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• A highly accurate solution for Chandrasekhar’s Basic Problem in Radiative Transfer is proposed

• The forward and backward scattered photon fluxes are computed via Theory of Functional Connections

• The boundary conditions are always analytically satisfied via appropriate constrained expressions

• The boundary-free solution is expanded in Chebyshev polynomials

• The constant coefficients of the Chebyshev polynomials expansion are computed via Least-Squares
methods

• Seven digits of accuracy are achieved when compared to the available benchmarks
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Abstract

We present a novel approach to solving Chandrasekhar’s problem in radiative transfer using the recently
developed Theory of Functional Connections. The method is designed to elegantly and accurately solve
the Linear Boundary Value Problem from the angular discretization of the integrodifferential Boltzmann
equation for Radiative Transfer. The proposed algorithm falls under the category of numerical methods for
the solution of radiative transfer equations. This new method’s accuracy is tested via comparison with the
published benchmarks for Mie and Haze L scattering laws.
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1. Introduction

Radiative transfer theory, i.e. the study of how electromagnetic radiation propagates through a medium,
is described by the Radiative Transfer Equation (RTE). The latter mathematically describes how particles
moving through a medium are affected by a variety of physical processes, including absorption, scattering and
emission. In this work, we consider what is known as Chandrasekhar’s basic problem in radiative transfer
[1], i.e. the problem of computing the intensity of the photons in a finite slab illuminated by a beam of light
incident on one surface.
Historically, several methods have been proposed in the literature to solve the resulting RTE or the integro-
differential Boltzmann equation for photons transport. The Discrete Ordinates Method (DOM) has been an
effective, purely numerical method of solution available to the transport analysts for nearly 70 years. First
proposed by Wick [2] in 1943 and later extensively developed by Chandrasekhar [1], DOM has undergone
numerous changes and improvements over the years, with the goal of obtaining more accurate solutions. One
of such changes was given by Carlson (1958) [3], who reformulated the DOM by introducing a discretization of
the continuous angular variable. This DOM-based approach was named the Sn (S stands for segment, since
it uses line segments to approximate the µ−dependence of the angular flux) method and it has been widely
employed for many radiative transfer problems [4, 5, 6]. Further methods were subsequently explored. For
example, in the CN method, developed by Benoist and Kavenoky (1968) [7], the angular flux is approximated
by an expansion of a complete orthogonal basis, such as a series of Legendre polynomials. The CN method
in turn was further modified by Siewert and Benoist, who developed the FN method [8] in 1979. FN was
employed to solve the half-space albedo problem and the half-space constant-source problem. Initially used
to solve problems in neutron transport theory, it was subsequently applied in several radiative transfer
applications [9, 10, 11]. In 1980, Benassi et al. [12] proposed a new PN method, in which exact particular
solutions and the spherical harmonics method [13] were combined to compute the partial heat fluxes for a
general class of radiative heat-transfer problems. Siewert and Thomas [14] later in 1989, extended the PN
approximation to the equation of transfer for the case of a general inhomogeneous source term. Finally, at
the end of the last millennium (1999), the first version of the Analytical Discrete Ordinates (ADO) method
was presented by Barichello and Siewert [15]. Conceived as a modern version of the DOM, the ADO method
generated one of the most accurate numerical results for radiative transfer problems [16]. Recently, ADO
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has been extended to solve radiative transfer problems in vegetation [17]. However, research in generating
accurate solutions for the basic Chandrasekhar problem and the general RTE continued. In the last decade,
Ganapol refined the Sn method in an elegant way, giving life to the Converged Sn method, or CSn [18].
It is basically an extrapolation of the conventional, fully discretized, Sn solution to near-zero spatial and
angular discretization. The distinctiveness of the CSn method lies in its simplicity, which makes it accessible
to those who are not proficient in solving transport equations, while achieving highly accurate solutions. A
multi-problem strategy based on SN acceleration is presented by Picca, Furfaro and Ganapol[19].

All the above mentioned work has shown that in the last 70 years, researchers have developed several
methods in order to achieve accurate and efficient numerical solutions for many problems in the radiative
transfer field.

In this paper, we propose and develop a novel approach that will open new paths to solve RTEs. The
proposed approach applies the Theory of Functional Connections (TFC), recently designed and developed
by Mortari [20], to solve Chandrasekhar’s Basic Problem in Radiative Transfer. TFC was born as a new
framework for functional interpolation [20]. It has been successfully applied to solving both linear and non-
linear differential equations [21, 22] to machine error accuracy in milliseconds. Moreover the authors have
successfully applied TFC to space guidance problems like Energy and Fuel Optimal Landing on large and
small planetary bodies [23, 24, 25].
The method transforms ODEs with boundary and/or initial conditions into unconstrained optimization
problems, which are solved via least-square (or iterative least-square for the non-linear case), by embedding
the conditions into a constrained expression containing the ICs/BCs and a freely chosen function. Such an
expression can be expressed in the following general form [20]:

y(t) = g(t) +

n∑
k=1

ηkpk(t) = g(t) + ηTp(t) (1)

Eq. (1) is called constrained expression (CE). The pk(t) are n assigned linearly independent functions and
the g(t) is a free function, which must be linearly independent from the pk(t) functions. The values of the
ηk parameters are calculated by imposing the set of n linear constraints in y(t). By doing so, the constraints
for the differential equations are satisfied for any chosen g(t). So far, it has been demonstrated that TFC
method in solving ODEs has the best performance when g(t) is selected as an expansion of basis function
such as the Chebyshev orthogonal polynomials [21]. That is:

g(t) =

mop−1∑
i=0

hi(x)ξi = hT (t)ξ (2)

where the polynomial constant coefficients ξ are the unknown to be computed, hi(x) is the ith orthogonal
polynomial, and mop is the number of basis considered. By substituting the CE in the ODE, for linear
problems as the one tackled in this paper, we will obtain a linear system of the type Aξ = b to be computed
via LS to find the solution y(t).
Here, we propose to extend the TFC framework to solve RTEs. Starting from Chandrasekhar’s Basic RTE
and applying an angular discretization as in [16], the basic integrodifferential Boltzmann equation is trans-
formed into a system of ODEs. The latter is cast as a Linear Boundary Value Problem (BVP) that is solved
via the TFC method. Constrained expressions are generated and the resulting free-function is expanded in
the basis of Chebyshev orthogonal polynomials. Such expansion ultimately results in a linear system that is
solved via a Least-Square algorithm. Most importantly, the proposed method is shown to be elegant, concise,
versatile and yields a straightforward numerical implementation.

The paper is organized as follows. In section 2 a summary of the TFC methodology is reported together
with an example of methodological application of the RTE to the simple Two-Stream Approximation. In
section 3, the basic Chandrasekhar RTE is stated and formulated. In sections 4 and 5, the new TFC-based
numerical algorithm is detailed. Finally, numerical results are presented and discussed in section 6.

2. TFC Approach to Solving ODE Boundary Value Problems

2.1. Method
For the convenience of the reader, how the TFC method works to tackle generic linear and non-linear

ODEs is summarized in Fig. 1, and following, we give a simple example of the application of TFC to solving
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the class of BVPs. The detailed derivation can be found in [21, 22]. Consider solving a first-order boundary
value problem such that:

F (τ, y, ẏ) = 0 subject to: y(τ0) = y0. (3)

The CE is built from Eq. (1) by setting p1(τ) = 1 (see ref. [21, 22] for the details of this decision):

y(τ) = g(τ) + η (4)

By applying the constraint, we get:

y(τ0) = y0 = g0 + η; =⇒ η1 = y0 − g0
which is plugged into Eq. (4) to obtain at the final CE:

y(τ) = g(τ) + (y0 − g0) (5)

which represents all possible functions satisfying the boundary value constraint. The derivative then follows:

ẏ(τ) = ġ(τ). (6)

By substituting Eq. (5) and Eq. (6) into the Eq. (3), the original differential equation is transformed into a
new differential equation F̃ , which now is boundary free, and it is only a function of the independent variable
τ and the free-function g(τ), that is:

F̃ (τ, g, ġ) = 0.

This differential equation is now unconstrained and will always satisfy the boundary-value due to the way
Eq. (4) is built. In order to solve this problem numerically, we define the function g(τ) as an expansion of
some known basis with unknown constant coefficients such that:

g(τ) = h(τ)T ξ (7)

where ξ is a mop×1 vector of unknown constant coefficients where mop is the number of basis functions used.
In general, the basis functions are defined on an inconsistent domain x ∈ [x0, xf ] (Chebyshev polynomials
are defined on x ∈ [−1,+1], Fourier series is defined on x ∈ [−π,+π], etc.). Thus, these functions must be
linearly mapped to the independent variable τ . This can be done using the following linear transformation:

x = x0 +
xf − x0
tf − t0

(τ − τ0) ↔ τ = τ0 +
τf − τ0
xf − x0

(x− x0).

where τ ∈ [τ0, τf ].
Defining:

c =
xf − x0
τf − τ0

(8)

by the derivative chain rule, the derivative of Eq. (7) is,

dg(τ)

dτ
= c ξT

dh(x)

dx
,

which defines all mappings of the free-function. Finally, the domain τ must be discretized by M points. In
this paper, we consider g(τ) as an expansion of Chebyshev polynomials. By defining the free function in this
way and then discretizing the domain of the differential equations, F̃ becomes:

F̃ (ξ) = 0,

which is now a function (linear or nonlinear) of only the unknown coefficients ξ. Eq. (2.1) is now an
unconstrained optimization problem that can be solved via different optimization schemes. In this paper, as
we deal with a linear problem, we use a linear LS to solve for the unknown coefficients ξ.
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Figure 1: Schematic of the general TFC framework to solve linear and non-linear ODEs with one constraint in one point.

2.2. Example: Radiative Transfer Problem with Two-Stream Approximation
This example shows how to apply the TFC method to solve a simple system of ODEs. The system is the

following:

µ
dy1
dτ

+ y1(τ) =
ω

2
[y1(τ) + y2(τ)] +

ω

2
S0e
− τ
µ0 (9)

−µdy2
dτ

+ y2(τ) =
ω

2
[y2(τ) + y1(τ)] +

ω

2
S0e
− τ
µ0 , (10)

subject to,

y1(0) = 0 (11)
y2(τ0) = 0 (12)

that represents an isotropic scattering radiative transfer equation with two-stream approximation [26], arising
from Chandrasekhar [1], explained in details in the next section. The solutions of this system of ODEs rep-
resent the trend of scattered photons (forward and backward) through a mono-dimensional slab of thickness
τ0. For this example,the following parameters are used:

• µ = 0.5 is the cosine of the polar angle

• µ0 = 0.8 is the cosine of incident beam angle

• τ0 = 1 is the optical thickness

• ω = 0.9 is the single scattering albedo

• S0 = 1 is the source intensity

The detailed explanation of these parameters physically represent will be given in the next section. The
unknowns are y1(τ) and y2(τ) that represent the forward and backward scattered photons fluxes respectively.
The first step of the TFC framework is to build the constrained expressions (CE) for the unknowns. According
to previous explanation, the CEs are:

y1(τ) = (h− h0)
T
ξ1 (13)

y2(τ) = (h− hf )
T
ξ2 (14)

where h are the Chebyshev polynomials, and h0 and hf are the Chebyshev polynomials computed at τ = 0
and τ = τ0, respectively.
The derivatives of the CEs are:

dy1
dτ

= ch′
T
ξ1 (15)

dy2
dτ

= ch′
T
ξ2 (16)
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where h′ are the derivatives of h with respect to the variable x, and c is the mapping coefficient from τ to x
(and vice-versa) as defined in Eq. (8).
By plugging the CEs and their derivatives into the system of ODEs, we get the following:

µ ch′ξ1 + (h− h0)
T
ξ1 =

ω

2

[
(h− h0)

T
ξ1 + (h− hf )

