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The latest development and the new extended
capabilities of the GENII-LIN soil transfer model

F. Teodoria,∗

aUniversity of Bologna - Laboratorio di Montecuccolino, via dei Colli, 16, 40136 Bologna
Italy

Abstract

Some years ago, we started developing an enhanced soil transport model,
where short life nuclide contributions were accurately accounted, Teodori (2017).
The aim was to extend the code capabilities to handle incidental release of con-
taminant to soil, by evaluating exposure since the very beginning of the con-
tamination event, before the radioactive decay chain equilibrium is reached. In
this years those new capabilities have been widely extended: the leaching model
has been reworked in a more physically based manner, by using a more sophis-
ticated formulation for the transfer rate; the soil compartment number has been
increased, by introducing an intermediate layer; bioturbation by animals now
also affects downward transfer of materials, by modifying the leaching constant
and by void collapse; plant transfer contributes to contaminant redistribution
through all soil depth by plant recycle.

Keywords: Radiation Protection; Health Physics; Soil Contamination;
Numerical Simulation; Safety; Environmental impact

1. Introduction

GENII-LIN is an open source multipurpose health physics code, that has
been developed at the University of Bologna to provide a reliable tool to be
used for purposes such as siting facilities, environmental impact statements,
and safety analysis reports. GENII-LIN is a descendant of the GENII code, a
thoroughly peer-reviewed, DOE (2003), DOE (2004), and well documented,
Napier et al. (1988a), Napier et al. (1988b), open source software system,
which was developed at the Pacific Northwest National Laboratory (PNL) and
reached maturity in the early 90s with the release 1.485. GENII-LIN has ca-
pabilities for calculating radiation dose and risk to individuals or populations
from radionuclides released to the environment and from pre-existing environ-
mental contamination. The code can handle a wide range of exposure pathways
that comprehend: external exposure from finite or infinite atmospheric plumes;
inhalation; external exposure from contaminated soil, sediments, and water;
external exposure from special geometries; and internal exposures from con-
sumption of terrestrial foods, aquatic foods, drinking water, animal products,
and inadvertent soil intake. The radionuclide environmental concentrations are
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calculated over time up to the end of the exposure period by numerical models of
appropriate transport phenomena through air, deep and surface water, deep and
surface soil and biotic transport. A wide description of the software structure,
the code progresses over time and the code conceptual design have been given in
previous works. The code has been ported from DOS to Linux, and enhanced by
adding a new modern graphical user interface built on the Qt3 libraries (Sumini
et al. (2005)). The internal and external dose rate factor generators have been
deeply revised to incorporate into the existing environmental pathway analysis
models the more recent internal dosimetry models recommended by the ICRP
(1991) and the radiological risk estimating procedures of EPA (2002) (Sumini
and Teodori (2005); Teodori and Sumini (2008)). The graphical user interface
has been redesigned by implementing the more recent Qt4 and Qt5 libraries,
the input and output management deeply reviewed and the air transport model
widely improved (Teodori and Sumini (2014)). The external dose rate factor
generator has been rewritten to access the data libraries of radionuclide decay
information and gamma and beta yields from ICRP (2008), to access the surface
dose to organ dose conversion factors from information in ICRP (2010), and
to calculate organ dose and total body effective dose following the raccomenda-
tions of ICRP (2007) (Teodori (2017)). In this paper the attention is focused
on the latest significant improvements of the soil contamination model.

