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Abstract

The set of standard Capelli bitableaux and the set of standard Young-
Capelli bitableaux are bases of U(gl(n)), whose action on the Gordan-
Capelli basis of polynomial algebra C[Mn,n] have remarkable properties
(see, e.g. [5], [6], [7], [8]).

We introduce a new class of elements of U(gl(n)), called Capelli im-

manants, that can be efficiently computed and provide a system of linear
generators of U(gl(n)). The Okounkov quantum immanants [40], [41] -
quantum immanants, for short - are proved to be simple linear combina-
tions of diagonal Capelli immanants, with explicit coefficients (Theorem
6.2, Eq. (33)). Quantum immanants can also be expressed as sums of
double Young-Capelli bitableaux (Theorem 6.9, Eq. (40)). Since dou-
ble Young-Capelli bitableaux uniquely expand into linear combinations of
standard Young-Capelli bitableaux, Eq. (40) leads to canonical presen-
tations of quantum immanants, and, furthermore, it doesn’t involve the
computation of the irreducible characters of symmetric groups.

Keyword: Young-Capelli bitableaux; Lie superalgebras; immanants; Capelli
determinants; Capelli immanants; quantum immanants; central elements; com-
binatorial representation theory.
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1 Introduction

The study of central elements in U(gl(n)) is a classical subject of the theory of
Lie algebras, see e.g. [21]; it is an old and actual one, since it may be regarded
as an offspring of the celebrated Capelli identity ([12], [16], [26], [27], [46], [50],
[53]), relates to its modern generalizations and applications ([1], [30], [31], [37],
[38], [40], [41], [49]) as well as to the theory of Yangians (see, e.g. [35], [36],
[39]).

The center ζ(n) of U(gl(n)) is isomorphic to the algebra Λ∗(n) of shifted
symmetric polynomials (e.g., factorial symmetric functions, [2], [17], [23]) via
the Harish-Chandra isomorphism χn (see, e.g. [42]). The algebra Λ∗(n) admits
a quite relevant linear basis, the basis of the shifted Schur polynomials s∗µ|n,
µ̃1 ≤ n, discovered by Sahi [47], and extensively studied by Okounkov and
Olshanski [42]. Quantum immanants are the preimages in ζ(n) of the shifted
Schur polynomials in Λ∗(n) [40], [41] (see also [39]).

We define two set of linear generators in the enveloping algebra U(gl(n)):
the set of Young-Capelli bitableaux and the set of Capelli immanants. These
two sets are obtained as the images of the corresponding set of generators in
the polynomial algebra C[Mn,n], under the so-called bitableaux correspondence
isomomorphism, which is an earlier result of the present authors [7], [8].

The action of the Capelli immanants on C[Mn,n] can be computed explicitly
by using the method of virtual variables (Proposition 4.10 below). Using this
computation, we are able to express Okounkov’s quantum immanants as linear
combinations of diagonal Capelli immanants with explicit coefficients.

Our method heavily relies upon the “Bitableax correspondence isomorphism/
Koszul map” Theorem (BCK Theorem, for short) [8] that describes a pair of
mutually inverse vector space isomorphisms, the Koszul map ([32], see also [4]
and [11])

K : U(gl(n)) → C[xij ] ∼= Sym(gl(n)),

and the bitableaux correspondence isomorphism ([7], [8])

K−1 : C[xij ] ∼= Sym(gl(n)) → U(gl(n)),

that deeply link the enveloping algebra U(gl(n)) of the general linear Lie algebra
gl(n) and the polynomial algebra C[Mn,n] of polynomials in the entries of a
“generic” square matrix of order n. The BCK Theorem has to be regarded as a
sharpened version of the PBW Theorem for the enveloping algebra U(gl(n)).

The isomorphism K−1 maps a (determinantal) bitableau (S|T ) in C[Mn,n]
to the Capelli bitableau [S|T ] in U(gl(n)) ([7], [8], [3]; see Section 3.3 below and
Theorem 4.1). Since the standard bitableaux are a basis of C[Mn,n] ([22], [20],
[19], [25]; see subsection 2.2.5 below, Theorem 2.1), then the standard Capelli
bitableaux are a basis of U(gl(n)) [7].

In the polynomial algebra C[Mn,n], column bitableaux are, up to a sign,
monomials. Their images in U(gl(n)) - under the isomorphism K−1 - are the
column Capelli bitableaux (Section 4.3 below).
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Therefore, column Capelli bitableaux play the same crucial role in U(gl(n))
that monomials play in C[Mn,n]. Capelli bitableaux and Young-Capelli bitableaux
expand - up to a global sign - into column Capelli bitableaux just in the same
way as bitableaux, right symmetrized bitableaux and immanants expand into
the corresponding monomials in C[Mn,n].

The expressions of column Capelli bitableaux in U(gl(n)) can be simply com-
puted (Proposition 4.3.1 below). Furthermore, column Capelli bitableaux admit
an elegant and meaningful interpretation as polynomial differential operators in
the Weyl algebra associated to the polynomial algebra C[Mn,d] (Proposition 4.10
below).

The isomorphism K−1 leads to a natural definition of the Capelli immanants

Cimmλ[i1i2 · · · ih; j1j2 · · · jh], λ ⊢ h

in U(gl(n)) as images under K−1 of the classical immanants

immλ(i1i2 · · · ih; j1j2 · · · jh), (i1i2 · · · ih), (j1j2 · · · jh) ∈ nh

in the polynomial algebra C[Mn,n] (Littlewood and Richardson [33], see also
[34], [24]). Capelli immanants are generalizations of the famous Capelli deter-
minant in U(gl(n)), just as immanants are generalizations of the determinant
in C[Mn,n].

The isomorphism K−1 maps a right symmetrized bitableau (S| T ) in C[Mn,n]

to the Young-Capelli bitableau [S| T ] in U(gl(n)) (Section 3.3 below, and The-

orem 4.2). Since the standard right symmetrized bitableaux (S| T ) are the
Gordan-Capelli basis of C[Mn,n] ([52], [5], [3]; see Subsection 2.3 below, The-

orem 2.3), then the standard Young-Capelli bitableaux [S| T ] are a basis of
U(gl(n)).

Right symmetrized bitableaux (S| T ) of shape λ ⊢ h expand into immanants
defined by the irreducible character χλ of the symmetric group Sh associated
to the same shape λ ⊢ h, and viceversa (Propositions 2.15 and 2.12). Then, by
applying the operator K−1, we obtain that any Capelli immanant

Cimmλ[i1i2 · · · ih; j1j2 · · · jh]

can be written as a linear combination of standard Young-Capelli bitableaux

[U | V ] in U(gl(n)) of the same shape λ and viceversa (Theorems 5.1 and 5.3
below).

Quantum immanants ([40], [41]) are proved to be simple linear combinations
of diagonal Capelli immanants with explicit coefficients (Theorem 6.2, Eq. (33)).
This Theorem, in combination with Proposition 4.3.1, allows the computation of
quantum immanants to be reduced to a fairly simple process (see, e.g. Example
38 below).

Quantum immanants can also be expressed as sums of double Young-Capelli
bitableaux (Theorem 6.9, Eq. (40)). Since double Young-Capelli bitableaux
uniquely expand into linear combinations of standard Young-Capelli bitableaux,
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Eq. (40) leads to canonical presentations of quantum immanants, and it doesn’t
involve the irreducible characters of symmetric groups. Furthermore, Eq. (40)
is better suited to the study of the eigenvalues on irreducible gl(n)−modules,
and of the duality in the algebra ζ(n) (see our preliminary manuscript [10],
Section 4).

2 The polynomial algebra C[Mn,d]

2.1 Biproducts in C[Mn,d]

As usual, the algebra of algebraic forms in n vector variables of dimension d is
the polynomial algebra in n× d (commutative) variables:

C[Mn,d] = C[xij ]i=1,...,n;j=1,...,d,

and Mn,d denotes the matrix with n rows and d columns with “generic" entries
xij :

Mn,d = [xij ]i=1,...,n;j=1,...,d =




x11 . . . x1d

x21 . . . x2d

...
...

xn1 . . . xnd


 .

For the sake of readability, we will write (i|j) in place of xij , and call the
alphabets L = {1, 2, . . . , n} and P = {1, 2, . . . , d} the letter and the place alpha-
bets, respectively; sometimes, we will consistently write C[(i|j)]i=1,2,...,n; j=1,2,...,d

in place of C[Mn,d].
Let ω = i1i2 · · · ip be a word on the alphabet L = {1, 2, . . . , n}, and ̟ =

j1j1 · · · jq a word on the alphabet P = {1, 2, . . . , d}.
Following [25] and [5], the biproduct of the two words ω and ̟

(ω|̟) = (i1i2 · · · ip|j1j2 · · · jq) (1)

is the element of C[Mn,d] defined in the following way:

– If p = q, the biproduct (ω|̟) is the signed minor

(ω|̟) = (−1)(
p

2) det
(
(ir|js)

)
r,s=1,2,...,p

∈ C[Mn,d].

– If p 6= q, the biproduct (ω|̟) is set to be zero.
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2.2 Bitableaux in C[Mn,d]

2.2.1 Young tableaux

Let λ ⊢ h be a partition, and label the boxes of its Ferrers diagram with the
numbers 1, 2, . . . , h in the following way:

1 2 · · · · · · λ1

λ1 + 1 λ1 + 2 · · · λ1 + λ2

· · · · · · · · ·
· · · · · · h

.

A Young tableau T of shape λ over a (finite) alphabet A is a map T : h =
{1, 2, . . . , h} → A; the element T (i) is the symbol in the cell i of the tableau T .

The sequences

T (1)T (2) · · ·T (λ1),
T (λ1 + 1)T (λ1 + 2) · · ·T (λ1 + λ2),
. . . . . .

are called the row words of the Young tableau T .
We will also denote a Young tableau by its sequence of rows words, that is

T = (ω1, ω2, . . . , ωp). Furthermore, the word of the tableau T is the concatena-
tion

w(T ) = ω1ω2 · · ·ωp. (2)

The content of a tableau T is the function cT : A → N,

cT (a) = ♯{i ∈ h; T (i) = a}.

A Young tableau T is said to be multilinear if A = h and the map T is
a permutation of h. As usual, T−1 denotes the inverse map. In the sequel,
multilinear Young tableaux will be always denoted by bold symbols, and T0

will denote the “identity” tableau T0(i) = i, i = 1, 2, . . . , h.
Note that, given any Young tableau S on an alphabet A and any multilinear

Young tableau T on the alphabet h of the same shape λ ⊢ h, there exists a
unique (specialization) map J : h → A such that

S = J ◦T,

that is S(i) = (J ◦T)(i), i = 1, 2, . . . , h.
To stress this relation between S and T, we write

S = JT. (3)

Given a linear order on the alphabet A, a Young tableau over A is said to
be (semi)standard whenever its rows are increasing from left to right and its
columns are non-decreasing from top to bottom.
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2.2.2 (determinantal) Young bitableaux

Let S = (ω1, ω2, . . . , ωp) and T = (̟1, ̟2, . . . , ̟p) be Young tableaux on L =
{x1, x2, . . . , xn} and P = {1, 2, . . . , d} of shapes λ and µ, respectively.

