(g) ∈ Set(o) to be the observable (logic) action
obtained from global action g erasing information about physical hosts, namely:

L((ha, ia)B l B (hb, ib)) := ia B l B ib
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Definition 1. Define a deployment mapping any function µ : Set(L) 7→ Set(D) such that (i) µ(L|L′) =

µ(L)|µ(L′) and (ii) µ(〈i, N〉) = [h]〈i, N〉 for some h. Please note that any deployment mapping µ is such that
for any logical network L then L(µ(L)) = L.

Then, the following correspondence result holds.

Theorem 1. Cyber-Physical correspondence. Given a complete deployed network D0, for any evolution trace

D0
g0−→D D1

g1−→D D2 . . .

there exists an equivalent evolution trace in the corresponding logical network

L0
o0−→L L1

o1−→L L2 . . .

and vice-versa, such that for all k, Lk = L(Dk) and ok = L(gk).

Proof. The thesis is straightforwardly proved by the way →L and →D have been constructed,
noting that rules D-INT and L-INT share the same premises, and hence, if

D|[ha]La|[hb]Lb
(ha ,ia)BlB(hb ,ib)−−−−−−−−−→D D|[ha]L′a|[hb]L′b

then
L(D|[ha]La|[hb]Lb)

L((ha ,ia)BlB(hb ,ib))−−−−−−−−−−−→L L(D|[ha]L′a|[hb]L′b)

and vice-versa.

Lemma 1. Deployment independence. Given a logical network L and deployment mappings µa and µb, then the
deployed networks Da = µa(L) and Db = µb(L) are such that for any evolution trace

Da
0

ga
0−→D Da

1
ga

1−→D Da
2 . . .

there exists an equivalent evolution trace

Db
0

gb
0−→D Db

1
gb

1−→D Db
2 . . .

and vice-versa, such that the corresponding logical evolutions are the same, namely for all k, L(Da
k) = L(Db

k)

and L(ga
k) = L(gb

k).

Proof. Straightforward.

In this framework, the examples of mappings from Figure 4 can be formalized as follows:

• Peer-to-peer (Figure 4a). There is a bijection i 7→ hi such that for each C, µ(〈i, N〉) = [hi]〈i, N〉.
• Broker-based (Figure 4b). There is a bijection i 7→ hi and a hb different from all hi, called a broker,

such that: µ(〈i, χ〉) = [hb]〈i, χ〉 and for each C 6∈ Set(χ), µ(〈i, C〉) = [hi]〈i, C〉.
• State as Big Data (Figure 4c). There is a bijection i 7→ hi and a hc different from all hi,

called e.g., the cloud, such that: µ(〈i, χ〉) = [hc]〈i, χ〉, µ(〈i, κ〉) = [hc]〈i, κ〉, and for each C 6∈
Set(χ) ∪ Set(κ), µ(〈i, C〉) = [hi]〈i, C〉.

• Cloud and thin hosts (Figure 4d). There is a bijection i 7→ hi and a hc different from all hi,
called e.g., the cloud, such that: µ(〈i, χ〉) = [hc]〈i, χ〉, µ(〈i, κ〉) = [hc]〈i, κ〉, µ(〈i, β〉) = [hc]〈i, β〉,
and for each C 6∈ Set(χ) ∪ Set(κ) ∪ Set(β), µ(〈i, C〉) = [hi]〈i, C〉.
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4. Application to Aggregate Computing

Aggregate Computing [15,66] is a programming paradigm arising from the general need for
capturing, linguistically and computationally, the self-organizing behavior of a (possibly large-scale,
dynamic) collection of components. Its core idea is to shift from the traditional device-centric viewpoint,
which focusses on the behavior of each individual agent, to an aggregate-centric viewpoint that
emphasizes the global behavior of a collective or aggregate system (i.e., a whole set of interacting
autonomous entities). This stance is not just conceptual, but also pragmatical: the collective logic can
be expressed as an aggregate program that is executed by an “aggregate virtual machine” consisting of an
entire (possibly distributed) system of networked agents. Aggregate programs are written in some
aggregate programming Domain-Specific Language (DSL) such as the standalone DSL Protelis [16] or the
Scala-internal DSL ScaFi [17].

