ALMA MATER STUDIORUM UNIVERSITȦ DI BOLOGNA

ARCHIVIO ISTITUZIONALE DELLA RICERCA

Alma Mater Studiorum Università di Bologna Archivio istituzionale della ricerca

The puzzling taxonomic rank of Pijnackeria hispanica, a chimerical hybrid androgen (Insecta, Phasmida)

This is the final peer-reviewed author's accepted manuscript (postprint) of the following publication:

Published Version:

The puzzling taxonomic rank of Pijnackeria hispanica, a chimerical hybrid androgen (Insecta, Phasmida) / Milani L.; Scali V.; Punzi E.; Luchetti A.; Ghiselli F.. - In: ORGANISMS DIVERSITY \& EVOLUTION. - ISSN 14396092. - STAMPA. - 20:(2020), pp. 285-297. [10.1007/s13127-020-00436-1]

Availability:
This version is available at: https://hdl.handle.net/11585/781529 since: 2020-11-20
Published:
DOI: http://doi.org/10.1007/s13127-020-00436-1

Terms of use:
Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are specified in the publishing policy. For all terms of use and more information see the publisher's website.

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.
(Article begins on next page)

This is the peer reviewed version of the following article:

Milani, L., Scali, V., Punzi, E., Luchetti, A., Ghiselli, F. The puzzling taxonomic rank of Pijnackeria hispanica, a chimerical hybrid androgen (Insecta, Phasmida). Org Divers Evol 20, 285-297 (2020)
which has been published in final form at https://doi.org/10.1007/s13127-020-00436-1.
This article may be used for non-commercial purposes in accordance with Springer Terms and Conditions for Use of Self-Archived Versions.

The puzzling taxonomic rank of Pijnackeria hispanica, a chimerical

hybrid androgen (Insecta, Phasmida)

LILIANA MILANI ${ }^{1 *}$, VALERIO SCALI ${ }^{1 *}$, ELISABETTA PUNZI, ANDREA
LUCHETTI, FABRIZIO GHISELLI
${ }^{1}$ equal contribution
Department of Biological, Geological and Environmental Sciences - University of
Bologna, 40126, Bologna, Italy.
E-mail: liliana.milani@unibo.it; scavale1938@gmail.com
Liliana Milani orcid ID: 0000-0001-5052-2075
Andrea Luchetti orcid ID: 0000-0002-2986-721X
Fabrizio Ghiselli orcid ID: 0000-0002-1680-8616
Funding: This work was supported by the Canziani bequest.

Acknowledgements: We would like to thank Luciana Eliopoli for the Sierra Nevada sample collection.

Abstract

The stick-insect genus Pijnackeria includes four diploid bisexual and two polyploid (3n, $4 n$) parthenogenetic species. Earlier analyses of the tetraploid parthenogen P. hispanica using mitochondrial markers allowed to trace its maternal ancestry to Pijnackeria originis, while no maternal nuclear contribution was found, thus suggesting an androgenetic and hybrid origin. The recently described Pijnackeria reconditashowing, among other features, a specific antennal structure linking it to the tetraploid parthenogen-prompted us to check whether the new species could be P. hispanica unknown paternal ancestor. In this work we use karyology and of molecular analysis of the mitochondrial gene cytochrome c oxidase subunit 2 (cox2), and the nuclear gene elongation factor 1 subunit $\alpha(e f 1-\alpha)$ to investigate the origin of such a complex tetraploid hybrid parthenogen.

The molecular analysis supported P. recondita as being a paternal ancestor of the P. hispanica, but also suggested that two more fathering species have to be taken into account: P. barbarae and the unknown paternal ancestor of the triploid hybrid P. masettii. Therefore, P. hispanica is apparently a polyphyletic chimeric androgen, which we propose to indicate as an androgenetic complex. Our data also revealed that P. hispanica is between 1.96 Myr and 3.31 Myr old, making it the oldest parthenogenetic taxon discovered among insects.

Keywords: androgenesis, hybridization, parthenogenesis, Pijnackeria hispanica, Pijnackeria recondita, reticulate evolution.

Introduction

The phasmid genus Pijnackeria Scali, 2009 is a Spanish monophyletic taxon embodying four diploid bisexual and two polyploid parthenogenetic species ($3 n, 4 n$), all sharing the same haploid chromosome set with $\mathrm{n}=19$ (Brock 1991, 1993 for reviews; Bianchi, 1992, Bianchi and Meliado, 1998; Scali, 2009a; Scali et al. 2013). P. hispanica (Pantel, 1890) (Fig. 1), the nominal species of the genus, appears to be a very successful tetraploid hybrid parthenogen, ranging from the Sierra Nevada
(southern Spain) up to the Sistema Central Mountains, northwestwards and to the Serrania de Cuenca, northeastwards. Here, its distribution area overlaps that of the similarly successful triploid hybrid parthenogen P. masettii Scali et al., 2013 which is also distributed up to the southern French districts of Var, Herault and Basses Alps (Bianchi, 1992; Ghiselli et al. 2007, Scali, 2009; Scali et al. 2013) (Fig. 2). The remaining four taxa, namely P. lucianae (Scali et al. 2013), P. barbarae (Scali et al. 2013), P. lelongi (Scali et al. 2013) and P. originis (Scali et al. 2013) are diploid and show much more limited distribution areas in the south-eastern Iberian Peninsula, clearly suggestive of relict distribution (Fig. 2).
Molecular genetic analyses, carried out using both the mitochondrial gene cytochrome c oxidase subunit $2(\operatorname{cox} 2)$ and the nuclear gene elongation factor 1 subunit $\alpha(e f 1-\alpha)$ as markers, suggested the bisexual diploid P. lelongi Scali et al., 2013 as the maternal ancestor of P. masettii, and the diploid bisexual P. originis Scali et al., 2013 of Tiscar (Sierra de Cazorla) as the maternal ancestor of the tetraploid P. hispanica (Ghiselli et al. 2007; Scali, 2009a). On the other hand, quite surprisingly, while P. masettii showed the efl- α allele of maternal derivation, as it could be expected, P. hispanica did not, so that its efl- α gene ought to be of only paternal derivation (Ghiselli et al. 2007). In order to explain such finding, three different hypotheses were considered: i) the effect of gene conversion; ii) the outcome of a non-equivalent gene silencing in the hybrid; iii) the clear-cut consequence of the maternal genome exclusion within an androgenesis scenario (Ghiselli et al. 2007; Milani et al. 2010, 2013). At any rate, the available data greatly stimulated us to trace the paternal ancestor(s) of P. hispanica and to try to shed light on its puzzling genetic structure, without forgetting that even the paternal ancestor of P. masettii was actually unknown.
Recently, a new Pijnackeria species, P. recondita Valero and Ortiz, 2015 was found in a very small area of the Sierra Nevada, right at the border of P. hispanica southernmost range (Fig. 2; Valero and Ortiz, 2015). Its general morphology differs from P. hispanica only in the lower amount of body granulation and chorionic egg sculpturing. All other morphological and morphometric characters are shared with the tetraploid hybrid, including a very similar structure and number of antennae articles (Scali et al. 2013). All these features point to the possibility to consider P. recondita as a candidate paternal ancestor of P. hispanica. We therefore decided to test the supposed paternal role of P. recondita by investigating its chromosome set-which obviously had to be congruent
with the tetraploid karyotype-and, more importantly, by comparing the cox2 and the $e f 1-\alpha$ gene sequences of the newly described species with those of P. hispanica.

