

ARCHIVIO ISTITUZIONALE DELLA RICERCA

Alma Mater Studiorum Università di Bologna Archivio istituzionale della ricerca

The puzzling taxonomic rank of Pijnackeria hispanica, a chimerical hybrid androgen (Insecta, Phasmida)

This is the final peer-reviewed author's accepted manuscript (postprint) of the following publication:

Published Version:

The puzzling taxonomic rank of Pijnackeria hispanica, a chimerical hybrid androgen (Insecta, Phasmida) / Milani L.; Scali V.; Punzi E.; Luchetti A.; Ghiselli F.. - In: ORGANISMS DIVERSITY & EVOLUTION. - ISSN 1439-6092. - STAMPA. - 20:(2020), pp. 285-297. [10.1007/s13127-020-00436-1]

This version is available at: https://hdl.handle.net/11585/781529 since: 2020-11-20 Published: DOI: http://doi.org/10.1007/s13127-020-00436-1

Terms of use:

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are specified in the publishing policy. For all terms of use and more information see the publisher's website.

(Article begins on next page)

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/). When citing, please refer to the published version. This is the peer reviewed version of the following article:

Milani, L., Scali, V., Punzi, E., Luchetti, A., Ghiselli, F. The puzzling taxonomic rank of *Pijnackeria hispanica*, a chimerical hybrid androgen (Insecta, Phasmida). *Org Divers Evol* **20**, 285–297 (2020)

which has been published in final form at <u>https://doi.org/10.1007/s13127-020-00436-1</u>.

This article may be used for non-commercial purposes in accordance with Springer Terms and Conditions for Use of Self-Archived Versions.

Click here to view linked References

	1	The puzzling taxonomic rank of <i>Pijnackeria hispanica</i> , a chimerical
1 2	2	hybrid androgen (Insecta, Phasmida)
3 4	3	
5 6	4	LILIANA MILANI ¹ *, VALERIO SCALI ¹ *, ELISABETTA PUNZI, ANDREA
7 8	5	LUCHETTI, FABRIZIO GHISELLI
9 10	6	
11 12	7	¹ equal contribution
13 14	8	
15 16	9	Department of Biological, Geological and Environmental Sciences - University of
17 18	10	Bologna, 40126, Bologna, Italy.
19 20	11	E-mail: liliana.milani@unibo.it; scavale1938@gmail.com
20 21 22	12	
23	13	
24 25	14	
26 27	15	Liliana Milani orcid ID: 0000-0001-5052-2075
28 29	16	Andrea Luchetti orcid ID: 0000-0002-2986-721X
30 31	17	Fabrizio Ghiselli orcid ID: 0000-0002-1680-8616
32 33	18	
34 35	19	
36	20	
37 38	21	
39 40	22	
41 42	23	
43 44	24	
45 46	25 26	Funding: This work was supported by the Canziani bequest.
47 48	20 27	Funding: This work was supported by the Canziani bequest.
49 50	27	Acknowledgements: We would like to thank Luciana Eliopoli for the Sierra Nevada
51 52	20 29	sample collection.
52 53 54	30	sumple concerton.
55	31	
56 57	32	
58 59	33	
60 61	34	
62 63		
64 65		

35		
36	Abstract	
37		
38	The stick-insect genus Pijnackeria includes four diploid bisexual and two polyploid (3	n,
39	4n) parthenogenetic species. Earlier analyses of the tetraploid parthenogen P. hispanica	а
40	using mitochondrial markers allowed to trace its maternal ancestry to Pijnackeria	
41	originis, while no maternal nuclear contribution was found, thus suggesting an	
42	androgenetic and hybrid origin. The recently described Pijnackeria recondita—	
43	showing, among other features, a specific antennal structure linking it to the tetraploid	
44	parthenogen—prompted us to check whether the new species could be P. hispanica	
45	unknown paternal ancestor. In this work we use karyology and of molecular analysis o	f
46	the mitochondrial gene cytochrome c oxidase subunit 2 (cox2), and the nuclear gene	
47	elongation factor 1 subunit α (<i>ef1-</i> α) to investigate the origin of such a complex	
48	tetraploid hybrid parthenogen.	
49	The molecular analysis supported <i>P. recondita</i> as being a paternal ancestor of the <i>P</i> .	
50	hispanica, but also suggested that two more fathering species have to be taken into	
51	account: P. barbarae and the unknown paternal ancestor of the triploid hybrid P.	
52	masettii. Therefore, P. hispanica is apparently a polyphyletic chimeric androgen, which	h
53	we propose to indicate as an <i>androgenetic complex</i> . Our data also revealed that <i>P</i> .	
54	hispanica is between 1.96 Myr and 3.31 Myr old, making it the oldest parthenogenetic	
55	taxon discovered among insects.	
56		
57	Keywords: androgenesis, hybridization, parthenogenesis, Pijnackeria hispanica,	
58	Pijnackeria recondita, reticulate evolution.	
59		
60		
61	Introduction	
62		
63	The phasmid genus Pijnackeria Scali, 2009 is a Spanish monophyletic taxon	
64	embodying four diploid bisexual and two polyploid parthenogenetic species (3n, 4n), a	11
65	sharing the same haploid chromosome set with $n = 19$ (Brock 1991, 1993 for reviews;	
66	Bianchi, 1992, Bianchi and Meliado, 1998; Scali, 2009a; Scali et al. 2013).	
67	P. hispanica (Pantel, 1890) (Fig. 1), the nominal species of the genus, appears to be a	
68	very successful tetraploid hybrid parthenogen, ranging from the Sierra Nevada	
		1

- (southern Spain) up to the Sistema Central Mountains, northwestwards and to the Serrania de Cuenca, northeastwards. Here, its distribution area overlaps that of the similarly successful triploid hybrid parthenogen P. masettii Scali et al., 2013 which is also distributed up to the southern French districts of Var, Herault and Basses Alps (Bianchi, 1992; Ghiselli et al. 2007, Scali, 2009; Scali et al. 2013) (Fig. 2). The remaining four taxa, namely P. lucianae (Scali et al. 2013), P. barbarae (Scali et al. 2013), P. lelongi (Scali et al. 2013) and P. originis (Scali et al. 2013) are diploid and show much more limited distribution areas in the south-eastern Iberian Peninsula, clearly suggestive of relict distribution (Fig. 2). Molecular genetic analyses, carried out using both the mitochondrial gene cytochrome c oxidase subunit 2 (cox2) and the nuclear gene elongation factor 1 subunit α (ef1- α) as markers, suggested the bisexual diploid P. lelongi Scali et al., 2013 as the maternal
- ancestor of P. masettii, and the diploid bisexual P. originis Scali et al., 2013 of Tiscar (Sierra de Cazorla) as the maternal ancestor of the tetraploid P. hispanica (Ghiselli et al. 2007; Scali, 2009a). On the other hand, quite surprisingly, while P. masettii showed the *ef1-a* allele of maternal derivation, as it could be expected, P. hispanica did not, so that its ef1- α gene ought to be of only paternal derivation (Ghiselli et al. 2007). In order to explain such finding, three different hypotheses were considered: *i*) the effect of gene conversion; *ii*) the outcome of a non-equivalent gene silencing in the hybrid; *iii*) the clear-cut consequence of the maternal genome exclusion within an androgenesis scenario (Ghiselli et al. 2007; Milani et al. 2010, 2013). At any rate, the available data greatly stimulated us to trace the paternal ancestor(s) of *P. hispanica* and to try to shed light on its puzzling genetic structure, without forgetting that even the paternal ancestor of P. masettii was actually unknown.