2. The soil contamination model

Depending on land use and occupation, the GENII-LIN code simultaneously
manages up to three soil distinct main areas: residential soils, non-agricultural
soils, and agricultural soils. The non-agricultural soils are used only in near-field
scenarios in order to define parameters for arid and humid climate biotic trans-
port. Immediately after the beginning of human use of the soils, the soil reverts
to either residential, when the person lives there, or agricultural, when crops are
grown there. Each food pathway has its own associated zone of soil, with spe-
cific transfer properties, reason why a large number of soil zones can be active
in a single simulation. A single soil zone may be composed of up to 4 compart-
ments (Figure 1). The always present surface soil is modeled as a 15 cm thick
layer and is the soil portion that can exchange pollutant with the atmosphere by
air deposition, irrigation, and particulate resuspension. For most far-field and
many near field scenarios, this is the only portion of soil that is used. In those
scenarios, where subsurface contamination is present, radionuclides may be con-
tained in waste forms or simply distributed in the deeper layers. Radionuclides,
that are simply distributed in the available subsurface soil, may be transferred
to the surface soils by root uptake by plants, by physical transport by native
animals, or by human activities which lead to redistribution of contaminants
from deeper to surface layers (Figure 2). When the contaminants are packaged
in a form, they may be released to the deep soil and made available to biotic
transfer. The release process is described by the waste package decomposition
model. If the deep soil overburden is greater then 0.15 m, one optional interme-
diate layer is added, located between the surface and deep soils. Any soil layer
may also loose radionuclides through harvest removal, radiological decay, and
leaching to deeper soil strata. The soil zones corresponding to each food type,
animal type, and residential exposure are treated separately.
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Figure 1: The soil compartment model in GENII-LIN
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Figure 2: The soil transfer model in GENII-LIN
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3. Leaching

Leaching from upper soil layers into deeper soils is modeled by means of a soil
removal rate constant, λri,i+1

(
y−1

)
, which is a non-radiological decay constant

accounting long-term percolation of deposited radionuclide r out of the layer i
to the layer i+ 1. As proposed in Muller-Lemans et al. (1996), we have

λri,i+1 =
Qwi,i+1 +Kr

d,iQ
s
i,i+1

Vw,i +Kr
d,ims,i

(1)

In equation 1

• Qwi,i+1

(
m3

y

)
and Qsi,i+1

(
kg
y

)
are the water and solid matter flux from

layer i to layer i+ 1;

• Kr
d,i

(
m3

kg

)
is the distribution coefficient of radionuclide r in layer i;

• Vw,i
(
m3
)

is the volume of water in layer i; and

• ms,i (kg) is tha mass of solid material in layer i.

The denominator in equation 1 can be expressed in terms of the total volume
Vt,i of the layer:

λri,i+1 =
Qwi,i+1 +Kr

d,iQ
s
i,i+1

Vt,i

(
θi +Kr

d,iρi

) (2)

where θi is the is the soil volumetric water content and ρi

(
kg
m3

)
is the soil bulk

density. Now, under the Hypothesis of one dimensional flow, after dividing both
numerator and denominator by the layer cross sectional area, we obtain

λri,i+1 =
qwi,i+1 +Kr

d,iq
s
i,i+1

zi

(
θi +Kr

d,iρi

) (3)

where

• qwi,i+1

(
m
y

)
is the rate of water volume flow per unit area from the layer

i to the layer i+ i;

• qsi,i+1

(
kg
m2y

)
is the rate of solid matter flow per unit area from the layer

i to the layer i+ i; and

• zi (m) is the layer thickness.

In the earlier releases of the code, leaching affected only the surface layer and
leached material was moved out of the layer and lost by the system. Here we
wanted to rework the model framework in a more physically based manner, by
using a more sophisticated formulation for the transfer rate. The soil removal
rate constant defined by equation 3 replace the one suggested by Baes and Sharp
(1981), which was used in the previous soil model.
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4. Biotic transport and harvest removal

The code estimates the transport of radioactivity through soil layers by
plants and animals by means of embedded transfer models. These models are
built on those ones primarily developed by McKenzie et al. (1986) to estimate
potential radiation dose to individuals from biotic transport of activity at low-
level radioactive waste burial sites. Biotic pathways involve translocation by
plant root systems and by burrowing insects and small mammals. Plant exam-
ples comprise grass, shrubs, and trees; insect and mammal examples comprise
pocket mice, badgers, moles, harvester ants, termites and earth worms. Flora
and fauna activity results in the transport of soil components upwards against
the force of gravity and against the downwards flow of water. The burrowing
activity, which results in excavation of soil, all of which is deposited on the
surface soil layer, is accounted by the simplified model expressed by eq. 4:

Qsir =

a∑
j=1

Csir
Mji

ρ
. (4)

In it:

• Qsir is the quantity of radionuclide r yearly moved to the surface from

soil stratum i
(

Bq
m2×y

)
;

• a is the number of animal species considered;

• Csir is the concentration of radionuclide r in the soil stratum i
(
Bq/m3

)
;

• Mjn is the mass of soil yearly moved from the soil stratum i to the surface

by animal j
(

kg
m2×y

)
;

• ρ is the soil density
(
kg
m3

)
.