Following again [25] and [5], the (determinantal) Young bitableau

(S|T ) =




ω1

ω2

...
ωp

∣∣∣∣∣∣∣∣∣

̟1

̟2

...
̟p


 (4)

is the element of C[Mn,d] defined in the following way:

– If λ = µ, the (determinantal) Young bitableau (S|T ) is the signed product
of the biproducts of pairs of corresponding rows:

(S|T ) = ± (ω1|̟1)(ω2|̟2) · · · (ωp|̟p), (5)

where

± = (−1)ℓ(ω2)ℓ(̟1)+ℓ(ω3)(ℓ(̟1)+ℓ(̟2))+···+ℓ(ωp)(ℓ(̟1)+ℓ(̟2)+···+ℓ(̟p−1)),

(6)
and the symbol ℓ(w) denotes the length of the word w.

– If λ 6= µ, the Young bitableau (S|T ) is set to be zero.

2.2.3 Column bitableaux in C[Mn,d]

A column tableau is a Young tableau of shape λ = (1, 1, . . . , 1) ⊢ h, and the
number h of 1′s is called the depth.

A column bitableau in C[Mn,d] is a (determinantal) bitableau (S|T ), where
S and T are column Young tableaux of the same depth. A column bitableau of
depth h equals, up to a sign, a monomial in C[Mn,d]:




i1
i2
...
ih

∣∣∣∣∣∣∣∣∣

j1
j2
...
jh


 = (−1)(

h

2)(i1|j1)(i2|j2) · · · (ih|jh). (7)

Although the notion of column bitableaux may appear fairly obvious, it
will play a crucial role in the passage from the polynomial algebra C[Mn,d] to
the enveloping algebra U(gl(n)) via the bitableaux correspondence isomorphism,
Section 4 below.

2.2.4 Bitableaux expansion into column bitableaux

Recall that

(i1i2 · · · ih|j1j2 · · · jh) = (−1)(
h
2) det[(is|jt)]s,t=1,2,...,h ∈ C[Mn,d],
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and, therefore, the biproduct (i1i2 · · · ih|j1j2 · · · jh) ∈ C[Mn,d] expands into col-
umn bitableaux as follows:

(i1i2 · · · ih|j1j2 · · · jh) =
∑

σ∈Sh

(−1)|σ|




iσ(1)
iσ(2)

...
iσ(h)

∣∣∣∣∣∣∣∣∣

j1
j2
...
jh


 =

∑

σ∈Sh

(−1)|σ|




i1
i2
...
ih

∣∣∣∣∣∣∣∣∣

jσ(1)
jσ(2)

...
jσ(h)


 .

Notice that, in the passage from monomials to column bitableaux, the sign

(−1)(
h
2) disappears, due to Eq. (7).

The preceding arguments extend to bitableaux of any shape λ, λ1 ≤ n.

Given a bitableau (S|T ) ∈ C[Mn,d] of shape λ = (λ1 ≥ λ2 ≥ · · · ≥ λm) ⊢ h with

S =




ip1 . . . . . . . . . ipλ1

iq1 . . . . . . iqλ2

. . . . . .

ir1 . . . irλm


 , T =




js1 . . . . . . . . . jsλ1

jt1 . . . . . . jtλ2

. . . . . .

jv1 . . . jvλm


 ,

we have

(S|T ) =
∑

σ1,...,σm

(−1)
∑

m
k=1 |σk|




ipσ1(1)

...
ipσ1(λ1)

...

...
irσm(1)

...
irσm(λm)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

js1
...

jsλ1

...

...
jv1
...

jvλm




=
∑

σ1,...,σm

(−1)
∑

m
k=1 |σk|




ip1

...
ipλ1

...

...
ir1
...

irλm

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

jsσ1(1)

...
jsσ1(λ1)

...

...
jvσm(1)

...
jvσm(λm)




where the multiple sums range over all permutations σ1 ∈ Sλ1 , . . . , σm ∈ Sλm
.

Notice that only the signs of permutations remain.
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2.2.5 The straightening algorithm and the standard basis of C[Mn,d]

,
Given a positive integer h ∈ Z+, let Ch[Mn,d] denote the h−th homogeneous

component of C[Mn,d].
Consider the set of all bitableaux (S|T ) ∈ Ch[Mn,d], where sh(S) = sh(T ) ⊢

h. In the following, let denote by ≤ the linear order on this set defined by the
following two steps:

– (S|T ) < (S′|T ′) whenever sh(S) <l sh(S
′), where <l denotes the lexico-

graphic order on partitions λ ⊢ h.

– (S|T ) < (S′|T ′) whenever sh(S) = sh(S′), w(S)w(T ) >l w(S
′)w(T ′).

where the shapes and the concatenated words w(S)w(T ), w(S′)w(T ′) of the
tableaux S, T and S′, T ′ (see Eq. (2)) are compared in the lexicographic order.

The next Theorem is a well-known result for the polynomial algebra C[Mn,d]
([22], [20], [19], for the general theory of standard monomials see, e.g. [46],
Chapt. 13).

Theorem 2.1. (The Standard basis theorem for Ch[Mn,d])

– The set

{(S|T ) standard; sh(S) = sh(T ) = λ ⊢ h, λ1 ≤ n, d }.

is a basis of Ch[Mn,d].

– Furthermore, a Young bitableau (P |Q) ∈ Ch[Mn,d] can be uniquely written
as a linear combination

(P |Q) =
∑

S,T

aS,T (S|T ), (8)

of standard bitableaux (S|T ), where

– the coefficient aS,T = 0 whenever (S|T ) � (P |Q);

– the contents of the tableaux are preserved, that is cS = cP , cT = cQ.

For a proof, see e.g. [20], [19].

2.3 Right symmetrized bitableaux and the Gordan-Capelli

basis of C[Mn,d]

Given a Young tableau T , we say that another tableau T is a column permuted
of T whenever each column of T can obtained by permuting the corresponding
column of T .

A right symmetrized bitableau (S| T ) is the element of the polynomial alge-
bra C[Mn,d] defined as the following sum of bitableaux:

(S| T ) =
∑

T

(S|T ),

9



where the sum is extended over all T column permuted of T (hence, repeated
entries in a column give rise to multiplicities).

Example 2.2.

(
1 3
2 4

∣∣∣∣
1 2
1 3

)
=

(
1 3
2 4

∣∣∣∣
1 2
1 3

)
+

(
1 3
2 4

∣∣∣∣
1 2
1 3

)

+

(
1 3
2 4

∣∣∣∣
1 3
1 2

)
+

(
1 3
2 4

∣∣∣∣
1 3
1 2

)

= 2

(
1 3
2 4

∣∣∣∣
1 2
1 3

)
+ 2

(
1 3
2 4

∣∣∣∣
1 3
1 2

)
.

We recall a fundamental result:

Theorem 2.3. (The Gordan-Capelli basis of C[Mn,d]) Let h ∈ N.

– The set

{(S| T );S, T standard, sh(S) = sh(T ) = λ ⊢ h, λ1 ≤ n, d}

is a basis of Ch[Mn,d].

– Any right symmetrized bitableau (U | V ), sh(U) = sh(V ) = λ ⊢ h,
(uniquely) expands into a linear combination of right symmetrized bitableau

(S| T ), S, T standard of the same shape λ = sh(S) = sh(T ).

– Let (U | V ), sh(U) = sh(V ) = λ ⊢ h, λ1 � n, d. Then

(U | V ) = 0.

Corollary 2.4. The subspace Ch[Mn,d] decomposes as:

Ch[Mn,d] =
⊕

λ⊢h

Cλ
h[Mn,d], λ1 ≤ n, d, (9)

where Cλ
h[Mn,d] is the subspace spanned by the right symmetrized bitableaux

(U | V ) of shape λ = sh(U) = sh(V ).

Theorem 2.3 was proved, in a different language, by Wallace [52] in the
classical commutative case. A superalgebraic version of this result was proved
by the present authors in [5]; for a more detailed discussion, see [3].

2.4 Right symmetrized bitableaux in Ch[Mn,d], Young sym-

metrizers and the natural units in the group algebra

C[Sh]

In this subsection, we summarize some basic notions from the representation
theory of the symmetric group; furthermore, we provide useful descriptions of
right symmetrized determinantal bitableaux in terms of Young symmetrizers and
of the natural units in the group algebra C[Sh].

10



2.4.1 The symmetric group Sh

Our main reference here is the treatise of James and Kerber [28], Chapter 3,
with the proviso that here the role of rows and columns of a Young tableau are
interchanged.

Given a pair S,T of multilinear tableaux of the same shape sh(S) = sh(T) =
λ ⊢ h, the Young symmetrizer eλ

ST
∈ C[Sh] is the element:

eλ
ST

=
∑

σ∈R(S),τ∈C(T)

(−1)|σ| σ θST τ, (10)

where θST is the permutation of h such that θST(i) = (S◦T−1)(i) = S
(
T−1(i)

)

for every i = 1, 2, . . . , h, and R(S), C(T) ⊆ Sh are the row subgroup of S and
the column subgroup of T, respectively.

Clearly,
eλ
ST

= θST eλ
TT

= eλ
SS

θST.

Remark 2.5. By Eq. (10), the trivial representation is here associated to the
column shape λ = (1h) and the sign representation is here associated to the row
shape λ = (h).

We will denote by γλ
ST

the natural units of the group algebra C[Sh], λ ⊢ h,
S,T multilinear standard tableaux of the same shape sh(S) = sh(T) = λ ⊢ h.

Given λ ⊢ h, recall that

C[Sh] =
⊕

λ⊢h

Cλ[Sh],

where Cλ[Sh] denotes the isotypic (simple) component of C[Sh] associated to λ.

Proposition 2.6.

1) The set

{
eλST;S,T multilinear standard tableaux, sh(S) = sh(T) = λ ⊢ h

}

is a basis of Cλ[Sh].

2) The set

{
γλ
ST;S,T multilinear standard tableaux, sh(S) = sh(T) = λ ⊢ h

}

is a basis of Cλ[Sh].

3) Let S,S′,T,T′ be multilinear standard tableaux of shape λ ⊢ h, then

γλ
ST γλ

S′T′ = δT,S′ γλ
ST′ ,

γλ
ST

eλ
S′T′ = δT,S′ eλ

ST′ .

11



Let λ ⊢ h be a partition and denote by χλ the irreducible character asso-
ciated to the irreducible representation of shape λ of the symmetric group Sh.
Let

χλ =
∑

σ∈Sh

χλ(σ)σ ∈ C[Sh]. (11)

Proposition 2.7.

1) The elements
χλ(I)

n!
χλ, λ ⊢ h

are the primitive central idempotents of C[Sh].

2) We have:
χλ(I)

n!
χλ =

∑

T

γλ
TT,

where the sum ranges over all multilinear T standard tableaux on h of
shape λ, and

χλ(I)

n!
=

1

H(λ)
,

H(λ) the hook number of the partition λ.