Material and Methods

On the second half of July 2016, 14 adult specimens (8 males and 6 females) were found in the tiny area of the Sierra Nevada, 2,000 meters a.s.l., as precisely indicated by Valero and Ortiz (2015) (Fig. 2). Owing to the very small size of the population, four males and two females were released on the spot to keep the population as steady as possible. At collection, few specimens were found on the common broom, Cytisus (Sarothamnus) scoparius, but most of them were caught resting on, or actually eating, a different leguminous plant, here tentatively referred to as Cytisus sp. (Fig. 3); no Dorycnium pentaphyllum was recorded in the collecting area, although it was easily accepted as lab feed, as stated by Valero and Ortiz (2015). The insects were therefore kept on their original food plants added with D. pentaphyllum, until their utilization for cytogenetic and molecular analyses.
During the same sampling campaign, two adult females of P. hispanica, also feeding on Cytisus sp., were collected 15 kilometers away, along the route to El Purche, about 2 Km from the A395 junction.
Chromosome plates of P. recondita were obtained from anaesthetized specimens by manual dissection of the gonads soaked in Ringer solution for insects. After a short hypotonic shock ($5-10 \mathrm{~min}$), testes or ovariole tips were put in an 1% sodium citrate solution, fixed for 30 min in a simplified Carnoy solution (3:1, absolute ethanol:acetic acid), and then gently pinched in drops of 45% acetic acid and dried on a hot plate (60° C). Finally, a post-fixation treatment with the same fixative was applied to the slides and then the Giemsa staining was performed. Dry stained slides were eventually mounted in some drops of Canadian balm. Later on, chromosome observations were carried out with a Zeiss photomicroscope, which also allowed picture recording on Ilford film or direct recording from the microscope camera.
Total genomic DNA was obtained according to the method described in Preiss et al. (1988). Total RNA was obtained with TRIzol reagent (ThermoFisher) according to manufacturer instructions, then the cDNA was reverse transcribed as indicated in Ghiselli et al. (2007). The partial sequences of mitochondrial gene cox2 and of the nuclear gene efl- α were PCR-amplified as described in Ghiselli et al. (2007). Obtained

PCR product were purified using the Wizard PCR Preps DNA Purification System (Promega), and Sanger-sequenced at Macrogen Europe Lab.

Sequence chromatograms checking and multiple sequence alignments with ClustalW algorithm were carried out using Mega v. 7 (Kumar et al. 2016). New sequences were elaborated together with previously obtained ones (Fig. 4; Table 1 and Table 2;

Supplementary material 1-3 for Genbank accession numbers and sequences) in order to get a more comprehensive analysis.

Maximum Likelihood tree searches were performed with RAxML v. 8.2 (Stamatakis 2014), using the GTR+G substitution model and 500 rapid bootstrap replicates for both genes. Bayesian inferences were conducted with Mr Bayes v3.2.6 (Ronquist et al. 2012): two runs were launched, each with $1,000,000$ generations, sampled every $500^{\text {th }}$ generation, and using the GTR+G substitution model. Convergence was assessed through the variance of split frequencies (<0.01), PSRF $(=1.00)$ and ESS (>200). Age estimates of cladogenetic event were calculated using a bayesian framework with BEAST v. 1.8 (Drummond and Rambaut, 2007) on the cox2 dataset. Two independent searches were run, each $10,000,000$ generations long, sampled every $1,000^{\text {th }}$ generation, and using the GTR + G substitution model. Convergence was assessed through ESS values >200. Following Mantovani et al., 2000, time calibration was set to the split between Bacillus rossius tripolitanus and B. rossius rossius $/ B$. rossius redtenbacheri: the separation of this two clades would date back to the end of Messinian salinity crisis, when the Mediterranean basin was filled up, separating North Africa, hosting B. r. tripolitanus only, and Southern Italy, where only B. rossius rossius/B. rossius redtenbacheri can be found. Calibration time was, therefore, set to $5.33 \pm 0.5 \mathrm{Myr}$ ago and implemented with a normal distribution. Searches were run with an uncorrelated, log-normal relaxed molecular clock and the birth-death speciation process. Haplotype parsimony networks were calculated through TCS v. 1.21 (Clement et al. 2000).

Results

Karyotype analysis

The chromosome set of P. recondita fully matched to expectations, for both number and structure, being $2 \mathrm{n}=37$, X0 male $/ 38$, XX female (Fig. 5), and showing similarities to the P. hispanica quartets (Fig. 6). The main features of P. recondita karyotype are three
large pairs of metacentrics $(1,2,4)$, and a smoothly decreasing series of acro- and subacrocentric pairs; the last four pairs, owing to their minute size, could also be envisaged as small metacentrics.