Soil fauna activity also results in physical and biochemical conversion of soil
and water, physical and biochemical conversion of soil components, and easier
transport processes through voids and macropores, reason why the soil removal
rate constant (3) is affected by animal activity by means of qwi,i+1 and qsi,i+1

parameters.
Collapse of burrows results in transport of earth from upper soil layers to

deeper ones. Under steady-state conditions, assuming that the number of bur-
rows per unit area is constant over time, voids compaction and other processes
must cause an equally large soil material flux in the opposite directions.

To simulate this phenomenon, voids in the soil strata created by animal
burrowing activity are removed at the end of each year to simulate cave-in of
burrows. Radioactivity in each soil stratum is adjusted as the voids are removed
according to the following expression:

Qr,i = Cr,i−1Vi−1 (5)

where

• Qr,i

(
Bq
m2y

)
is the rate of activity flow per unit area from layer i − 1 to

layer i;
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• Cr,i−1

(
Bq
m3

)
is the concentration of nuclide r in layer i− 1; and

• Vi−1

(
m3

m2

)
is the volume of soil per unit area yearly moved from soil layer

i− 1 to soil layer i.

The burrow collapse effectively mixes all radioactivity that has accumulated on
the soil surface into the uppermost soil stratum. Equation 5 is assumed to be a
reasonable approximation of biotic processes.

The transfer of activity by plants from the layer i to the surface is estimated
as follows:

QPir =

p∑
l=1

CsirBviRli
Bl
K

(6)

where

• QPir
is the quantity of radionuclide r yearly moved from soil stratum i to

the surface
(

Bq
m2×y

)
;

• p is the number of plant species considered;

• Bvr is the soil-to-plant transfer factor
(Bq

g )
plant

(Bq
g )

soil

;

• Bl is the yearly total biomass production of plant l
(

kg
m2×y

)
;

• Rli is the fraction of roots of plant l in soil stratum i.

A portion, or all of the annual biomass production is assumed to be recycled.
When plant material is recycled, the contaminant burden returns to the soil.
By denoting with wl the fraction of plant l biomass returned to surface soil, the
rate of activity per unit area transfered to the surface soil stratum is:

QSPir
=

p∑
l=1

CsirBviRli
Bl
K
wl

(
Bq

y ×m2

)
(7)

At the end of each yearly time step, a second portion of the biomass produc-
tion is assumed to be recycled, because some plants reach end of life. Radionu-
clides returned to the soil strata through end of life recycling are redistributed in
proportion to the plant biomass in each layer. All above-ground contributions
from end of life plant recycling are added to the soil surface. Radionuclides
are transferred by end of life recycling from the plants to the soil stratum i,
according to the following expression:

Rri =

p∑
l=1

Crlblifl (8)

where

• Rri

(
Bq
m2y

)
is the activity of radionuclide r returned to soil layer i as a

result of the recycling of plant biomass;

• Crl

(
Bq
kg

)
is the concentration of nuclide r in plant l;
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• bli

(
kg
m2

)
is the biomass of plant l in soil layer i; and

• fl
(
y−1

)
is the fraction of biomass of plant l, which is recycled yearly.

Harvest removal is a discrete process and occurs at the end of each calcula-
tion year. A quantity of each radionuclide, expressed by calculated vegetation
concentration from root uptake, multiplied by the harvested yield (an input pa-
rameter) is subtracted from the soil layers. The amount of subtracted material
is normalized by the root penetration factor.

5. Deposition rates

For scenarios where air deposition is considered, the deposition rate for unit
area is given by

Rar = Carvdr (9)

In it:

• Rar

(
Bq
m2y

)
is the activity of nuclide r deposited for unit time and unit

area on surface soil;

• Car

(
Bq
m3

)
is the concentration of nuclide r in air; and

• vdr

(
m
y

)
is the deposition velocity of nuclide r.

For scenarios where water pathways are considered, the deposition rate from
irrigation for unit area is given by:

Rwr = CawI (10)

In it:

• Rwr

(
Bq
m2y

)
is the activity of nuclide r deposited for unit time and unit

area on surface soil layer;

• Caw

(
Bq
m3

)
is the concentration of nuclide r in water; and

• I
(
m3

m2y

)
is the irrigation rate for unit area.