Recently, a new Pijnackeria species, P. recondita Valero and Ortiz, 2015 was found in a very small area of the Sierra Nevada, right at the border of *P. hispanica* southernmost range (Fig. 2; Valero and Ortiz, 2015). Its general morphology differs from P. hispanica only in the lower amount of body granulation and chorionic egg sculpturing. All other morphological and morphometric characters are shared with the tetraploid hybrid, including a very similar structure and number of antennae articles (Scali et al. 2013). All these features point to the possibility to consider *P. recondita* as a candidate paternal ancestor of *P. hispanica*. We therefore decided to test the supposed paternal role of *P*. recondita by investigating its chromosome set-which obviously had to be congruent

102 with the tetraploid karyotype—and, more importantly, by comparing the *cox2* and the

ef1-\alpha gene sequences of the newly described species with those of *P. hispanica*.

- 105 Material and Methods

On the second half of July 2016, 14 adult specimens (8 males and 6 females) were found in the tiny area of the Sierra Nevada, 2,000 meters a.s.l., as precisely indicated by Valero and Ortiz (2015) (Fig. 2). Owing to the very small size of the population, four males and two females were released on the spot to keep the population as steady as possible. At collection, few specimens were found on the common broom, Cytisus (Sarothamnus) scoparius, but most of them were caught resting on, or actually eating, a different leguminous plant, here tentatively referred to as Cytisus sp. (Fig. 3); no Dorycnium pentaphyllum was recorded in the collecting area, although it was easily accepted as lab feed, as stated by Valero and Ortiz (2015). The insects were therefore kept on their original food plants added with *D. pentaphyllum*, until their utilization for cytogenetic and molecular analyses. During the same sampling campaign, two adult females of P. hispanica, also feeding on Cytisus sp., were collected 15 kilometers away, along the route to El Purche, about 2 Km from the A395 junction. Chromosome plates of *P. recondita* were obtained from anaesthetized specimens by manual dissection of the gonads soaked in Ringer solution for insects. After a short hypotonic shock (5-10 min), testes or ovariole tips were put in an 1% sodium citrate solution, fixed for 30 min in a simplified Carnoy solution (3:1, absolute ethanol:acetic acid), and then gently pinched in drops of 45% acetic acid and dried on a hot plate (60°

⁴³₄₄ 126 C). Finally, a post-fixation treatment with the same fixative was applied to the slides

 $^{45}_{46}$ 127 and then the Giemsa staining was performed. Dry stained slides were eventually

 $\frac{47}{48}$ 128 mounted in some drops of Canadian balm. Later on, chromosome observations were

 $^{49}_{50}$ 129 carried out with a Zeiss photomicroscope, which also allowed picture recording on

130 Ilford film or direct recording from the microscope camera.

 $\frac{52}{53}$ 131 Total genomic DNA was obtained according to the method described in Preiss *et al.*

⁵⁴₅₅ 132 (1988). Total RNA was obtained with TRIzol reagent (ThermoFisher) according to

- $^{56}_{57}$ 133 manufacturer instructions, then the cDNA was reverse transcribed as indicated in
- ⁵⁸ 134 Ghiselli et al. (2007). The partial sequences of mitochondrial gene cox2 and of the
- ⁶⁰ 135 nuclear gene *ef1-a* were PCR-amplified as described in Ghiselli et al. (2007). Obtained

PCR product were purified using the Wizard PCR Preps DNA Purification System (Promega), and Sanger-sequenced at Macrogen Europe Lab. Sequence chromatograms checking and multiple sequence alignments with ClustalW algorithm were carried out using Mega v.7 (Kumar et al. 2016). New sequences were elaborated together with previously obtained ones (Fig. 4; Table 1 and Table 2; Supplementary material 1-3 for Genbank accession numbers and sequences) in order to get a more comprehensive analysis. Maximum Likelihood tree searches were performed with RAxML v. 8.2 (Stamatakis 2014), using the GTR+G substitution model and 500 rapid bootstrap replicates for both genes. Bayesian inferences were conducted with Mr Bayes v3.2.6 (Ronquist et al. 2012): two runs were launched, each with 1,000,000 generations, sampled every 500th generation, and using the GTR+G substitution model. Convergence was assessed through the variance of split frequencies (<0.01), PSRF (=1.00) and ESS (>200). Age estimates of cladogenetic event were calculated using a bayesian framework with BEAST v. 1.8 (Drummond and Rambaut, 2007) on the cox2 dataset. Two independent searches were run, each 10,000,000 generations long, sampled every 1,000th generation, and using the GTR+G substitution model. Convergence was assessed through ESS values >200. Following Mantovani et al., 2000, time calibration was set to the split between Bacillus rossius tripolitanus and B. rossius rossius/B. rossius redtenbacheri: the separation of this two clades would date back to the end of Messinian salinity crisis, when the Mediterranean basin was filled up, separating North Africa, hosting B. r. tripolitanus only, and Southern Italy, where only *B. rossius rossius/B. rossius redtenbacheri* can be found. Calibration time was, therefore, set to 5.33 ± 0.5 Myr ago and implemented with a normal distribution. Searches were run with an uncorrelated, log-normal relaxed molecular clock and the birth-death speciation process. Haplotype parsimony networks were calculated through TCS v. 1.21 (Clement et al. 2000). Results Karyotype analysis The chromosome set of *P. recondita* fully matched to expectations, for both number and structure, being 2n=37,X0 male / 38,XX female (Fig. 5), and showing similarities to the P. hispanica quartets (Fig. 6). The main features of P. recondita karyotype are three