3) The elements
χλ(I)

n!
χλ, λ ⊢ h

are the projectors from C[Sh] to the isotypic (simple) components Cλ[Sh].

Proof. Assertion 1) is an instance of a standard fact of the representation theory
of finite groups. Assertions 2) and 3) follow from assertion 1) and Proposition
2.6.

2.4.2 Right symmetrized bitableaux and Young symmetrizers: the
multilinear case

We consider the algebra Ch[Mh,h], that is n = d = h, the polynomial algebra
generated by the variables (i|j), i, j = 1, 2, . . . , h.

We establish the following convention. Given an element

p =
∑

s

csσs ∈ C[Sh],

and a column tableau 


I(1)
...

I(h)

∣∣∣∣∣∣∣

J(1)
...

J(h)


 ,
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we set 


I
(
p(1)

)
...

I
(
p(h)

)

∣∣∣∣∣∣∣

J(1)
...

J(h)


 =

∑

s

cs




I
(
σs(1)

)
...

I
(
σs(h)

)

∣∣∣∣∣∣∣

J(1)
...

J(h)


 . (12)

Proposition 2.8. Let S,T be multilinear tableaux of the same shape λ, then

(S| T ) =




eλ
ST

(1)
...

eλ
ST

(h)

∣∣∣∣∣∣∣

1
...
h


 . (13)

Proof. Since

(S|T) =
∑

σ∈R(S)

(−1)|σ|




σ S(1)
...

σ S(h)

∣∣∣∣∣∣∣

T(1)
...

T(h)




(see subsection 2.2.4), then

(S| T ) =
∑

σ∈R(S),τ∈C(T)

(−1)|σ|




σ S(1)
...

σ S(h)

∣∣∣∣∣∣∣

τ T(1)
...

τ T(h)




=
∑

σ∈R(S),τ∈C(T)

(−1)|σ|




σ θST T(1)
...

σ θST T(h)

∣∣∣∣∣∣∣

τ T(1)
...

τ T(h)




=
∑

σ∈R(S),τ∈C(T)

(−1)|σ|




σ θST τ−1 T(1)
...

σ θST τ−1 T(h)

∣∣∣∣∣∣∣

T(1)
...

T(h)




=
∑

σ∈R(S),τ∈C(T)

(−1)|σ|




σ θST τ(1)
...

σ θST τ(h)

∣∣∣∣∣∣∣

1
...
h


 .

Since
eλ
ST

=
∑

σ∈R(S),τ∈C(T)

(−1)|σ| σ θST τ,

then

(S| T ) =




eλ
ST

(1)
...

eλ
ST

(h)

∣∣∣∣∣∣∣

1
...
h


 .
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2.4.3 Right symmetrized bitableaux and Young symmetrizers: the
general case

Let U, V be Young tableaux on the alphabets n, d, and let S,T be multilinear
tableaux of the same shape λ ⊢ h. There exists a unique pair of maps I : h → n,
J : h → d, such that

U = IS V = JT

(see Eq. (3)).

Proposition 2.9.

(U | V ) = (IS| JT ) =




I
(
eλ
ST

(1)
)

...
I
(
eλ
ST

(h)
)

∣∣∣∣∣∣∣

J(1)
...

J(h)


 . (14)

Proof. From Proposition 2.8, we get:

(IS| JT ) =
∑

η∈R(T),τ∈C(T)

(−1)|η|




I
(
η θST τ−1 (1)

)
...

I
(
η θST τ−1(h)

)

∣∣∣∣∣∣∣

J(1)
...

J(h)


 .

2.5 Immanants in Ch[Mn,d]

The immanant of a matrix was defined by D. E. Littlewood and A. R. Richardson
as a generalization of the concepts of determinant and permanent [33] (see also
[34], [24]).

Let λ ⊢ h be a partition and denote by χλ the irreducible character asso-
ciated to the irreducible representation of shape λ of the symmetric group Sh,
and let

χλ =
∑

σ∈Sh

χλ(σ)σ ∈ C[Sh].

Example 2.10. Let n = 3, λ = (2, 1) ⊢ 3.
The irreducible character element of the group algebra C[S3] associated to

the partition λ = (2, 1) is

χλ =
∑

σ∈S3

χλ(σ)σ = 2I − (123)− (132) ∈ C[S3].

The (generalized) immanant

immλ(i1i2 · · · ih; j1j2 · · · jh), (i1i2 · · · ih) ∈ nh, (j1j2 · · · jh) ∈ dh

in the polynomial algebra in Ch[Mn,d] is the element:
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immλ(i1i2 · · · ih; j1j2 · · · jh) =
∑

σ∈Sh

χλ(σ)




iσ(1)
iσ(2)

...
iσ(h)

∣∣∣∣∣∣∣∣∣

j1
j2
...
jh




=
∑

σ∈Sh

χλ(σ)




i1
i2
...
ih

∣∣∣∣∣∣∣∣∣

jσ(1)
jσ(2)

...
jσ(h)


 .

Since the characters are invariant on the conjugacy classes of Sh, it follows
that

immλ(iτ(1)iτ(2) · · · iτ(h); jτ(1)jτ(2) · · · jτ(h)) = immλ(i1i2 · · · ih; j1j2 · · · jh).

Hence,

Proposition 2.11. The map

IMMλ :




i1
i2
...
ih

∣∣∣∣∣∣∣∣∣

j1
j2
...
jh


 7→ immλ(i1i2 · · · ih; j1j2 · · · jh)

defines a linear map

IMMλ : Ch[Mn,d] → Ch[Mn,d].

Clearly, the immanant immλ(i1i2 · · · ih; j1j2 · · · jh) ∈ Ch[Mn,d] is the nat-
ural generalization of the biproducts (signed minors) (i1i2 · · · ih|j1j2 · · · jh) in
C[Mn,d].

It is obvious that the immanants immλ(i1i2 · · · ih; j1j2 · · · jh) are homoge-
neous elements of degree h ∈ N of the polynomial algebra C[Mn,d]; therefore,
by Theorem 2.3, the immanants immλ(i1i2 · · · ih; j1j2 · · · jh) expand into lin-
ear combination of standard right symmetrized bitableaux of shapes that are
partitions of h.

Furthermore, the following stronger result holds.

Proposition 2.12. Let λ ⊢ h. Any immanant immλ(i1i2 · · · ih; j1j2 · · · jh) can
be written as a linear combination of standard right symmetrized bitableaux of
the same shape λ:

immλ(i1i2 · · · ih; j1j2 · · · jh) =
∑

U,V

̺U,V (U | V ),

̺U,V ∈ C, sh(U) = sh(V ) = λ.

15



Proof. Let I : h → n, J : h → n, I(s) = is, J(s) = js, s = 1, 2, . . . , h.
Item 4) of Proposition 2.6 implies:

immλ(i1i2 · · · ih; j1j2 · · · jh) =
∑

σ∈Sh

χλ(σ)




I(σ(1))
I(σ(2))

...
I(σ(h))

∣∣∣∣∣∣∣∣∣

J(1)
J(2)

...
J(h)




=




I(χλ(1))
I(χλ(2))

...
I(χλ(h))

∣∣∣∣∣∣∣∣∣

J(1)
J(2)

...
J(h)




= H(λ)
∑

T




I(γλ
TT

(1))
I(γλ

TT
(2))

...
I(γλ

TT
(h))

∣∣∣∣∣∣∣∣∣

J(1)
J(2)

...
J(h)




Since the natural units γλ
TT

expand into Young symmetrizers of the same shape:

γλ
TT

=
∑

S1,S2

CTT,S1S2
· eλ

S1S2
, CTT,S1S2

∈ C,

then

immλ(i1i2 · · · ih; j1j2 · · · jh) = H(λ)
∑

T

∑

S1,S2

CTT,S1S2




I(eλ
S1S2

(1))
I(eλ

S1S2
(2))

...
I(eλ

S1S2
(h))

∣∣∣∣∣∣∣∣∣

J(1)
J(2)

...
J(h)




= H(λ)
∑

T

∑

S1,S2

CTT,S1S2
(IS1 | JS2 ).

From Proposition 2.12 and Theorem 2.3, it follows:

Corollary 2.13. Let λ ⊢ h. If λ1 � min{n, d}, then

immλ(i1i2 · · · ih; j1j2 · · · jh) = 0.

The scalar multiple χλ(I)
n! IMMλ of the linear operator IMMλ of Proposition

2.11 acts on Ch[Mn,d] as the projector on the direct summand Cλ
h[Mn,d] in the

Gordan-Capelli direct sum decomposition (9) of Corollary 2.4.

Proposition 2.14. Let U, V be Young tableaux of the same shape sh(U) =
sh(V ) = µ ⊢ h. We have:
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1. if µ = λ, then
χλ(I)

n!
IMMλ

(
(U | V )

)
= (U | V ); (15)

2. if µ 6= λ, then
χλ(I)

n!
IMMλ

(
(U | V )

)
= 0. (16)

Proof. Set

U = IT0
, V = JT0

, sh(U) = sh(V ) = sh(T0) = µ.

Equation (14) implies

(U | V ) = (IT0
| JT0

) =




I
(
e
µ
T0T0

(1)
)

...
I
(
e
µ
T0T0

(h)
)

∣∣∣∣∣∣∣

J(1)
...

J(h)


 .

Item 4) of Proposition 2.6 implies

χλ(I)

n!
IMMλ

(
(U | V )

)
= (
∑

T

γλ
TT)




I
(
e
µ
T0T0

(1)
)

...
I
(
e
µ
T0T0

(h)
)

∣∣∣∣∣∣∣

J(1)
...

J(h)




=




I
(∑

T
γλ
TT

e
µ
T0T0

(1)
)

...
I
(∑

T
γλ
TT

e
µ
T0T0

(h)
)

∣∣∣∣∣∣∣

J(1)
...

J(h)


 .

If λ 6= µ, the natural units γλ
TT

and the Young symmetrizer e
µ
T0T0

belong
to different simple components of the semisimple algebra

C[Sh] =
⊕

ν⊢h

Cν [Sh],

and are therefore orthogonal. This proves the second assertion.
If λ = µ, since (Proposition 2.6, item 3) )

γλ
TT eλT0T0

= δT,T0
eλT0T0

,

we get

χλ(I)

n!
IMMλ

(
(U | V )

)
=




I
(
eλ
T0T0

(1)
)

...
I
(
eλ
T0T0

(h)
)

∣∣∣∣∣∣∣

J(1)
...

J(h)


 = (U | V ),

and the first assertion is proved.
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Proposition 2.15. Let λ ⊢ h. Any right symmetrized bitableau (U | V ) of
shape sh(U) = sh(V ) = λ can be written as a linear combination of immanants
immλ(i1i2 · · · ih; j1j2 · · · jh) associated to the same shape λ.

Proof. Expand the right symmetrized bitableau (U | V ) into monomials and
apply to each summand the linear operator IMMλ.

By combining Theorem 2.3 and Proposition 2.15, we get

Proposition 2.16. The set of immanants

immλ(i1i2 · · · ih; j1j2 · · · jh),

with
λ ⊢ h, λ1 � min{n, d}, (i1i2 · · · ih) ∈ nh, (j1j2 · · · jh) ∈ dh,

is a spanning set of Ch[Mn,d].