T
ξ2

]
+
ω

2
S0e
− τ
µ0 (17)

−µ ch′ξ2 + (h− hf )
T
ξ2 =

ω

2

[
(h− hf )

T
ξ2 + (h− h0)

T
ξ1

]
+
ω

2
S0e
− τ
µ0 , (18)

The losses are:

L1 = µ ch′ξ1 + (h− h0)
T
ξ1 −

ω

2

[
(h− h0)

T
ξ1 + (h− hf )

T
ξ2

]
− ω

2
S0e
− τ
µ0 (19)

L2 = −µ ch′ξ2 + (h− hf )
T
ξ2 −

ω

2

[
(h− hf )

T
ξ2 + (h− h0)

T
ξ1

]
− ω

2
S0e
− τ
µ0 (20)

As the problem is linear, by imposing the losses to be equal zero and re-arranging the terms we get the
following system of linear algebraic equations:

[
µ ch′ + (h− h0)− ω

2
(h− h0)

]T
ξ1 −

[ω
2

(h− hf )
T
]
ξ2 =

ω

2
S0e
− τ
µ0 (21)[

−ω
2

(h− h0)
T
]
ξ1 +

[
−µ ch′ + (h− hf )− ω

2
(h− hf )

]T
ξ2 =

ω

2
S0e
− τ
µ0 (22)

In matrix form the system becomes:

[
µch′

T
+ (h− h0)

T − ω
2 (h− h0)

T −ω2 (h− hf )
T

−ω2 (h− h0)
T −µch′T + (h− hf )

T − ω
2 (h− hf )

T

]
︸ ︷︷ ︸

A

[
ξ1
ξ2

]
︸︷︷︸
ξ

=

[
ω
2 S0e

− τ
µ0

ω
2 S0e

− τ
µ0

]
︸ ︷︷ ︸

b

(23)

As the problem is linear, we can solve for ξ using a least-squares. That is:

ξ =
(
ATA

)−1
AT b (24)

Once ξ are computed, the final solutions are built by plugging ξ into the CEs (13), as shown in Fig. 1.
The results are reported in Tables 1 and 2, where they are compared to the results computed according to
the ADO method. As we can see, the boundary conditions are analytically satisfied.

Slab Points ADO TFC

0 1.110223024625157× 10−16 0
0.1 0.121476763490043 0.121476763490043
0.2 0.217584323416591 0.217584323416591
0.3 0.291745312795815 0.291745312795815
0.4 0.346937565918151 0.346937565918151
0.5 0.385747980285517 0.385747980285517
0.6 0.410419885421222 0.410419885421222
0.7 0.422894687247150 0.422894687247150
0.8 0.424848465764781 0.424848465764781
0.9 0.417724123526887 0.417724123526887
1 0.402759611584474 0.402759611584474

Table 1: ADO and TFC forward scattered flux y1. The latter is obtained with M = 100 and mop = 40. M is the number of
discretization points on τ and mop is the number of basis used.
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Slab Points ADO TFC

0 0.504726885720671 0.504726885720671
0.1 0.467993882643466 0.467993882643466
0.2 0.427166877800790 0.427166877800790
0.3 0.382783602872154 0.382783602872154
0.4 0.335285178981115 0.335285178981115
0.5 0.285027561759344 0.285027561759344
0.6 0.232291508206183 0.232291508206183
0.7 0.177291238875862 0.177291238875862
0.8 0.120181947999640 0.120181947999640
0.9 0.061066295681211 0.061066295681211
1 −5.551115123125783× 10−17 0

Table 2: ADO and TFC backward scattered flux y2. The latter is obtained with M = 100 and mop = 40.

3. Radiative Transfer Equation: Problem formulation

As we previously mentioned, we consider Chandrasekhar’s basic problem for Radiative Transfer for an
incoming beam at x = 0, as shown in Fig. 2, following the notation used in [27, 16] the radiative transfer
equation is written as:

µ
∂

∂τ
I(τ, µ, φ) + I(τ, µ, φ) =

ω

4π

∫ 1

−1

∫ 2π

0

p(cos Θ)I(τ, µ′, φ′) dφ′ dµ′ (25)

where Θ is the scattering angle, µ ∈ [−1, 1] is the cosine of the polar angle , τ ∈ [0, τ0] is the optical vari-
able, τ0 is the optical thickness, φ ∈ [0, 2π] is the azimuthal angle, and ω ∈ [0, 1] is the single scattering albedo.

Figure 2: Geometry of the 1D slab for the considered Radiative Transfer Problem.

According to [28], we use the addition theorem to express the phase function in terms of Legendre polynomials:

p(cos Θ) =

L∑
l=0

βlPl(cos Θ) (26)

where the βl are the Legendre coefficients in the Lth order expansion of scattering law.
The problem is subject to the following constraints/boundary conditions:{

I(0, µ, φ) = S0πδ(µ− µ0)δ(φ− φ0) for µ > 0

I(τ0, µ, φ) = 0 for µ < 0
(27)
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where S0π represents the flux carried by a source beam across a plane normal to the direction of incidence,
and µ0 and φ0 determine the inclination of the source beam.
The solution is defined as the sum of collided (or diffuse) term and uncollided term [16]:

I(τ, µ, φ) = I∗(τ, µ, φ) + Io(τ, µ, φ), (28)

where the superscript ∗ refers to the collided beam, and the superscript o refers to the uncollided beam. The
problem is therefore split into two parts. The uncollided term solves the following first order PDE:

µ
∂

∂τ
Io(τ, µ, φ) + Io(τ, µ, φ) = 0 (29)

subject to: {
Io(0, µ, φ) = S0πδ(µ− µ0)δ(φ− φ0) for µ > 0

Io(0, µ, φ) = 0 for µ < 0
(30)

where µ ∈ (0, 1].
The problem (29)-(30) has the following analytical solutions:{

Io(τ, µ, φ) = S0πδ(µ− µ0)δ(φ− φ0)e−τ/µ for µ > 0

Io(τ, µ, φ) = 0 for µ < 0
(31)

Plugging into the equation (28), we obtain the following:

I(τ, µ, φ) = I∗(τ, µ, φ) + S0πδ(µ− µ0)δ(φ− φ0)e−τ/µ (32)

The relation of the phase function and the scattering angle can be expressed using the Addition Theorem of
the Spherical Harmonics [28]:

p(cos Θ) =

L∑
m=0

(2− δ0,m)

L∑
l=m

βlP
m
l (µ′)Pml (µ) cos[m(φ′ − φ)] (33)

where the following expression is used to denote the normalized function [29, 30]:

Pml (µ) =

[
(l −m)!

(l +m)!

]
(1− µ2)m/2

dm

dµm
Pl(µ) (34)

Thus, we can express the diffuse component as a Fourier expansion with L terms. That is:

I∗(τ, µ, φ) =
1

2

L∑
m=0

(2− δ0,m)Im(τ, µ) cos[m(φ− φ0)] (35)

The mth Fourier component satisfies the following linear integro - 1st order PDE:

µ
∂

∂t
Im(τ, µ) + Im(τ, µ) =

ω

2

L∑
l=m

βlP
m
l (µ)

∫ 1

−1
Pml (µ′)Im(τ, µ′)dµ′ +Qm(τ, µ), (36)

where Q is the inhomogeneous source term [16]:

Qm(τ, µ) =
ω

2
e−τ/µ0

L∑
l=m

βlP
m
l (µ0)Pml (µ) (37)

Thus, the problem to solve is the following:

µ
∂

∂t
Im(τ, µ) + Im(τ, µ) =

ω

2

L∑
l=m

βlP
m
l (µ)

∫ 1

−1
Pml (µ′)Im(τ, µ′)dµ′ +

ω

2
e−τ/µ0

L∑
l=m

βlP
m
l (µ0)Pml (µ) (38)
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Subject to: {
Im(0, µ) = 0 for µ > 0

Im(τ0, µ) = 0 for µ < 0
(39)

Via discretizing the angle µ into N points in the interval (0, 1] according to the Gauss-Legendre quadrature
scheme:

µ −→ µ = {µi}Ni=1

it follows that:
Im(τ, µ) −→ Im(τ) = {Im(τ, µi)}Ni=1 (40)

Following the notation used by Siewert [16], suppressing some of the m indexes, and splitting the problem
into two equations, for positive and negative values of µ, we get the following set of equations:

µi
∂

∂τ
Im(τ, µi) + Im(τ, µi) =

=
ω

2

L∑
l=m

βlP
m
l (µi)

N∑
k=1

wkP
m
l (µk)[Im(τ, µk) + (−1)l−mIm(τ,−µk)] +

ω

2
e−τ/µ0

L∑
l=m

βlP
m
l (µ0)Pml (µi) (41)

− µi
∂

∂τ
Im(τ,−µi) + Im(τ,−µi) =

=
ω

2

L∑
l=m

βlP
m
l (−µi)

N∑
k=1

wkP
m
l (−µk)[(−1)l−mIm(τ, µk) + Im(τ,−µk)] +

ω

2
e−τ/µ0

L∑
l=m

βlP
m
l (µ0)Pml (−µi)

(42)

where the Gauss-Legendre quadrature rule is used to evaluate the integral in the range [0, 1].
Equations (41)-(42) with the constraints (39) are a set of N linear first-order ODEs that we will solve via
TFC.

4. TFC Formulation of the Problem

In our case, we assume to have one constraint in one point; hence, according to (1), y(τ) can be expressed
as following:

y(τ) = g(τ) + ηp(τ) (43)

We set p(τ) = 1, as suggested by [21], and the function g(τ) as an expansion of Chebyshev polynomials as
follows:

g(τ) = hT (τ)ξ (44)

Since Chebyshev Polynomials are used as basis functions, we need to define a new variable x that ranges in
[−1, 1]. The new x variable is defined as x = cτ − 1, where c is the mapping coefficient:

c =
xf − x0
τf − τ0

Considering the new independent variable, we have:Im(τ, µ) = Im(x, µ)
∂

∂τ
Im(τ, µ) = c

∂

∂x
Im(x, µ)

(45)

To simplify the notation, for the remainder of this manuscript, we give for granted the x and µ dependency
and write the terms for the forward and backward flux as I+m and I−m, respectively. Thus, our problem
becomes:

cµi
∂

∂x
I+m + I+m =

ω

2

L∑
l=m

βlP
m
l (µi)

N∑
k=1

wkP
m
l (µk)[I+m + (−1)l−mI−m] +

ω

2
e−τ/µ0

L∑
l=m

βlP
m
l (µ0)Pml (µi) (46)
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−cµi
∂

∂x
I−m + I−m =

ω

2

L∑
l=m

βlP
m
l (−µi)

N∑
k=1

wkP
m
l (−µk)[(−1)l−mI+m + I−m] +

ω

2
e−τ/µ0

L∑
l=m

βlP
m
l (µ0)Pml (−µi)

(47)
Subject to: {

I+m(0) = I+0 = 0

I−m(τ0) = I−f = 0
(48)

Our constrained expressions, for forward and backward terms, are:

I±m(x) = g±(x) + η± (49)

Therefore, by using the boundary conditions to calculate η+ and η−, we obtain:

I+0 = 0 = g+0 + η+ −→ η+ = −g+0

I−f = 0 = g−f + η− −→ η− = −g−f
and then:

I+m(x) = g+(x)− g+0
I−m(x) = g−(x)− g−f

Finally, we get the CEs for the fluxes in the following form:

I+m = (hT − hT0 )ξ+ ; I−m = (hT − hTf )ξ−, (50)

where ξ+ and ξ− are the unknowns to be computed via LS. Plugging (50) into our DEs, we get:

cµih
′T ξ+i + (h− h0)T ξ+i =

=
ω

2

L∑
l=m

βlP
m
l (µi)

N∑
k=1

wkP
m
l (µk)[(h− h0)T ξ+k + (−1)l−m(h− hf )T ξ−k ] +

ω

2
e−τ/µ0

L∑
l=m

βlP
m
l (µ0)Pml (µi)