	170	large pairs of metacentrics (1, 2, 4), and a smoothly decreasing series of acro- and
1 2	171	subacrocentric pairs; the last four pairs, owing to their minute size, could also be
3 4	172	envisaged as small metacentrics.
5 6	173	The P. recondita karyotype shows an overall good correspondence with the P.
7 8	174	hispanica chromosome set (Figs 5, 6), the main differences being the different
9	175	centromere position in the 4 th and 6 th pairs of the former when compared to the
10 11	176	corresponding quartets of the latter. It could also be noted that the first and 13 th quartets
12 13	177	have two chromosomes bearing small satellites, lacking in the corresponding positions
14 15	178	of <i>P. recondita</i> , which, in turn, presents satellites on the 2^{nd} and 4^{th} pairs.
16 17	179	The peculiar features of <i>P. masettii</i> (3n = 57) can be summarized as follows: <i>P. masettii</i>
18	180	is a triploid hybrid with one chromosome set derived from P. lelongi and the other two
19 20	181	from an unknown heterospecific paternal ancestor, as both the structure of several
21 22	182	chromosome triplets and the cytological satellite features clearly support (Fig. 6, triplets
23 24	183	1-4, 6, 12, 17-19) (Ghiselli et al. 2007; Scali et al. 2013). Its link to P. hispanica will be
25 26	184	commented in the Discussion section.
27 28	185	
29	186	Molecular analysis
30 31	187	
32 33	188	Maximum Likelihood and Bayesian inference phylogenetic analyses carried out on the
34 35	189	cox2 mitochondrial gene are congruent (Fig. 7a) and cluster Pijnackeria and Leptynia
36 37	190	species in a monophyletic clade (bootstrap = 64% ; posterior probability = 0.99).
38 39	191	However, relationships within this clade are not fully resolved. Overall, taxa are split in
40 41	192	a polytomy where it is possible to recognize four well-supported clades: <i>i</i>) the <i>L</i> .
42	193	annaepaulae clade, ii) a clade including L. attenuata, L. caprai, and L. montana, iii) the
43 44	194	P. recondita clade, which embodies also the newly obtained sequences, and iv) a cluster
45 46	195	comprising P. lucianae in sister relationship with the group of the remaining
47 48	196	Pijnackeria species. In this latter group, P. masettii and P. lelongi cluster together with
49 50	197	high support; on the other hand, the cluster including P. hispanica and P. originis is
51 52	198	weakly supported (bootstrap = 71% ; posterior probability < 0.9). The same analyses
53	199	performed on the <i>ef-1</i> α nuclear gene are congruent as well (Fig. 7b), and place the <i>P</i> .
54 55	200	recondita clade in sister relationship with the remaining Pijnackeria species. P.
56 57	201	hispanica and P. originis are not included in the same cluster, while three P. masettii ef-
58 59	202	$I\alpha$ sequences cluster with that of <i>P. lelongi</i> .
60 61		
62 63		
64		5
65		

	203	Parsimony network on <i>Pijnakeria cox2</i> sequences (Fig. 8) is consistent with the	
1 2	204	phylogenetic analyses. Three separate networks can be observed: <i>i</i>) one formed by <i>P</i> .	
2 3 4	205	<i>recondita</i> haplotypes, ii) one made by <i>P. lucianae</i> haplotypes, and iii) another one	
4 5 6	206	including sequences from <i>P. barbarae</i> , <i>P. lelongi+P. masettii</i> , and <i>P. hispanica+P</i> .	
7	207	originis.	
8 9	208	The parsimony network of <i>ef-1</i> α (Fig. 9), though, shows a quite different pattern. The <i>P</i>	D.
10 11	209	hispanica subnetwork is connected with two different subnetworks, one including P.	
12 13	210	barbarae and one including P. masettii and P. lelongi. P. recondita, and P. originis are	;
14 15	211	included in two different networks. Interestingly, when the network connection limit is	
16	212	relaxed (< 90%), the three networks become connected and <i>P. recondita</i> appears more	
17 18	213	related to the P. hispanica sub-network. On the other hand, the P. originis sub-network	2
19 20	214	results connected to that of P. masettii (Fig. 9).	
21 22	215	The Bayesian time tree analysis (Supplementary Figure 1) produced a tree topology that	at
23 24	216	is fully compatible with that obtained through Maximum Likelihood and Bayesian	
25 26	217	inference analyses. Age estimates of the main Pijnackeria clades are included between	
27 28	218	0.14 Mya (P. barbarae) and 3.25 Mya (P. lucianae) (Table 3; Supplementary Figure 1)).
29	219	The <i>P. hispanica+P. originis</i> clade resulted to be 1.96 Myr old and diverged from the	
30 31	220	sister clade (P. masettii+P. lelongii) 3.31 Mya (Supplementary Figure 1). The	
32 33	221	divergence of the Leptynia-Pijnackeria clade dates back to 29.73 Mya (Table 3;	
34 35	222	Supplementary Figure 1)	
36 37	223		
38 39	224	Discussion	
40 41	225		
42 43	226	The origin of P. hispanica genome	
44	227		
45 46	228	Our results suggest a quite complex scenario for the composition of <i>P. hispanica</i>	
47 48	229	genome and the possible role of <i>P. recondita</i> as a fathering species.	
49 50	230	From a chromosome analysis standpoint, the karyotypes of <i>P. recondita</i> and <i>P.</i>	
51 52	231	hispanica are highly similar, especially the relative size and centromere positioning of	
53 54	232	most chromosomes. However, there are also differences such as the centromere positio	n
55	233	in the 4^{th} and 6^{th} pairs, and the position of cytological satellites. The karyotype of <i>P</i> .	
56 57	234	recondita shows the same basic haploid set of 19 elements consistently found in all	
58 59	235	other diploid species of the genus (Scali, 2009a; Scali et al. 2013), and also keeps the	
60 61	236	metacentric X chromosome as the largest. This finding clearly follows from the male	
62 63			c
64 65			6

	237	mitotic divisions which, being the male sex-chromosome formula X0, allow the
1 2	238	identification of the unique X chromosome: therefore, we could reasonably assign the
3 4	239	same role of sex-chromosomes to the first quartet in the karyotype of the
5 6	240	parthenogenetic P. hispanica.
7 8	241	The combined analysis of $cox2$ mitochondrial sequences and of $efl-\alpha$ nuclear genes
9	242	suggests a quite intriguing origin of P. hispanica hybrid genome. P. originis and P.
10 11	243	hispanica cox2 haplotypes always cluster together, indicating a clear genetic
12 13	244	homogeneity. Therefore, in line with previous analyses (Ghiselli et al. 2007), the
14 15	245	maternal ancestor would have been P. originis, as P. hispanica clearly incorporates its
16 17	246	mitochondrial marker. On the other hand, the paternal contributions are less clear.
18	247	Based on the efl - α phylogenetic and network analyses, <i>P. hispanica</i> is more related to
19 20	248	P. barbarae, P. masettii, and P. lelongi than to P. recondita and P. originis. However,
21 22	249	less stringent parameters for network construction allowed the connection of P.
23 24	250	recondita and P. hispanica sub-networks. This suggests a common ancestry of the two
25 26	251	nuclear sequences, but it also indicates a wide differentiation between P. recondita and
27 28	252	P. hispanica. The time tree analysis clearly supports such distant relationship, dating the
29	253	divergence of mitochondrial cox2 sequences back to the Mid-Oligocene (29.73 Mya).
30 31	254	Overall, the results are not in contrast with a possible contribution of <i>P. recondita</i> to the
32 33	255	genome of P. hispanica, although the level of genetic divergence observed in both
34 35	256	mitochondrial and nuclear markers would suggest caution. In summary, we can say that
36 37	257	the data are compatible with the hypothesis of an ancestral contribution followed by
38 39	258	diversification. It is worth noting that the P. recondita and the P. hispanica subnetworks
40 41	259	are connected through the sample from El Purche (PUR), which has been collected very
42	260	close to the distribution area of <i>P. recondita</i> (Sierra Nevada, SNE) (Fig. 8). Therefore, it
43 44	261	is possible that widening the sampling in the area of sympatry would shed light on this
45 46	262	issue.
47 48	263	P. hispanica is a very unusual hybrid since it incorporates the mitochondrial marker of
49 50	264	P. originis but it includes the nuclear sequences of different species. The tetraploid
51	265	constitution of P. hispanica genome and the close similarity of chromosome sets shared
52 53	266	by all Pijnackeria taxa suggest the possibility of polyploidization. On the other hand,
54 55	267	some minute differences among specific chromosome complements indicate a
56 57	268	heterogeneous structure, supporting a complex chromosome set with heterospecific
58 59	269	genomes. Among these, at least one of P. recondita origin. However, further inspection
60 61	270	of <i>P. hispanica</i> karyotype with heteromorphic quartets points to just a double <i>P</i> .
62 63		
03		7

recondita chromosome set contribution-also in view of a diploid structure of the initial hybrid—with two paternal chromosome sets derived each from the unknown paternal ancestor of P. masettii and P. barbarae. Overall, P. hispanica genetic structure points to 6 a complex, unusual derivation.