In this paper, we do not extend the aggregate computing model itself, but rather describe it as an
instance of the model outlined in Section 3, as follows. A logical aggregate system is a cyber system,
and its deployment is an allocation map between its component and a platform system. An aggregate
cyber system comprises the following elements:

• Global program. All devices run the same program β. In aggregate computing, it is possible
to express collective behavior through a single, global program which yields different results
and actions when interpreted against different contexts. Notice that other macro-programming
languages [67] adopt a different approach where local programs for the individual nodes are
obtained by compilation of a global program, so leading to multiple βs.

• Context and Local computation. The same program is meant to be iteratively and asynchronously
evaluated locally against each device’s up-to-date context, which consists of a tuple extracted
from κ with (i) a map of the most recent sensor values for the named sensors in σ used by
the program itself, and (ii) a map from neighbors to their most recent exported value. That is,
only the last message for each neighbor is to be stored. Moreover, messages are usually retained
for an application-specific amount of time. This suffices to guarantee progression and steering
(via self-organization).

• Program output. According to the aggregate operational semantics [64], the output of a local
execution of an aggregate program is a vtree, i.e., a tree of values. A vtree already embeds both
(i) local state to support stateful computations; (ii) information needed for coordination, to be
broadcast to neighbors; and (iii) prescriptions about actuations to be performed by α. In other
words, the output of an aggregate program is directly usable as an export (see Section 3.1.1).

• Messages. Messages sent to neighbors through χ components are (specific parts of) vtrees.

Details about how compositions of aggregate computing constructs give rise to self-organizing
behavior are deeply covered in [64]. It suffices to say that aggregate programs can be defined as
compositions of functional blocks that describe how a system should collectively behave through a
manipulation of computational fields [64], i.e., dynamic maps from logical devices to computational
values. However, each device computes against partial fields given by the most recent information
gathered from neighbors. The key insight delivered in this paper is that the execution of such aggregate
programs can be “pulverized” into micro-steps of sensing, computation, interaction, and actuation
(Section 3.1) that can also be distributed across different machines. Consider the example of a self-healing
channel [20]: an algorithm that yields, for each device, a Boolean value denoting whether it is part of
the shortest path from a source to a destination group of devices, expressed in Protelis as shown in
Figure 5.
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1 def channel(source , destination , tolerance) {
2 distanceTo(source) + distanceTo(destination) <=
3 distanceBetween(source , dest) + tolerance
4 }

Figure 5. A self-healing channel in Protelis.

There, distanceTo(s) is a gradient (a field of minimum distances to source devices for which
field s holds true) and distanceBetween(s,d) a function computing and propagating everywhere
the distance between s and d. When this specification is executed in a decentralized, iterative
way, it locally adapts the channel value after changes in topology, device-to-neighbor distances
(obtained through a proper sensor used within distanceTo—not shown), and input fields source,
destination, and tolerance. Notice how the specification is declarative: it describes the macro-level
behavior without specifying exactly how micro-level behavior is to be carried out. This enables
pulverization of the system, first into devices (and their execution steps) and then into devices’
components (and their execution steps). Pulverization does not depend on the specific program:
the execution protocol is “fixed”; only communication payloads, which include vtrees yielded by
local evaluations of the program, change. Each aggregate function call (such as distanceTo) yields a
particular sub-tree including its very own relevant data.

5. Deployment Independence in Action: Aggregate Computing over DingNet

In this section, we leverage deployment independence to integrate aggregate programming,
embodied by the Protelis [16] programming language, into DingNet [23,68], an exemplar for research
on self-adaptation in the domain of IoT.

DingNet provides an integrated simulator that maps directly to a physical IoT system deployed
in the area of Leuven, Belgium. Such IoT deployment includes a situated Low-Power Wide-Area
Network (LPWAN) realized with LoRaWAN devices [13], whose hardware does not allow for intensive
computation, making them obligated thin hosts. We extend the simulator adding support for simulating
edge servers and non-LoRaWAN situated devices, thus enabling controlled experiments involving
a heterogeneous network composed of a mixture of thick and thin nodes whose communication
intertwines several network protocols. We show how the proposed approach enables aggregate
computations to be performed over such a heterogeneous infrastructure, abstracting away deployment
its complexity from the business logic design.