3 The superalgebraic approach to the enveloping

algebra U(gl(n))

In this Section, we provide a synthetic presentation of the superalgebraic method
of virtual variables for gl(n).

This method was developed by the present authors for the general linear Lie
superalgebras gl(m|n), in the series of notes [3], [4], [5], [6], [7], [8], [9].

The technique of virtual variables is an extension of Capelli’s method of
variabili ausilarie (Capelli [16], see also Weyl [53]).

Capelli introduced the technique of variabili ausilarie in order to manage
symmetrizer operators in terms of polarization operators and to simplify the
study of some skew-symmetrizer operators (namely, the famous central Capelli
operator).

Capelli’s idea was well suited to treat symmetrization, but it did not work
in the same efficient way while dealing with skew-symmetrization.

One had to wait the introduction of the notion of superalgebras (see,e.g.
[48], [29]) to have the right conceptual framework to treat symmetry and skew-
symmetry in one and the same way. To the best of our knowledge, the first
mathematician who intuited the connection between Capelli’s idea and superal-
gebras was Koszul in 1981 [32]; Koszul proved that the classical determinantal
Capelli operator can be rewritten - in a much simpler way - by adding to the
symbols to be dealt with an extra auxiliary symbol that obeys to different com-
mutation relations.

The superalgebraic method of virtual variables allows us to express remark-
able classes of elements in U(gl(n)) as images - with respect to the Capelli de-
virtualization epimorphism (Subsection 3.2.1 below) - of simple monomials and
to obtain transparent combinatorial descriptions of their actions on irreducible
gl(n)−modules.

18



Among these classes, here we recall the classes of Capelli bitableaux [S|T ]

and Young-Capelli bitableaux [S| T ] (see [6], [7], [3], and subsection 3.3.2 be-
low), and introduce the new class of Capelli immanants

Cimmλ[i1i2 · · · ih; j1j2 · · · jh]

(see Section 5 below).
Moreover, this method throws a bridge between the theory of U(gl(n)) and

the (super)straightening techniques in (super)symmetric algebras (see, e.g. [25],
[7], [8], [3]).

3.1 The superalgebras C[Mm0|m1+n,d] and gl(m0|m1 + n)

3.1.1 The general linear Lie super algebra gl(m0|m1 + n)

Given a vector space Vn of dimension n, we will regard it as a subspace of a
Z2−graded vector space W = W0 ⊕W1, where

W0 = Vm0 , W1 = Vm1 ⊕ Vn.

The vector spaces Vm0 and Vm1 (informally, we assume that dim(Vm0) = m0 and
dim(Vm1) = m1 are “sufficiently large”) are called the positive virtual (auxiliary)
vector space, the negative virtual (auxiliary) vector space, respectively, and Vn

is called the (negative) proper vector space.
The inclusion Vn ⊂ W induces a natural embedding of the ordinary general

linear Lie algebra gl(n) of Vn into the auxiliary general linear Lie superalgebra
gl(m0|m1 + n) of W = W0 ⊕W1 (see, e.g. [29], [48]).

Let A0 = {α1, . . . , αm0}, A1 = {β1, . . . , βm1}, L = {x1, . . . , xn} denote
fixed bases of Vm0 , Vm1 and Vn, respectively; therefore |αs| = 0 ∈ Z2, and
|βt| = |xi| = 1 ∈ Z2.

Let
{ea,b; a, b ∈ A0 ∪A1 ∪ L}, |ea,b| = |a|+ |b| ∈ Z2

be the standard Z2−homogeneous basis of the Lie superalgebra gl(m0|m1 + n)
provided by the elementary matrices. The elements ea,b ∈ gl(m0|m1 + n) are
Z2−homogeneous of Z2−degree |ea,b| = |a|+ |b|.

The superbracket of the Lie superalgebra gl(m0|m1 + n) has the following
explicit form:

[ea,b, ec,d] = δbc ea,d − (−1)(|a|+|b|)(|c|+|d|)δad ec,b,

a, b, c, d ∈ A0 ∪A1 ∪ L.

Remark 3.1. In the following, the elements of the sets A0, A1, L will be called
positive virtual symbols, negative virtual symbols and negative proper symbols,
respectively.
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3.1.2 The supersymmetric algebra C[Mm0|m1+n,d]

As already said, we will write (i|j) in place of xij , and regard the (commutative)
algebra C[Mn,d] as a subalgebra of the “auxiliary” supersymmetric algebra

C[Mm0|m1+n,d] = C
[
(αs|j), (βt|j), (i|j)

]

generated by the (Z2-graded) variables (αs|j), (βt|j), (i|j), j = 1, 2, . . . , d, where

|(αs|j)| = 1 ∈ Z2 and |(βt|j)| = |(i|j)| = 0 ∈ Z2,

subject to the commutation relations:

(a|h)(b|k) = (−1)|(a|h)||(b|k)| (b|k)(a|h),

for a, b ∈ {α1, . . . , αm0} ∪ {β1, . . . , βm1} ∪ {1, 2, . . . , n}.
In plain words, all the variables commute each other, with the exception of

pairs of variables (αs|j), (αt|j) that skew-commute:

(αs|j)(αt|j) = −(αt|j)(αs|j).

In the standard notation of multilinear algebra, we have:

C[Mm0|m1+n,d] ∼= Λ [W0 ⊗ Pd]⊗ Sym [W1 ⊗ Pd]

= Λ [Vm0 ⊗ Pd]⊗ Sym [(Vm1 ⊕ Vn)⊗ Pd]

where Pd = (Pd)1 denotes the trivially (odd) Z2−graded vector space with
distinguished basis {j; j = 1, 2, . . . , d}.

The algebra C[Mm0|m1+n,d] is a supersymmetric Z2−graded algebra (super-
algebra), whose Z2−graduation is inherited by the natural one in the exterior
algebra.

3.1.3 Left superderivations and left superpolarizations

A left superderivation D (Z2−homogeneous of degree |D|) (see, e.g. [48], [29])
on C[Mm0|m1+n,d] is an element of the superalgebra EndC[C[Mm0|m1+n,d]] that
satisfies "Leibniz rule"

D(p · q) = D(p) · q + (−1)|D||p|p ·D(q),

for every Z2−homogeneous of degree |p| element p ∈ C[Mm0|m1+n,d].
Given two symbols a, b ∈ A0 ∪A1 ∪L, the superpolarization Da,b of b to a is

the unique left superderivation of C[Mm0|m1+n,d] of parity |Da,b| = |a|+ |b| ∈ Z2

such that

Da,b ((c|j)) = δbc (a|j), c ∈ A0 ∪ A1 ∪ L, j = 1, . . . , d. (17)

Informally, we say that the operatorDa,b annihilates the symbol b and creates
the symbol a.
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3.1.4 The superalgebra C[Mm0|m1+n,d] as a U(gl(m0|m1 + n))-module

Since

Da,bDc,d − (−1)(|a|+|b|)(|c|+|d|)Dc,dDa,b = δb,cDa,d − (−1)(|a|+|b|)(|c|+|d|)δa,dDc,b,

the map
ea,b → Da,b, a, b ∈ A0 ∪ A1 ∪ L.

(that send the elementary matrices to the corresponding superpolarizations) is
an (even) Lie superalgebra morphism from gl(m0|m1+n) to EndC[C[Mm0|m1+n,d]]
and, hence, it uniquely defines a morphism (i.e. a representation):

̺ : U(gl(m0|m1 + n)) → EndC[C[Mm0|m1+n,d]].

In the following, we always regard the superalgebra C[Mm0|m1+n,d] as a
U(gl(m0|m1 + n))−supermodule, with respect to the action induced by the
representation ̺:

ea,b · p = Da,b(p),

for every p ∈ C[Mm0|m1+n,d].
We recall that C[Mm0|m1+n,d] is a semisimple U(gl(m0|m1+n))−supermodule,

whose irreducible (simple) submodules are - up to isomorphism - Schur super-
modules (see, e.g. [5], [6], [3]. For a more traditional presentation, see also
[18]).

Clearly, U(gl(0|n)) = U(gl(n)) is a subalgebra of U(gl(m0|m1+n)) and the
subalgebra C[Mn,d] is a U(gl(n))−submodule of C[Mm0|m1+n,d].

3.2 The virtual algebra V irt(m0 + m1, n) and the virtual

presentations of elements in U(gl(n))

3.2.1 The Capelli devirtualization epimorphism p : V irt(m0+m1, n) ։
U(gl(n))

We say that a product

eambm · · · ea1b1 ∈ U(gl(m0|m1 + n)), ai, bi ∈ A0 ∪A1 ∪ L, i = 1, . . . ,m

is an irregular expression whenever there exists a right subword

eai,bi · · · ea2,b2ea1,b1 ,

i ≤ m and a virtual symbol γ ∈ A0 ∪ A1 such that

#{j; bj = γ, j ≤ i} > #{j; aj = γ, j < i}. (18)

The meaning of an irregular expression in terms of the action of U(gl(m0|m1+
n)) on the algebra C[Mm0|m1+n,d] is that there exists a virtual symbol γ and a
right subsequence in which the symbol γ is annihilated more times than it was
already created.
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Example 3.2. Let γ ∈ A0 ∪A1 and xi, xj ∈ L. The product

eγ,xj
exi,γexj,γeγ,xi

is an irregular expression.

Let Irr be the left ideal of U(gl(m0|m1+n)) generated by the set of irregular
expressions.

Remark 3.3. The action of any element of Irr on the subalgebra C[Mn,d] ⊂
C[Mm0|m1+n,d] - via the representation ̺ - is identically zero.

Proposition 3.4. ([7], [4]) The sum U(gl(0|n))+ Irr is a direct sum of vector
subspaces of U(gl(m0|m1 + n)).

We come now to one of the main notions of the virtual method.
The virtual algebra V irt(m0 +m1, n) is the subalgebra

V irt(m0 +m1, n) = U(gl(0|n))⊕ Irr ⊂ U(gl(m0|m1 + n)).

The proof of the following proposition is immediate from the definitions.

Proposition 3.5. The left ideal Irr of U(gl(m0|m1 + n)) is a two sided ideal
of V irt(m0 +m1, n).

The Capelli devirtualization epimorphism is the projection

p : V irt(m0 +m1, n) = U(gl(0|n))⊕ Irr ։ U(gl(0|n)) = U(gl(n))

with Ker(p) = Irr.

Example 3.6. Let x ∈ L, α ∈ A0. The element

ex,αeα,x = −eα,xex,α + ex,x + eα,α

belongs to the virtual algebra V irt(m0 +m1, n) and

p
(
ex,αeα,x

)
= ex,x ∈ U(gl(n)).