The occurrence of a mitochondrial genome from one species and the nuclear genome from a different species inherited by an individual of a third species was observed for the first time through allozyme analysis and cytological investigations of both field-collected and lab-reared specimens of the hybridogenetic Bacillus rossius-grandii strains (Mantovani and Scali, 1992; Tinti and Scali, 1996), thus providing clear evidence for androgenesis in stick insects. Afterwards, natural androgenesis was also discovered in several species of the freshwater clam Corbicula (Komaru et al. 1998; Byrne et al. 2000; Qiu et al. 2001) and in the cypress tree Cupressus dupreziana (Pichot et al. 2001). Our analysis with a mitochondrial gene and a single nuclear marker cannot be conclusive but, all considered, it is reasonable to suggest an androgenetic origin also for *P. hispanica*, which could date back to between 2 Mya (the estimated age of the clade) and 3.3 Mya (the estimate split age from the closest relative).

Because of the clonal structure of parthenogenetic taxa, with consequent loss of genetic variability, the causes and consequences of their longevity are debated (see Bell, 1982; Wrijenhoek and Lerman, 1982; Wrijenhoek, 1998; Normark et al. 2003). Data on stick insects obtained so far indicated that Bacillus hybrid taxa originated around 1 Mya (Mantovani et al. 2001), whereas parthenogenetic Timema lineages have evolved between 500,000 and 2 Mya (Schwander et al. 2011). In this view, P. hispanica may

- represent the oldest parthenogenetic taxon discovered so far among insects.

The Pijnackeria karyotype and the evolution of egg maturation modes

 A great stability for chromosome number and structure within a cluster of related species is quite a rare finding among Phasmida: all species-rich genera investigated so far actually showed a marked karyotype plasticity for both number and structure of chromosomes, particularly when parthenogens are involved. Striking instances of this feature are the Australian Didymuria (Craddok, 1972, 1975) and Sipyloidea (John et al. 1987), as well as the circum-Mediterranean *Bacillus* and *Clonopsis* (Scali, 2009b; Milani et al. 2010). Also the Iberian genus Leptynia-defined on both morphology and genetic basis, and encompassing only four species-revealed diploid chromosome sets

	305	ranging from 36 to 40, and a very significant structural variation, even entailing the sex	K -
1 2	306	chromosome formula with a shift from the usual XX/X0, to the rarer XX/XY one (Scal	li,
3 4	307	2009c; Scali et al. 2016). In addition, the karyotype stability of <i>Pijnackeria</i> species is	
5 6	308	mirrored by the number and localization of cytological NOR-bearing satellites (Ghisell	li
7 8	309	et al. 2007; Scali et al. 2016): taking into account the tens of specimens analyzed	
9	310	belonging to the seven <i>Pijnackeria</i> species, we were able to score 10 different satellite	
10 11	311	positions, but each species possesses a maximum of two different locations. This is a	
12 13	312	quite different scenario from that observed for NOR-bearing satellites of Bacillus,	
14 15	313	where a single species may encompass as much as 12 different locations for cytologica	ıl
16 17	314	satellites (Manaresi et al. 1991, 1992, 1993; Salvadori et al. 2018; Scali et al.	
18	315	submitted). Frequent changes in location and number of satellites are a common finding	g
19 20	316	in stick insects, and it has been suggested that they could be an outcome of transposon	
21 22	317	activity (Meyne et al. 1990; Zhdanova et al. 2007; Ruiz Herrera et al. 2008; Ocalewicz	' ?
23 24	318	2013; Satovic et al. 2016). For example, R2 non-LTR transposons have been reported t	to
25 26	319	be active in Bacillus species and even particularly prone to accumulate in	
27 28	320	parthenogenetic taxa (Bonandin et al. 2014, 2017; Scavariello et al. 2017).	
29	321	The cytological satellite features are not just a trait of inter- and intra-specific	
30 31	322	variability, since in all investigated phasmatodean species-13 all together up to now-	_
32 33	323	chromosomal satellites have been always found to be sites of highly enriched and co-	
34 35	324	localized rDNA/telomeric sequences (Scali et al. 2016; Liher et al. 2017; Salvadori et a	al.
36 37	325	2018): therefore, this trait appears to have a biological and evolutionary bearing.	
38 39	326	Actually, it has been already possible to observe that in the di-hybrid Bacillus whitei	
40	327	and the three-hybrid B. lynceorum, active NORs derive from all ancestors, although that	at
41 42	328	of maternal B. rossius derivation appears as the most conserved (Manaresi et al.	
43 44	329	1991,1992, 1993). However, owing to the androgenetic structure of P. hispanica, such	a
45 46	330	feature cannot be verified.	
47 48	331	A careful karyotype analysis of Pijnackeria polyploids gives us some indirect clues	
49 50	332	about their egg maturation mechanisms, since a direct investigation has not been	
51	333	possible. In stick insects, egg meiosis is blocked at pachytene during the first instar	
52 53	334	larva, to be resumed in adults at laying. Consequently, eggs can be collected at precisel	ly
54 55	335	scheduled times and investigated. Unfortunately, in Pijnackeria such a direct analysis of	of
56 57	336	oocyte maturation is not feasible, because the few laid eggs are firmly glued to the	
58 59	337	substratum and their chorionic capsule is too fragile to be handled and cut for fixation a	as
60 61	338	it has been done in <i>Bacillus</i> and <i>Clonopsis</i> (Marescalchi et al. 1991; Scali et al. 2010).	
62			
63			9