5.1. LoRaWAN

We here briefly introduce LoRaWAN and its software stack. LoRaWAN is a communication system
designed for long-range communication (up to kilometers) and low energy requirements, at the price
of data rates in the order of few bytes per second (six or more orders of magnitude less than Wi-Fi
or LTE). The foundational elements of LoRaWANs are end devices (or motes), gateways, and LoRa
servers. Motes communicate with gateways, forming a star topology. Gateways, in turn, communicate
with a LoRa server, building an overall star of stars topology. In such a network, each mote willing to
communicate broadcasts its message to all nearby gateways through single hub wireless links. All the
gateways receiving the packet forward it to the server through any available networking backhaul
(the protocol does not govern how gateways server communicate). When communicating from servers
to motes, the server selects the gateway that deems best to deliver data to the recipient. LoRa motes
are designed for constrained-energy scenarios—typical industrial implementations provide battery
life of 1–3 years. Consequently, motes provide little computation capacity and memory, and hence
represent an exemplar case of thin devices.

Figure 5. A self-healing channel in Protelis.

There, distanceTo(s) is a gradient (a field of minimum distances to source devices for which
field s holds true) and distanceBetween(s,d) a function computing and propagating everywhere
the distance between s and d. When this specification is executed in a decentralized, iterative
way, it locally adapts the channel value after changes in topology, device-to-neighbor distances
(obtained through a proper sensor used within distanceTo—not shown), and input fields source,
destination, and tolerance. Notice how the specification is declarative: it describes the macro-level
behavior without specifying exactly how micro-level behavior is to be carried out. This enables
pulverization of the system, first into devices (and their execution steps) and then into devices’
components (and their execution steps). Pulverization does not depend on the specific program:
the execution protocol is “fixed”; only communication payloads, which include vtrees yielded by
local evaluations of the program, change. Each aggregate function call (such as distanceTo) yields a
particular sub-tree including its very own relevant data.

5. Deployment Independence in Action: Aggregate Computing over DingNet

In this section, we leverage deployment independence to integrate aggregate programming,
embodied by the Protelis [16] programming language, into DingNet [23,68], an exemplar for research
on self-adaptation in the domain of IoT.

DingNet provides an integrated simulator that maps directly to a physical IoT system deployed
in the area of Leuven, Belgium. Such IoT deployment includes a situated Low-Power Wide-Area
Network (LPWAN) realized with LoRaWAN devices [13], whose hardware does not allow for intensive
computation, making them obligated thin hosts. We extend the simulator adding support for simulating
edge servers and non-LoRaWAN situated devices, thus enabling controlled experiments involving
a heterogeneous network composed of a mixture of thick and thin nodes whose communication
intertwines several network protocols. We show how the proposed approach enables aggregate
computations to be performed over such a heterogeneous infrastructure, abstracting away deployment
its complexity from the business logic design.

5.1. LoRaWAN

We here briefly introduce LoRaWAN and its software stack. LoRaWAN is a communication system
designed for long-range communication (up to kilometers) and low energy requirements, at the price
of data rates in the order of few bytes per second (six or more orders of magnitude less than Wi-Fi
or LTE). The foundational elements of LoRaWANs are end devices (or motes), gateways, and LoRa
servers. Motes communicate with gateways, forming a star topology. Gateways, in turn, communicate
with a LoRa server, building an overall star of stars topology. In such a network, each mote willing to
communicate broadcasts its message to all nearby gateways through single hub wireless links. All the
gateways receiving the packet forward it to the server through any available networking backhaul
(the protocol does not govern how gateways server communicate). When communicating from servers
to motes, the server selects the gateway that deems best to deliver data to the recipient. LoRa motes
are designed for constrained-energy scenarios—typical industrial implementations provide battery
life of 1–3 years. Consequently, motes provide little computation capacity and memory, and hence
represent an exemplar case of thin devices.
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5.2. MQTT-Based Network Architecture

Even though the LoRaWAN protocol focuses on communication between motes and gateways,
its typical implementations usually resort to a centralized cloud LoRa server (most notably, relying
on The Things Network (https://www.thethingsnetwork.org/) [69]), or the Chirpstack implementation
(https://www.chirpstack.io/)) , which provides support for communicating with motes through
high-level protocols, typically MQTT [21]. MQTT is a connectivity protocol designed as a lightweight
publish/subscribe messaging transport devoted to IoT and machine-to-machine communication.
It defines two network entities: clients that want to exchange information; and a broker, which is in
charge of receiving and redistributing data among clients. As part of the contribution of this work,
we extended DingNet with an explicit model of the interaction between gateways and LoRa servers
via MQTT, thus emulating the behavior of Chirpstack. The implementation has been released as open
source under a permissive licence (https://github.com/aPlacuzzi/DingNet/releases/tag/v1.3.3).

5.3. Aggregate Computing over DingNet

We now define our cyber system and the mapping of pulverized components with the platform
layer given by DingNet.