(51)

− cµih′T ξ−i + (h− hf )T ξ−i =

=
ω

2

L∑
l=m

βlP
m
l (−µi)

N∑
k=1

wkP
m
l (−µk)[(−1)l−m(h−h0)T ξ+k +(h−hf )T ξ−k ]+

ω

2
e−τ/µ0

L∑
l=m

βlP
m
l (µ0)Pml (−µi)

(52)

Reorganizing all the terms we get:

(cµih
′ + h− h0)T ξ+i −

ω

2

L∑
l=m

βlP
m
l (µi)

N∑
k=1

wkP
m
l (µk)[(h− h0)T ξ+k + (−1)l−m(h− hf )T ξ−k ] =

=
ω

2
e−τ/µ0

L∑
l=m

βlP
m
l (µ0)Pml (µi) (53)

(−cµih′ + h− hf )T ξ−i −
ω

2

L∑
l=m

βlP
m
l (−µi)

N∑
k=1

wkP
m
l (−µk)[(−1)l−m(h− h0)T ξ+k + (h− hf )T ξ−k ] =

=
ω

2
e−τ/µ0

L∑
l=m

βlP
m
l (µ0)Pml (−µi) (54)

For the sake of simplicity, we write the inhomogeneous term as:

b+i =
ω

2
e−τ/µ0

L∑
l=m

βlP
m
l (µ0)Pml (µi) b−i =

ω

2
e−τ/µ0

L∑
l=m

βlP
m
l (µ0)Pml (−µi)
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So, the two problems become:

(cµih
′ + h− h0)T ξ+i −

ω

2

L∑
l=m

βlP
m
l (µi)

N∑
k=1

wkP
m
l (µk)[(h− h0)T ξ+k + (−1)l−m(h− hf )T ξ−k ] = b+i (55)

(−cµih′+h−hf )T ξ−i −
ω

2

L∑
l=m

βlP
m
l (−µi)

N∑
k=1

wkP
m
l (−µk)[(−1)l−m(h−h0)T ξ+k +(h−hf )T ξ−k ] = b−i (56)

Expanding the summations, we get the following matrix form:[
Fi + ♦k

i ♣ki
♠ki Hi + ♥k

i

] [
ξ+i
ξ−i

]
=

[
b+i
b−i

]
(57)

where:
Hi = (−cµih′ + h− hf )T

Fi = (cµih
′ + h− h0)T

♣ki = −ω
2
wk(h− hf )T

L∑
l=m

βlP
m
l (µi)Pl(µk)(−1)l−m

♠ki = −ω
2
wk(h− h0)T

L∑
l=m

βlP
m
l (−µi)Pl(−µk)(−1)l−m

♦k
i = −ω

2
wk(h− h0)T

L∑
l=m

βlP
m
l (µi)Pl(µk)

♥k
i = −ω

2
wk(h− hf )T

L∑
l=m

βlP
m
l (−µi)Pl(−µk)

Thus, the problem reduce to the following linear system of algebraic equations:

which is a problem of the type:
Aξ = B (58)

whose the dimensions are:
ξ±i [mop×1]

ξ[2mopN×1]

10



b±i [M×1]

B[2MN×1]

Fi [M×mop] (same dimension for the other terms of the matrix A)
A[(2MN)×(2mopN)]

where M is the number of discretization points of τ , and mop is the number of basis functions used.
That is, the original Linear BVP has been reformulated as an unconstrained optimization problem. In this
case, ξ is calculated with only one direct pass via LS methods, as the original problem is linear [21]. That is:

ξ =
(
ATA

)−1
ATB (59)

As can be seen from 59 the unknowns are computed using a classic LS method. However, the authors have
tried all the LS methods suggested in Appendix A of reference [22], find the classic LS method the most
convenient in terms of accuracy and computational time.
Once ξ are computed, the final solutions are built according to (50).
After finding the solutions for all mth Fourier components (with m = 0, 1, ..., L), we can compute the diffuse
terms expressed as:

I(τ, µ, φ) =
1

2

L∑
m=0

(2− δ0,m)Im(τ, µ) cos[m(φ− φ0)] (60)

I(τ,−µ, φ) =
1

2

L∑
m=0

(2− δ0,m)Im(τ,−µ) cos[m(φ− φ0)] (61)

For the convenience of the reader, the all process described in this section is summarized in the schematic of
Fig. 3.

Figure 3: Schematic of the Theory of Functional Connections algorithm to solve Chandrasekhar’s Basic Problem in Radiative
Transfer.
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5. Post-Processing

Via the discretization of the cosine of the polar angle µ , the solutions obtained are for specific angles µ
that are the Gauss–Legendre quadrature nodes. However, in many applications, it is necessary to compute
the solutions for any arbitrary angles, that can be different than the Gauss–Legendre quadrature nodes. To
compute the solutions at any arbitrary query points µ a post–processing is needed. The post–processing is
also performed via TFC. Introducing some changes to the equations (55) and (56), we get:

(cγjh
′ + h− h0)T ζ+j =

ω

2

L∑
l=m

βlP
m
l (γj)

N∑
k=1

wkP
m
l (µk)[(h− h0)T ξ+k + (−1)l−m(h− hf )T ξ−k ] + b+i (62)

(−cγjh′+h−hf )T ζ−j =
ω

2

L∑
l=m

βlP
m
l (−γj)

N∑
k=1

wkP
m
l (−µk)[(−1)l−m(h−h0)T ξ+k +(h−hf )T ξ−k ]+b−i (63)

where γj are the query angles, and ζ±j are the vectors of the new unknowns corresponding to the angle γj ,
and the right–hand sides of the equations are known. Hence, we obtain the following linear system:

(
cγjh

′ + h− h0

)T
ζ+j =

ω

2

L∑
l=m

βlP
m
l (γj)

N∑
k=1

wkP
m
l (µk)

[
(h− h0)T ξ+k + (−1)l−m(h− hf )T ξ−k

]
+ b+i (64)

(
−cγjh′ + h− hf

)T
ζ−j =

ω

2

L∑
l=m

βlP
m
l (γj)

N∑
k=1

wkP
m
l (−µk)

[
(−1)l−m(h− h0)T ξ+k + (h− hf )T ξ−k

]
+ b−i

(65)

This is solved for ζ±j via LS. Once ζ±j are computed, the final solutions are again built according to (50).
After finding the solutions for all mth Fourier components (with m = 0, 1, ..., L) we can compute the diffuse
terms as follows:

I+(τ, γ, φ) =
1

2

L∑
m=0

(2− δ0,m)I+m(τ, γ) cos[m(φ− φ0)] (66)

I−(τ,−γ, φ) =
1

2

L∑
m=0

(2− δ0,m)I−m(τ,−γ) cos[m(φ− φ0)] (67)

6. Results and Discussions

The algorithm described above has been implemented in both Matlab and Python platforms. To validate
the accuracy of our framework, we compared our results with some of typical benchmarks for the Radiative
Transfer problems, such as Mie Scattering and Haze L Problem. We ran all our simulations with an Intel
Core i7 - 9700 CPU PC with 64 GB of RAM. The results reported below are obtained via Matlab, although
the ones computed with Python achieved the same order of accuracy.
The first benchmark of interest is the Radiative Transfer problem with scattering modeled via the Mie
Scattering theory for spherical particles. This problem is defined by a L = 8 phase function. The results
obtained using the TFC approach are compared with the benchmarks reported by Garcia and Siewert (1986)
[31]. The latter employed a discretization of N = 20−50 µ directions. Our results are reported in tables 3-11
, where thee following the following parameters have been employed: N = 15 , M = 100 , mop = 40 , τ0 =
1 , S0 = 1 , µ0 = 0.5 , ω = 0.95. The TFC algorithm achieved the reported results with a computational time
of 0.026 seconds. Importantly, the TFC method achieved exactly the same results as reported by Garcia and
Siewert [31].
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Table 3: Mie Scattering – The Fourier Component I∗(τ, µ) form = 0, with a computational time of approximately 0.026 seconds.

µ τ = 0 τ = 0.05τ0 τ = 0.1τ0 τ = 0.2τ0 τ = 0.5τ0 τ = 0.75τ0 τ = τ0
-1.0 4.76807e-2 4.41912e-2 4.06467e-2 3.37099e-2 1.58572e-2 5.45297e-3 0
-0.9 6.45644e-2 6.03742e-2 5.60139e-2 4.72899e-2 2.38121e-2 9.01083e-3 0
-0.8 8.45877e-2 7.96763e-2 7.44425e-2 6.37540e-2 3.38287e-2 1.36919e-2 0
-0.7 1.08350e-1 1.02719e-1 9.65678e-2 8.37488e-2 4.64918e-2 1.98845e-2 0
-0.6 1.36504e-1 1.30204e-1 1.23128e-1 1.08063e-1 6.26048e-2 2.81721e-2 0
-0.5 1.69677e-1 1.62852e-1 1.54919e-1 1.37618e-1 8.32921e-2 3.94792e-2 0
-0.4 2.08230e-1 2.01201e-1 1.92626e-1 1.73358e-1 1.10124e-1 5.53631e-2 0
-0.3 2.51677e-1 2.45065e-1 2.36310e-1 2.15806e-1 1.45144e-1 7.86298e-2 0
-0.2 2.97523e-1 2.92401e-1 2.84241e-1 2.63800e-1 1.90035e-1 1.14557e-1 0
-0.1 3.40126e-1 3.38476e-1 3.31984e-1 3.12888e-1 2.41217e-1 1.70697e-1 0
-0.0 3.59379e-1 3.74485e-1 3.73800e-1 3.59347e-1 2.88258e-1 2.25623e-1 0
0.0 0 3.74485e-1 3.73800e-1 3.59347e-1 2.88258e-1 2.25623e-1 1.51520e-1
0.1 0 1.55620e-1 2.51427e-1 3.38864e-1 3.30703e-1 2.69855e-1 2.03073e-1
0.2 0 9.24370e-2 1.65080e-1 2.61887e-1 3.35517e-1 3.01553e-1 2.44242e-1
0.3 0 6.70726e-2 1.24144e-1 2.10383e-1 3.14805e-1 3.09713e-1 2.70302e-1
0.4 0 5.30170e-2 9.98939e-2 1.75304e-1 2.88183e-1 3.02939e-1 2.81066e-1
0.5 0 4.37182e-2 8.32383e-2 1.49251e-1 2.61304e-1 2.88464e-1 2.80822e-1
0.6 0 3.67864e-2 7.05194e-2 1.28323e-1 2.35259e-1 2.69793e-1 2.73029e-1
0.7 0 3.11411e-2 5.99908e-2 1.10387e-1 2.09939e-1 2.48476e-1 2.59822e-1
0.8 0 2.62225e-2 5.07166e-2 9.42001e-2 1.84982e-1 2.25179e-1 2.42453e-1
0.9 0 2.17133e-2 4.21538e-2 7.90039e-2 1.60034e-1 2.00187e-1 2.21667e-1
1.0 0 1.74231e-2 3.39716e-2 6.43193e-2 1.34819e-1 1.73627e-1 1.97932e-1

Table 4: Mie Scattering – The Fourier Component I∗(τ, µ) form = 1, with a computational time of approximately 0.026 seconds.