Owing to such limitations, we can propose only conjectural hypotheses for *P. hispanica*, and considering its complex hybrid structure, an apomictic mechanism maintaining a steady karyotype structure appears the most likely. In this connection, we can observe 6 that P. masettii is a triploid hybrid with one chromosome set derived from P. lelongi and the other two from an unknown heterospecific paternal ancestor, as both the structure of several chromosome triplets and the cytological satellite features clearly support (Fig. 6, triplets 1-4, 6, 12, 17-19; see also Ghiselli et al. 2007; Scali et al. 2013). At the time of its formation, such a hybrid certainly suffered from a diffuse imbalance in pairing and segregation of the trivalents during the first meiotic division, as actually observed in triploid specimens of *Bacillus atticus* (Marescalchi and Scali 1997, 2003); therefore, a modified meiosis escaping such constraints is likely to have been evolved by selecting an apomictic egg-maturation mechanism. A similar meiotic pathway could have been evolved in the tetraploid *P. hispanica* androgenetic parthenogen with a high (76) chromosome number. Gathering all relevant observations on the issue, the most parsimonious series of gains/losses of whole chromosome sets leading to the extant structure of *P. hispanica* can be envisaged as follows: a seminal parthenogenetic P. originis/P. recondita hybrid with an apomictic reproduction owing to the marked genetic differentiation of the parental taxa was produced. Pre-mating isolating mechanisms were easily overcome, since in phasmids they are rather ineffective even between utterly differentiated species (Scali et al. 1995). Back-crosses to P. recondita males were still possible (see Tinti and Scali, 1996) and, thanks to the physiological egg-polyspermy (Scali, 1972), an all-paternal progeny was originated when syngamy with the hybrid egg nucleus failed and two spermatozoa fused to originate a 2n androgen, which only kept the mitochondrial DNA of the mother but continued an apomictic reproduction (Mantovani and Scali, 1992). The 4n ploidy of *P. hispanica* could then be reached through a two-step acquisition of additional *Pijnackeria* genomes by the androgen. After the original hybridization of *P. recondita* with *P. originis* leading to an early diploid androgen, an additional fathering taxon, providing the third haploset, should have been different from P. recondita and likely similar to the unknown paternal ancestor of P. masettii. The last contribution of a fourth genome could have been provided by a P. barbarae-like paternal ancestor: the heterozygous structure of several quartets of *P. hispanica* (Fig. 6) and the high variability of its *ef1-* α sequences (Fig. 9) are consistent with the above outlined assumptions. Being these correct, P. hispanica could be then envisaged as a

polyphyletic hybrid-complex endowed with a high colonizing potential. Moreover, it is tempting to speculate that such kind of multi-hybrid origin could be the reason behind the long evolutionary persistence (1.96-3.31 Myr) of this parthenogenetic taxon. The 6 high variability produced by multiple hybridizations events might have compensated for the absence of sexual recombination (Ghiselli et al 2007 and references therein). On the issue, we would like mentioning that androgenetic stick-insect strains of Bacillus and Clonopsis contributed to the formation of a complex network among parental and derived taxa, so that their reproductive and micro-evolutionary features were defined as "reticulate evolution" (reviewed in Scali, 2009a), and, within it, androgenesis has been proposed as a short-cut pathway for speciation (Ghiselli et al. 2007; Milani et al. 2010; 2015). To better envisage the cladogenetic potential of androgenesis, a simple model of hybrid eggs maturation and genome transmission has been worked out for Clonopsis hybrids, which would even explain the ascertained diploid structure of polyploid karyotypes (Milani et al. 2009; 2010): the *Clonopsis* model also accommodates quite easily the otherwise inexplicable chromosomal findings reported in the Australian Sipyloidea nelida species complex by John et al. (1987). On the whole, the targeted cytogenetic insight and transmission analysis of genomes, although rather limited, appears an effective tool to reveal the exploitation of a wide array of reproductive modes and evolutionary pathways in stick insects: these insights seem to really add to the routinely accepted ideas about reproductive features, evolutionary modes and phylogenetic relationships in animals. Taxonomic implications Following the above described scenario of "reticulate" backcrosses, multiple tetraploid populations arose in different areas of the Pijnackeria range, stepwise embodying additional sets of fathering taxa, some of which can also be missing from the sampling. These 4n populations are now spread and mixed in the region indicated in Figure 2. According to this phylogeographic pattern, *P. hispanica* would then represent the ensemble of many subpopulations of 4n parthenogenetic androgens in which the multiple contributions from diverse diploid species can be appreciated in the efl- α network (Fig. 9). Each *P. hispanica* specimen within the different subpopulations appears to possess a chimerical genetic structure, even more strengthened by the occurrence of the "foreign" mitochondrial DNA of the maternal ancestor. All this points

- to a composite, polyphyletic structure of the tetraploid hybrid, which we propose to indicate as an androgenetic complex. 4 Finally, we would like to point out that, if in *cox2* network the recently described Sierra 6 Nevada (SNE) *P. recondita* taxon does not actually cluster together with the previously described *Pijnackeria* species (Fig. 7a,b), and Valero and Ortiz (2015) obtained the same
- tree topology from cox1 and cox2 analyses. Although this topology does not fully resolve the relationships within the genus Pijnackeria, it clearly indicates a high degree of differentiation between P. recondita and the other conspecific species. Further molecular investigation may help to shed light on the evolution of this genus and its relationship with the closely related genus Leptynia.

Data availability: The datasets generated during and/or analyzed during the current study are available in the GenBank repository (see corresponding GenBank numbers in Supplementary Material 1). The sequences generated during this study are also available as Supplementary Material 2 and 3 in FASTA format.

Conflict of Interest: The authors declare that they have no conflict of interest.

> Ethical approval: All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Figure Captions

> Fig. 1 Specimen of *Pijnackeria hispanica*: the nominal species of the new genus

(corresponding to the originally described *Leptynia hispanica* species by Pantel

1890). Note the very short antennae and the pointed abdomen end peculiar to the taxon.

Additional information and images of this tetraploid parthenogen and of all other

congeneric species are to be found in Scali 2009, Scali et al. 2012, Scali et al.

2013; Valero and Ortiz 2015.

- Fig. 2 Ranges of *Pijnackeria* taxa. 2n: A, *P. lucianae*; B, *P. barbarae*; C, *P. lelongi*; D,
- P. originis; **3n**, P. masettii; **4n**, P. hispanica. Sample acronyms as in Ghiselli et al,
- 2007. The area of P. recondita (Sierra Nevada) and P. hispanica (El Purche) samples is

	440	represented by a single dot south-east of PRA (Puerto La Ragua). Acronyms as in Table
1 2	441	1 and Table 2
3 4	442	
5 6	443	Fig. 3 Pijnackeria recondita food plants: Cytisus scoparius on the right and Cytisus sp,
7	444	on the left
8 9	445	
10 11	446	Fig. 4 Geographical distribution of the haplotypes obtained both by sampling and from
12 13	447	literature contributing to the molecular analysis. A) $cox 2$. B) $efl-\alpha$. For the exact
14 15	448	coordinates of the sampling sites, refer to Table 1 and Table 2
16 17	449	
18	450	Fig. 5 Karyotype of <i>Pijnackeria recondita</i> . The karyotype is very similar to those of all
19 20	451	other Pijnackeria species. A) Female: 1st pair, heterochromosomes; the 2nd and
21 22	452	4th pairs bear a heterozygous satellite; B) Male: its unique sex chromosome (X0) allows
23 24	453	to indicate the first female pair as the heterochromosome pair in both P. recondita and,
25 26	454	as a consequence, in P. hispanica
27 28	455	
29	456	Fig. 6 Karyotype of the triploid Pijnackeria masettii (on the top), and of the tetraploid
30 31	457	Pijnackeria hispanica (on the bottom) modified from Scali et al. (2013). P. hispanica
32 33	458	appears either a 2+2 structure, or, better, a 2+1+1 structure. P. masettii triplets 1-4, 6,
34 35	459	12, 17-19 clearly support a 2+1 structure; 1^{st} , 2^{nd} , 13^{th} , 15^{th} and 19^{th} quartets of <i>P</i> .
36 37	460	hispanica seem to suggest either a 2+2 structure, or better a 2+1+1 structure
38 39	461	
40	462	Fig. 7 Schematic drawing of Maximum Likelihood/Bayesian Inference on <i>cox2</i> (A; - <i>lnL</i>
41 42	463	= 3431.06/3503.44) and <i>ef1-a</i> (B; <i>-lnL</i> = 1958.30/20072.49) datasets. Number at nodes
43 44	464	are bootstrap/posterior probabilities support values. Outgroup(s) have been omitted for
45 46	465	graphical purposes
47 48	466	
49 50	467	Fig. 8 Parsimony network of the cox2 gene sequences. Circles size is proportional to
51	468	haplotype frequency; black dots represent missing/ideal haplotypes. Connections
52 53	469	obtained with relaxed parameters are indicated with dashed, grey lines; grey numbers in
54 55	470	parentheses are the number of missing/ideal haplotypes along the connection
56 57	471	
58 59	472	Fig. 9 Templeton network of the <i>ef1-</i> α gene sequences. Circles size is proportional to
60 61	473	haplotype frequency; black dots represent missing/ideal haplotypes. Connections
62 63 64 65		13