The P. recondita karyotype shows an overall good correspondence with the P. hispanica chromosome set (Figs 5, 6), the main differences being the different centromere position in the $4^{\text {th }}$ and $6^{\text {th }}$ pairs of the former when compared to the corresponding quartets of the latter. It could also be noted that the first and $13^{\text {th }}$ quartets have two chromosomes bearing small satellites, lacking in the corresponding positions of P. recondita, which, in turn, presents satellites on the $2^{\text {nd }}$ and $4^{\text {th }}$ pairs.

The peculiar features of P. masettii $(3 n=57)$ can be summarized as follows: P. masettii is a triploid hybrid with one chromosome set derived from P. lelongi and the other two from an unknown heterospecific paternal ancestor, as both the structure of several chromosome triplets and the cytological satellite features clearly support (Fig. 6, triplets $1-4,6,12,17-19$) (Ghiselli et al. 2007; Scali et al. 2013). Its link to P. hispanica will be commented in the Discussion section.

Molecular analysis

Maximum Likelihood and Bayesian inference phylogenetic analyses carried out on the cox 2 mitochondrial gene are congruent (Fig. 7a) and cluster Pijnackeria and Leptynia species in a monophyletic clade (bootstrap $=64 \%$; posterior probability $=0.99$). However, relationships within this clade are not fully resolved. Overall, taxa are split in a polytomy where it is possible to recognize four well-supported clades: i) the L. annaepaulae clade, ii) a clade including L. attenuata, L. caprai, and L. montana, iii) the P. recondita clade, which embodies also the newly obtained sequences, and $i v$) a cluster comprising P. lucianae in sister relationship with the group of the remaining Pijnackeria species. In this latter group, P. masettii and P. lelongi cluster together with high support; on the other hand, the cluster including P. hispanica and P. originis is weakly supported (bootstrap $=71 \%$; posterior probability <0.9). The same analyses performed on the ef-1 α nuclear gene are congruent as well (Fig. 7b), and place the P. recondita clade in sister relationship with the remaining Pijnackeria species. P. hispanica and P. originis are not included in the same cluster, while three P. masettii ef1α sequences cluster with that of P. lelongi.

Parsimony network on Pijnakeria cox2 sequences (Fig. 8) is consistent with the phylogenetic analyses. Three separate networks can be observed: i) one formed by P. recondita haplotypes, ii) one made by P. lucianae haplotypes, and iii) another one including sequences from P. barbarae, P. lelongi $+P$. masettii, and P. hispanica $+P$. originis.
The parsimony network of $e f-1 \alpha$ (Fig. 9), though, shows a quite different pattern. The P. hispanica subnetwork is connected with two different subnetworks, one including P. barbarae and one including P. masettii and P. lelongi. P. recondita, and P. originis are included in two different networks. Interestingly, when the network connection limit is relaxed ($<90 \%$), the three networks become connected and P. recondita appears more related to the P. hispanica sub-network. On the other hand, the P. originis sub-network results connected to that of P. masettii (Fig. 9).
The Bayesian time tree analysis (Supplementary Figure 1) produced a tree topology that is fully compatible with that obtained through Maximum Likelihood and Bayesian inference analyses. Age estimates of the main Pijnackeria clades are included between 0.14 Mya (P. barbarae) and 3.25 Mya (P. lucianae) (Table 3; Supplementary Figure 1). The P. hispanica $+P$. originis clade resulted to be 1.96 Myr old and diverged from the sister clade (P. masettii + P. lelongii) 3.31 Mya (Supplementary Figure 1). The divergence of the Leptynia-Pijnackeria clade dates back to 29.73 Mya (Table 3; Supplementary Figure 1)

Discussion

The origin of P . hispanica genome

Our results suggest a quite complex scenario for the composition of P. hispanica genome and the possible role of P. recondita as a fathering species.
From a chromosome analysis standpoint, the karyotypes of P. recondita and P.
hispanica are highly similar, especially the relative size and centromere positioning of most chromosomes. However, there are also differences such as the centromere position in the $4^{\text {th }}$ and $6^{\text {th }}$ pairs, and the position of cytological satellites. The karyotype of P. recondita shows the same basic haploid set of 19 elements consistently found in all other diploid species of the genus (Scali, 2009a; Scali et al. 2013), and also keeps the metacentric X chromosome as the largest. This finding clearly follows from the male
mitotic divisions which, being the male sex-chromosome formula X 0 , allow the identification of the unique X chromosome: therefore, we could reasonably assign the same role of sex-chromosomes to the first quartet in the karyotype of the parthenogenetic P. hispanica.