µ τ = 0 τ = 0.05τ0 τ = 0.1τ0 τ = 0.2τ0 τ = 0.5τ0 τ = 0.75τ0 τ = τ0
-1.0 0 0 0 0 0 0 0
-0.9 3.60181e-2 3.36746e-2 3.12064e-2 2.62787e-2 1.32903e-2 5.19802e-3 0
-0.8 6.16596e-2 5.78589e-2 5.38160e-2 4.56764e-2 2.38338e-2 9.72915e-3 0
-0.7 9.10359e-2 8.57207e-2 8.00113e-2 6.84223e-2 3.67820e-2 1.56203e-2 0
-0.6 1.26254e-1 1.19295e-1 1.11742e-1 9.62823e-2 5.33398e-2 2.35586e-2 0
-0.5 1.68911e-1 1.60192e-1 1.50609e-1 1.30818e-1 7.48561e-2 3.44878e-2 0
-0.4 2.20425e-1 2.09925e-1 1.98188e-1 1.73691e-1 1.03142e-1 4.99460e-2 0
-0.3 2.81715e-1 2.69635e-1 2.55778e-1 2.26467e-1 1.40633e-1 7.26822e-2 0
-0.2 3.52226e-1 3.39192e-1 3.23503e-1 2.89666e-1 1.89868e-1 1.07900e-1 0
-0.1 4.28566e-1 4.16266e-1 3.99406e-1 3.61374e-1 2.49443e-1 1.63513e-1 0
-0.0 4.90592e-1 4.93468e-1 4.79629e-1 4.40175e-1 3.12405e-1 2.22786e-1 0
0.0 0 4.93468e-1 4.79629e-1 4.40175e-1 3.12405e-1 2.22786e-1 1.40086e-1
0.1 0 2.12101e-1 3.36358e-1 4.36674e-1 3.78485e-1 2.79507e-1 1.92369e-1
0.2 0 1.27652e-1 2.24094e-1 3.44034e-1 3.98038e-1 3.26312e-1 2.41187e-1
0.3 0 9.31423e-2 1.69547e-1 2.78455e-1 3.79153e-1 3.42883e-1 2.74467e-1
0.4 0 7.34351e-2 1.36109e-1 2.31599e-1 3.47468e-1 3.37079e-1 2.87903e-1
0.5 0 5.97940e-2 1.11999e-1 1.94715e-1 3.11216e-1 3.17429e-1 2.84863e-1
0.6 0 4.89801e-2 9.23641e-2 1.62887e-1 2.72157e-1 2.88095e-1 2.68557e-1
0.7 0 3.94407e-2 7.47181e-2 1.33107e-1 2.29842e-1 2.50372e-1 2.40503e-1
0.8 0 3.01812e-2 5.73658e-2 1.02969e-1 1.82413e-1 2.03320e-1 2.00130e-1
0.9 0 2.00568e-2 3.82174e-2 6.90058e-2 1.24817e-1 1.41801e-1 1.42461e-1
1.0 0 0 0 0 0 0 0
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Table 5: Mie Scattering – The Fourier Component I∗(τ, µ) form = 2, with a computational time of approximately 0.026 seconds.

µ τ = 0 τ = 0.05τ0 τ = 0.1τ0 τ = 0.2τ0 τ = 0.5τ0 τ = 0.75τ0 τ = τ0
-1.0 0 0 0 0 0 0 0
-0.9 6.13369e-3 5.63258e-3 5.14146e-3 4.22728e-3 2.08109e-3 8.51138e-4 0
-0.8 1.40473e-2 1.29199e-2 1.18125e-2 9.74639e-3 4.86758e-3 2.02908e-3 0
-0.7 2.42374e-2 2.23272e-2 2.04470e-2 1.69330e-2 8.59010e-3 3.65704e-3 0
-0.6 3.72977e-2 3.44146e-2 3.15724e-2 2.62520e-2 1.35554e-2 5.91266e-3 0
-0.5 5.39364e-2 4.98590e-2 4.58321e-2 3.82838e-2 2.01851e-2 9.06805e-3 0
-0.4 7.49853e-2 6.94667e-2 6.40030e-2 5.37486e-2 2.90737e-2 1.35709e-2 0
-0.3 1.01366e-1 9.41479e-2 8.69734e-2 7.34927e-2 4.10537e-2 2.02184e-2 0
-0.2 1.33969e-1 1.24806e-1 1.15624e-1 9.83434e-2 5.71259e-2 3.05232e-2 0
-0.1 1.73539e-1 1.62321e-1 1.50803e-1 1.28934e-1 7.75407e-2 4.68764e-2 0
-0.0 2.17610e-1 2.07223e-1 1.93748e-1 1.66780e-1 1.01645e-1 6.54823e-2 0
0.0 0 2.07223e-1 1.93748e-1 1.66780e-1 1.01645e-1 6.54823e-2 3.94802e-2
0.1 0 9.13850e-2 1.41198e-1 1.74338e-1 1.30506e-1 8.62088e-2 5.45248e-2
0.2 0 5.47834e-2 9.40008e-2 1.38386e-1 1.41997e-1 1.05409e-1 7.12370e-2
0.3 0 3.94265e-2 7.02551e-2 1.11034e-1 1.35966e-1 1.12775e-1 8.32078e-2
0.4 0 3.03255e-2 5.50820e-2 9.03843e-2 1.22905e-1 1.10240e-1 8.74206e-2
0.5 0 2.37574e-2 4.36468e-2 7.32857e-2 1.06676e-1 1.01104e-1 8.46547e-2
0.6 0 1.83638e-2 3.39907e-2 5.79582e-2 8.84652e-2 8.72842e-2 7.61525e-2
0.7 0 1.35348e-2 2.51835e-2 4.34139e-2 6.86137e-2 6.97897e-2 6.28579e-2
0.8 0 8.96183e-3 1.67383e-2 2.90913e-2 4.72161e-2 4.91804e-2 4.54269e-2
0.9 0 4.47932e-3 8.39018e-3 1.46739e-2 2.43199e-2 2.58191e-2 2.43409e-2
1.0 0 0 0 0 0 0 0

Table 6: Mie Scattering – The Fourier Component I∗(τ, µ) form = 3, with a computational time of approximately 0.026 seconds.

µ τ = 0 τ = 0.05τ0 τ = 0.1τ0 τ = 0.2τ0 τ = 0.5τ0 τ = 0.75τ0 τ = τ0
-1.0 0 0 0 0 0 0 0
-0.9 4.71882e-4 4.27922e-4 3.86504e-4 3.12323e-4 1.49303e-4 6.12974e-5 0
-0.8 1.63700e-3 1.48492e-3 1.34202e-3 1.e-08650e-3 5.24875e-4 2.18940e-4 0
-0.7 3.62794e-3 3.29256e-3 2.97807e-3 2.41643e-3 1.18117e-3 5.01304e-4 0
-0.6 6.65125e-3 6.04087e-3 5.46943e-3 4.44992e-3 2.20550e-3 9.55263e-4 0
-0.5 1.09558e-2 9.96046e-3 9.02968e-3 7.37068e-3 3.71563e-3 1.65092e-3 0
-0.4 1.68361e-2 1.53260e-2 1.39154e-2 1.14039e-2 5.87321e-3 2.70031e-3 0
-0.3 2.46361e-2 2.24603e-2 2.04291e-2 1.68191e-2 8.90196e-3 4.29905e-3 0
-0.2 3.47536e-2 3.17326e-2 2.89122e-2 2.39119e-2 1.30799e-2 6.81521e-3 0
-0.1 4.77051e-2 4.36203e-2 3.97892e-2 3.29968e-2 1.85468e-2 1.08405e-2 0
-0.0 6.40589e-2 5.89247e-2 5.38601e-2 4.47620e-2 2.52999e-2 1.55900e-2 0
0.0 0 5.89247e-2 5.38601e-2 4.47620e-2 2.52999e-2 1.55900e-2 9.40491e-3
0.1 0 2.65947e-2 4.04696e-2 4.85984e-2 3.37870e-2 2.12142e-2 1.30156e-2
0.2 0 1.59125e-2 2.69468e-2 3.87779e-2 3.75052e-2 2.66263e-2 1.73623e-2
0.3 0 1.12859e-2 1.98696e-2 3.07668e-2 3.58014e-2 2.85953e-2 2.04272e-2
0.4 0 8.43804e-3 1.51551e-2 2.44012e-2 3.16829e-2 2.74886e-2 2.11807e-2
0.5 0 6.31959e-3 1.14883e-2 1.89493e-2 2.64242e-2 2.42961e-2 1.98181e-2
0.6 0 4.56717e-3 8.36998e-3 1.40335e-2 2.05701e-2 1.97297e-2 1.67997e-2
0.7 0 3.04358e-3 5.61002e-3 9.51751e-3 1.44725e-2 1.43314e-2 1.26141e-2
0.8 0 1.71669e-3 3.17792e-3 5.43950e-3 8.50729e-3 8.63650e-3 7.80304e-3
0.9 0 6.32858e-4 1.17545e-3 2.02593e-3 3.23965e-3 3.35492e-3 3.09582e-3
1.0 0 0 0 0 0 0 0
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Table 7: Mie Scattering – The Fourier Component I∗(τ, µ) form = 4, with a computational time of approximately 0.026 seconds.

µ τ = 0 τ = 0.05τ0 τ = 0.1τ0 τ = 0.2τ0 τ = 0.5τ0 τ = 0.75τ0 τ = τ0
-1.0 0 0 0 0 0 0 0
-0.9 6.69258e-5 6.02239e-5 5.40838e-5 4.33436e-5 2.05304e-5 0.851494e-6 0
-0.8 3.02494e-4 2.72377e-4 2.44794e-4 1.96548e-4 9.39014e-5 3.93973e-5 0
-0.7 7.61720e-4 6.86418e-4 6.17472e-4 4.96877e-4 2.39851e-4 1.02062e-4 0
-0.6 1.50358e-3 1.35622e-3 1.22134e-3 9.85431e-4 4.81766e-4 2.08696e-4 0
-0.5 2.59147e-3 2.34013e-3 2.11014e-3 1.70803e-3 8.48455e-4 3.76292e-4 0
-0.4 4.09363e-3 3.70143e-3 3.34275e-3 2.71612e-3 1.37699e-3 6.30869e-4 0
-0.3 6.08324e-3 5.50815e-3 4.98269e-3 4.06626e-3 2.11599e-3 1.01667e-3 0
-0.2 8.63901e-3 7.83189e-3 7.09526e-3 5.81430e-3 3.12207e-3 1.61559e-3 0
-0.1 1.18659e-2 1.07645e-2 9.75898e-3 8.01357e-3 4.41270e-3 2.55497e-3 0
-0.0 1.59510e-2 1.44948e-2 1.31484e-2 1.08036e-2 5.96834e-3 3.63154e-3 0
0.0 0 1.44948e-2 1.31484e-2 1.08036e-2 5.96834e-3 3.63154e-3 2.19670e-3
0.1 0 6.42599e-3 9.72886e-3 1.15783e-2 7.86933e-3 4.86919e-3 2.96365e-3
0.2 0 3.72830e-3 6.28643e-3 8.98115e-3 8.53292e-3 5.98094e-3 3.86184e-3
0.3 0 2.53962e-3 4.45371e-3 6.85213e-3 7.85349e-3 6.20648e-3 4.39482e-3
0.4 0 1.80267e-3 3.22602e-3 5.16374e-3 6.61455e-3 5.68628e-3 4.34786e-3
0.5 0 1.26267e-3 2.28772e-3 3.75288e-3 5.16865e-3 4.71326e-3 3.81819e-3
0.6 0 8.35644e-4 1.52664e-3 2.54654e-3 3.68968e-3 3.51216e-3 2.97182e-3
0.7 0 4.93531e-4 9.07021e-4 1.53136e-3 2.30332e-3 2.26473e-3 1.98170e-3
0.8 0 2.32528e-4 4.29264e-4 7.31400e-4 1.13210e-3 1.14161e-3 1.02575e-3
0.9 0 6.20029e-5 1.14862e-4 1.97113e-4 3.12097e-4 3.21141e-4 2.94782e-4
1.0 0 0 0 0 0 0 0

Table 8: Mie Scattering – The Fourier Component I∗(τ, µ) form = 5, with a computational time of approximately 0.026 seconds.