	474	obtained with relaxed parameters are indicated with dashed, grey lines; grey numbers in
1 2	475	parentheses are the number of missing/ideal haplotypes along the connection
3 4	476	
5 6	477	
7	478	Legends to tables
8 9	479	
10 11	480	Table 1. Analyzed species for <i>cox2</i> , with collecting place with acronyms and geographic
12 13	481	coordinates.
14 15	482	
16 17	483	Table 2. Analyzed species for <i>ef1-</i> α , with collecting place with acronyms and
18	484	geographic coordinates.
19 20	485	
21 22	486	Table 3. Age estimates of the main <i>Pijnackeria</i> clades.
23 24	487	
25 26	488	
27	489	Supplementary material
28 29	490	
30 31	491	Supplementary Figure 1. Time calibrated tree obtained on <i>cox2</i> gene sequence.
32 33	492	Numbers on branches represent the posterior probability nodal support; bars at nodes
34 35	493	indicate the 95% high posterior density (HPD).
36 37	494	
38	495	Supplementary Material 1. Genbank accession numbers of the analyzed sequences.
39 40	496	
41 42	497	Supplementary Material 2. cox2 sequences.
43 44	498	
45 46	499	Supplementary Material 3. efl - α sequences.
47 48	500	
49	501	
50 51	502	References
52 53	503	
54 55	504	Bell, G. (1982). Masterpiece of nature: the evolution and genetics of sexuality. London:
56 57	505	Croom Helm.
58 59		
60		
61 62		
63 64		14
65		

Bianchi, A. (1992). Karyological studies of mediterranean stick-insects belonging to the genera Clonopsis and Leptynia (Insecta Phasmatodea). Caryologia, 45(1), 1-19. doi: 4 10.1080/00087114.1992.10797205 Bianchi, A., & Meliadò, P. (1998). Analysis of the karyotypes of four species of the Leptynia attenuata complex (Insecta Phasmatodea). Caryologia, 51(3-4), 207-219. doi: 10.1080/00087114.1998.10797413 Bonandin, L., Scavariello, C., Mingazzini, V., Luchetti, A., & Mantovani, B. (2016). Obligatory parthenogenesis and TE load: *Bacillus* stick insects and the R2 non-LTR retrotransposon. Insect Science, 24(3), 409-417. doi: 10.1111/1744-7917.12322 Brock, P. (1991). Stick-insects of Britain, Europe and the Mediterranean. London: Fitzgerald Publishing. Brock, PD. (1993). Studies on stick insects of the genus Leptynia in Spain. Amateur Entomologist's Society Bulletin, 52, 165-172 Byrne M, Phelps H, Church T, Adair V, Selvakumaraswamy P, Potts J. (2000). Reproduction and development of the freshwater clam Corbicula australis in southeast Australia. Hydrobiologia, 418, 185-197. https://doi.org/10.1023/A:1003986512832 Cho, S., Mitchell, A., Regier, JC., Poole, RW., Friedlander, TP. & Zhao, S. (1995). A highly conserved nuclear gene for low-level phylogenetics: elongation factor-1 alpha recovers morphology-based tree for heliothine moths. *Molecular Biology And* Evolution, 12, 650-656. doi: 10.1093/oxfordjournals.molbev.a040244 Clement, M., Posada, D., & Crandall, K. (2000). TCS: a computer program to estimate gene genealogies. Molecular Ecology, 9(10), 1657-1659. doi: 10.1046/j.1365-294x.2000.01020.x Craddock, E. (1972). Chromosomal diversity in the Australian Phasmatodea. Australian Journal Of Zoology, 20(4), 445-462. doi: 10.1071/zo9720445 Craddock, E. (1975). Intraspecific karyotypic differentiation in the Australian phasmatid Didymuria violescens (Leach). Chromosoma, 53(1), 1-24. doi: 10.1007/bf00329387 Drummond, A., & Rambaut, A. (2007). BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology, 7(1), 214. doi: 10.1186/1471-2148-7-214 Farell, E., & Alexandre, G. (2012). Bovine serum albumin further enhances the effects of organic solvents on increased yield of polymerase chain reaction of GC-rich templates. BMC Research Notes, 5(1), 257. doi: 10.1186/1756-0500-5-257

Gatesy, J., DeSalle, R., & Wahlberg, N. (2007). How Many Genes Should a Systematist Sample? Conflicting Insights from a Phylogenomic Matrix Characterized by Replicated 4 Incongruence. Systematic Biology, 56(2), 355-363. doi: 10.1080/10635150701294733 6 Ghiselli, F., Milani, L., Scali, V., & Passamonti, M. (2007). The Leptynia hispanica species complex (Insecta Phasmida): polyploidy, parthenogenesis, hybridization and more. Molecular Ecology, 16(20), 4256-4268. doi: 10.1111/j.1365-294x.2007.03471.x John, B., Rentz, D., & Contreras, N. (1987). Extensive chromosome variation in the stick insect genus Sipyloidea Brunner von Wattenwyl (Phylliidae : Necrosciinae) within Australia, and descriptions of three new species. Invertebrate Systematics, 1(6), 603-630. doi: 10.1071/it9870603 Jordal, B. (2002). Elongation Factor 1 alpha resolves the monophyly of the haplodiploid ambrosia beetles Xyleborini (Coleoptera: Curculionidae). Insect Molecular Biology, 11(5), 453-465. doi: 10.1046/j.1365-2583.2002.00354.x Komaru, A., Kawagishi, T., & Konishi, K. (1998). Cytological evidence of spontaneous androgenesis in the freshwater clam Corbicula leana Prime. Development Genes And Evolution, 208(1), 46-50. doi: 10.1007/s004270050152 Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Molecular Biology And Evolution, 33(7), 1870-1874. doi: 10.1093/molbev/msw054 Leigh, J., & Bryant, D. (2015). popart: full-feature software for haplotype network construction. Methods In Ecology And Evolution, 6(9), 1110-1116. doi: 10.1111/2041-210x.12410 Luchetti, A., & Mantovani, B. (2013). Non-LTR R2 Element Evolutionary Patterns: Phylogenetic Incongruences, Rapid Radiation and the Maintenance of Multiple Lineages. Plos ONE, 8(2), e57076. doi: 10.1371/journal.pone.0057076 Manaresi, S., Marescalchi, O., & Scali, V. (1991). Ag-detected NOR and C-banding patterns in Bacillus rossius (Insecta Phasmatodea) from Sicily. Carvologia, 44(3-4), 265-286. doi: 10.1080/00087114.1991.10797192 Manaresi, S., Marescalchi, O., & Scali, V. (1992a). The Chromosome Complement of the Hybrid Bacillus whitei Complex (Insecta Phasmatodea). I. The paleo- and neo-standard karyotypes. Cytologia, 57(1), 101-109. doi: 10.1508/cytologia.57.101 Manaresi, S., Marescalchi, O., & Scali, V. (1992b). The Chromosome Complement of the Hybrid Bacillus whitei Complex (Insecta Phasmatodea). II. The repatterned cytotypes. Cytologia, 57(1), 111-119. doi: 10.1508/cytologia.57.111