The combined analysis of cox 2 mitochondrial sequences and of efl- α nuclear genes suggests a quite intriguing origin of P. hispanica hybrid genome. P. originis and P. hispanica cox2 haplotypes always cluster together, indicating a clear genetic homogeneity. Therefore, in line with previous analyses (Ghiselli et al. 2007), the maternal ancestor would have been P. originis, as P. hispanica clearly incorporates its mitochondrial marker. On the other hand, the paternal contributions are less clear. Based on the efl- α phylogenetic and network analyses, P. hispanica is more related to P. barbarae, P. masettii, and P. lelongi than to P. recondita and P. originis. However, less stringent parameters for network construction allowed the connection of P. recondita and P. hispanica sub-networks. This suggests a common ancestry of the two nuclear sequences, but it also indicates a wide differentiation between P. recondita and P. hispanica. The time tree analysis clearly supports such distant relationship, dating the divergence of mitochondrial cox 2 sequences back to the Mid-Oligocene (29.73 Mya). Overall, the results are not in contrast with a possible contribution of P. recondita to the genome of P. hispanica, although the level of genetic divergence observed in both mitochondrial and nuclear markers would suggest caution. In summary, we can say that the data are compatible with the hypothesis of an ancestral contribution followed by diversification. It is worth noting that the P. recondita and the P. hispanica subnetworks are connected through the sample from El Purche (PUR), which has been collected very close to the distribution area of P. recondita (Sierra Nevada, SNE) (Fig. 8). Therefore, it is possible that widening the sampling in the area of sympatry would shed light on this issue.
P. hispanica is a very unusual hybrid since it incorporates the mitochondrial marker of P. originis but it includes the nuclear sequences of different species. The tetraploid constitution of P. hispanica genome and the close similarity of chromosome sets shared by all Pijnackeria taxa suggest the possibility of polyploidization. On the other hand, some minute differences among specific chromosome complements indicate a heterogeneous structure, supporting a complex chromosome set with heterospecific genomes. Among these, at least one of P. recondita origin. However, further inspection of P. hispanica karyotype with heteromorphic quartets points to just a double P.
recondita chromosome set contribution-also in view of a diploid structure of the initial hybrid-with two paternal chromosome sets derived each from the unknown paternal ancestor of P. masettii and P. barbarae. Overall, P. hispanica genetic structure points to a complex, unusual derivation.
The occurrence of a mitochondrial genome from one species and the nuclear genome from a different species inherited by an individual of a third species was observed for the first time through allozyme analysis and cytological investigations of both fieldcollected and lab-reared specimens of the hybridogenetic Bacillus rossius-grandii strains (Mantovani and Scali, 1992; Tinti and Scali, 1996), thus providing clear evidence for androgenesis in stick insects. Afterwards, natural androgenesis was also discovered in several species of the freshwater clam Corbicula (Komaru et al.1998; Byrne et al. 2000; Qiu et al. 2001) and in the cypress tree Cupressus dupreziana (Pichot et al. 2001). Our analysis with a mitochondrial gene and a single nuclear marker cannot be conclusive but, all considered, it is reasonable to suggest an androgenetic origin also for P. hispanica, which could date back to between 2 Mya (the estimated age of the clade) and 3.3 Mya (the estimate split age from the closest relative).
Because of the clonal structure of parthenogenetic taxa, with consequent loss of genetic variability, the causes and consequences of their longevity are debated (see Bell, 1982; Wrijenhoek and Lerman, 1982; Wrijenhoek, 1998; Normark et al. 2003). Data on stick insects obtained so far indicated that Bacillus hybrid taxa originated around 1 Mya (Mantovani et al. 2001), whereas parthenogenetic Timema lineages have evolved between 500,000 and 2 Mya (Schwander et al. 2011). In this view, P. hispanica may represent the oldest parthenogenetic taxon discovered so far among insects.

The Pijnackeria karyotype and the evolution of egg maturation modes

A great stability for chromosome number and structure within a cluster of related species is quite a rare finding among Phasmida: all species-rich genera investigated so far actually showed a marked karyotype plasticity for both number and structure of chromosomes, particularly when parthenogens are involved. Striking instances of this feature are the Australian Didymuria (Craddok, 1972, 1975) and Sipyloidea (John et al. 1987), as well as the circum-Mediterranean Bacillus and Clonopsis (Scali, 2009b; Milani et al. 2010). Also the Iberian genus Leptynia-defined on both morphology and genetic basis, and encompassing only four species-revealed diploid chromosome sets
ranging from 36 to 40 , and a very significant structural variation, even entailing the sexchromosome formula with a shift from the usual XX/X0, to the rarer XX/XY one (Scali, 2009c; Scali et al. 2016). In addition, the karyotype stability of Pijnackeria species is mirrored by the number and localization of cytological NOR-bearing satellites (Ghiselli et al. 2007; Scali et al. 2016): taking into account the tens of specimens analyzed belonging to the seven Pijnackeria species, we were able to score 10 different satellite positions, but each species possesses a maximum of two different locations. This is a quite different scenario from that observed for NOR-bearing satellites of Bacillus, where a single species may encompass as much as 12 different locations for cytological satellites (Manaresi et al. 1991, 1992, 1993; Salvadori et al. 2018; Scali et al. submitted). Frequent changes in location and number of satellites are a common finding in stick insects, and it has been suggested that they could be an outcome of transposon activity (Meyne et al. 1990; Zhdanova et al. 2007; Ruiz Herrera et al. 2008; Ocalewicz, 2013; Satovic et al. 2016). For example, R2 non-LTR transposons have been reported to be active in Bacillus species and even particularly prone to accumulate in parthenogenetic taxa (Bonandin et al. 2014, 2017; Scavariello et al. 2017). The cytological satellite features are not just a trait of inter- and intra-specific variability, since in all investigated phasmatodean species- 13 all together up to nowchromosomal satellites have been always found to be sites of highly enriched and colocalized rDNA/telomeric sequences (Scali et al. 2016; Liher et al. 2017; Salvadori et al. 2018): therefore, this trait appears to have a biological and evolutionary bearing. Actually, it has been already possible to observe that in the di-hybrid Bacillus whitei and the three-hybrid B. lynceorum, active NORs derive from all ancestors, although that of maternal B. rossius derivation appears as the most conserved (Manaresi et al. 1991,1992, 1993). However, owing to the androgenetic structure of P. hispanica, such a feature cannot be verified.
A careful karyotype analysis of Pijnackeria polyploids gives us some indirect clues about their egg maturation mechanisms, since a direct investigation has not been possible. In stick insects, egg meiosis is blocked at pachytene during the first instar larva, to be resumed in adults at laying. Consequently, eggs can be collected at precisely scheduled times and investigated. Unfortunately, in Pijnackeria such a direct analysis of oocyte maturation is not feasible, because the few laid eggs are firmly glued to the substratum and their chorionic capsule is too fragile to be handled and cut for fixation as it has been done in Bacillus and Clonopsis (Marescalchi et al. 1991; Scali et al. 2010).

Owing to such limitations, we can propose only conjectural hypotheses for P. hispanica, and considering its complex hybrid structure, an apomictic mechanism maintaining a steady karyotype structure appears the most likely. In this connection, we can observe that P. masettii is a triploid hybrid with one chromosome set derived from P. lelongi and the other two from an unknown heterospecific paternal ancestor, as both the structure of several chromosome triplets and the cytological satellite features clearly support (Fig. 6, triplets $1-4,6,12,17-19$; see also Ghiselli et al. 2007; Scali et al. 2013). At the time of its formation, such a hybrid certainly suffered from a diffuse imbalance in pairing and segregation of the trivalents during the first meiotic division, as actually observed in triploid specimens of Bacillus atticus (Marescalchi and Scali 1997, 2003); therefore, a modified meiosis escaping such constraints is likely to have been evolved by selecting an apomictic egg-maturation mechanism. A similar meiotic pathway could have been evolved in the tetraploid P. hispanica androgenetic parthenogen with a high (76) chromosome number.