Example 3.7. Let x, y ∈ L, α ∈ A0. Then

eyαexαeαxeαy = −eyαeαxexαeαy + eyαexxeαy + eyαeααeαy

= +eyαeαxeαyexα − eyαeαxexy

− exxeαyeyα + exxeyy − exxeαα

+ eyαeαyeαα + eyαeαy

= +eyαeαxeαyexα − eαxeyαexy − eyxexy

− exxeαyeyα + exxeyy − exxeαα

+ eyαeαyeαα + eαyeyα + eyy + eαα ∈ U(gl(m0|m1 + n)).
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Therefore
eyαexαeαxeαy ∈ V irt(m0 +m1, n)

and
p
(
eyαexαeαxeαy

)
= −eyxexy + exxeyy + eyy ∈ U(gl(n)).

Any element in M ∈ V irt(m0 +m1, n) defines an element in m ∈ U(gl(n))
- via the map p - and M is called a virtual presentation of m.

Since the map p a surjection, any element m ∈ U(gl(n)) admits several
virtual presentations. In the sequel, we even take virtual presentations as the
true definition of special elements in U(gl(n)), and this method will turn out
to be quite effective.

Example 3.8. (A virtual presentation of the Capelli determinant) As
a generalization of Example 3.7, we describe a “monomial ” virtual presentation
in V irt(m0 +m1, n) of the classical Capelli determinant in U(gl(n)).

Let α ∈ A0. The monomial element

C = exn,α · · · ex2,αex1,α · eα,x1eα,x2 · · · eα,xn
∈ U(gl(m0|m1 + n)) (19)

belongs to the virtual algebra V irt(m0|m1 + n). The image of the element C

under the Capelli devirtualization epimorphism p equals the column determi-
nant1

Hn(n) = cdet




ex1,x1 + (n− 1) ex1,x2 . . . ex1,xn

ex2,x1 ex2,x2 + (n− 2) . . . ex2,xn

...
...

...
exn,x1 exn,x2 . . . exn,xn


 ∈ U(gl(n)).

This result is a special case of the result that we called the “Laplace expansion
for Capelli rows” ( [9] Theorem 2, [3] Theorem 6.3). A sketchy proof of it can
also be found in Koszul [32].

The next results will play a crucial role in the study of central elements of
U(gl(n)).

Proposition 3.9. For every exi,xj
∈ gl(n) ⊂ gl(m0|m1 + n), let ad(exi,xj

) de-
note its adjoint action on V irt(m0+m1, n); the ideal Irr is ad(exi,xj

)−invariant.
Then

p
(
ad(exi,xj

)(m)
)
= ad(exi,xj

) (p(m)) , m ∈ V irt(m0 +m1, n). (20)

Corollary 3.10. The Capelli epimorphism image of an element of V irt(m0|m1+
n) that is an invariant for the adjoint action of gl(n) is in the center ζ(n) of
U(gl(n)).

1The symbol cdet denotes the column determinat of a matrix A = [aij ] with noncommu-

tative entries: cdet(A) =
∑

σ (−1)|σ| aσ(1),1aσ(2),2 · · · aσ(n),n.
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Example 3.11. Recall that

ad(exi,xj
) (exh,α) = δjhexi,α,

ad(exi,xj
) (eα,xk

) = −δkieα,xj
,

for every virtual symbol α, and that ad(exi,xj
) acts as a derivation, for every

i, j = 1, 2, . . . , n.
The monomial C of Example 3.8, Eq.(19) is annihilated by ad(exi,xj

), i 6= j,

by skew-symmetry. Furthermore, ad(exi,xi
) (C) = C − C = 0, i = 1, 2, . . . , n;

hence, C is an invariant for the adjoint action of gl(n).
Since p (C) = Hn(n), the Capelli determinant Hn(n) is central in U(gl(n)),

by Corollary 3.10.

3.2.2 The action of V irt(m0 +m1, n) on the subalgebra C[Mn,d]

From the representation-theoretic point of view, the core of the method of virtual
variables lies in the following result.

Theorem 3.12. The action of V irt(m0+m1, n) leaves invariant the subalgebra
C[Mn,d] ⊆ C[Mm0|m1+n,d], and, therefore, the action of V irt(m0 + m1, n) on
C[Mn,d] is well defined. Furthermore, for every v ∈ V irt(m0+m1, n), its action
on C[Mn,d] equals the action of p(v) ∈ U(gl(n)).

Therefore, instead of studying the action of an element in U(gl(n)), one
can study the action of a virtual presentation of it in V irt(m0|m1 + n). The
advantage of virtual presentations is that they are frequently of monomial form,
admit quite transparent interpretations and are much easier to be dealt with
(see, e.g. [5], [6], [9], [3], [4]).

A prototypical instance of this method is provided by the celebrated Capelli
identity [12], [53], [26], [27], [50]. From Example 3.8, it follows that the action
of the Capelli determinant Hn(n) on a form f ∈ C[Mn,d] is the same as the
action of its monomial virtual presentation, and this leads to a few lines proof
of the identity [9], [4].

3.2.3 Balanced monomials as elements of the virtual algebra V irt(m0+
m1, n)

In order to make the virtual variables method effective, we need to exhibit a
class of nontrivial elements that belong to V irt(m0 +m1, n).

A quite relevant class of such elements is provided by balanced monomials.
In plain words, a balanced monomial is product of two or more factors where

the rightmost one annihilates the k proper symbols xj1 , . . . , xjk and creates some
virtual symbols; the leftmost one annihilates all the virtual symbols and creates
the k proper symbols xi1 , . . . , xik ; between these two factors, there might be
further factors that annihilate and create virtual symbols only.

In a formal way, balanced monomials are elements of the algebraU(gl(m0|m1+
n)) of the forms:
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• exi1 ,γp1
· · · exik

,γpk
· eγp1 ,xj1

· · · eγpk
,xjk

,

• exi1 ,θq1
· · · exik

,θqk
· eθq1 ,γp1

· · · eθqk ,γpk
· eγp1 ,xj1

· · · eγpk
,xjk

,

• and so on,

where xi1 , . . . , xik , xj1 , . . . , xjk ∈ L, i.e., the xi1 , . . . , xik , xj1 , . . . , xjk are k proper
symbols.

The next result is the (superalgebraic) formalization of the argument devel-
oped by Capelli in [16], CAPITOLO I, §X.Metodo delle variabili ausiliarie, page
55 ff.

Proposition 3.13. ([5], [6], [9], [3], [4]) Every balanced monomial belongs to
V irt(m0 +m1, n). Hence its image under the Capelli epimorphism p belongs to
U(gl(n)).

In plain words, the action of a balanced monomial on the subalgebra C[Mn,d]
equals the action of a suitable element of U(gl(n)).

3.3 Two special classes of elements in V irt(m0 +m1, n) and

their images in U(gl(n))

We will introduce two classes of remarkable elements of the enveloping algebra
U(gl(n)), that we call Capelli bitableaux and Young-Capelli bitableaux , respec-
tively.

Capelli bitableaux are the analogues in U(gl(n)) of bitableaux in the polyno-
mial algebra C[Mn,d], as well as Young-Capelli bitableaux are the analogues in
U(gl(n)) of right symmetrized bitableaux. Besides this analogy, their meaning
lies deeper, as we shall see in Section 4.

3.3.1 Bitableaux monomials in U(gl(m0 +m1, n))

Let S and T be two Young tableaux of same shape λ ⊢ h on the alphabet
A0 ∪A1 ∪ L:

S =




zi1 . . . . . . . . . ziλ1

zj1 . . . . . . zjλ2

. . . . . .

zs1 . . . zsλp


 , T =




zh1 . . . . . . . . . zhλ1

zk1 . . . . . . zkλ2

. . . . . .

zt1 . . . ztλp


 . (21)

To the pair (S, T ), we associate the bitableau monomial:

eS,T = ezi1 ,zh1
· · · eziλ1

,zhλ1
ezj1 ,zk1 · · · ezjλ2

,zkλ2
· · · · · · ezs1 ,zt1 · · · ezsλp

,ztλp
(22)

in U(gl(m0|m1 + n)).
By expressing the Young tableaux S, T in the functional form (see subsection

2.2.1):
S : h → A0 ∪ A1 ∪ L, T : h → A0 ∪ A1 ∪ L,
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the bitableau monomial eS,T of Eq. (22) becomes:

eS,T = eS(1),T (1)eS(2),T (2) · · · eS(h),T (h).

Let us denote by α1, . . . , αp ∈ A0, β1, . . . , βλ1 ∈ A1 two arbitrary families of
mutually distinct positive and negative virtual symbols, respectively (see Remark
3.1). Set

D∗
λ =




β1 . . . . . . . . . βλ1

β1 . . . . . . βλ2

. . . . . .

β1 . . . βλp


 , C∗

λ =




α1 . . . . . . . . . α1

α2 . . . . . . α2

. . . . . .

αp . . . αp


 . (23)

The tableaux of kind (23) are called virtual Deruyts and Coderuyts tableaux
of shape λ, respectively.

3.3.2 Capelli bitableaux and Young-Capelli bitableaux

Given a pair of Young tableaux S, T of the same shape λ on the proper alphabet
L, consider the elements

eS,C∗

λ
eC∗

λ
,T ∈ U(gl(m0|m1 + n)), (24)

eS,C∗

λ
eC∗

λ
,D∗

λ
eD∗

λ
,T ∈ U(gl(m0|m1 + n)). (25)

Since elements (26) and (39) are balanced monomials in U(gl(m0|m1 + n)),
then they belong to the subalgebra V irt(m0 +m1, n) (Section 3.2.3).

Hence, we can consider their images in U(gl(n)) with respect to the Capelli
epimorphism p.

We set
[S|T ] = p

(
eS,C∗

λ
eC∗

λ
,T

)
∈ U(gl(n)), (26)

and call the element [S|T ] a Capelli bitableau.
We set

[S| T ] = p

(
eS,C∗

λ
eC∗

λ
,D∗

λ
eD∗

λ
,T

)
∈ U(gl(n)). (27)

and call the element [S| T ] a Young-Capelli bitableau.

Remark 3.14. The elements defined in (26) and (39) do not depend on the
choice of the virtual Deruyts and Coderuyts tableaux D∗

λ and C∗
λ.

The next result will play a crucial role subsection 4.2 below. In plain words,
it states that Young-Capelli bitableaux expand into Capelli bitableaux in the
enveloping algebra U(gl(n)) just in the same formal way as right symmetrized
bitableaux expand into bitableaux in the polynomial algebra C[Mn,d] (subsection
2.3).
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Proposition 3.15. Let S, T be Young tableaux, sh(S) = sh(T ). The following
identity holds in the enveloping algebra U(gl(n)):

[S| T )] =
∑

T

[S|T ],

where the sum is extended over all T column permuted of T (hence, repeated
entries in a column give rise to multiplicities).

The proof easily follows from the definitions, by applying the commutator
identities in the superalgebra U(gl(m0|m1 + n)).