Manaresi, S., Marescalchi, O., & Scali, V. (1993). The trihybrid genome constitution of Bacillus lynceorum (Insecta Phasmatodea) and its karyotypic variations. Genome, 36(2), 4 317-326. doi: 10.1139/g93-044 6 Mantovani, B., & Scali, V. (1992). Hybridogenesis and Androgenesis in the Stick-Insect Bacillus rossius-grandii benazzii (Insecta, Phasmatodea). Evolution, 46(3), 783-796. doi: 10.2307/2409646 Mantovani, B., Passamonti, M., & Scali, V. (2001). The Mitochondrial Cytochrome Oxidase II Gene in Bacillus Stick Insects: Ancestry of Hybrids, Androgenesis, and Phylogenetic Relationships. Molecular Phylogenetics And Evolution, 19(1), 157-163. doi: 10.1006/mpev.2000.0850 Marescalchi, O., & Scali, V. (1997). Chromosomal and NOR patterns in the polyclonal stick insect Bacillus atticus atticus (Insecta; Phasmatodea). Genome, 40(2), 261-270. doi: 10.1139/g97-037 Marescalchi, O., & Scali, V. (2003). Automictic parthenogenesis in the diploid-triploid stick insect Bacillus atticus and its flexibility leading to heterospecific diploid hybrids. Invertebrate Reproduction & Development, 43(2), 163-172. doi: 10.1080/07924259.2003.9652535 Marescalchi, O., Pijnacker, L., & Scali, V. (1991). Cytology of Parthenogenesis in Bacillus whitei and Bacillus lynceorum (Insecta Phasmatodea). Invertebrate Reproduction & Development, 20(1), 75-81. doi: 10.1080/07924259.1991.9672180 Meyne, J., Baker, R., Hobart, H., Hsu, T., Ryder, O., & Ward, O. et al. (1990). Distribution of non-telomeric sites of the (TTAGGG)n telomeric sequence in vertebrate chromosomes. Chromosoma, 99(1), 3-10. doi: 10.1007/bf01737283 Milani, L., Ghiselli, F., Pellecchia, M., Scali, V., & Passamonti, M. (2010). Reticulate evolution in stick insects: the case of *Clonopsis* (Insecta Phasmida). *BMC Evolutionary Biology*, 10(1), 258. doi: 10.1186/1471-2148-10-258 Milani, L., Scali, V., & Passamonti, M. (2009). The Clonopsis gallica puzzle: Mendelian species, polyploid parthenogens with karyotype re-diploidization and clonal androgens in Moroccan stick insects (Phasmida). Journal Of Zoological Systematics And Evolutionary Research, 47(2), 132-140. doi: 10.1111/j.1439-0469.2008.00489.x Milani, L., Scali, V., & Passamonti, M. (2014). Speciation through and rogenesis in the stick insect genus Clonopsis (Insecta Phasmatodea). Journal Of Zoological Systematics And Evolutionary Research, 53(2), 116-123. doi: 10.1111/jzs.12087

Miller, M., Schwartz, T., Pickett, B., He, S., Klem, E., Scheuermann, R. ..., O'Leary, M. A. (2015). A RESTful API for Access to Phylogenetic Tools via the CIPRES Science Gateway. Evolutionary Bioinformatics, 11, 43-48. doi: 10.4137/ebo.s21501 Normark, B., Judson, O., & Moran, N. (2003). Genomic signatures of ancient asexual lineages. Biological Journal Of The Linnean Society, 79(1), 69-84. doi: 10.1046/j.1095-8312.2003.00182.x Pantel, P.J. (1890). Notes Orthoptérologiques. II Les Phasmides d'Europe et des pays limitrophes. Anales Sociedad Española de Historia Natural, 19, 371-404 Passamonti, M., Mantovani, B., & Scali, V. (1999). Karyotype and Allozyme Characterization of the Iberian Leptvnia attenuata Species Complex (Insecta Phasmatodea). Zoological Science, 16(4), 675-684. doi: 10.2108/zsj.16.675 Passamonti, M., Mantovani, B., & Scali, V. (2004). Phylogeny and karyotype evolution of the Iberian Leptynia attenuata species complex (Insecta Phasmatodea). Molecular Phylogenetics And Evolution, 30(1), 87-96. doi: 10.1016/s1055-7903(03)00156-8 Pichot, C., El Maâtaoui, M., Raddi, S., & Raddi, P. (2001). Surrogate mother for endangered Cupressus. Nature, 412(6842), 39. doi: 10.1038/35083687 #pagine Pijnacker, L. (1966). The maturation divisions of the parthenogenetic stick insect Carausius morosus Br. (Orthoptera, Phasmidae). Chromosoma, 19(1), 99-112. doi: 10.1007/bf00332794 Preiss, A., Hartley, D., & Artavanis-Tsakonas, S. (1988). The molecular genetics of Enhancer of split, a gene required for embryonic neural development in Drosophila. The EMBO Journal, 7(12), 3917-3927. doi: 10.1002/j.1460-2075.1988.tb03278.x Qiu, AD & Shi, AJ & Komaru, Akira. (2001). Yellow and brown shell color morphs of Corbicula fluminea (Bivalvia: Corbiculidae) from Sichuan Province, China, are triploids and tetraploids. Journal of Shellfish Research, 20, 323-328. Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D., Darling, A., Höhna, S., ..., Huelsenbeck, J.P. (2012). MrBayes 3.2: Efficient Bayesian Phylogenetic Inference and Model Choice Across a Large Model Space. Systematic Biology, 61(3), 539-542. doi: 10.1093/sysbio/sys029 Ruiz-Herrera, A., Nergadze, S., Santagostino, M., & Giulotto, E. (2008). Telomeric repeats far from the ends: mechanisms of origin and role in evolution. Cytogenetic And Genome Research, 122(3-4), 219-228. doi: 10.1159/000167807 Salvadori, S., Coluccia, E., Deidda, F., Sibiriu, M., Costa, E., Deiana, AM. & Scali, V. (2018). Multiple highly amplified NORs co-localized with telomeric sequences in the