Gathering all relevant observations on the issue, the most parsimonious series of gains/losses of whole chromosome sets leading to the extant structure of P. hispanica can be envisaged as follows: a seminal parthenogenetic P. originis $/ P$. recondita hybrid with an apomictic reproduction owing to the marked genetic differentiation of the parental taxa was produced. Pre-mating isolating mechanisms were easily overcome, since in phasmids they are rather ineffective even between utterly differentiated species (Scali et al. 1995). Back-crosses to P. recondita males were still possible (see Tinti and Scali, 1996) and, thanks to the physiological egg-polyspermy (Scali, 1972), an allpaternal progeny was originated when syngamy with the hybrid egg nucleus failed and two spermatozoa fused to originate a 2 n androgen, which only kept the mitochondrial DNA of the mother but continued an apomictic reproduction (Mantovani and Scali, 1992). The 4 n ploidy of P. hispanica could then be reached through a two-step acquisition of additional Pijnackeria genomes by the androgen. After the original hybridization of P. recondita with P. originis leading to an early diploid androgen, an additional fathering taxon, providing the third haploset, should have been different from P. recondita and likely similar to the unknown paternal ancestor of P. masettii. The last contribution of a fourth genome could have been provided by a P. barbarae-like paternal ancestor: the heterozygous structure of several quartets of P. hispanica (Fig. 6) and the high variability of its ef1- α sequences (Fig. 9) are consistent with the above outlined assumptions. Being these correct, P. hispanica could be then envisaged as a
polyphyletic hybrid-complex endowed with a high colonizing potential. Moreover, it is tempting to speculate that such kind of multi-hybrid origin could be the reason behind the long evolutionary persistence (1.96-3.31 Myr) of this parthenogenetic taxon. The high variability produced by multiple hybridizations events might have compensated for the absence of sexual recombination (Ghiselli et al 2007 and references therein). On the issue, we would like mentioning that androgenetic stick-insect strains of Bacillus and Clonopsis contributed to the formation of a complex network among parental and derived taxa, so that their reproductive and micro-evolutionary features were defined as "reticulate evolution" (reviewed in Scali, 2009a), and, within it, androgenesis has been proposed as a short-cut pathway for speciation (Ghiselli et al. 2007; Milani et al. 2010; 2015). To better envisage the cladogenetic potential of androgenesis, a simple model of hybrid eggs maturation and genome transmission has been worked out for Clonopsis hybrids, which would even explain the ascertained diploid structure of polyploid karyotypes (Milani et al. 2009; 2010): the Clonopsis model also accommodates quite easily the otherwise inexplicable chromosomal findings reported in the Australian Sipyloidea nelida species complex by John et al. (1987).
On the whole, the targeted cytogenetic insight and transmission analysis of genomes, although rather limited, appears an effective tool to reveal the exploitation of a wide array of reproductive modes and evolutionary pathways in stick insects: these insights seem to really add to the routinely accepted ideas about reproductive features, evolutionary modes and phylogenetic relationships in animals.

Taxonomic implications

Following the above described scenario of "reticulate" backcrosses, multiple tetraploid populations arose in different areas of the Pijnackeria range, stepwise embodying additional sets of fathering taxa, some of which can also be missing from the sampling. These 4 n populations are now spread and mixed in the region indicated in Figure 2. According to this phylogeographic pattern, P. hispanica would then represent the ensemble of many subpopulations of $4 n$ parthenogenetic androgens in which the multiple contributions from diverse diploid species can be appreciated in the eflα network (Fig. 9). Each P. hispanica specimen within the different subpopulations appears to possess a chimerical genetic structure, even more strengthened by the occurrence of the "foreign" mitochondrial DNA of the maternal ancestor. All this points
to a composite, polyphyletic structure of the tetraploid hybrid, which we propose to indicate as an androgenetic complex.

Finally, we would like to point out that, if in cox2 network the recently described Sierra Nevada (SNE) P. recondita taxon does not actually cluster together with the previously described Pijnackeria species (Fig. 7a,b), and Valero and Ortiz (2015) obtained the same tree topology from coxl and cox 2 analyses. Although this topology does not fully resolve the relationships within the genus Pijnackeria, it clearly indicates a high degree of differentiation between P. recondita and the other conspecific species. Further molecular investigation may help to shed light on the evolution of this genus and its relationship with the closely related genus Leptynia.

Data availability: The datasets generated during and/or analyzed during the current study are available in the GenBank repository (see corresponding GenBank numbers in Supplementary Material 1). The sequences generated during this study are also available as Supplementary Material 2 and 3 in FASTA format.

Conflict of Interest: The authors declare that they have no conflict of interest.

Ethical approval: All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Figure Captions

Fig. 1 Specimen of Pijnackeria hispanica: the nominal species of the new genus (corresponding to the originally described Leptynia hispanica species by Pantel 1890). Note the very short antennae and the pointed abdomen end peculiar to the taxon. Additional information and images of this tetraploid parthenogen and of all other congeneric species are to be found in Scali 2009, Scali et al. 2012, Scali et al. 2013; Valero and Ortiz 2015.

Fig. 2 Ranges of Pijnackeria taxa. 2n: A, P. lucianae; B, P. barbarae; C, P. lelongi; D, P. originis; 3n, P. masettii; 4n, P. hispanica. Sample acronyms as in Ghiselli et al, 2007. The area of P. recondita (Sierra Nevada) and P. hispanica (El Purche) samples is
represented by a single dot south-east of PRA (Puerto La Ragua). Acronyms as in Table 1 and Table 2

Fig. 3 Pijnackeria recondita food plants: Cytisus scoparius on the right and Cytisus sp, on the left

Fig. 4 Geographical distribution of the haplotypes obtained both by sampling and from literature contributing to the molecular analysis. A) cox 2 . B) efl- α. For the exact coordinates of the sampling sites, refer to Table 1 and Table 2

Fig. 5 Karyotype of Pijnackeria recondita. The karyotype is very similar to those of all other Pijnackeria species. A) Female: 1st pair, heterochromosomes; the 2nd and 4th pairs bear a heterozygous satellite; B) Male: its unique sex chromosome (X0) allows to indicate the first female pair as the heterochromosome pair in both P. recondita and, as a consequence, in P. hispanica