The cyber system, which we target when defining the business logic, is composed of several logical
devices with computation, sensing, actuation, and communication capabilities. Logical components
have a position in space, and their neighborhoods are defined based on geographical proximity,
within some arbitrarily chosen range (although, in principle, any policy for neighborhood definition
could be used). The set of sensors and actuators may differ on each device. All logical devices have
computational capabilities. Every logical device is bound to a situated platform device of the simulated
system, inheriting its spatial situation.

Table 1. Available choices for pulverized component deployment for different device types in the
extended DingNet simulator. D indicates that the component can be deployed on the local device
directly, E that it can get deployed on edge, and C on cloud. The simulator supports only configurations
where behavior and state are located onto the same type of host (e.g., edge-edge). The devices can be
thin (e.g., LoRa mote) or thick hosts (e.g., handhelds).

Device Type Sensors (σ) Actuators (α) Behavior (β) State (κ) Communication (χ)

Thin host D D E/C E/C E /C
Thick host D D D/E/C D/E/C E/C

The pulverized logical system is then mapped over the platform system as follows
(see also Table 1). Sensing and actuation systems σ and α are always deployed on the host bound
to the logical node. This is true for both thin and thick hosts. Behavior (β) and state (κ) components
cannot get allocated on thin hosts: their deployment targets are restricted to the cloud, edge servers,
and thick situated devices. To simulate realistic situations, we allow β and κ components of LoRa
motes associated devices to be located solely on edge servers or on the cloud, and we let β and κ

associated with localized thick devices (e.g., handhelds) to be hosted locally or on the cloud. Impractical
deployments, (e.g., β and κ on a device backing the LoRa mote [70]) although possible in principle,
are deemed as unrealistic with the current state-of-the-art technologies, and thus excluded from the
present analysis. Moreover, as introduced in Section 4, we note that all logical devices share the same
behavior: βi = β j ∀ i, j where i, j are logical device identifiers. This is part of the semantics of aggregate
computing, and may vary for other pulverizable computational models. We give an example program
of logical devices for the evaluation case in Section 6. Finally, communication components χ are all
hosted on a single device, the MQTT broker, that can be either an edge server or a service on the cloud.
This choice was made for the sake of simplicity and without loss of generality: in fact, even though in
principle χ components could be located on diverse hosts, and communication among them could
be wired to any level 7 network protocol, we share in fact the same MQTT broker supporting the

https://www.thethingsnetwork.org/
https://www.chirpstack.io/
https://github.com/aPlacuzzi/DingNet/releases/tag/v1.3.3
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Chirpstack architecture. Figure 6 summarizes the aggregate system as deployable within the DingNet
extended simulator.

1 4

3
4

1 3
2

2B

Figure 6. Abstract architecture of the experiment, graphical elements share the semantics of Figure 1c,
with some additional elements: red dashed lines represent platform-level MQTT communications;
small antennas identify thin hosts (LoRa motes); large antennas are LoRa gateways, houses depict
situated thick devices, and vertical gray rectangles symbolize edge servers. The green circle with a B
marks a MQTT broker, which can be deployed on edge servers as in the figure, or in the cloud.

6. Evaluation

We exercise our approach for deployment independence via simulation, relying on the
aforementioned extended DingNet simulator with Protelis support. In particular, we simulate a CPS
whose aim is to reduce the contribution of household winter heating to air pollution [71] by imposing
custom maximum household temperatures relative to the current level of particulate matter with
a diameter smaller than 10 µm (PM10) in the area surrounding the household.

The system must provide this functionality in a self-organizing fashion: there must be no central
coordinator; rather, the system itself must autonomously organize its micro-level actuation activity,
in terms of decentralized computation and interaction, so that the functionality is implemented
achieved despite environmental perturbations. Our goal is to show that the same business logic,
defined once, can be reused via its pulverized model across different deployment schemes, allowing the
picking of an actual deployment whose non-functional tradeoffs better fit the requirements at hand.

The whole experiment has been automated, documented, and open sourced in a public repository
(https://github.com/aPlacuzzi/Experiment-2020-FutureInternet-LoRa/) to facilitate accessibility
and reproduction.

6.1. Case Description and Simulation Configuration

Our CPS is composed of a sensor network of LoRa motes, each equipped with a sensor measuring
PM10 in µg/m3. Eight motes are installed in fixed position, while two are mobile (mounted on public
transport systems). LoRa network coverage on the city is provided by nine gateways, whose position
in the simulated environment matches one of the physical gateways deployed in the Belgian city
of Leuven. The target of the control system are 300 households, randomly selected in the city area,
equipped with a smart thermostat. Our logical neighborhood relationship allows logical direct
communication in a unit disc of 1km radius.