µ τ = 0 τ = 0.05τ0 τ = 0.1τ0 τ = 0.2τ0 τ = 0.5τ0 τ = 0.75τ0 τ = τ0
-1.0 0 0 0 0 0 0 0
-0.9 6.28063e-6 5.64038e-6 5.05780e-6 4.04469e-6 1.91071e-6 7.93886e-7 0
-0.8 3.73124e-5 3.35331e-5 3.00940e-5 2.41116e-5 1.14857e-5 4.82442e-6 0
-0.7 1.07458e-4 9.66557e-5 8.68253e-5 6.97210e-5 3.35504e-5 1.42849e-5 0
-0.6 2.29470e-4 2.06608e-4 1.85802e-4 1.49599e-4 7.28951e-5 3.15824e-5 0
-0.5 4.15167e-4 3.74235e-4 3.36993e-4 2.72200e-4 1.34741e-4 5.97452e-5 0
-0.4 6.75372e-4 6.09580e-4 5.49751e-4 4.45739e-4 2.25137e-4 1.03090e-4 0
-0.3 1.01957e-3 9.21504e-4 8.32420e-4 6.77822e-4 3.51320e-4 1.68651e-4 0
-0.2 1.45558e-3 1.31706e-3 1.19142e-3 9.74059e-4 5.20758e-4 2.69137e-4 0
-0.1 1.99273e-3 1.80388e-3 1.63272e-3 1.33734e-3 7.32823e-4 4.23514e-4 0
-0.0 2.65403e-3 2.40328e-3 2.17551e-3 1.78221e-3 9.79104e-4 5.94123e-4 0
0.0 0 2.40328e-3 2.17551e-3 1.78221e-3 9.79104e-4 5.94123e-4 3.60119e-4
0.1 0 1.04360e-3 1.57774e-3 1.87309e-3 1.26582e-3 7.80603e-4 4.74525e-4
0.2 0 5.87087e-4 9.88700e-4 1.40973e-3 1.33332e-3 9.31756e-4 6.00443e-4
0.3 0 3.83898e-4 6.72490e-4 1.03283e-3 1.17920e-3 9.29569e-4 6.57017e-4
0.4 0 2.58469e-4 4.62075e-4 7.38429e-4 9.42637e-4 8.08592e-4 6.17257e-4
0.5 0 1.69091e-4 3.06064e-4 5.01326e-4 6.88265e-4 6.26405e-4 5.06701e-4
0.6 0 1.02291e-4 1.86706e-4 3.10999e-4 4.49276e-4 4.26898e-4 3.60733e-4
0.7 0 5.34205e-5 9.80933e-5 1.65394e-4 2.48078e-4 2.43517e-4 2.12817e-4
0.8 0 2.09675e-5 3.86763e-5 6.58150e-5 1.01604e-4 1.02297e-4 9.18069e-5
0.9 0 4.03113e-6 7.46208e-6 1.27901e-5 2.02003e-5 2.07549e-5 1.90300e-5
1.0 0 0 0 0 0 0 0
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Table 9: Mie Scattering – The Fourier Component I∗(τ, µ) form = 6, with a computational time of approximately 0.026 seconds.

µ τ = 0 τ = 0.05τ0 τ = 0.1τ0 τ = 0.2τ0 τ = 0.5τ0 τ = 0.75τ0 τ = τ0
-1.0 0 0 0 0 0 0 0
-0.9 3.64612e-7 3.27338e-7 2.93459e-7 2.34597e-7 1.10774e-7 4.60360e-8 0
-0.8 2.90480e-6 2.60976e-6 2.34156e-6 1.87544e-6 8.92958e-7 3.75132e-7 0
-0.7 9.72738e-6 8.74687e-6 7.85546e-6 6.30582e-6 3.03290e-6 1.29146e-6 0
-0.6 2.27862e-5 2.05098e-5 1.84403e-5 1.48421e-6 7.22835e-6 3.13189e-6 0
-0.5 4.37887e-5 3.94595e-5 3.55246e-5 2.86845e-5 1.41912e-5 6.29250e-6 0
-0.4 7.40943e-5 6.68560e-5 6.02802e-5 4.88581e-5 2.46633e-5 1.12928e-5 0
-0.3 1.14597e-4 1.03542e-4 9.35097e-5 7.61152e-5 3.94263e-5 1.89249e-5 0
-0.2 1.65614e-4 1.49803e-4 1.35478e-4 1.10719e-4 5.91524e-5 3.05665e-5 0
-0.1 2.27191e-4 2.05580e-4 1.86022e-4 1.52303e-4 8.33921e-5 4.81822e-5 0
-0.0 3.00490e-4 2.71920e-4 2.46056e-4 2.01467e-4 1.10580e-4 6.70733e-5 0
0.0 0 2.71920e-4 2.46056e-4 2.01467e-4 1.10580e-4 6.70733e-5 4.06782e-5
0.1 0 1.16112e-4 1.75494e-4 2.08255e-4 1.40600e-4 8.66594e-5 5.26746e-5
0.2 0 6.35970e-5 1.07078e-4 1.52621e-4 1.44236e-4 1.00747e-4 6.49064e-5
0.3 0 4.00550e-5 7.01511e-5 1.07705e-4 1.22887e-4 9.68330e-5 6.84233e-5
0.4 0 2.56452e-5 4.58379e-5 7.32305e-5 9.34258e-5 8.01121e-5 6.11407e-5
0.5 0 1.56977e-5 2.84085e-5 4.65197e-5 6.38310e-5 5.80755e-5 4.69672e-5
0.6 0 8.68979e-6 1.58582e-5 2.64083e-5 3.81303e-5 3.62204e-5 3.06005e-5
0.7 0 4.01435e-6 7.37013e-6 1.24236e-5 1.86253e-5 1.82779e-5 1.59706e-5
0.8 0 1.31217e-6 2.42003e-6 4.11715e-6 6.35302e-6 6.39473e-6 5.73797e-6
0.9 0 1.81710e-7 3.36316e-7 5.76320e-7 9.09821e-7 9.34571e-7 8.56760e-7
1.0 0 0 0 0 0 0 0

Table 10: Mie Scattering – The Fourier Component I∗(τ, µ) for m = 7, with a computational time of approximately 0.026
seconds.

µ τ = 0 τ = 0.05τ0 τ = 0.1τ0 τ = 0.2τ0 τ = 0.5τ0 τ = 0.75τ0 τ = τ0
-1.0 0 0 0 0 0 0 0
-0.9 1.27031e-8 1.14041e-8 1.02235e-8 8.17255e-9 3.85880e-9 1.60370e-9 0
-0.8 1.42973e-7 1.28447e-7 1.15244e-7 9.22992e-8 4.39445e-8 1.84614e-8 0
-0.7 5.79668e-7 5.21220e-7 4.68089e-7 3.75735e-7 1.80707e-7 7.69491e-8 0
-0.6 1.53649e-6 1.38294e-6 1.24336e-6 1.00071e-6 4.87335e-7 2.11154e-7 0
-0.5 3.21082e-6 2.89328e-6 2.60469e-6 2.10309e-6 1.04041e-6 4.61327e-7 0
-0.4 5.75018e-6 5.18825e-6 4.67782e-6 3.79130e-6 1.91370e-6 8.76244e-7 0
-0.3 9.22443e-6 8.33427e-6 7.52656e-6 6.12622e-6 3.17306e-6 1.52308e-6 0
-0.2 1.36060e-5 1.23065e-5 1.11294e-5 9.09502e-6 4.85872e-6 2.51067e-6 0
-0.1 1.87914e-5 1.70031e-5 1.53850e-5 1.25956e-5 6.89601e-6 3.98428e-6 0
-0.0 2.47201e-5 2.23679e-5 2.02394e-5 1.65707e-5 9.09428e-6 5.51598e-6 0
0.0 0 2.23679e-5 2.02394e-5 1.65707e-5 9.09428e-6 5.51598e-6 3.34558e-6
0.1 0 9.38991e-6 1.41917e-5 1.68401e-5 1.13680e-5 7.00631e-6 4.25867e-6
0.2 0 4.99787e-6 8.41462e-6 1.19931e-5 1.13331e-5 7.91561e-6 5.09952e-6
0.3 0 3.02141e-6 5.29147e-6 8.12382e-6 9.26819e-6 7.30285e-6 5.16014e-6
0.4 0 1.83088e-6 3.27241e-6 5.22780e-6 6.66903e-6 5.71842e-6 4.36413e-6
0.5 0 1.04255e-6 1.88668e-6 3.08937e-6 4.23874e-6 3.85640e-6 3.11870e-6
0.6 0 5.24606e-7 9.57346e-7 1.59419e-6 2.30167e-6 2.18631e-6 1.84705e-6
0.7 0 2.12804e-7 3.90688e-7 6.58548e-7 9.87231e-7 9.68785e-7 8.46476e-7
0.8 0 5.74705e-8 1.05990e-7 1.80314e-7 2.78220e-7 2.80038e-7 2.51273e-7
0.9 0 5.68457e-9 1.05210e-8 1.80285e-8 2.84596e-8 2.92330e-8 2.67986e-8
1.0 0 0 0 0 0 0 0
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Table 11: Mie Scattering – The Fourier Component I∗(τ, µ) for m = 8, with a computational time of approximately 0.026
seconds.

µ τ = 0 τ = 0.05τ0 τ = 0.1τ0 τ = 0.2τ0 τ = 0.5τ0 τ = 0.75τ0 τ = τ0
-1.0 0 0 0 0 0 0 0
-0.9 6.56254e-10 5.89143e-10 5.28152e-10 4.22197e-10 1.99346e-10 8.28473e-11 0
-0.8 9.16369e-9 8.23263e-9 7.38637e-9 5.91575e-9 2.81653e-9 1.18325e-9 0
-0.7 4.02493e-8 3.61908e-8 3.25016e-8 2.60890e-8 1.25472e-8 5.34291e-9 0
-0.6 1.09663e-7 9.87034e-8 8.87413e-8 7.14229e-8 3.47818e-8 1.50704e-8 0
-0.5 2.29190e-7 2.06523e-7 1.85923e-7 1.50118e-7 7.42637e-8 3.29292e-8 0
-0.4 4.03647e-7 3.64199e-7 3.28368e-7 2.66136e-7 1.34335e-7 6.15090e-8 0
-0.3 6.29436e-7 5.68693e-7 5.13578e-7 4.18023e-7 2.16513e-7 1.03927e-7 0
-0.2 8.94476e-7 8.09046e-7 7.31658e-7 5.97914e-7 3.19414e-7 1.65053e-7 0
-0.1 1.18131e-6 1.06889e-6 9.67164e-7 7.91809e-7 4.33507e-7 2.50465e-7 0
-0.0 1.47573e-6 1.33530e-6 1.20823e-6 9.89214e-7 5.42893e-7 3.29281e-7 0
0.0 0 1.33530e-6 1.20823e-6 9.89214e-7 5.42893e-7 3.29281e-7 1.99719e-7
0.1 0 5.28593e-7 7.98899e-7 9.47982e-7 6.39936e-7 3.94403e-7 2.39731e-7
0.2 0 2.63292e-7 4.43289e-7 6.31803e-7 5.97029e-7 4.16994e-7 2.68642e-7
0.3 0 1.47638e-7 2.58560e-7 3.96958e-7 4.52873e-7 3.56839e-7 2.52139e-7
0.4 0 8.20707e-8 1.46688e-7 2.34338e-7 2.9894e-7 2.56328e-7 1.95622e-7
0.5 0 4.22497e-8 7.64582e-8 1.25197e-7 1.71775e-7 1.56280e-7 1.26385e-7
0.6 0 1.88253e-8 3.43539e-8 5.72066e-8 8.25936e-8 7.84537e-8 6.62795e-8
0.7 0 6.54561e-9 1.20171e-8 2.02561e-8 3.03658e-8 2.97984e-8 2.60363e-8
0.8 0 1.42836e-9 2.63425e-9 4.48146e-9 6.91474e-9 6.95991e-9 6.24498e-9
0.9 0 9.88569e-11 1.82964e-10 3.13522e-10 4.94919e-10 5.08367e-10 4.66032e-10
1.0 0 0 0 0 0 0 0

Furthermore, we ran the TFC algorithm by increasing the angle and spatial discretizations to achieve
the 7-digit accuracy published by Ganapol [32] for m = 0. Our results are presented in Table 12. For those
simulations, the following parameters have been employed: N = 35 , M = 300, and m = 90. TFC has
achieved the reported solutions with a computational time of 2.6 seconds. Conversely, for m = 8 Fourier
component, the 7-digit accuracy of Ganapol have been achieved without the need to increase eitheer the
angle or spatial discretization. Indeed, as in the previous case, the following parameters have been used:
N = 15 , M = 100, and m = 40. Results are shown in Table 13.