Fig. 6 Karyotype of the triploid Pijnackeria masettii (on the top), and of the tetraploid Pijnackeria hispanica (on the bottom) modified from Scali et al. (2013). P. hispanica appears either a $2+2$ structure, or, better, a $2+1+1$ structure. P. masettii triplets $1-4,6$, $12,17-19$ clearly support a $2+1$ structure; $1^{\text {st }}, 2^{\text {nd }}, 13^{\text {th }}, 15^{\text {th }}$ and $19^{\text {th }}$ quartets of P. hispanica seem to suggest either a $2+2$ structure, or better a $2+1+1$ structure

Fig. 7 Schematic drawing of Maximum Likelihood/Bayesian Inference on $\operatorname{cox} 2$ (A; - $\ln L$ $=3431.06 / 3503.44)$ and efl- $\alpha(\mathrm{B} ;-\ln L=1958.30 / 20072.49)$ datasets. Number at nodes are bootstrap/posterior probabilities support values. Outgroup(s) have been omitted for graphical purposes

Fig. 8 Parsimony network of the cox2 gene sequences. Circles size is proportional to haplotype frequency; black dots represent missing/ideal haplotypes. Connections obtained with relaxed parameters are indicated with dashed, grey lines; grey numbers in parentheses are the number of missing/ideal haplotypes along the connection

Fig. 9 Templeton network of the efl- α gene sequences. Circles size is proportional to haplotype frequency; black dots represent missing/ideal haplotypes. Connections
obtained with relaxed parameters are indicated with dashed, grey lines; grey numbers in parentheses are the number of missing/ideal haplotypes along the connection

Legends to tables

Table 1. Analyzed species for cox2, with collecting place with acronyms and geographic coordinates.

Table 2. Analyzed species for efl- α, with collecting place with acronyms and geographic coordinates.

Table 3. Age estimates of the main Pijnackeria clades.

Supplementary material

Supplementary Figure 1. Time calibrated tree obtained on cox2 gene sequence.
Numbers on branches represent the posterior probability nodal support; bars at nodes indicate the 95% high posterior density (HPD).

Supplementary Material 1. Genbank accession numbers of the analyzed sequences.

Supplementary Material 2. cox2 sequences.

Supplementary Material 3. ef1- α sequences.

References

Bell, G. (1982). Masterpiece of nature: the evolution and genetics of sexuality. London: Croom Helm.

529 Craddock, E. (1972). Chromosomal diversity in the Australian Phasmatodea. Australian Journal Of Zoology, 20(4), 445-462. doi: 10.1071/zo9720445

531 Craddock, E. (1975). Intraspecific karyotypic differentiation in the Australian phasmatid
Bianchi, A. (1992). Karyological studies of mediterranean stick-insects belonging to the genera Clonopsis and Leptynia (Insecta Phasmatodea). Caryologia, 45(1), 1-19. doi: 10.1080/00087114.1992.10797205

Bianchi, A., \& Meliadò, P. (1998). Analysis of the karyotypes of four species of the Leptynia attenuata complex (Insecta Phasmatodea). Caryologia, 51(3-4), 207-219. doi: 10.1080/00087114.1998.10797413

Bonandin, L., Scavariello, C., Mingazzini, V., Luchetti, A., \& Mantovani, B. (2016). Obligatory parthenogenesis and TE load: Bacillus stick insects and the R2 non-LTR retrotransposon. Insect Science, 24(3), 409-417. doi: 10.1111/1744-7917.12322 Brock, P. (1991). Stick-insects of Britain, Europe and the Mediterranean. London: Fitzgerald Publishing.
Brock, PD. (1993). Studies on stick insects of the genus Leptynia in Spain. Amateur Entomologist's Society Bulletin, 52, 165-172
Byrne M, Phelps H, Church T, Adair V, Selvakumaraswamy P, Potts J. (2000). Reproduction and development of the freshwater clam Corbicula australis in southeast Australia. Hydrobiologia, 418, 185-197. https://doi.org/10.1023/A:1003986512832 Cho, S., Mitchell, A., Regier, JC., Poole, RW., Friedlander, TP. \& Zhao, S. (1995). A highly conserved nuclear gene for low-level phylogenetics: elongation factor-1 alpha recovers morphology-based tree for heliothine moths. Molecular Biology And Evolution, 12, 650-656. doi: 10.1093/oxfordjournals.molbev.a040244 Clement, M., Posada, D., \& Crandall, K. (2000). TCS: a computer program to estimate gene genealogies. Molecular Ecology, 9(10), 1657-1659. doi: 10.1046/j.1365294x.2000.01020.x Didymuria violescens (Leach). Chromosoma, 53(1), 1-24. doi: 10.1007/bf00329387 Drummond, A., \& Rambaut, A. (2007). BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology, 7(1), 214. doi: 10.1186/1471-2148-7-214 Farell, E., \& Alexandre, G. (2012). Bovine serum albumin further enhances the effects of organic solvents on increased yield of polymerase chain reaction of GC-rich templates. BMC Research Notes, 5(1), 257. doi: 10.1186/1756-0500-5-257

Gatesy, J., DeSalle, R., \& Wahlberg, N. (2007). How Many Genes Should a Systematist Sample? Conflicting Insights from a Phylogenomic Matrix Characterized by Replicated Incongruence. Systematic Biology, 56(2), 355-363. doi: 10.1080/10635150701294733 Ghiselli, F., Milani, L., Scali, V., \& Passamonti, M. (2007). The Leptynia hispanica species complex (Insecta Phasmida): polyploidy, parthenogenesis, hybridization and more. Molecular Ecology, 16(20), 4256-4268. doi: 10.1111/j.1365-294x.2007.03471.x John, B., Rentz, D., \& Contreras, N. (1987). Extensive chromosome variation in the stick insect genus Sipyloidea Brunner von Wattenwyl (Phylliidae : Necrosciinae) within Australia, and descriptions of three new species. Invertebrate Systematics, 1(6), 603630. doi: 10.1071/it9870603

Jordal, B. (2002). Elongation Factor 1 alpha resolves the monophyly of the haplodiploid ambrosia beetles Xyleborini (Coleoptera: Curculionidae). Insect Molecular Biology, 11(5), 453-465. doi: 10.1046/j.1365-2583.2002.00354.x