The deployment possibilities and network architecture are summarized in Table 2. The actual
deployment scheme is controlled by three parameters described in Table 3, indicating respectively:
the fraction of LoRa devices whose computation is hosted on the edge rather than on the cloud (Pe);

https://github.com/aPlacuzzi/Experiment-2020-FutureInternet-LoRa/)
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the fraction of smart thermostats whose computation is hosted on the local device rather than on the
cloud (Pl); and whether the MQTT broker is hosted on the edge or on the cloud (B). Changing the
values of such parameters generates a new deployment, with its own performance and price tradeoffs:
we exercise our approach by showing that the business logic is unaffected by such change.

Table 2. Deployment configurations under simulation. D indicates that the component can be deployed
on the local device directly, E that it can get deployed on edge, and C on cloud. Behavior (σ) and state
(κ) components must be located onto the same host (device-device, edge-edge, cloud-cloud).

Device Type Sensors (σ) Actuators (α) Behavior (β) State (κ) Communication (χ)

MQTT broker on edge server

LoRa mote D D E/C E/C broker’s host
Thermostat D D D/C D/C broker’s host

MQTT broker on cloud service

LoRa mote D D E/C E/C broker’s host
Thermostat D D D/C D/C broker’s host

Table 3. Free variables for the case.

Name Values Unit Meaning

seed [1, ..., 10] n/a Simulation random generator seed
Pe [ k

3 | k ∈ [0 ,..., 3] n/a Fraction of LoRa devices whose computation is hosted on the edge
Pl [ k

3 | k ∈ [0 ,..., 3] n/a Fraction of thermostats whose computation is hosted on the local device
dee 10k | k ∈ {−1, 0, 1} ms Network delay in edge-to-edge communication
dcc {5, 25, 100} ms Network delay in cloud-to-cloud communication
dec {10, 50, 300, 1000} ms Network delay in edge-to-cloud and cloud-to-edge communication
da {50, 150, 500} ms Network access delay for smart thermostats
B {cloud, edge} n/a Deployment position of the MQTT broker
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Figure 7. Function used in the case study to set the maximum allowed temperature setpoint based on
the current estimation of the CAQI index (a metric of air pollution).

The DingNet simulator takes care of realistically simulating LoRaWAN network interactions
and delays, while other communications are simulated with a refined version of the network model
proposed by EdgeCloudSim [72]. More precisely, the communication delay (D) is a function of
a propagation delay d, the message size s, and the channel data rate b: D = d + s/b. Since all
communications in our system are mediated by an MQTT broker, we consider delays and data rates
all relative to communications from and to that broker. In particular, we assume the data rate of the
broker to be 1Gb/s, and we compute the propagation delay d considering the actual network path the
data needs to travel, summing the individual contributions of each communication link. We account
separately for end devices Internet access delay, e.g., due to Wi-Fi or LTE (da); communication delays
between cloud and edge (dec), edge servers (dee), and cloud services (dcc). Actual delay values are free
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variables in our experiments, summarized in Table 3. We also take into account the case in which
two logically separate components are hosted on the same physical machine, in which case the data
rate is considered virtually unlimited, thus s/b ' 0, and consequently consider such delay as constant
D = dl = 0.015 ms.

Logical devices are programmed to: (i) consider pollution data from all nodes within 2 hops;
(ii) compute the local pollution value as the weighted mean of such information, using the inverse
of the distance as weights; and (iii) use the value to set the maximum allowed temperature, if the
appropriate actuator is available. Instead of directly relying on PM10 as metric, it computes the
CAQI index [73], in such a way that future addition of further pollution metrics such as PM2.5 can be
considered with no change to behavior. The relationship between the computed CAQI index and the
desired temperature used in our experiments is shown in Figure 7.