6. Manual Redistribution

Due to human activities on a site, material may be transfered from the
deeper soil or contained waste compartments to the surface soil. This process
is modeled simply by introducing a manual redistribution factor, which relates
the resultant surface soil concentration, in Bq/m3, to the initial subsurface
concentration, in Bq/m3.
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7. Waste form decomposition

To account for the release of nuclides from waste containers and waste forms
in deep soil, a simple waste availability model is implemented, based on the
relationship proposed by McKenzie et al. (1982, 1983). In this relationship,
the quantity of waste released to soil is defined by the expression:

QrW = −λWW r
0 (11)

In equation 11:

• QrW

(
Bq
m2y

)
is the activity yearly released for unit area to deep soil layer;

• W r
0

(
Bq
m2y

)
is the activity per unit area contained in the waste form;

• λW = ln2
T
W, 1

2

(
y−1

)
; and

• TW, 12 (y) is the package half life.

This simple model is based on the hypothesis that the waste form thickness fills
the deep soil layer thickness.

8. The equations of the model

After collecting equations 3, 4, 6, 7, 9 and 10, and after denoting by λr the
radiological decay constant of radionuclide r, the transfer of activity A, per unit
area for the first layer, is given by

d

dt
Ar1 = −

(
λr + λr1,2

)
Ar1 +

3∑
i=2

Qsir +

3∑
i=2

QSPir
+Rar +Rwr (12)

For the intermediate layer the tranfer of activity is:

d

dt
Ar2 = −

(
λr + λr2,3

)
Ar2 + λr1,2A

r
1 −Qs2r −QP2r

(13)

Finally, for deep soil, the transfer of activity is

d

dt
Ar3 = − (λr + λr3→)Ar3 + λr2,3A

r
2 −Qs3r −QP3r

+ λWW
r
0 e
−(λW+λr)t (14)

In order to describe the evolution of isotopic changes in the soil layers, this set
of linear equations need to be coupled with the Bateman equations describing
the time evolution of nuclide concentrations undergoing serial or linear decay
chain. This is achieved through the GENII-LIN generalized decay chain proces-
sor, which provides the activity of any member of a decay chain as a function
of time from any initializing condition. Recentely enhanced variants of the pro-
cessor provide the total activities of chain members for conditions of continual
input of nuclides to the system and non radiological removal to a sink. The
resulting system is integrated sequentially over one-year time intervals up to
cover the period of interest, from the beginning of contamination to the end of
the exposure period. At the end of each step, the previously described discrete
processes of end of life plant recycle, burrows collapse and harvest removal occur
and are accounted.
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Table 1: Soil contamination at the beginning of the exposure.

Initial contamination from Th232 and Th228

Nuclide
Activity Bq

m3

Surface Soil Intermediate layer Deep Soil
Th232 0 0 1× 106

Table 2: Dose by pathway from one year exposure to ground.

Effective Dose Equivalent by pathway (Sv)

GENII-LIN ReSRAD

Internal
Inhalation 5.5× 10−05 –
Soil Ingestion 2.4× 10−11 –

External
Surface Soil 7.2× 10−09 –
Intermediate layer 3.8× 10−15 –
Deep Soil 4.0× 10−08 4.15× 10−08

9. Test case

Here we want to display the new soil model capabilities. For this purpose
we analyze a hypothetical residential scenario, where a receptor is one year
exposed to 50 cm thick contaminated soil layer buried 50 cm below the ground.
At the beginning of the exposure, the deep soil layer is assumed uniformly
contaminated with Th232. Being the overburden greater than 15 cm, the code
adds an intermediate layer 35 cm thick:

Th232
α−−−−−−−−→

1.405×1010y
Ra228

β−−−−→
5.75y

Ac228
β−−−−→

6.25h

Th228
α−−−→

1.91y
Ra224

α−−−→
3.63d

Pb212
β−−−−−→

10.64h
Bi212


.3593 β−−−−−−−→

61m
Po212

α−−−−−→
3×10−7s

Pb208

.6407 α−−−−→
61m

T l208
β−−−−→
3.1m

Pb208

(15)

The input to the code is shown in table 1. No daughters need to be added,
when they are not present at the beginning of the contamination scenario. The
code itself adds them, after reading the Master Nuclide Library. Table 2 reports
the dose by pathway. The code extimates radioactivity biotic transport from
deep soil layer to surface soil, from the beginning of the contamination up to the
end of the exposure period, reason why the receptor receives dose from direct
exposure to ground surface contamination, suspended activity inhalation, and
inadvertent soil ingestion. In the third column we reported the dose assessed by
running the ResRAD-onsite code, Kamboj (2018). ResRAD does not consider
nuclide transfer to upper layers, however the computed deep soil contribution
to the external dose is very close to the deep soil contribution extimated by
running GENII-LIN.

