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Supplementary Material 

S1 Deformation band characteristics 

Field and microstructural observations 

In Loiano, DBs occur along all the exposed sandstone sequence but display different patterns wherein the grain size, 

sorting or porosity differ. In poorly sorted and/or low porosity coarse-grained sandstone, deformation appears more 5 

localized, and the trace of the DBs tends to be straight and develop along a single strand (Fig. 5e). In well-sorted and/or high 

porosity fine-grained sandstone, instead, deformation is more distributed and the trace of the DBs splits into several wavy 

and anastomosing segments (Fig. 5e). A clay smear occurs where DBs cut through thin, dark-colored clay levels (Fig. 5e). 

Grains in the DBs are fractured and angular, whereas the host rock consists of more rounded and nearly undisturbed 

medium- to coarse-grained sand grains (Figs. 9b-d and 10). However, some intragranular fractures are present at grain-to-10 

grain contacts (Fig. 10a-b). These microfractures are common in the boundary zone of the DBs (Fig. 10i). Microfractures in 

larger grains are often filled by fine-grained clasts. Detrital calcite clasts and bioclasts are often fractured or affected by 

pressure solution at contact points with other framework grains (Fig. 10b-d). Elongated detrital mica grains (mostly biotite) 

are bent between other grains and they tend to be preferentially aligned parallel to the bedding (Fig. 10c). In some cases, 

where framework grains are in contact, they show straight-elongate planar to slightly undulated grain to grain contacts (Fig. 15 

10b) that are also roughly parallel to the bedding. Locally, we observed partial dissolution of feldspar with formation of 

authigenic calcite (Fig. 10e). Minor calcite cement occurs also as syntaxial overgrowths around fossil shells and detrital 

carbonate grains (Fig. 10f). 

Microstructural analysis in Bollène samples showed that a few intragranular fractures break framework grains at the 

contact-point among two or more grains (Fig. 11a, b). These microfractures become more frequent approaching the DB (Fig. 20 

11g, h, j) and they are preferentially oriented with respect (ranging from ca. 30° to 50°) to the force chain around DB (Fig. 

8c). Despite the grains being fractured in the host rock sectors close to the DB, and the reduction in grain size is limited.  

Feldspar sheared grains within the bands commonly organize in highly comminuted lenses. These stripes are well 

recognizable both in natural-light where they appear as brown lenses (Fig. 11g, h) and in CL where they show a bright light 

blue color (Fig. 11h). The preferential alignment of elongated grains and stripes of detrital feldspar produce a foliated pattern 25 

that is sub-parallel to the DB.  

Discussion 

In both study areas, the key, common structural element are the DBs. In Loiano, geometric compatibility between 

DBs strike (Fig. 2d) and large-scale normal faults in this sector of the Northern Apennines (Fig. 2a, c; Antonellini and 

Mollema, 2002; Picotti et al., 2009) indicates that they might be coeval. For instance, our study outcrops are close to a high-30 
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angle normal fault striking nearly N-S and dipping W (Del Sole et al., 2020). However, the presence of multiple sets of DBs, 

with different trends (Fig. 2d), kinematics, and ambiguous crosscutting relationships (Fig. 3) suggests that the Loiano 

Sandstones recorded multiple tectonic phases (Cibin et al., 2001; Antonellini and Mollema, 2002) from the Eocene onwards. 

A clear sequence of deformation events has not yet been defined. In Loiano, the inhomogeneous mesoscale pattern and 

geometry of DBs along the exposed sandstone sequence is related to variations in host rock properties, such as sorting, 35 

porosity, and grain-size (Fig. 5e). Low porosity and/or poorly sorted coarse-grained host sandstones promote localized 

deformation commonly featured by a single straight-trace DB accommodating all displacement. High porosity and/or well-

sorted fine-grained sandstones, instead, foster a more distributed deformation characterized by several anastomosing DB 

segments, where each segment accommodates part of the total displacement. Others host rock properties steering the overall 

DB characteristics are mineralogy, lithification, and grain roundness (Antonellini and Mollema, 2002; Fossen et al., 2017; 40 

Del Sole and Antonellini, 2019). 

In the Bollène quarry, structural features include diachronous and differently oriented DBs and occur only in the 

unconsolidated Turonian sands (Fig. 2c). Crosscutting relationships between different sets point out that ESE-WNW reverse 

DBs set should be the oldest. Their kinematics, low-angle planar attitude and organization in conjugate and densely 

distributed networks, are typical features of DBs formed in a contractional regime. This evidence and the compatibility 45 

between the strike of reverse DBs and larger scale E-W trending thrusts and folds in the area (Fig. 2a, b) would indicate that 

they formed contemporaneously and within a single stress field (Ballas et al., 2013, 2014; Soliva et al., 2013). In particular, 

these DBs are likely associated with the Paleocene to early Oligocene Pyrenean shortening (Sanchis and Séranne, 2000; 

Lacombe and Jolivet, 2005) (Fig. 2a). The NE-SW/ENE-WSW strike-slip bands displace the ENE-WSW reverse DBs, the 

NW-SE bands, and the NW-SE-trending carbonate cementation; hence, NE-SW/ENE-WSW strike-slip bands should be the 50 

younger set among the observed ones. They are most probably related to the (left-lateral) strike-slip reactivation of some 

major preexisting NE-SW faults in the region (e.g. Cevennes and Nîmes faults; Fig. 2a) during the Pyrenean event or in the 

Miocene to Quaternary age NNE-SSW Alpine contraction (Champion et al., 2000). The existence of a conjugate set of 

strike-slip bands with left-lateral (mostly ENE-WSW) and right-lateral (mostly NE-SW) kinematic (Fig. 6b) it places the 

maximum-compressive stress axis (σ1) at ca. N50°E, thus, these DBs are consistent with the Miocene Alpine contraction 55 