The program, excerpted in Figure 8, is entirely independent of the actual deployment of logical
devices’ components.
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1 // id, coordinates and CAQI pollution for each neighbour
2 let neighbors = foldUnion ([ getUID (),self.getCoordinates (), env.get("CAQI")])
3 // same information for each neighbour ’s neighbour
4 let pollution = distinctByUID(foldUnion(nbr(neighbours)))
5 // replace position with distance from myself
6 .map { it.set(1, self.distanceTo(it.get(1))) }
7 // Compute maximum allowed temperature
8 let maxTemperature = self.temperatureByPollution(pollution)
9 // If an appropriate actuator exists , set it

10 if (env.has("thermal_control")) {
11 env.put("thermal_control_max", maxTemperature)
12 }

Figure 8. Protelis code for the case study

We simulate the system evolution over four days (96 h). Device round frequency is set to 1/900 Hz.
We perturb the system by reproducing the reduction in PM10 caused by a rainfall [74] starting from
the northern side of the city after 25 h of simulation, covering the whole city at the 31st simulated
hour, and terminating at the 61st hour. Figure 9 shows the system’s evolution through snapshots of
a simulation run.

Figure 8. Protelis code for the case study.

We simulate the system evolution over four days (96 h). Device round frequency is set to 1/900 Hz.
We perturb the system by reproducing the reduction in PM10 caused by a rainfall [74] starting from
the northern side of the city after 25 h of simulation, covering the whole city at the 31st simulated
hour, and terminating at the 61st hour. Figure 9 shows the system’s evolution through snapshots of
a simulation run.

Our reference metrics are presented in Table 4. Temperature measures are used to verify that
the system is operating nominally, regardless of the deployment configuration. Latency measures are
intended as a performance proxy, showcasing that different deployment choices provide different
tradeoffs. We also provide an operating cost estimation for the deployment. Our estimation is
the following:

• We estimate the pricing for operating the MQTT broker on the cloud by referring to the prices of
a prominent operator available at the time of writing (https://archive.is/9g2tk).

• We assume the broker located on the edge to be self-hosted, thus with a negligible upkeep cost.
• We consider the smallest cloud server instances available from one of the major players

(https://archive.is/9fg0e). We estimate that each such instance has enough memory to
comfortably host about a hundred pulverized smart thermostats.

• For any cloud hosting service, we pick the pricing for the infrastructure located geographically
closest to Leuven (in our case, located in Frankfurt).

• We include the electricity pricing to estimate the operating cost for smart thermostats (Arguably,
this cost would be charged to the end users, and thus not impact the actual operating cost directly.
However, we decided to consider this negative externality in our estimation), to do so we consider
them to be implemented using a Raspberry PI Zero [75].

https://archive.is/9g2tk
https://archive.is/9fg0e
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• We consider the Raspberry PIs to have an idle current drain of 65 mA (https://archive.is/Lk0BI)
(hence consuming 0.325 W at 5 V), and a load power consumption of 2.7 W (https://www.
phoronix.com/scan.php?page=article&item=raspberry-pi-burst&num=3).

• We estimate the lelectricity price to be 0.28e/KWh (https://archive.is/N7BPS), and we use a
conversion factor of 1.2$/e (https://archive.is/lD9ga).

We execute 10 runs of the experiment with a different seed for every combination of the variables
in Table 3. Different seeds imply different household positions, users’ desired temperature, and smart
device power on instant. Data analysis has been performed using Xarray [76] and matplotlib [77].
The complete analysis, available on the aforementioned repository, counts over 350 charts, of which
the most relevant are included here.

(a) (b) (c)

(d) (e)

Figure 9. Sequence of snapshots of the simulator during an execution run of the experiment. Initially
(a), PM10 levels are comparable in the whole city. After 25 h from the beginning of the experiment
(b), intense rain enters from north, lowering the PM10 levels, and covers the whole city in six hours
(c), thus lowering PM10 levels everywhere. Rain stops uniformly after 61 h from the beginning of the
experiment (d), and the overall PM10 raises with time to the initial level (e).

Table 4. Metrics for the case.

Name Unit Meaning

D15 ms Accumulated network delays in the last 15 min.
Ti °C Maximum allowed heating temperature for smart thermostat i
E[T] °C Mean of T across all devices
σ[T] °C Standard deviation of T across all devices
Tmax °C Maximum of T across all devices
Tmin °C Minimum of T across all devices

https://archive.is/Lk0BI
https://www.phoronix.com/scan.php?page=article&item=raspberry-pi-burst&num=3
https://www.phoronix.com/scan.php?page=article&item=raspberry-pi-burst&num=3
https://archive.is/N7BPS
(https://archive.is/lD9ga
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6.2. Results and Analysis

Subsequently, we show how the pulverisation approach achieves the functional goals
independently of deployment, then we elaborate on the effect of different deployments on
non-functional goals, and finally we discuss threats to validity.