17



Table 12: Mie Scattering – The Fourier Component I∗(τ, µ) for m = 0, according to Ganapol [32], with a computational time
of approximately 2.6 seconds.

µ τ = 0 τ = 0.05τ0 τ = 0.1τ0 τ = 0.2τ0 τ = 0.5τ0 τ = 0.75τ0 τ = τ0
-1.0 4.7680739e-2 4.4191232e-2 4.0646720e-2 3.3709854e-2 1.5857241e-2 5.4529708e-3 0
-0.9 6.4564440e-2 6.0374289e-2 5.6013853e-2 4.7289947e-2 2.3812095e-2 9.0108349e-3 0
-0.8 8.4587655e-2 7.9676269e-2 7.4442518e-2 6.3753956e-2 3.3828695e-2 1.3691858e-2 0
-0.7 1.0834976e-1 1.0271869e-1 9.6567817e-2 8.3748795e-2 4.6491789e-2 1.9884482e-2 0
-0.6 1.3650449e-1 1.3020361e-1 1.2312760e-1 1.0806281e-1 6.2604846e-2 2.8172141e-2 0
-0.5 1.6967721e-1 1.6285165e-1 1.5491892e-1 1.3761804e-1 8.3292056e-2 3.9479159e-2 0
-0.4 2.0822991e-1 2.0120060e-1 1.9262576e-1 1.7335796e-1 1.1012425e-1 5.5363056e-2 0
-0.3 2.5167744e-1 2.4506518e-1 2.3630972e-1 2.1580644e-1 1.4514429e-1 7.8629773e-2 0
-0.2 2.9752321e-1 2.9240107e-1 2.8424081e-1 2.6379979e-1 1.9003527e-1 1.1455737e-1 0
-0.1 3.4012557e-1 3.3847566e-1 3.3198375e-1 3.1288756e-1 2.4121715e-1 1.7069703e-1 0
-0.0 3.5937904e-1 3.7448490e-1 3.7380021e-1 3.5934745e-1 2.8825763e-1 2.2562269e-1 0
0.0 0 3.7448490e-1 3.7380021e-1 3.5934745e-1 2.8825763e-1 2.2562269e-1 1.5152044e-1
0.1 0 1.5561969e-1 2.5142670e-1 3.3886425e-1 3.3070258e-1 2.6985545e-1 2.0307340e-1
0.2 0 9.2437025e-2 1.6508021e-1 2.6188673e-1 3.3551731e-1 3.0155334e-1 2.4424153e-1
0.3 0 6.7072588e-2 1.2414425e-1 2.1038294e-1 3.1480528e-1 3.0971262e-1 2.7030221e-1
0.4 0 5.3016958e-2 9.9893927e-2 1.7530448e-1 2.8818268e-1 3.0293863e-1 2.8106600e-1
0.5 0 4.3718197e-2 8.3238337e-2 1.4925136e-1 2.6130432e-1 2.8846360e-1 2.8082243e-1
0.6 0 3.6786430e-2 7.0519358e-2 1.2832314e-1 2.3525903e-1 2.6979273e-1 2.7302917e-1
0.7 0 3.1141106e-2 5.9990823e-2 1.1038662e-1 2.0993897e-1 2.4847557e-1 2.5982225e-1
0.8 0 2.6222496e-2 5.0716634e-2 9.4200130e-2 1.8498212e-1 2.2517903e-1 2.4245347e-1
0.9 0 2.1713290e-2 4.2153804e-2 7.9003938e-2 1.6003444e-1 2.0018674e-1 2.2166696e-1
1.0 0 1.7423141e-2 3.3971636e-2 6.4319263e-2 1.3481854e-1 1.7362739e-1 1.9793246e-1

Table 13: Mie Scattering – The Fourier Component I∗(τ, µ) for m = 8, according to Ganapol [32], with a computational time
of approximately 0.026 seconds.

µ τ = 0 τ = 0.05τ0 τ = 0.1τ0 τ = 0.2τ0 τ = 0.5τ0 τ = 0.75τ0 τ = τ0
-1.0 0 0 0 0 0 0 0
-0.9 6.5625391e-10 5.8914304e-10 5.2815237e-10 4.2219714e-10 1.9934608e-10 8.2847308e-11 0
-0.8 9.1636878e-9 8.2326319e-9 7.3863711e-9 5.9157513e-9 2.8165373e-9 1.1832473e-9 0
-0.7 4.0249326e-8 3.6190815e-8 3.2501619e-8 2.6088956e-8 1.2547246e-8 5.3429052e-9 0
-0.6 1.0966293e-7 9.8703386e-8 8.8741262e-8 7.1422850e-8 3.4781849e-8 1.5070373e-8 0
-0.5 2.2918971e-7 2.0652282e-7 1.8592286e-7 1.5011771e-7 7.4263736e-8 3.2929240e-8 0
-0.4 4.0364654e-7 3.6419928e-7 3.2836806e-7 2.6613595e-7 1.3433461e-7 6.1509004e-8 0
-0.3 6.2943646e-7 5.6869337e-7 5.1357757e-7 4.1802334e-7 2.1651285e-7 1.0392686e-7 0
-0.2 8.9447618e-7 8.0904612e-7 7.3165782e-7 5.9791370e-7 3.1941422e-7 1.6505266e-7 0
-0.1 1.1813127e-6 1.0688908e-6 9.6716367e-7 7.9180936e-7 4.3350657e-7 2.5046511e-7 0
-0.0 1.4757328e-6 1.3352990e-6 1.2082288e-6 9.8921442e-7 5.4289266e-7 3.2928109e-7 0
0.0 0 1.3352990e-6 1.2082288e-6 9.8921442e-7 5.4289266e-7 3.2928109e-7 1.9971892e-7
0.1 0 5.2859344e-7 7.9889942e-7 9.4798249e-7 6.3993602e-7 3.9440254e-7 2.3973118e-7
0.2 0 2.6329242e-7 4.4328927e-7 6.3180326e-7 5.9702947e-7 4.1699385e-7 2.6864210e-7
0.3 0 1.4763750e-7 2.5856043e-7 3.9695812e-7 4.5287275e-7 3.5683886e-7 2.5213926e-7
0.4 0 8.2070715e-8 1.4668783e-7 2.3433850e-7 2.9894033e-7 2.5632829e-7 1.9562189e-7
0.5 0 4.2249686e-8 7.6458207e-8 1.2519740e-7 1.7177455e-7 1.5627982e-7 1.2638468e-7
0.6 0 1.8825271e-8 3.4353900e-8 5.7206557e-8 8.2593552e-8 7.8453748e-8 6.6279496e-8
0.7 0 6.5456093e-9 1.2017087e-8 2.0256111e-8 3.0365796e-8 2.9798350e-8 2.6036280e-8
0.8 0 1.4283575e-9 2.6342575e-9 4.4814591e-9 6.9147374e-9 6.9599115e-9 6.2449834e-9
0.9 0 9.8856917e-11 1.8296411e-10 3.1352189e-10 4.9491896e-10 5.0836713e-10 4.6603207e-10
1.0 0 0 0 0 0 0 0

For the Haze L problem, which was posed as a basic test problem by the Radiation Commission of
the International Association of Meteorology and Atmospheric Physics (IAMAP) [33], we compared our
results with the ones reported in [27] and [31]. In such cases, the authors used an angular discretization of
N = 100−150. For all our simulations, we ran the TFC algorithm with a discretization of N = 30. The same
parameters, as reported below, are used in all cases. An exception is represented by the parameter m, which
is varied across cases. The one–angle case, when the incident beam direction is µ0 = 1, requires to compute
only the 1st Fourier component m = 0, i.e. without considering the azimuthal angle. In the two–angle cases,
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we calculated all the L+ 1 Fourier components. The TFC results are reported in tables 14 - 18.
For the normal incidence case, the following parameters have been used: N = 30 , M = 250 , mop = 90 , τ0 =
1 , S0 = 1 , µ0 = 1 , ω = 0.9. For the conservative case, the following parameters have been used: N =
30 , M = 250 , mop = 90 , τ0 = 1 , S0 = 1 , µ0 = 1 , ω = 1. For both simulations, the computational times
are approximately 1.6 seconds.
For the two-angle case, the incident beam is not µ0 = 1, so we needed to compute all the L + 1 Fourier
components. For the Haze L problem, 83 components are required. However, we found out that it was not
necessary to modify the parameters for each case. The three different cases are reported below:

1) φ− φ0 = 0,

2) φ− φ0 = π/2,

3) φ− φ0 = π.

The set of parameters used was: N = 30 , M = 250 , mop = 90 , τ0 = 1 , S0 = 1 , µ0 = 0.5 , ω = 0.9. The
TFC computational time is reported to be approximately 132 seconds. Even in this case we were able to
obtain all the digits published by Siewert et al. [27, 31].

Table 14: Haze L Problem - The Intensity I∗(τ, µ) for the Haze L phase function with ω = 0.9 and µ0 = 1, with a computational
time of approximately 1.6 seconds.

µ τ = 0 τ = 0.05τ0 τ = 0.1τ0 τ = 0.2τ0 τ = 0.5τ0 τ = 0.75τ0 τ = τ0
-1.0 2.79717e-2 2.65834e-2 2.51795e-2 2.23421e-2 1.37519e-2 6.70439e-3 0
-0.9 3.01802e-2 2.87427e-2 2.72763e-2 2.42824e-2 1.50370e-2 7.32793e-3 0
-0.8 3.14478e-2 3.00707e-2 2.86411e-2 2.56621e-2 1.60962e-2 7.85504e-3 0
-0.7 3.43839e-2 3.30557e-2 3.16407e-2 2.86060e-2 1.83142e-2 9.00263e-3 0
-0.6 3.91308e-2 3.78910e-2 3.65135e-2 3.34278e-2 2.20977e-2 1.10619e-2 0
-0.5 4.56379e-2 4.46171e-2 4.33840e-2 4.04032e-2 2.80086e-2 1.45143e-2 0
-0.4 5.35113e-2 5.29854-2 5.21410e-2 4.96862e-2 3.68540e-2 2.02308e-2 0
-0.3 6.15420e-2 6.19914e-2 6.19786e-2 6.08863e-2 4.96165e-2 2.98277e-2 0
-0.2 6.69562e-2 6.90564e-2 7.04996e-2 7.20372e-2 6.66970e-2 4.63006e-2 0
-0.1 6.55296e-2 7.00041e-2 7.34324e-2 7.85904e-2 8.44628e-2 7.36110e-2 0
-0.0 5.17485e-2 6.17096e-2 6.80163e-2 7.74665e-2 9.39979e-2 9.74837e-2 0
0.0 0 6.17096e-2 6.80163e-2 7.74665e-2 9.39978e-2 9.74837e-2 7.93126e-2
0.1 0 2.24949e-2 3.95181e-2 6.26530e-2 9.62543e-2 1.08718e-1 1.08189e-1
0.2 0 1.31007e-2 2.53401e-2 4.67729e-2 9.15916e-2 1.13815e-1 1.24212e-1
0.3 0 1.01943e-2 2.02703e-2 3.94722e-2 8.74675e-2 1.16620e-1 1.35712e-1
0.4 0 9.52906e-3 1.90677e-2 3.77703e-2 8.83323e-2 1.22503e-1 1.48268e-1
0.5 0 1.02637e-2 2.05023e-2 4.06492e-2 9.64183e-2 1.35817e-1 1.67516e-1
0.6 0 1.25293e-2 2.49095e-2 4.90656e-2 1.15336e-1 1.62230e-1 2.00701e-1
0.7 0 1.74171e-2 3.44152e-2 6.70811e-2 1.53982e-1 2.13563e-1 2.61672e-1
0.8 0 2.85622e-2 5.60204e-2 1.07697e-2 2.38486e-1 3.22550e-1 3.86921e-1
0.9 0 6.16331e-2 1.19763e-1 2.26124e-1 4.76103e-1 6.19703e-1 7.17745e-1
1.0 0 3.28124e-1 6.29065e-1 1.15632 2.24839 2.74147 2.97766
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Table 15: Haze L Problem - The Intensity I∗(τ, µ) for the Haze L phase function with ω = 1 and µ0 = 1, with a computational
time of approximately 1.6 seconds.