Komaru, A., Kawagishi, T., \& Konishi, K. (1998). Cytological evidence of spontaneous androgenesis in the freshwater clam Corbicula leana Prime. Development Genes And Evolution, 208(1), 46-50. doi: 10.1007/s004270050152
Kumar, S., Stecher, G., \& Tamura, K. (2016). MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Molecular Biology And Evolution, 33(7), 1870-1874. doi: 10.1093/molbev/msw054
Leigh, J., \& Bryant, D. (2015). popart: full-feature software for haplotype network construction. Methods In Ecology And Evolution, 6(9), 1110-1116. doi: 10.1111/2041210x. 12410

Luchetti, A., \& Mantovani, B. (2013). Non-LTR R2 Element Evolutionary Patterns: Phylogenetic Incongruences, Rapid Radiation and the Maintenance of Multiple Lineages. Plos ONE, 8(2), e57076. doi: 10.1371/journal.pone. 0057076 Manaresi, S., Marescalchi, O., \& Scali, V. (1991). Ag-detected NOR and C-banding patterns in Bacillus rossius (Insecta Phasmatodea) from Sicily. Caryologia, 44(3-4), 265-286. doi: 10.1080/00087114.1991.10797192

Manaresi, S., Marescalchi, O., \& Scali, V. (1992a). The Chromosome Complement of the Hybrid Bacillus whitei Complex (Insecta Phasmatodea). I. The paleo- and neostandard karyotypes. Cytologia, 57(1), 101-109. doi: 10.1508/cytologia.57.101 Manaresi, S., Marescalchi, O., \& Scali, V. (1992b). The Chromosome Complement of the Hybrid Bacillus whitei Complex (Insecta Phasmatodea). II. The repatterned cytotypes. Cytologia, 57(1), 111-119. doi: 10.1508/cytologia.57.111 Invertebrate Reproduction \& Development, 43(2), 163-172. doi:
10.1080/07924259.2003.9652535

Marescalchi, O., Pijnacker, L., \& Scali, V. (1991). Cytology of Parthenogenesis in 590 Bacillus whitei and Bacillus lynceorum (Insecta Phasmatodea). Invertebrate
591 Reproduction \& Development, 20(1), 75-81. doi: 10.1080/07924259.1991.9672180
Meyne, J., Baker, R., Hobart, H., Hsu, T., Ryder, O., \& Ward, O. et al. (1990).
593 Distribution of non-telomeric sites of the (TTAGGG)n telomeric sequence in vertebrate

Milani, L., Scali, V., \& Passamonti, M. (2009). The Clonopsis gallica puzzle:
599 Mendelian species, polyploid parthenogens with karyotype re-diploidization and clonal androgens in Moroccan stick insects (Phasmida). Journal Of Zoological Systematics 601 And Evolutionary Research, 47(2), 132-140. doi: 10.1111/j.1439-0469.2008.00489.x

Manaresi, S., Marescalchi, O., \& Scali, V. (1993). The trihybrid genome constitution of Bacillus lynceorum (Insecta Phasmatodea) and its karyotypic variations. Genome, 36(2), 317-326. doi: 10.1139/g93-044

Mantovani, B., \& Scali, V. (1992). Hybridogenesis and Androgenesis in the Stick-Insect Bacillus rossius-grandii benazzii (Insecta, Phasmatodea). Evolution, 46(3), 783-796. doi: 10.2307/2409646

Mantovani, B., Passamonti, M., \& Scali, V. (2001). The Mitochondrial Cytochrome Oxidase II Gene in Bacillus Stick Insects: Ancestry of Hybrids, Androgenesis, and Phylogenetic Relationships. Molecular Phylogenetics And Evolution, 19(1), 157-163. doi: 10.1006/mpev. 2000.0850
Marescalchi, O., \& Scali, V. (1997). Chromosomal and NOR patterns in the polyclonal stick insect Bacillus atticus atticus (Insecta; Phasmatodea). Genome, 40(2), 261-270. doi: 10.1139/g97-037
Marescalchi, O., \& Scali, V. (2003). Automictic parthenogenesis in the diploid-triploid stick insect Bacillus atticus and its flexibility leading to heterospecific diploid hybrids.
过 chromosomes. Chromosoma, 99(1), 3-10. doi: 10.1007/bf01737283
Milani, L., Ghiselli, F., Pellecchia, M., Scali, V., \& Passamonti, M. (2010). Reticulate evolution in stick insects: the case of Clonopsis (Insecta Phasmida). BMC Evolutionary Biology, 10(1), 258. doi: 10.1186/1471-2148-10-258 631 Huelsenbeck, J.P. (2012). MrBayes 3.2: Efficient Bayesian Phylogenetic Inference and

634 Ruiz-Herrera, A., Nergadze, S., Santagostino, M., \& Giulotto, E. (2008). Telomeric
Miller, M., Schwartz, T., Pickett, B., He, S., Klem, E., Scheuermann, R. ..., O’Leary, M. A. (2015). A RESTful API for Access to Phylogenetic Tools via the CIPRES Science Gateway. Evolutionary Bioinformatics, 11, 43-48. doi: 10.4137/ebo.s21501 Normark, B., Judson, O., \& Moran, N. (2003). Genomic signatures of ancient asexual lineages. Biological Journal Of The Linnean Society, 79(1), 69-84. doi: 10.1046/j.10958312.2003.00182.x

Pantel, P.J. (1890). Notes Orthoptérologiques. II Les Phasmides d'Europe et des pays limitrophes. Anales Sociedad Española de Historia Natural, 19, 371-404

Passamonti, M., Mantovani, B., \& Scali, V. (1999). Karyotype and Allozyme Characterization of the Iberian Leptynia attenuata Species Complex (Insecta Phasmatodea). Zoological Science, 16(4), 675-684. doi: 10.2108/zsj.16.675 Passamonti, M., Mantovani, B., \& Scali, V. (2004). Phylogeny and karyotype evolution of the Iberian Leptynia attenuata species complex (Insecta Phasmatodea). Molecular Phylogenetics And Evolution, 30(1), 87-96. doi: 10.1016/s1055-7903(03)00156-8 Pichot, C., El Maâtaoui, M., Raddi, S., \& Raddi, P. (2001). Surrogate mother for endangered Cupressus. Nature, 412(6842), 39. doi: 10.1038/35083687 \#pagine Pijnacker, L. (1966). The maturation divisions of the parthenogenetic stick insect Carausius morosus Br. (Orthoptera, Phasmidae). Chromosoma, 19(1), 99-112. doi: 10.1007/bf00332794