6.2.1. Achieving Functional Goals Independently of Deployment

Our goal is to demonstrate that pulverization allows for reusing the same business logic on
diverse deployments, thus making deployment no longer a design constraint with respect to the
realization of the functionality of the system. Figure 10 shows correctness by depicting the system
functionality in a typical configuration. The system, whose overall performance changes in response
to different network delays, retains its application-level behavior across the table, regardless of the
actual deployment shape of its sub-components; namely the core business logic of the application is
preserved regardless of the underlying deployment configuration (whose alternatives are summarized
in Table 2). The example thus shows that pulverization achieves separation between the behavior of
the system from its deployment detail, thus providing flexibility to engineers that will be able to select
(and change) the deployment scheme based on desired performance and projected operating cost.
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Figure 10. Evolution of E[T]± σ[T] (aquamarine), Tmax (purple), and Tmin (yellow) in the following
conditions: B = cloud (MQTT broker hosted on the cloud) in the top charts; B = edge (MQTT broker
hosted on the edge), in the bottom charts; Pl = 0 (all thermostat computation hosted on the cloud),
in the left-hand column; Pl = 1 (all thermostat computation hosted on the local device), right-hand
column. Every delay is set to the second lowest value in the set (usually resembling common operating
conditions). Vertical dashed gray lines depict, from left to right: rainfall arrival on the northern part of
the city, rain falling on the total city area, and rainfall conclusion. The functional behavior of the system
is consistent regardless of the deployment strategy: results are very similar across the board. Very small
differences come from different network performance (mostly due to diverse network latency) and
from the randomness inherent to the simulation. The system reacts to changes in the detected PM10

level by adjusting the temperature and allowing higher temperatures to be set when air pollution levels
are sufficiently low. σ[T] increases when rainfall hits only part of the city. This is because thermostats
located in the area subject to the rainfall allow higher temperatures to be set, while the remainder of
devices remains on the pre-rain levels, thus raising variance.
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We stress that no change to the application level software was required to tackle different
deployment targets for any component, thus demonstrating the feasibility of a deployment-agnostic
approach to self-organizing CPSs design.

6.2.2. Effect of Deployment on Non-Functional Goals

In-depth performance analysis is presented in Figure 11, while cost estimation is depicted
in Figure 12. Performance analysis shows that depending on expected network delays,
different deployment choices may have relevant performance consequences. Expressing the behavior in
a deployment-independent way along with the availability of an evaluation tool enables for predicting
the system’s performance across several different possibilities, thus allowing for more informed
deployment choices. Should conditions change and a different deployment be required to meet
performance metrics, application-level logic would not get impacted in any way.
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Figure 11. System performance (mean communication delay) for different propagation delays (one per
chart) and different deployments, obtained by changing the number of smart thermostats whose
code is executed locally (Pl) and the deployment location of the broker (surface color). Lower values
indicate better performance. The pulverized system does not require any adjustment to the business
logic to tackle the diverse deployment schemes: the designer can thus use the following analysis
to decide which deployment configuration to pick depending on how important it is to maximize
performance. Changes in edge-to-edge delays (top left) impact performance minimally, as most of the
accumulated delay is elsewhere; thus, they provide a good baseline to compare other configurations
to. Changing the propagation delay between edge and cloud (top right) highlights that the worse
the network performance, the more is important for the broker to be close to where the computation
components of the logical system are concretely deployed. Performance of the household connection
(bottom left) have higher impact on the overall performance of the CPS with the count of devices being
executed locally, regardless of the broker location. This suggests that offloading the business logic to the
cloud, thus sending fewer data to end devices, should be considered when the network is expected to
experience high load. Finally, a difference in the delay in cloud-to-cloud communications (bottom right)
is influential only for cases in which the broker is located there. If there is little or no guarantee on
where the cloud components will get allocated (and hence, little knowledge about their communication
performance), then adopting an edge-located broker can provide a less volatile performance.
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Figure 12. Operating cost estimation for different deployment schemes. x-axes of both charts show the
fraction of devices being hosted on the local thermostat, as opposed as on the cloud: every point is
a deployment scheme that has been exercised retaining functionality, right-hand points are deployments
with progressively more component moved to the edge of the network. Pulverization allows for exercising
different deployment schemes without any change to the functional specification. Different lines on the
eft-hand chart show projected pricing for hosting the broker on the self-hosted edge servers or moving
it on the cloud. The right-hand side chart shows a breakdown of the overall pricing into its constituent
components. The forecasted usage for the broker does not overcome the first pricing level; it is thus a
constant contribution. Idle time power drain dominates the electricity consumption of smart thermostats
(although the line looks flat, it imperceptibly grows): this suggests that moving computation towards the
edge is generally cheaper, and suggests that better power saving strategies than keeping the device idle
should be devised. Cloud hosting pricing decreases when devices are moved to the edge; since we request
a new cloud instance every 100 thermostats hosted on cloud and pricing goes per-instance, the chart is
discontinuous.