Example 3.16. (cfr. Example 2.2)

[
x1 x3

x2 x4

∣∣∣∣
x1 x2

x1 x3

]
=

[
x1 x3

x2 x4

∣∣∣∣
x1 x2

x1 x3

]
+

[
x1 x3

x2 x4

∣∣∣∣
x1 x2

x1 x3

]

+

[
x1 x3

x2 x4

∣∣∣∣
x1 x3

x1 x2

]
+

[
x1 x3

x2 x4

∣∣∣∣
x1 x3

x1 x2

]

= 2

[
x1 x3

x2 x4

∣∣∣∣
x1 x2

x1 x3

]
+ 2

[
x1 x3

x2 x4

∣∣∣∣
x1 x3

x1 x2

]
.

4 The bitableaux correspondence isomorphism K−1

and the Koszul map K

4.1 The BCK theorem

Our next aim is to describe an extremely relevant pair of (mutually inverse)
vector space isomorphisms between the polynomial algebra of forms C[Mn,n]
and the universal enveloping algebra U(gl(n)).

In order to do this, it is worth to simplify the notation in the following way:

• we will write i in place of xi and eij in place of exi,xj
;

• consistently, we set L = P = n = {1, 2, . . . , n}.

The main advantage of this convention is that it allows us to write bitableaux
in C[Mn,n] and Capelli bitableaux in U(gl(n)) as elements associated to pairs
of Young tableaux on the same alphabet.

More specifically, given a shape (partition) λ with λ1 ≤ n, to any pair
of Young tableaux S, T on the alphabet n = {1, 2, . . . , n} and of the same
shape sh(S) = sh(T ) = λ, one associates the (determinantal) bitableau (S|T ) ∈
C[Mn,n], and the Capelli bitableau [S|T ] ∈ U(gl(n)).
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Theorem 4.1. (The BCK theorem) The “bitableaux correspondence” map

K−1 : (S|T ) 7→ [S|T ] (28)

uniquely defines a linear isomorphism

K−1 : C[Mn,n] ∼= Sym(gl(n)) → U(gl(n)).

Furthermore, this isomorphism is the inverse of the Koszul map

K : U(gl(n)) → C[Mn,n] ∼= Sym(gl(n))

introduced by J.-L. Koszul in [32].

Eq. (28) indeed defines a linear operator since bitableaux in C[Mn,n] and
Capelli bitableaux in U(gl(n)) are ruled by the same straightening laws (see
[7], Proposition 7).

The linear isomorphism K−1 was introduced in [8], Theorem 1. The fact
that K−1 and K are inverse of each other was proved in [8], Theorem 2 (see
also, [4]).

4.2 Right symmetrized bitableaux and Young-Capelli bitableaux

The "bitableaux correspondence" and the Koszul isomorphisms behave well with
respect to right symmetrized bitableaux

(S| T ) ∈ C[Mn,n]

and Young-Capelli bitableaux

[S| T ] = p
(
eSC∗

λ
eC∗

λ
D∗

λ
eD∗

λ
T c
)
∈ U(gl(n)).

In plain words, any Young-Capelli bitableaux [S| T ] is the image - with

respect to the linear operator K−1 - of the right symmetrized bitableaux (S| T ).

Theorem 4.2. We have:

K−1 : (S| T ) 7→ [S| T ],

K : [S| T ] 7→ (S| T ).

Proof. Indeed, we have:

K−1
(
(S| T )

)
=K−1

(∑

T

(S|T )
)

=
∑

T

[S|T ],

where the sum is extended over all T column permuted of T .
By Proposition 3.15, the last summation equals the Young-Capelli bitableaux

[S| T ].
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By Theorem 4.2 and Theorem 2.3, we have:

Theorem 4.3. Let h ∈ N. The set of Young-Capelli bitableaux

h⋃

k=0

{
[S| T ]; S, T standard, sh(S) = sh(T ) = λ ⊢ k, λ1 ≤ n

}

is a basis of the filtration element U(gl(n))(h).

Remark 4.4. The basis elements{
[S| T ]; S, T standard, sh(S) = sh(T ) = λ ⊢ k, λ1 ≤ n

}

act in a quite remarkable way on Gordan-Capelli basis elements
{

(U | V ); U, V standard, sh(U) = sh(V ) = µ ⊢ h, µ1 ≤ n
}
.

Indeed, we have:

– If h < k, the action is zero.

– If h = k and λ 6= µ, the action is zero.

– If h = k and λ = µ, the action is nondegenerate triangular (with respect
to a suitable linear order on standard tableaux of the same shape).

See [6] and [3], Theorem 10.1.

4.3 Column Capelli bitableaux in U(gl(n))

A column Capelli bitableau in U(gl(n)) is a Capelli bitableau [S|T ], where S

and T are column Young tableaux of the same depth.
Although column Capelli bitableaux are far from being “monomials” in U(gl(n)),

they play the same role that column bitableaux – signed monomials – play in
the polynomial algebra C[Mn,n]. Specifically, Capelli bitableaux and Young-
Capelli bitableaux expand into column Capelli bitableaux just in the same way
as bitableaux and right symmetrized bitableaux expand into column bitableaux
in the polynomial algebra C[Mn,n].

Remark 4.5. The column Capelli bitableau [i|j] of depth h = 1 equals the
generator ei,j of the algebra U(gl(n)), i, j = 1, 2, . . . , n, i, j = 1, 2, . . . , n. Indeed

[i|j] = p [ei,αeα,j ] = p [−eα,jei,α + ei,j + δi,jeα,α] = eij .

Since column bitableaux in the polynomial algebra C[Mn,n] are signed com-
mutative monomials, then column Capelli bitableaux are invariant with respect
to permutations of their rows, that is




i1
i2
...
ih

∣∣∣∣∣∣∣∣∣

j1
j2
...
jh


 =




iσ(1)
iσ(2)

...
iσ(h)

∣∣∣∣∣∣∣∣∣

jσ(1)
jσ(2)

...
jσ(h)



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for every σ ∈ Sh.

Let us denote by Ch[Mn,n] the homogeneous component of degree h ∈ N
of the polynomial algebra C[Mn,n] and denote U(gl(n))(h) the h−th filtration
element of the enveloping algebra U(gl(n)).

Corollary 4.6. The bitableaux correspondence isomorphism K−1 and the Koszul
isomorphisms K induce, by restriction, a pair of mutually inverse isomorphisms

K−1 :

h⊕

k=0

Ck[Mn,n] → U(gl(n))(h)

and

K : U(gl(n))(h) →

h⊕

k=0

Ck[Mn,n].

The preceding assertion can be regarded as a sharpened version of the PBW
Theorem for U(gl(n)).

4.3.1 Devirtualization of column Capelli bitableaux in U(gl(n))

Given any column Capelli bitableau, devirtualized expressions of it as an ele-
ment of U(gl(n)) can be easily obtained by means of iterations of the following
identities.

Proposition 4.7. In the enveloping algebra U(gl(n)), we have:




i1
i2
...

ih−1

ih

∣∣∣∣∣∣∣∣∣∣∣

j1
j2
...

jh−1

jh



=

(−1)h−1 ei1,j1




i2
...

ih−1

ih

∣∣∣∣∣∣∣∣∣

j2
...

jh−1

jh


 + (−1)h−2

h∑

k=2

δik,j1




i1
...

ik−1

ik+1

...
ih

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

jk
...

jk−1

jk+1

...
jh




=

(−1)h−1




i1
i2
...

ih−1

∣∣∣∣∣∣∣∣∣

j1
j2
...

jh−1


 eih,jh + (−1)h−2

h−1∑

k=1

δih,jk




i1
...

ik−1

ik+1

...
ik

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

j1
...

jk−1

jk+1

...
jh




.
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Proof. By definition, 


i1
i2
...

ih−1

ih

∣∣∣∣∣∣∣∣∣∣∣

j1
j2
...

jh−1

jh



=

= p
[
ei1,α1ei2,α2 · · · eih−1,αh−1

eih,αh
· eα1,j1eα2,j2 · · · eαh−1,jh−1

eαh,jh

]
=

= p
[
− ei1,α1ei2,α2 · · · eih−1,αh−1

eα1,j1eih,αh
· eα2,j2 · · · eαh−1,jh−1

eαh,jh

+ ei1,α1ei2,α2 · · · eih−1,αh−1
· δih,j1eα1,αh

eα2,j2 · · · eαh−1,jh−1
eαh,jh

]
=

= p
[
− ei1,α1ei2,α2 · · · eih−1,αh−1

eα1,j1eih,αh
· eα2,j2 · · · eαh−1,jh−1

eαh,jh

+ ei1,α1ei2,α2 · · · eih−1,αh−1
· δih,j1eα2,j2 · · · eαh−1,jh−1

eα1,jh

]
.

Notice that

δih,j1 ei1,α1ei2,α2 · · · eih−1,αh−1
· eα2,j2 · · · eαh−1,jh−1

eα1,jh =

δih,j1 (−1)h−2 ei1,α1ei2,α2 · · · eih−1,αh−1
· eα1,jheα2,j2 · · · eαh−1,jh−1

as elements of the algebra U(gl(m0|m1 + n)).
Therefore, the summand

p
[
ei1,α1ei2,α2 · · · eih−1,αh−1

· δih,j1eα2,j2 · · · eαh−1,jh−1
eα1,jh

]

equals

(−1)h−2 δih,j1




i1
i2
...

ih−1

∣∣∣∣∣∣∣∣∣

jh
j2
...

jh−1


 .

By repeating the above procedure of moving left the element eα1,j1 - using the
commutator identities in U(gl(m0|m1 + n)) - we finally get




i1
i2
...

ih−1

ih

∣∣∣∣∣∣∣∣∣∣∣

j1
j2
...

jh−1

jh



=

= p
[
(−1)h−1ei1,α1eα1,j1ei2,α2 · · · eih−1,αh−1

eih,αh
· eα2,j2 · · · eαh−1,jh−1

eαh,jh

+
h−2∑

i=0

(−1)i ei1,α1 · · · δih−i,j1 ̂eih−i,αh−i
eα1,αh−i

· · · eih,αh
· eα2,j2 · · · eαh,jh

]

= p
[
(−1)h−1ei1,α1eα1,j1ei2,α2 · · · eih−1,αh−1

eih,αh
· eα2,j2 · · · eαh−1,jh−1

eαh,jh

+

h−2∑

i=0

(−1)i ei1,α1 · ·δih−i,j1 · · · eih,αh
· eα2,j2 · ·eα1,jh−i

· ·eαh,jh

]
.
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Notice that the summand

(−1)i δih−i,j1 ei1,α1 · ·δih−i,j1 · · · eih,αh
· eα2,j2 · ·eα1,jh−i

· ·eαh,jh

equals
(−1)i δih−i,j1 (−1)h−i−2×

ei1,α1 · · · ̂eih−i,αh−i
· · · eih,αh

· eα1,jh−i
eα2,j2 · · · ̂eαh−i,jh−i

. . . eαh,jh

as elements of the algebra U(gl(m0|m1 + n)).
Hence

p
[
(−1)i δih−i,j1 ei1,α1 · · · ̂eih−i,αh−i

eα1,αh−i
· · · eih,αh

· eα2,j2 · · · eαh,jh

]

equals

(−1)h−2 δih−i,j1




i1
i2
...

ih−i−1

îh−i

ih−i+1

ih

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

jh−i

j2
...

jh−i−1

ĵh−i

jh−i+1

jh




.