parthenogenetic hybrid Bacillus whitei (Insecta Phasmatodea). Comparative Cytogenetics, 12(3), 299-360. doi: 10.3897/CompCytogen.v12i3.27748 4 Satović, E., Vojvoda Zeljko, T., Luchetti, A., Mantovani, B., & Plohl, M. (2016). 6 Adjacent sequences disclose potential for intra-genomic dispersal of satellite DNA repeats and suggest a complex network with transposable elements. BMC Genomics, 17(1), 997. doi: 10.1186/s12864-016-3347-1 Scali, V. (1972). La citologia della partenogenesi di Bacillus rossius. Bollettino Di Zoologia, 39(4), 567-573. doi: 10.1080/11250007209431412 Scali V. (2009a) Metasexual Stick Insects: Model Pathways to Losing Sex and Bringing It Back. In: Schön I., Martens K., Dijk P. (eds) Lost Sex. Springer, Dordrecht. Doi: 10.1007/978-90-481-2770-2 16 Scali, V. (2009b). Revision of the Iberian stick insect genus Leptynia Pantel and description of the new genus Pijnackeria. Italian Journal Of Zoology, 76(4), 381-391. doi: 10.1080/11250000802702062 Scali, V., Coluccia, E., Deidda, F., Lobina, C., Deiana, A., & Salvadori, S. (2016). Co-localization of ribosomal and telomeric sequences in *Leptynia* (Insecta: Phasmatodea). Italian Journal Of Zoology, 83(3), 285-290. doi: 10.1080/11250003.2016.1219403 Scali, V., Deidda, F., Coluccia, E., Melis, R., Cannas, R., & Salvadori, S. (submitted) Variability for number and location of highly-amplified interspersed telomeric and ribosomal sequences in parental species of Bacillus and their hybrids (Insecta Phasmatodea). Scali, V., Milani, L. & Passamonti, M. (2012). Revision of the stick insect genus Leptynia: description of new taxa, speciation mechanism and phylogeography. Contributions to Zoology, 81(1), 25-42. Scali, V., Milani, L., & Passamonti, M. (2013). Description and ecology of new Pijnackeria stick insects: four bisexual species and a triploid parthenogen with their phyletic relationships. Journal Of Zoological Systematics And Evolutionary Research, 51(3), 213-226. doi: 10.1111/jzs.12018 Scali, V., Milani, L., & Passamonti, M. (2010). Clonopsis gallica, a stick insect parthenogen exploiting different egg maturation mechanisms over its range. Invertebrate Reproduction & Development, 54(3), 143-150. doi: 10.1080/07924259.2010.9652326

	671	Scali, V., Tinti, F., Mantovani, B., & Marescalchi, O. (1995). Mate recognition and
1 2	672	gamete cytology features allow hybrid species production and evolution in <i>Bacillus</i>
2 3 4	673	stick insects. <i>Bollettino Di Zoologia</i> , 62(1), 59-70. doi: 10.1080/11250009509356052
5	674	Scavariello, C., Luchetti, A., Martoni, F., Bonandin, L., & Mantovani, B. (2017).
6 7 8	675	Hybridogenesis and a potential case of R2 non-LTR retrotransposon horizontal
8 9	676	transmission in <i>Bacillus</i> stick insects (Insecta Phasmida). <i>Scientific Reports</i> , 7(1),
10 11	677	41946. doi: 10.1038/srep41946
12 13	678	Schwander, T., Henry, L., & Crespi, B. (2011). Molecular Evidence for Ancient
14 15	679	Asexuality in <i>Timema</i> Stick Insects. <i>Current Biology</i> , 21(13), 1129-1134. doi:
16	680	10.1016/j.cub.2011.05.026
17 18	681	Stamatakis, A. (2014). RAxML version 8: a tool for phylogenetic analysis and post-
19 20	682	analysis of large phylogenies. <i>Bioinformatics</i> , 30(9), 1312-1313. doi:
21 22	683	10.1093/bioinformatics/btu033
23 24	684	Taddei, C., Maurizii, M., Chicca, M., & Scali, V. (1993). The germarium of panoistic
25 26	685	ovarioles of Bacillus rossius (Insecta Phasmatodea): Structure and function during
27 28	686	imaginal life. Invertebrate Reproduction & Development, 23(2-3), 203-210. doi:
29	687	10.1080/07924259.1993.9672316
30 31	688	Tinti, F., & Scali, V. (1996). Androgenetics and Triploids from an Interacting
32 33	689	Parthenogenetic Hybrid and its Ancestors in Stick Insects. Evolution, 50(3), 1251-1258.
34 35	690	doi: 10.2307/2410665
36 37	691	Trifinopoulos, J., Nguyen, L., von Haeseler, A., & Minh, B. (2016). W-IQ-TREE: a fast
38 39	692	online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Research,
40 41	693	44(W1), W232-W235. doi: 10.1093/nar/gkw256
42	694	Valero, P., & Ortiz, AS. (2015). Description and DNA barcoding of a new Iberian
43 44	695	species of Pijnackeria (Scali, 2009) from the Sierra Nevada, Spain (Phasmida:
45 46	696	Diapheromeridae). Zootaxa, 4058(4), 535-550. doi:10.11646/zootaxa.4058.4.5
47 48	697	Vrijenhoek, R. (1998). Animal Clones and Diversity. Bioscience, 48(8), 617-628. doi:
49 50	698	10.2307/1313421
51 52	699	Vrijenhoek, R., & Lerman, S. (1982). Heterozygosity and Developmental Stability
53	700	Under Sexual and Asexual Breeding Systems. Evolution, 36(4), 768-776. doi:
54 55	701	10.2307/2407890
56 57	702	Zhdanova, N., Rubtsov, N., & Minina, Y. (2007). Terminal regions of mammal
58 59	703	chromosomes: Plasticity and role in evolution. Russian Journal Of Genetics, 43(7), 721-
60 61	704	732. doi: 10.1134/s1022795407070022
62 63		
64		20

A		ЯX	88	8,8	ĸл	68	
	1	2	3	4	5	6	
	08	00	16	~~	5.6	<i>A</i> 14	
	7	8	9	10	11	12	
	AA	д.ж	A 8	H 35.	на	财利	8.8
	13	14	15	16	17	18	19
в							
	x	XK	KB	5.6	00	4 4	
	1	2	3	4	5	6	
			~ ~	~ ~	n 4	**	
	7	8	9	10	11	12	
	• •			• •			۰.
	13	14	15	16	17	18	19

Α

~		388			***		888
	1	2	3		4	5	6
	680	õna	000	100	AAA	646	ă#A
	7	8	9	10	11	12	13
	940		đđa	fix	11	***	* * *
	14	15	16		17	18	19

В

B	8X 8>	< 2 × ×	x> n	а́ ал	A000
	ቆላስዕ ₅	6 X X X	1100	80 A &	6686 9
	86 8 Å 10	****	0000 12	00 0 A 13	88.4 A
	AR X 34 15	16 16	۸۸ ۸۸ 17	18	X X F X 19