6.3. Threats to Validity

In the section we discuss the main internal (intrinsic to the experiment, e.g., systematic error) and
external (related to the generalizability) threats to the validity of the evaluation results, and for each
one we explain how we mitigated it.

Regarding the correctness of the application-level behavior in the experiment: changes in the
pollution level get reflected in the maximum allowed temperature setpoint for households, and the
time after which the change becomes effective is subsequent to the moment sensors detect such
change. Guarantees in this sense come from the structure of the application program itself. In fact,
it functionally builds the output field (i.e., the field of maximum allowed temperature) through a field
computation taking a single input field, namely the field of pollution level. The network performance
that we measure as mean network delay, is dependent on all the free variables. For each such variable,
we picked a set of values that ranges from smaller-than-normal to larger-than-normal, of course also
experimenting with values that could be reasonably expected for a real deployment. To pinpoint the
effect of every single variable on the performance, we execute simulation replicas for every combination
in the Cartesian product of variable values, hence testing every combination. This allowed us to isolate
the behavior and impact of every single change of any variable value, moreover enabling the analysis
of interactions among multiple values (e.g., possible resonant phenomena).

Simulations have been performed using state-of-the-art best practices, for instance, multiple
randomization-controlled simulation repetitions (ten for each combination of the free variables),
guaranteeing both a reasonable problem space exploration and complete reproducibility. The first
version of [23] has been used in the past to simulate realistic LoRa communications between LoRa
motes and LoRa gateways. Network communications other than those based on the LoRa protocol are
modelled using a refined version of the network model proposed in [72], as described in Section 6.1.
The most obvious threat to the validity of the network model is the lack of a model of lost packets,
along with the assumption that the MQTT broker is behaving correctly and not having networking
issues. In case of deployment in networks with low reliability, we expect the deployed system to
show performance possibly different from the ones measured in simulation. However, we note that
networking among households, edge, and cloud is usually reasonably reliable, and in our simulated
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system the most unreliable network is by its nature the wireless LoRa communication, whose model
from Dingnet however includes packet losses, collisions, and signal propagation.

Another validity issue concerning generalisability is the resilience of the system in face of an
active attacker: this kind of robustness would require specific security measures to be implemented,
which fall out of the scope of this manuscript (see, e.g., [78,79]).

At the application level, we note that by its nature LoRa can efficiently deal with systems
whose evolution in time is not exceedingly quick. If sensor readings are required multiple times
per second, LoRa motes would quickly terminate their allowed use of the shared medium and hence
stop transmitting to comply with the medium-use limitations [80], hence affecting the final results.
More generally, the applicability of the LoRa network architecture for the specific domain at hand
puts some limitations on the generality of the results obtained for this specific case study. For similar
applications in different domains, as far as time frames are similar, we expect that the simulation
techniques can be straightforwardly applied. We stress, however, that such limitation is due to the
specifics of LoRaWAN and affects solely the simulation platform: the concept of pulverization remains
untouched, as it is conceptually independent of the network and hardware infrastructure on which we
implemented it for the evaluation.

7. Conclusions and Future Work

In this paper, we introduced a novel model for self-organizing cyber-physical systems that fosters
“pulverization” of the structure and execution of global system behavior (i.e., the ability to decompose
macro-level components and activity into micro-level components and activities) and deployment
independence (i.e., the ability of moving components and activities to different deployment targets).
We then demonstrated the approach by considering an instantiation in the aggregate computing
framework. We validated the approach in a simulation case of pollution-aware household heat
monitoring and control, achieved through a simulator extending DingNet to support heterogeneous
CPSs comprising LoRa motes, IoT devices, edge servers and Protelis nodes.

As future work, we plan to investigate and develop support for adaptive and opportunistic
deployment of self-organizing systems by taking into account dynamics in the environment (for
instance based on human behaviour), changes in the available infrastructure (e.g., as induced by failure
and mobility), changes in requirements and preferences (e.g.,related to quality of service, operating
cost, and risk), and accordingly, dynamic and opportunistic relocation of components. The theoretical
framework introduced in this paper will then serve as ground.
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