The computed dose by nuclide is reported in table 3. The embedded gener-
alized decay chain processor calculates the activity of any member of the decay
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Table 3: Dose by radionuclide from one year exposure to ground. Dose from Bi212 compre-
hends doses from Po212 and T l208

Effective Dose Equivalent (Sv)
Nuclide Inhalation Ingestion External Internal Annual

Th232 5.40 × 10−05 1.90 × 10−11 1.70 × 10−11 5.40 × 10−05 5.40 × 10−05

Ra228 2.50 × 10−07 4.50 × 10−12 1.40 × 10−17 2.50 × 10−07 2.50 × 10−07

Ac228 1.10 × 10−09 2.60 × 10−15 4.00 × 10−08 1.10 × 10−09 4.10 × 10−08

Th228 3.50 × 10−07 5.80 × 10−14 3.40 × 10−13 3.50 × 10−07 3.50 × 10−07

Ra224 3.30 × 10−08 5.00 × 10−14 2.60 × 10−12 3.30 × 10−08 3.30 × 10−08

Pb212 1.90 × 10−09 4.60 × 10−15 3.30 × 10−11 1.90 × 10−09 1.90 × 10−09

Bi212 2.60 × 10−10 2.00 × 10−16 6.80 × 10−09 2.60 × 10−10 7.10 × 10−09

Total 5.46 × 10−05 2.36 × 10−11 4.69 × 10−08 5.46 × 10−05 5.47 × 10−05

chain (15) as a function of time, in this vein each nuclide contribution to dose
is accurately accounted.

In Teodori (2017) and Teodori (2019), we compared dose from direct expo-
sure to soil contamination calculated by using GENII-LIN code with dose calcu-
lations made by running widely used international Monte Carlo codes: MCNP
and PHITS. In other words, we compared GENII-LIN exposure model with site
specific models. We found good agreement for different nuclides and different
contamination scenarios. Here we wanted to compare GENII-LIN with a similar
multipurpose health physics code. Calculations show that neglecting continuos
upward transfer from plants uptake and bioturbation may lead to understimate
significantly the dose to receptor.

10. Conclusions

In this years we have revised and enhanced the GENII-LIN soil transfer
model, whose capabilities have been extended to cover a wider range of expo-
sure and contamination scenarios. The most significant improvements, we have
introduced, are here summarized:

• short life nuclide contributions are now correctly accounted;

• the soil compartment number has been increased, by introducing an in-
termediate layer;

• the leaching model has been reworked in a more physically based manner,
by using a more sophisticated formulation for the transfer rate; leaching
is no longer limited to soil surface, and leached material is no longer lost,
but transfered to deeper soils;

• bioturbation by animals also affects downward transfer of materials, by
modifying the leaching constant and by void collapse;

• plant transfer contributes to contaminant redistribution through all soil
depth by plant recycle.

Though still under an intensive test phase to check stability and reliability,
the new soil transfer module is simple to use, low resource consuming, perfectly
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working and well interfaced with the other modules of the GENII-LIN compu-
tational framework, whose capabilities are remarkably extended. We decided to
develop a transfer model, which falls between the two main categories of equi-
librium models and dynamic ones, Owen Hoffman et al. (1988). Equilibrium
parameters have been used to set up a compartment and multilayer dynamic
model, where transfer among compartment and layers is simulated according
to first order kinetics equations. By choosing approriate parameters, the model
may be applied and adapted to a large variety of sites, where root uptake, plant
recycle, bioturbation and leaching are actively involved in the transfer of ra-
dionuclides, permitting the estimation of human exposures and doses in case of
nuclear and radiological accidents, and for routine calculations.
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