Preiss, A., Hartley, D., \& Artavanis-Tsakonas, S. (1988). The molecular genetics of Enhancer of split, a gene required for embryonic neural development in Drosophila. The EMBO Journal, 7(12), 3917-3927. doi: 10.1002/j.1460-2075.1988.tb03278.x Qiu, AD \& Shi, AJ \& Komaru, Akira. (2001). Yellow and brown shell color morphs of Corbicula fluminea (Bivalvia: Corbiculidae) from Sichuan Province, China, are triploids and tetraploids. Journal of Shellfish Research, 20, 323-328.
Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D., Darling, A., Höhna, S., ..., Model Choice Across a Large Model Space. Systematic Biology, 61(3), 539-542. doi: 10.1093/sysbio/sys029 repeats far from the ends: mechanisms of origin and role in evolution. Cytogenetic And Genome Research, 122(3-4), 219-228. doi: 10.1159/000167807
Salvadori, S., Coluccia, E., Deidda, F., Sibiriu, M., Costa, E., Deiana, AM. \& Scali, V. (2018). Multiple highly amplified NORs co-localized with telomeric sequences in the
parthenogenetic hybrid Bacillus whitei (Insecta Phasmatodea). Comparative

641 Satović, E., Vojvoda Zeljko, T., Luchetti, A., Mantovani, B., \& Plohl, M. (2016).

17(1), 997. doi: 10.1186/s12864-016-3347-1
645 Scali, V. (1972). La citologia della partenogenesi di Bacillus rossius. Bollettino Di

650 Scali, V. (2009b). Revision of the Iberian stick insect genus Leptynia Pantel and 651 description of the new genus Pijnackeria. Italian Journal Of Zoology, 76(4), 381-391.

660 Scali, V., Milani, L. \& Passamonti, M. (2012). Revision of the stick insect genus
661 Leptynia: description of new taxa, speciation mechanism and phylogeography.
662 Contributions to Zoology, 81(1), 25-42.
663 Scali, V., Milani, L., \& Passamonti, M. (2013). Description and ecology of new 664 Pijnackeria stick insects: four bisexual species and a triploid parthenogen with their 665 phyletic relationships. Journal Of Zoological Systematics And Evolutionary Research, 666 51(3), 213-226. doi: 10.1111/jzs. 12018

667 Scali, V., Milani, L., \& Passamonti, M. (2010). Clonopsis gallica, a stick insect 668 parthenogen exploiting different egg maturation mechanisms over its range.

669 Invertebrate Reproduction \& Development, 54(3), 143-150. doi:
$670 \quad 10.1080 / 07924259.2010 .9652326$

684 Taddei, C., Maurizii, M., Chicca, M., \& Scali, V. (1993). The germarium of panoistic

691 Trifinopoulos, J., Nguyen, L., von Haeseler, A., \& Minh, B. (2016). W-IQ-TREE: a fast 44(W1), W232-W235. doi: 10.1093/nar/gkw256
694 Valero, P., \& Ortiz, AS. (2015). Description and DNA barcoding of a new Iberian species of Pijnackeria (Scali, 2009) from the Sierra Nevada, Spain (Phasmida: Diapheromeridae). Zootaxa, 4058(4), 535-550. doi:10.11646/zootaxa.4058.4.5
697 Vrijenhoek, R. (1998). Animal Clones and Diversity. Bioscience, 48(8), 617-628. doi: 698 10.2307/1313421

699 Vrijenhoek, R., \& Lerman, S. (1982). Heterozygosity and Developmental Stability
Scali, V., Tinti, F., Mantovani, B., \& Marescalchi, O. (1995). Mate recognition and gamete cytology features allow hybrid species production and evolution in Bacillus stick insects. Bollettino Di Zoologia, 62(1), 59-70. doi: 10.1080/11250009509356052 Scavariello, C., Luchetti, A., Martoni, F., Bonandin, L., \& Mantovani, B. (2017). Hybridogenesis and a potential case of R2 non-LTR retrotransposon horizontal transmission in Bacillus stick insects (Insecta Phasmida). Scientific Reports, 7(1), 41946. doi: 10.1038/srep41946

Schwander, T., Henry, L., \& Crespi, B. (2011). Molecular Evidence for Ancient Asexuality in Timema Stick Insects. Current Biology, 21(13), 1129-1134. doi: 10.1016/j.cub. 2011.05 .026

Stamatakis, A. (2014). RAxML version 8: a tool for phylogenetic analysis and postanalysis of large phylogenies. Bioinformatics, 30(9), 1312-1313. doi:
10.1093/bioinformatics/btu033 ovarioles of Bacillus rossius (Insecta Phasmatodea): Structure and function during imaginal life. Invertebrate Reproduction \& Development, 23(2-3), 203-210. doi: 10.1080/07924259.1993.9672316

Tinti, F., \& Scali, V. (1996). Androgenetics and Triploids from an Interacting Parthenogenetic Hybrid and its Ancestors in Stick Insects. Evolution, 50(3), 1251-1258. doi: $10.2307 / 2410665$ online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Research, Under Sexual and Asexual Breeding Systems. Evolution, 36(4), 768-776. doi: 10.2307/2407890

Zhdanova, N., Rubtsov, N., \& Minina, Y. (2007). Terminal regions of mammal chromosomes: Plasticity and role in evolution. Russian Journal Of Genetics, 43(7), 721732. doi: $10.1134 /$ s1022795407070022

A
1
2
3
4
5

6

\% 8	$\cap \mathrm{A}$	$\Delta \wedge$	A, 4	A 8	成原
7	8	9	10	11	12

B

B
$8 x 8 x$ 1

2

ลิ̣
3

4

AKno
5

6
$x 8 \times 8$

MAOA
7

AnAN
8

ANGN ANAN ANAN ANAA XANA
ANGN ANAN ANAN ANAA XANA
9