µ τ = 0 τ = 0.05τ0 τ = 0.1τ0 τ = 0.2τ0 τ = 0.5τ0 τ = 0.75τ0 τ = τ0
-1.0 3.61452e-2 3.43394e-2 3.25109e-2 2.88122e-2 1.76286e-2 8.52589e-3 0
-0.9 3.97819e-2 3.78723e-2 3.59207e-2 3.19303e-2 1.96202e-2 9.45731e-3 0
-0.8 4.27313e-2 4.08406e-2 3.88734e-2 3.47677e-2 2.16019e-2 1.03959e-2 0
-0.7 4.80051e-2 4.61319e-2 4.41307e-2 3.98292e-2 2.52479e-2 1.22171e-2 0
-0.6 5.58214e-2 5.40432e-2 5.20594e-2 4.75986e-2 3.11837e-2 1.53618e-2 0
-0.5 6.60942e-2 6.46296e-2 6.28449e-2 5.84971e-2 4.02740e-2 2.05621e-2 0
-0.4 7.81481e-2 7.74403e-2 7.62508e-2 7.27049e-2 5.37300e-2 2.91285e-2 0
-0.3 8.99682e-2 9.07706e-2 9.08784e-2 8.94711e-2 7.29643e-2 4.34688e-2 0
-0.2 9.70815e-2 1.00421e-1 1.02789e-1 1.05506e-1 9.83777e-2 6.79949e-2 0
-0.1 9.29328e-2 9.98187e-2 1.05195e-1 1.13497e-1 1.24037e-1 1.08399e-2 0
-0.0 6.98774e-2 8.46673e-2 9.41663e-1 1.08727e-1 1.35762e-1 1.42779e-1 0
0.0 0 8.46673e-2 9.41663e-1 1.08727e-1 1.35762e-1 1.42779e-1 1.14808e-1
0.1 0 2.95418e-2 5.24346e-2 8.45649e-2 1.35096e-1 1.56106e-1 1.56976-1
0.2 0 1.64907e-2 3.22817e-2 6.07527e-2 1.24350e-1 1.58925e-1 1.76818e-1
0.3 0 1.23421e-2 2.48488e-2 4.93968e-2 1.14811e-1 1.57937e-1 1.88301e-1
0.4 0 1.11879e-2 2.26450e-2 4.57547e-2 1.12269e-1 1.60862e-1 2.00019e-1
0.5 0 1.17959e-2 2.37910e-2 4.80003e-2 1.19079e-1 1.73191e-1 2.19633e-1
0.6 0 1.42049e-2 2.84584e-2 5.68731e-2 1.39051e-1 2.01445e-1 2.55983e-1
0.7 0 1.95833e-2 3.89248e-2 7.67454e-2 1.82004e-1 2.58986e-1 3.25125e-1
0.8 0 3.19532e-2 6.29430e-2 1.22045e-1 2.77182e-1 3.82767e-1 4.68658e-1
0.9 0 6.87267e-2 1.33917e-1 2.54259e-1 5.44601e-1 7.19447e-1 8.46084e-1
1.0 0 3.64940e-1 7.00266e-1 1.28955 2.52255 3.09319 3.38091

Table 16: Haze L Problem - The Intensity I∗(τ, µ, φ) for the Haze L phase function with ω = 0.9 , µ0 = 0.5, and φ − φ0 = 0,
with a computational time of approximately 132 seconds.

µ τ = 0 τ = 0.05τ0 τ = 0.1τ0 τ = 0.2τ0 τ = 0.5τ0 τ = 0.75τ0 τ = τ0
-1.0 2.28190e-2 2.14170e-2 1.99920e-2 1.71574e-2 9.34719e-3 4.02513e-3 0
-0.9 4.11125e-2 3.86276e-2 3.60559e-2 3.08703e-2 1.64542e-2 6.81049e-3 0
-0.8 6.49983e-2 6.12972e-2 5.73958e-2 4.94000e-2 2.66078e-2 1.10213e-2 0
-0.7 9.99446e-2 9.47422e-2 8.91210e-2 7.73509e-2 4.26132e-2 1.79328e-2 0
-0.6 1.50993e-1 1.44083e-1 1.36343e-1 1.19657e-1 6.81169e-2 2.95065e-2 0
-0.5 2.24768e-1 2.16263e-1 2.06169e-1 1.83479e-1 1.09068e-1 4.93125e-2 0
-0.4 3.29336e-1 3.20182e-1 3.08045e-1 2.78889e-1 1.75210e-1 8.41056e-2 0
-0.3 4.72536e-1 4.65520e-1 4.52954e-1 4.18719e-1 2.82082e-1 1.47239e-1 0
-0.2 6.56834e-1 6.58390e-1 6.49495e-1 6.15206e-1 4.51466e-1 2.66183e-1 0
-0.1 8.70325e-1 8.94525e-1 8.97446e-1 8.72172e-1 6.97514e-1 4.91555e-1 0
-0.0 1.03177 1.14775 1.18797 1.19440 1.00873 7.95748e-1 0
0.0 0 1.14775 1.18797 1.19440 1.00873 7.95748e-1 5.24167e-1
0.1 0 6.07548e-1 9.98592e-1 1.38473 1.41181 1.15806 8.76470e-1
0.2 0 5.08883e-1 9.07223e-1 1.43790 1.82630 1.61273 1.29144
0.3 0 5.49994e-1 9.99898e-1 1.64825 2.30787 2.15587 1.80549
0.4 0 6.38615e-1 1.16925 1.95778 2.87301 2.77822 2.40104
0.5 0 6.34271e-1 1.16869 1.98321 3.03333 3.03426 2.71055
0.6 0 4.18260e-1 7.78087e-1 1.34620 2.18395 2.29506 2.15369
0.7 0 2.04883e-1 3.85810e-1 6.83932e-1 1.19334 1.33200 1.32682
0.8 0 8.64752e-2 1.65150e-1 3.01013e-1 5.69583e-1 6.78608e-1 7.19934e-1
0.9 0 3.13664e-2 6.09010e-2 1.14612e-1 2.37335e-1 3.03207e-1 3.43478e-1
1.0 0 5.07113e-3 1.01191e-2 2.00435e-2 4.76083e-2 6.73492e-2 8.37579e-2
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Table 17: Haze L Problem - The Intensity I∗(τ, µ, φ) for the Haze L phase function with ω = 0.9 , µ0 = 0.5, and φ− φ0 = π/2,
with a computational time of approximately 132 seconds.

µ τ = 0 τ = 0.05τ0 τ = 0.1τ0 τ = 0.2τ0 τ = 0.5τ0 τ = 0.75τ0 τ = τ0
-1.0 2.28190e-2 2.14170e-2 1.99920e-2 1.71574e-2 9.34719e-3 4.02513e-3 0
-0.9 2.69861e-2 2.54001e-2 2.3770e-2 2.04885e-2 1.12507e-2 4.83998e-3 0
-0.8 3.23251e-2 3.05433e-2 2.86841e-2 2.48816e-2 1.38576e-2 5.98687e-3 0
-0.7 3.90915e-2 3.71288e-2 3.50364e-2 3.06624e-2 1.74617e-2 7.63435e-3 0
-0.6 4.75194e-2 4.54446e-2 4.31587e-2 3.82274e-2 2.24929e-2 1.00585e-2 0
-0.5 5.76960e-2 5.56800e-2 5.33274e-2 4.79966e-2 2.95696e-2 1.37243e-2 0
-0.4 6.92921e-2 6.76843e-2 6.55506e-2 6.02592e-2 3.95485e-2 1.94423e-2 0
-0.3 8.09723e-2 8.04082e-2 7.90373e-2 7.47154e-2 5.34553e-2 2.86762e-2 0
-0.2 8.94088e-2 9.08993e-2 9.11597e-2 8.93864e-2 7.18225e-2 4.41114e-2 0
-0.1 8.86327e-2 9.36078e-2 9.65669e-2 9.91642e-2 9.15413e-2 6.94491e-2 0
-0.0 6.76014e-2 8.16018e-2 8.92220e-2 9.83762e-2 1.03484e-1 9.32369e-2 0
0.0 0 8.16018e-2 8.92220e-2 9.83762e-2 1.03484e-1 9.32371e-2 6.29164e-2
0.1 0 2.74475e-2 4.83619e-2 7.57571e-2 1.04622e-1 1.04387e-1 8.95907e-2
0.2 0 1.41330e-2 2.75945e-2 5.09061e-2 9.28868e-2 1.04678e-1 1.01178e-1
0.3 0 9.26644e-3 1.87294e-2 3.68737e-2 7.85470e-2 9.74004e-2 1.02990e-1
0.4 0 6.96644e-3 1.42411e-2 2.88244e-2 6.68034e-2 8.82947e-2 9.95180e-2
0.5 0 5.75720e-3 1.17847e-2 2.40718e-2 5.82338e-2 8.01154e-2 9.43192e-2
0.6 0 5.11030e-3 1.04251e-2 2.12819e-2 5.23831e-2 7.37544e-2 8.93298e-2
0.7 0 4.79703e-3 9.73440e-3 1.97631e-2 4.87196e-2 6.93677e-2 8.54626e-2
0.8 0 4.71115e-3 9.50506e-3 1.91501e-2 4.68396e-2 6.68825e-2 8.31200e-2
0.9 0 4.80640e-3 9.64244e-3 1.92635e-2 4.64998e-2 6.62130e-2 8.24990e-2
1.0 0 5.07113e-3 1.01191e-2 2.00435e-2 4.76083e-2 6.73492e-2 8.37579e-2

Table 18: Haze L Problem - The Intensity I∗(τ, µ, φ) for the Haze L phase function with ω = 0.9 , µ0 = 0.5, and φ − φ0 = π,
with a computational time of approximately 132 seconds.