Furthermore

p
[
(−1)h−1ei1,α1eα1,j1ei2,α2 · · · eih−1,αh−1

eih,αh
· eα2,j2 · · · eαh−1,jh−1

eαh,jh

]
=

= (−1)h−1 ei1,j1




i2
...

ih−1

ih

∣∣∣∣∣∣∣∣∣

j2
...

jh−1

jh


 .

By setting k = h − i, we proved the first expansion identity. The second
expansion identity can be proved in a similar way.

Example 4.8.



1
2
3

∣∣∣∣∣∣

2
1
1


 = [1|2]

[
2
3

∣∣∣∣
1
1

]
−

[
1
3

∣∣∣∣
1
1

]
= −e12e21e31 + e11e31 ∈ U(gl(n)).

Notice that



1
2
3

∣∣∣∣∣∣

2
1
1


 =




3
2
1

∣∣∣∣∣∣

1
1
2


 = [3|1]

[
2
1

∣∣∣∣
1
2

]
−

[
3
2

∣∣∣∣
2
1

]
=

= −[3|1]([2|1][[1|2]− [2|2]) + [2|1][3|2] = −e31e21e12 + e31e22 + e21e32 =

=




1
2
3

∣∣∣∣∣∣

2
1
1


 =

[
1
2

∣∣∣∣
2
1

]
[3|1] =

= (−[1|2][2|1] + [1|1])[3|1] = −e12e21e31 + e11e31 ∈ U(gl(n)).
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Remark 4.9. Theorems 4.1 and 4.2, in combination with Proposition 4.7,
allows the explicit devirtualized forms in U(gl(n)) of Capelli bitableaux and
of right Young-Capelli bitableaux to be easily computed. The process can be
illustrated by an example. Let n ≥ 2, h = 3, λ = (2, 1). Consider the Capelli
bitableaux [

1 2
1

∣∣∣∣
1 2
2

]
∈ U(gl(n)).

By Theorem 4.1:
[

1 2
1

∣∣∣∣
1 2
2

]
= K−1

(( 1 2
1

∣∣∣∣
1 2
2

))

= K−1
(



1
2
1

∣∣∣∣∣∣

1
2
2


−




1
2
1

∣∣∣∣∣∣

2
1
2


)

=




1
2
1

∣∣∣∣∣∣

1
2
2


−




1
2
1

∣∣∣∣∣∣

2
1
2


 .

By Proposition 4.7,



1
2
1

∣∣∣∣∣∣

1
2
2


 = −e11e22e12 + e12e21 − e12 ∈ U(gl(n)),




1
2
1

∣∣∣∣∣∣

2
1
2


 = −e12e21e12 + e12e22 + e11e12 − e12 ∈ U(gl(n)).

4.3.2 Column Capelli bitableaux as polynomial differential opera-
tors on C[Mn,d]

The next result will play a crucial role in Section 6. In the language of Procesi
([46], chapter 3), it describes the action of column Capelli bitableaux as elements
of the Weyl algebra associated to the polynomial algebra C[Mn,d].

Proposition 4.10. The action of the column Capelli bitableau



i1
i2
...
ih

∣∣∣∣∣∣∣∣∣

j1
j2
...
jh


 ∈ U(gl(n))

on the algebra C[Mn,d] equals the action of the polynomial differential operator

(−1)(
h

2)
∑

(ϕ1,ϕ2,...,ϕh)∈dh

(i1|ϕ1)(i2|ϕ2) · · · (ih|ϕh) ∂(j1|ϕ1) ∂(j2|ϕ2) · · ·∂(jh|ϕh),
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Proof. Consider a monomial M ∈ C[Mn,d],

M =

n∏

i=1

(i|1)si1(i|2)si2 · · · (i|d)sid

and let α ∈ A0 be a positive virtual symbol . Given jh = 1, 2, . . . , n, con-
sider the action of the superpolarization Dα,jh on the supersymmetric algebra
C[Mm0|m1+n,d] ⊇ C[Mn,d]. A straightforward computation shows that

Dα,jh

(
M
)
=

d∑

ϕ=1

∂(j1|ϕ)

(
M
)
(α|ϕ). (29)

Furthermore, notice that:

Dαs,jkDαt,jh

(
M
)
=

d∑

ϕ=1

(
Dαs,jk

(
∂(j1|ϕ)

(
M
)))

(αt|ϕ),

that equals
∑

ϕ1,ϕ2=1,2,...,d

(
∂(jk|ϕ1)∂(jh|ϕ2)

(
M
))

(αs|ϕ1)(αt|ϕ2). (30)

Recall that the action of the column Capelli bitableau



i1
i2
...
ih

∣∣∣∣∣∣∣∣∣

j1
j2
...
jh


 ∈ U(gl(n))

on the algebra C[Mn,d] is implemented by the product of superpolarizations

Di1,α1 · · ·Dih−1,αh−1
Dih,αh

Dα1,j1 · · ·Dαh−1,jh−1
Dαh,jh ,

where α1, . . . , αh−1, αh are distinct arbitrary positive virtual symbols. Note that
|Dir,αr

| = |Dαr,jr | = 1 ∈ Z2, for every r = 1, 2, . . . , h.
From Eqs. (29) and (30), it immediately follows:

Dα1,j1 · · ·Dαh,jh

(
M
)
=

∑

(ϕ1,...,ϕh)∈dh

∂(j1|ϕ1) · · ·∂(jh|ϕh)

(
M
)
(α1|ϕ1) · · · (αh|ϕh)

(31)
Since |(αr|ϕr)| = 1 ∈ Z2, for every r = 1, 2, . . . , h, from Eq. (31), we infer:

Di1,α1 · · ·Dih−1,αh−1
Dih,αh

(
Dα1,j1 · · ·Dαh−1,jh−1

Dαh,jh

(
M
))

equals

(−1)(
h
2)

∑

(ϕ1,ϕ2,...,ϕh)∈dh

(i1|ϕ1)(i2|ϕ2) · · · (ih|ϕh) ∂(j1|ϕ1) ∂(j2|ϕ2) · · · ∂(jh|ϕh)

(
M
)
.
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5 Capelli immanants and Young-Capelli bitableaux

in U(gl(n))

The bitableaux correspondence (linear) isomorphism

K−1 : C[Mn,n] → U(gl(n)),

leads to the following natural definition of Capelli immanant

Cimmλ[i1i2 · · · ih; j1j2 · · · jh]

in the enveloping algebra in U(gl(n)):

Cimmλ[i1i2 · · · ih; j1j2 · · · jh] = K−1
(
immλ(i1i2 · · · ih; j1j2 · · · jh)

)
.

By linearity of the operator K−1, we get

Cimmλ[i1i2 · · · ih; j1j2 · · · jh] =
∑

σ∈Sh

χλ(σ)




iσ(1)
iσ(2)

...
iσ(h)

∣∣∣∣∣∣∣∣∣

j1
j2
...
jh




=
∑

σ∈Sh

χλ(σ)




i1
i2
...
ih

∣∣∣∣∣∣∣∣∣

jσ(1)
jσ(2)

...
jσ(h)


 .

Clearly, the notion of Capelli immanants provides a natural generalization
of the notion of Capelli determinant (see Example 3.8).

Since a Young-Capelli bitableau [U | V ] ∈ U(gl(n)) is the image of the right

symmetrized bitableau (U | V ) ∈ C[Mn,n] with respect to the isomorphism K−1,
Proposition 2.12 implies
Theorem 5.1. Let λ ⊢ h. Any Capelli immanant Cimmλ[i1i2 · · · ih; j1j2 · · · jh]
can be written as a linear combination of standard Young-Capelli bitableaux

[U | V ] in U(gl(n)) of the same shape λ:

Cimmλ[i1i2 · · · ih; j1j2 · · · jh] =
∑

U,V

̺U,V [U | V ],

̺U,V ∈ C, sh(U) = sh(V ) = λ.

From Corollary 2.13, it follows:

Corollary 5.2. Let λ ⊢ h. If λ1 � n, then

Cimmλ(i1i2 · · · ih; j1j2 · · · jh) = 0.

Furthermore, Proposition 2.15 implies
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Theorem 5.3. Let λ ⊢ h. Any Young-Capelli bitableau [U | V ] in U(gl(n))
of shape sh(U) = sh(V ) = λ can be written as a linear combination of Capelli
immanants Cimmλ[i1i2 · · · ih; j1j2 · · · jh] associated to the same shape λ.

Proposition 2.16 implies

Theorem 5.4. The set of Capelli immanants

h⋃

k=0

{
Cimmλ[i1i2 · · · ik; j1j2 · · · jk];λ ⊢ k, λ1 ≤ n, (i1i2 · · · ik), (j1j2 · · · jk) ∈ nk

}

is a spanning set of U(gl(n))(h).

6 Quantum immanants

Our main result is a description of quantum immanants as simple linear com-
binations of Capelli immanants . This result – in combination with Proposition
4.7 – allows the computation of quantum immanants as elements of U(gl(n))
to be reduced to a fairly simple process (see, e.g. Example 38 below).

Quantum immanants are the preimages of the shifted Schur polynomials
[47], [42], with respect to the Harish-Chandra isomorphism.

We follow the notational conventions of Okounkov [40] and [41].

Remark 6.1. Given a partition µ ⊢ h, V µ denotes the irreducible representa-
tion associated to µ in the sense of James and Kerber [28]. We recall that the
irreducible representation V µ is the representation associated to the shape µ̃ in
the notation of the previous sections of this work.

Furthermore:

– T denotes a multilinear standard Young tableau of shape sh(T) = µ ⊢ h.

– For every s = 1, 2, . . . , h, let (i, j) be the pair of row and column indices of
the cell of T that contains s. Set cT(s) = j − i (the “Frobenius content”
of the cell (i, j)).

– vT denotes the element of the seminormal Young basis of V µ associated
to the multilinear standard tableau T. Since each basis vector is defined
only up to a scalar factor, we assume that (vT, vT) = 1 (see Okounkov
and Vershik [43]; for a more traditional approach, see James and Kerber
[28]).

– given the element

ΨT =
∑

σ∈Sh

(σ · vT, vT)σ
−1 ∈ C[Sh],

Ψh
T

denotes the matrix that represents the element ΨT as a linear operator
on the tensor space (Cn)⊗h.
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– Let E = [eij ]i,j=1,2,...,n be the matrix whose entries are the elements of
the standard basis of gl(n).

– Let

ET =
(
(E − cT(1))⊗ (E − cT(2))⊗ · · · ⊗ (E − cT(h))

)
Ψh

T

be the fusion matrix; the fusion matrix ET is a (nh × nh)−matrix with
entries in U(gl(n)).

Following Okounkov ([41], [40]), the element

Tr
(
ET

)
∈ U(gl(n))(h)

is the quantum immanant associated to the multilinear standard tableau T,
sh(T) = µ.