(Fig. 2a). Two hypotheses can explain the occurrence of NW-SE/NNW-SSE DBs associated with cement nodules. They 

could have been formed as dextral strike-slip structures (Figs. 6b and 7f) during the NNE-SSW Pyrenean-Provencal 

shortening (Fig. 2a). Some of these faults could have been reactivated as normal faults during the NW-SE Oligocene-Early 

Miocene extension. A second possibility is related to the presence of a NE-SW map-scale normal fault, the Bollène Fault 

(Saillet, 2009), close to the outcrops discussed in this study (Fig. 2c). In this framework, the NW-SE set of normal DBs 60 

could be genetically linked to a stress perturbation (in a dilation jog or quadrant) around the large-scale Bollène fault, during 

its Oligocene activity.  

Microstructural observations indicate that DBs in both Loiano and Bollène, developed by mechanical grain 

fracturing and compaction with minor contributions by shear-related grain disaggregation by rolling and grain boundary 
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sliding. Zone of bands show a similar pattern but the degree of cataclasis is higher than single DBs. These structures can be 65 

classified as compactive shear bands (CSB) with cataclasis (Aydin et al., 2006; Fossen et al., 2017). 

S2 Calcrete  

In the Bollène quarry, a massive hardened layer is exposed stratigraphically above the Turonian Sandstones, at roughly 

3 meters above the quarry floor (Fig. S2a). This layer is characterized by a tabular structure and its lower boundary is 

irregular, as well as its thickness (Fig. S2a, b). The features of this weathered crust and the invariably negative δ13C and δ18O 70 

values of its cement (Fig. 12b), suggest that it is a “massive” calcrete (e.g. Alonso-Zarza, 2003). The calcrete specimen was 

collected along this level (Fig. S2c, d), and the cement was sampled to compare its stable isotopes composition with that of 

cement in nodules (Fig. 12b). 

 

 75 

Figure S2.1 (a) Overview photograph that show the local stratigraphic framework of the Bollène quarry. The whitish Turonian sands, with 

DBs and nodules, are overlain by a reddish-brown massive calcrete level (b, c). (d) Calcrete hand specimen. 
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S3 Petrophysical data 

Table S3.1 Petrophysical data for the Loiano field site 

  

(*) Kozeny-Carman (KC) permeability 

Parameters 
 

Unit 

 HR DB  

Porosity 2.24E-01 4.50E-02 - 

Intrinsic permeability  2.94E+00 5.00E-03 Darcy 

Hydraulic conductivity 9.60E+00 8.11E-02 K/n 

 85 

(**) In situ air-permeability 

  Feature Data N Median Mean Std. Dev. Min Max 

Permeability (mD) 

HR 174 1053.46 2963.35 5409.98 0.29 39729.44 

DB 56 17.16 38.65 80.65 0.04 522.41 

NOD 118 5.76 31.70 56.49 0.03 339.65 

 

HR — host rock; NOD — nodule. 

(*) Del Sole and Antonellini, (2019); (**) Del Sole et al., (2020). 

 

Table S3.2 Petrophysical data for the Bollène field site (***) 90 

 

Parameters 
 

 Unit 

 HR DB DB  

Porosity (%) 22.05 10 17.46 % 

Permeability (mD) 50 0.02 1.9 mD 

R50 — Median pore access radius 9.9 0. 1 µm 

Ra — Threshold pore access radius 23 2.6 7.6 µm 

 

(***) Ballas (2013); Ballas et al., (2014). 

S4 Formation waters (δ18Ofluid) composition 

Oxygen isotope composition in minerals (δ18Ocarb) are not a direct measurement of the δ18O composition of the formation 95 

waters (δ18Ofluid) at the time of cement precipitation, since the oxygen isotopic fractionation between water and calcite 

depends on temperature (e.g. Friedman & O’Neil, 1977). To this end, we adopted the fractionation formula of Friedman and 

O’Neil (1977) for water-calcite system, assuming 10 °C as the temperature of superficial fluids, 200-500 m as the depth 

range, and a geothermal gradient of 20 °C/km for Loiano. We did the same for Bollène, assuming 400 m as the maximum 

burial depth (Ballas et al., 2013; Soliva et al., 2013). A temperature range of 14-20 °C for Loiano and 18 °C for Bollène has 100 
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been estimated, respectively. The depth range for nodule formation in Loiano has been assumed considering that if the 

nodules are due to meteoric water infiltration, then the flow lines would have travelled, at most, a maximum distance from 

the ridges that delimit the valleys until the contact with the Liguride units (regional seal; e.g. Monghidoro Fm.), thus, at a 

maximum depth of 400-500 m. Results of the back-calculation of the δ18O composition of the cementing fluids are reported 

in Tables S4.1 and S.4.2 for Loiano and Bollène samples, respectively. 105 

 

Table S4.1 Isotopic composition of cementing fluids at Loiano 

 

Feature δ18Ofluid (‰ V-SMOW) at 14 °C 

 Min; Max Mean 

DBs-parallel nodules -5.42; -2.31 -3.73 

Bedding-parallel nodules -3.03; -2.26 -2.75 

Feature δ18Ofluid (‰ V-SMOW) at 20 °C 

 Min; Max Mean 

DBs-parallel nodules -4.01; -0.90 -2.33 

Bedding-parallel nodules -1.62; -0.85 -1.34 

 

Table S4.2 Isotopic composition of cementing fluids at Bollène 110 

 

Feature δ18Ofluid (‰ V-SMOW) 

 Min; Max Mean 

DBs-parallel nodules -7.85; -5.98 -7.19 

Calcrete -6.70; -6.44 -6.62 
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