The higher Capelli identities ([41], [40]), imply ([41], Eq. (5.1)) that the
action of the quantum immanant

Tr
(
ET

)
, sh(T) = µ

on the algebra C[Mn,d] equals the action of the polynomial differential operator

1

dim(V µ)
Tr
(
X⊗h (D′)⊗h χh

µ̃

)
, (32)

where

– X denotes the matrix
[
(i|ϕ)

]
i=1,...,n;ϕ=1,...,d

– D denotes the matrix
[
∂(i|ϕ)

]
i=1,...,n;ϕ=1,...,d

of partial derivatives on the

algebra C[Mn,d], and the prime stands for transposition.

– χh
µ̃ denotes the matrix that represents the element

χµ̃ =
∑

σ∈Sh

χµ̃(σ)σ ∈ C[Sh]

of Eq. (11) as a linear operator on the tensor space (Cn)⊗h.

Since the action of U(gl(n)) on the algebra C[Mn,d] is a faithful action when-
ever n ≤ d, and the differential operator of Eq. (32) is independent from the
choice of the multilinear standard tableau T, the quantum immanant Tr

(
ET

)

only depends on the shape µ.

Theorem 6.2. The quantum immanant

Tr
(
ET

)
, sh(T) = µ
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equals the linear combination of Capelli immanants:

(−1)(
h
2)

∑

h1+h2+···+hn=h

H(µ)

h1!h2! · · ·hn!
Cimmµ̃[1

h12h2 . . . nhn ; 1h12h2 . . . nhn ],

(33)
where 1h12h2 . . . nhn is a short notation for the non decreasing sequence i1i2 · · · ih
with

hp = ♯{iq = p; q = 1, 2, . . . , h}, p = 1, 2, . . . , n.

Proof. For every σ ∈ Sh, i = (i1, . . . , ih) ∈ nh, ϕ = (ϕ1, . . . , ϕh) ∈ dh, we set

Pσ[i;ϕ] = (i1|ϕ1) · · · (ih|ϕh) ∂(iσ(1)|ϕ1) · · · ∂(iσ(h)|ϕh).

By straightforward computation, the right-hand side of Eq. (32) equals

1

dim(V µ)

∑

i=(i1,...,ih)∈nh

( ∑

σ∈Sh

χµ̃(σ)
( ∑

ϕ=(ϕ1,...,ϕh)∈dh

Pσ[i;ϕ]
))

. (34)

By Proposition 4.10, the action of the Capelli immanant

Cimmµ̃[i1i2 · · · ih; i1i2 · · · ih] ∈ U(gl(n))

on the algebra C[Mn,d] equals the action of the polynomial differential operator

(−1)(
h

2)
∑

σ∈Sh

χµ̃(σ)
( ∑

ϕ=(ϕ1,...,ϕh)∈dh

Pσ[i;ϕ]
)
,

for every i = (i1, . . . , ih) ∈ nh.
Since the action of U(gl(n)) on the algebra C[Mn,d] is a faithful action

whenever n ≤ d, it immediately follows that any quantum immanant equals -
up to a scalar factor - the following linear combinatio of Capelli immanants :

Tr
(
ET

)
= (−1)(

h

2) 1

dim(V µ)

∑

(i1,...,ih)∈nh

Cimmµ̃[i1i2 · · · ih; i1i2 · · · ih] ∈ U(gl(n)).

(35)
Since

Cimmµ̃[i1i2 · · · ih; i1i2 · · · ih] = Cimmµ̃[iτ(1)iτ(2) · · · iτ(h); iτ(1)iτ(2) · · · iτ(h)],

for every τ ∈ C[Sh], the right-hand side of Eq. (35) equals

(−1)(
h
2)

∑

h1+h2+···+hn=h

H(µ)

h1!h2! · · ·hn!
Cimmµ̃[1

h12h2 . . . nhn ; 1h12h2 . . . nhn ].

From Theorem 6.2 and Corollary 5.2, it follows:
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Corollary 6.3. Let T be a multilinear standard tableau, sh(T) = µ.
If µ̃1 � n, then

Tr
(
ET

)
= 0.

Let µ with µ̃1 ≤ n, and let recall that ζ(n) is the center of U(gl(n)). Ac-
cording with Okoukov [41], [40], the Schur element Sµ(n) ∈ ζ(n) is defined by
setting

Sµ(n) =
dim(V µ)

h!
Tr
(
ET

)
.

Since dim(V µ) = h!
H(µ) , Theorem 6.2 implies:

Corollary 6.4.

Sµ(n) = (−1)(
h

2)
∑

h1+···+hn=h

1

h1! · · ·hn!
Cimmµ̃[1

h1 . . . nhn ; 1h1 . . . nhn ]. (36)

Remark 6.5. If µ = (1h), h ≤ n, is the column shape of length h, then S(1h)(n)
is immediately recognized as the h−th determinantal Capelli generator Hh (see,
e.g. [8], [4]; see also Capelli [12], [14], [15] and [16], Howe and Umeda [27]).

If µ = (h) is the row shape of length h, then S(h)(n) is immediately recognized
as the h−th permanental Nazarov–Umeda generator Ih (see, e.g. [4], Nazarov
[38], Umeda [51]).

Example 6.6. Let h = 3, µ = (2, 1) = µ̃, n = 2. Recall that H(µ) = 3. Then

S(2,1)(2) = −
1

2

(
Cimm(2,1)[112; 112] + Cimm(2,1)[122; 122]

)
(37)

=−




1
1
2

∣∣∣∣∣∣

1
1
2


+




1
1
2

∣∣∣∣∣∣

1
2
1


−




1
2
2

∣∣∣∣∣∣

1
2
2


+




1
2
2

∣∣∣∣∣∣

2
1
2


 . (38)

By Eq. (38) and Proposition 4.7, we have:

S(2,1)(2) = + e211e22 − e11e22 − e11e12e21 + e211 + e12e21 − e11

+ e11e
2
22 − e11e22 − e12e21e22 + e11e22 + e12e21 − e11

=+ e211e22 − e11e12e21 + e11e
2
22 − e12e21e22

− e11e22 + e211 + 2e12e21 − 2e11 ∈ U(gl(2)).

Remark 6.7. According to Theorem 5.1, the central element S(2,1)(2) also
equals, in turn, a linear combination of Young-Capelli bitableaux. Indeed, we
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have

−
1

2

[
1 2
1

∣∣∣∣
1 2
1

]
−

[
1 2
2

∣∣∣∣
1 2
2

]

=−




1
1
2

∣∣∣∣∣∣

1
1
2


+




1
1
2

∣∣∣∣∣∣

1
2
1


−




1
2
2

∣∣∣∣∣∣

1
2
2


+




1
2
2

∣∣∣∣∣∣

2
1
2


 = S(2,1)(2).

The previous identity is an instance of an alternative presentation (see our
preliminary manuscript [10], Subsection 4.5.1) of the Schur element Sµ(n) ∈
ζ(n), µ̃1 ≤ n of Corollary 6.4.

Given a pair of row (strictly) increasing tableaux S and T of shape sh(S) =
sh(T ) = µ̃ ⊢ h on the proper alphabet L = {1, 2, . . . , n}, consider the element

eS,C∗

µ̃
· eC∗

µ̃
,D∗

µ̃
· eD∗

µ̃
,C∗

µ̃
· eC∗

µ̃
,T ∈ V irt(m0 +m1, n) ⊂ U(gl(m0|m1 + n)).

We set

[ S | T ] = p

(
eS,C∗

µ̃
· eC∗

µ̃
,D∗

µ̃
· eD∗

µ̃
,C∗

µ̃
· eC∗

µ̃
,T

)
∈ U(gl(n)). (39)

and call the element [ S | T ] a double Young-Capelli bitableau.

Proposition 6.8. Any double Young-Capelli bitableau equals a sum of Young-
Capelli bitableaux:

[ S | T ] = (−1)(
h
2)
∑

σ

(−1)|σ| [S| T σ ],

where the sum is extended to all Young tableaux T σ obtained from T by permu-
tations of the elements of each row, and (−1)|σ| is the product of the signatures
of row permutations.

Proof. See our preliminary manuscript [10].

Theorem 6.9. We have

Sµ(n) =
1

H(µ)

∑

S

[ S | S ] ∈ U(gl(n)) (40)

where the sum is extended to all row (strictly) increasing tableaux S of shape
sh(S) = µ̃ ⊢ h on the proper alphabet L = {1, 2, . . . , n}.

Proof. (Sketch) Let χn be the Harish-Chandra isomorphism

χn : ζ(n) −→ Λ∗(n),

where ζ(n) is the center ζ(n) of U(gl(n)), and Λ∗(n) is the algebra of shifted
symmetric polynomials in n variables (see, e.g. [42]).
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The technique is to show that both sides of Eq. (40) have the same image
under the isomorphism χn.

The right-hand side of Eq. (40) is easily proved to be an element of the
center ζ(n), and its image via the Harish-Chandra isomorphism satisfies the
hypotheses (see Theorem 6.64 of [10]) of the Sahi/Okounkov Characterization
Theorem (Theorem 1 of [47] and Theorem 3.3 of [42], see also [40]) for the Schur
shifted symmetric polynomial s∗µ|n of [42]. Then

χn

(
1

H(µ)

∑

S

[ S | S ]

)
= s∗µ|n.

Since

χn

(
dim(V µ)

h!
Tr
(
ET

))
= s∗µ|n

(see [41], [40]), the assertion follows (for details, see our preliminary manuscript
[10]).

Example 6.10. We have

S(2,1)(2) =
1

3

([ 1 2
1

∣∣∣∣
1 2
1

]
+

[
1 2
2

∣∣∣∣
1 2
2

])

=
1

3

(
−

[
1 2
1

∣∣∣∣
1 2
1

]
+

[
1 2
1

∣∣∣∣
2 1
1

]

−

[
1 2
2

∣∣∣∣
1 2
2

]
+

[
1 2
2

∣∣∣∣
2 1
2

])
.

Since

−

[
1 2
1

∣∣∣∣
1 2
1

]
+

[
1 2
1

∣∣∣∣
2 1
1

]
= −

3

2

[
1 2
1

∣∣∣∣
1 2
1

]

and

−

[
1 2
2

∣∣∣∣
1 2
2

]
+

[
1 2
2

∣∣∣∣
2 1
2

]
= −3

[
1 2
2

∣∣∣∣
1 2
2

]
,

then

S(2,1)(2) =
1

3

([
1 2
1

∣∣∣∣
1 2
1

]
+

[
1 2
2

∣∣∣∣
1 2
2

])

= −
1

2

[
1 2
1

∣∣∣∣
1 2
1

]
−

[
1 2
2

∣∣∣∣
1 2
2

]
,

as in Remark 6.7.
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Presentation (40) is more supple and effective than presentation (36). In-
deed:

– Presentation (40) doesn’t involve the irreducible characters of symmetric
groups.

– Presentation (40) is better suited to the study of the eigenvalues on ir-
reducible gl(n)−modules, and of the duality in the algebra ζ(n) (see our
preliminary manuscript [10], Section 4).

– Presentation (40) is better suited to the study of the limit n → ∞, via the
Olshanski decomposition, see our preliminary manuscript [10], Section 5,
Olshanski [44], [45] and Molev [35], pp. 928 ff.
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