µ τ = 0 τ = 0.05τ0 τ = 0.1τ0 τ = 0.2τ0 τ = 0.5τ0 τ = 0.75τ0 τ = τ0
-1.0 2.28190e-2 2.14170e-2 1.99920e-2 1.71574e-2 9.34719e-3 4.02513e-3 0
-0.9 2.61852e-2 2.46217e-2 2.30415e-2 1.99042e-2 1.11589e-2 4.97196e-3 0
-0.8 3.20368e-2 3.01730e-2 2.82831e-2 2.45151e-2 1.38928e-2 6.24448e-3 0
-0.7 3.74817e-2 3.54358e-2 3.33331e-2 2.90811e-2 1.67591e-2 7.61010e-3 0
-0.6 4.12139e-2 3.92700e-2 3.72011e-2 3.28685e-2 1.95280e-2 9.02300e-3 0
-0.5 4.99464e-2 4.77799e-2 4.54343e-2 4.04517e-2 2.46595e-2 1.16636e-2 0
-0.4 5.50134e-2 5.32394e-2 5.11567e-2 4.64342e-2 2.98815e-2 1.47743e-2 0
-0.3 6.44934e-2 6.30132e-2 6.10801e-2 5.64129e-2 3.85985e-2 2.04385e-2 0
-0.2 7.08868e-2 7.03673e-2 6.91450e-2 6.55321e-2 4.91145e-2 2.92042e-2 0
-0.1 6.95600e-2 7.10895e-2 7.13778e-2 7.01215e-2 5.90302e-2 4.25269e-2 0
-0.0 5.47761e-2 6.23325e-2 6.55280e-2 6.81201e-2 6.39396e-2 5.39412e-2 0
0.0 0 6.23325e-2 6.55280e-2 6.81201e-2 6.39396e-2 5.39412e-2 3.42189e-2
0.1 0 1.99925e-2 3.42555e-2 5.10066e-2 6.25009e-2 5.80166e-2 4.66801e-2
0.2 0 9.41145e-3 1.79861e-2 3.18930e-2 5.27234e-2 5.56537e-2 5.06958e-2
0.3 0 5.52988e-3 1.10120e-2 2.10538e-2 4.15040e-2 4.87980e-2 4.91257e-2
0.4 0 3.67310e-3 7.45174e-3 1.48051e-2 3.24697e-2 4.12526e-2 4.48014e-2
0.5 0 2.67314e-3 5.46407e-3 1.10690e-2 2.59261e-2 3.47946e-2 3.99910e-2
0.6 0 2.11016e-3 4.31933e-3 8.82241e-3 2.14934e-2 2.99722e-2 3.59328e-2
0.7 0 1.81107e-3 3.69988e-3 7.56877e-3 1.88391e-2 2.69599e-2 3.33330e-2
0.8 0 1.72244e-3 3.50577e-3 7.15364e-3 1.79613e-2 2.61129e-2 3.29719e-2
0.9 0 1.93240e-3 3.91318e-3 7.93848e-3 1.98733e-2 2.90534e-2 3.70748e-2
1.0 0 5.07113e-3 1.01191e-2 2.00435e-2 4.76083e-2 6.73492e-2 8.37579e-2

Again, we increased the TFC angular and spatial discretizations to improve the accuracy of the solutions,
and to achieve the 7-digit accuracy as published by Ganapol for the Haze L problem. We computed the
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incident cases (µ0 = 1), with both conservative single scattering albedo ω = 1 and non-conservative single
scattering albedo ω = 0.9. We found that the optimal parameters are N = 35, M = 400, and mop = 100.
The TFC computational time is reported to be approximately 4.4 seconds. The results are reported in Tables
19 and 20.

Table 19: Haze L Problem - The Intensity I∗(τ, µ) for the Haze L phase function with ω = 0.9 and µ0 = 1, according to Ganapol
[32], with a computational time of approximately 4.4 seconds.

µ τ = 0 τ = 0.05τ0 τ = 0.1τ0 τ = 0.2τ0 τ = 0.5τ0 τ = 0.75τ0 τ = τ0
-1.0 2.7971665e-2 2.6583431e-2 2.5179489e-2 2.2342144e-2 1.3751918e-2 6.7043863e-3 0
-0.9 3.0180197e-2 2.8742728e-2 2.7276328e-2 2.4282402e-2 1.5036989e-2 7.3279307e-3 0
-0.8 3.1447755e-2 3.0070750e-2 2.8641094e-2 2.5662054e-2 1.6096218e-2 7.8550379e-3 0
-0.7 3.4383906e-2 3.3055747e-2 3.1640694e-2 2.8605980e-2 1.8314210e-2 9.0026264e-3 0
-0.6 3.9130810e-2 3.7890987e-2 3.6513506e-2 3.3427829e-2 2.2097749e-2 1.1061916e-2 0
-0.5 4.5637920e-2 4.4617111e-2 4.3383966e-2 4.0403191e-2 2.8008565e-2 1.4514343e-2 0
-0.4 5.3511337e-2 5.2985449e-2 5.2140980e-2 4.9686294e-2 3.6854018e-2 2.0230769e-2 0
-0.3 6.1542012e-2 6.1991418e-2 6.1978635e-2 6.0886294e-2 4.9616521e-2 2.9827680e-2 0
-0.2 6.6956243e-2 6.9056402e-2 7.0499635e-2 7.2037240e-2 6.6696988e-2 4.6300639e-2 0
-0.1 6.5529583e-2 7.0004105e-2 7.3432378e-2 7.8590386e-2 8.4462845e-2 7.3611021e-2 0
-0.0 5.1748534e-2 6.1709609e-2 6.8016336e-2 7.7466538e-2 9.3997859e-2 9.7483668e-2 0
0.0 0 6.1709609e-2 6.8016336e-2 7.7466538e-2 9.3997859e-2 9.7483668e-2 7.9312594e-2
0.1 0 2.2494931e-2 3.9518122e-2 6.2652973e-2 9.6254337e-2 1.0871841e-1 1.0818930e-1
0.2 0 1.3100677e-2 2.5340076e-2 4.6772905e-2 9.1591615e-2 1.1381468e-1 1.2421167e-1
0.3 0 1.0194331e-2 2.0270341e-2 3.9472225e-2 8.7467481e-2 1.1662007e-1 1.3571209e-1
0.4 0 9.5290644e-3 1.9067650e-2 3.7770256e-2 8.8332315e-2 1.2250259e-1 1.4826767e-1
0.5 0 1.0263750e-2 2.0502330e-2 4.0649220e-2 9.6418345e-2 1.3581653e-1 1.6751584e-1
0.6 0 1.2529327e-2 2.4909477e-2 4.9065634e-2 1.1533634e-1 1.6223048e-1 2.0070062e-1
0.7 0 1.7417124e-2 3.4415206e-2 6.7081148e-2 1.5398186e-1 2.1356335e-1 2.6167192e-1
0.8 0 2.8562211e-2 5.6020429e-2 1.0769702e-2 2.3848565e-1 3.2254956e-1 3.8692070e-1
0.9 0 6.1633112e-2 1.1976311e-1 2.2612375e-1 4.7610276e-1 6.1970346e-1 7.1774509e-1
1.0 0 3.2812354e-1 6.2906510e-1 1.1563161 2.2483946 2.7414726 2.9776602

Table 20: Haze L Problem - The Intensity I∗(τ, µ) for the Haze L phase function with ω = 1 and µ0 = 1, according to Ganapol
[32], with a computational time of approximately 4.4 seconds.

µ τ = 0 τ = 0.05τ0 τ = 0.1τ0 τ = 0.2τ0 τ = 0.5τ0 τ = 0.75τ0 τ = τ0
-1.0 3.6145156e-2 3.4339396e-2 3.2510866e-2 2.8812216e-2 1.7628611e-2 8.5258908e-3 0
-0.9 3.9781870e-2 3.7872320e-2 3.5920682e-2 3.1930313e-2 1.9620173e-2 9.4573134e-3 0
-0.8 4.2731263e-2 4.0840607e-2 3.8873442e-2 3.4767734e-2 2.1601856e-2 1.0395857e-2 0
-0.7 4.8005147e-2 4.6131929e-2 4.4130697e-2 3.9829198e-2 2.5247889e-2 1.2217079e-2 0
-0.6 5.5821353e-2 5.4043177e-2 5.2059351e-2 4.7598583e-2 3.1183660e-2 1.5361836e-2 0
-0.5 6.6094221e-2 6.4629636e-2 6.2844874e-2 5.8497071e-2 4.0273976e-2 2.0562127e-2 0
-0.4 7.8148081e-2 7.7440255e-2 7.6250769e-2 7.2704873e-2 5.3729974e-2 2.9128534e-2 0
-0.3 8.9968154e-2 9.0770642e-2 9.0878384e-2 8.9471128e-2 7.2964349e-2 4.3468799e-2 0
-0.2 9.7081540e-2 1.0042085e-1 1.0278927e-1 1.0550594e-1 9.8377715e-2 6.7994924e-2 0
-0.1 9.2932814e-2 9.9818714e-2 1.0519502e-1 1.1349749e-1 1.2403692e-1 1.0839912e-2 0
-0.0 6.9877391e-2 8.4667310e-2 9.4166299e-1 1.0872694e-1 1.3576248e-1 1.4277947e-1 0
0.0 0 8.4667310e-2 9.4166299e-1 1.0872694e-1 1.3576248e-1 1.4277947e-1 1.1480771e-1
0.1 0 2.9541820e-2 5.2434564e-2 8.4564915e-2 1.3509602e-1 1.5610649e-1 1.5697621-1
0.2 0 1.6490681e-2 3.2281653e-2 6.0752687e-2 1.2435036e-1 1.5892546e-1 1.7681766e-1
0.3 0 1.2342100e-2 2.4848764e-2 4.9396789e-2 1.1481121e-1 1.5793652e-1 1.8830112e-1
0.4 0 1.1187938e-2 2.2644991e-2 4.5754673e-2 1.1226864e-1 1.6086203e-1 2.0001870e-1
0.5 0 1.1795943e-2 2.3790964e-2 4.8000306e-2 1.1907946e-1 1.7319074e-1 2.1963289e-1
0.6 0 1.4204907e-2 2.8458379e-2 5.6873102e-2 1.3905102e-1 2.0144487e-1 2.5598334e-1
0.7 0 1.9583294e-2 3.8924848e-2 7.6745368e-2 1.8200357e-1 2.5898644e-1 3.2512495e-1
0.8 0 3.1953231e-2 6.2942983e-2 1.2204484e-1 2.7718191e-1 3.8276705e-1 4.6865779e-1
0.9 0 6.8726703e-2 1.3391677e-1 2.5425935e-1 5.4460066e-1 7.1944669e-1 8.4608373e-1
1.0 0 3.6493954e-1 7.0026634e-1 1.2895497 2.5225517 3.0931861 3.3809098

7. Conclusions and future outlooks

This paper highlights the potential of the Theory of Functional Connections to solve one-dimensional,
anisotropic Radiative Transfer Problems in homogeneous media, with high accuracy for both one angle and
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two angles incident source beam, at least up to the 7th figure.
The advantage of the proposed method lies in its elegant and concise implementation, in the analytically
satisfaction of boundary conditions, as well as in the absence of numerical issues for the conservative case
(ω = 1), and in the ability to compute the photon flux in any exact query spatial and directional points
without further manipulations.
Moreover, it has been shown that via TFC, one is able to directly solve the Radiative Transfer Equation in the
form of Eq. (38), without further transformations on the equation itself as usually necessary in other methods
[16, 32]. Future works will focus on the application of the TFC to the Matrix Riccati Equation (MRE) solution
of the 1D RTE arising from the application of the interaction principle of particle transport to Eq. (38) [34].
Indeed, using the MRE would allow us to tackle the problem via recursively applying the TFC method as
presented in [22] for problems with a long integration space (e.g., τ for our case). Furthermore, we believe that
this approach will allow us to combine the TFC methodology with the adding-doubling method proposed by
Ganapol in [35, 36, 37, 38], in synergy with the Wynn-Epsilon Convergence Acceleration to further improve
the performance of the TFC framework in solving even more challenging Radiative Transfer problems, such as
the Cloud C1 problem, posed by IAMAP [33]. This benchmark requires a large optical depth (τ0 = 64). This
is causing the matrix to invert to be large. Thus the problem becomes too computationally expensive both
in terms of memory and computational time. Hence, at this stage, large optical depth is still the limitation
of our proposed method. Indeed, while our TFC based method for solving the RTE is comparable with the
other state of the art methods in tackling problems with small optical depths (e.g., Mie Scattering and Haze
L problems), it appears to suffer when solving problems with large ones.
Additionally, future works will focus on the application of the newly developed Extreme Theory of Functional
Connections (X-TFC) [39], that is a Physics-Informed Neural Network framework, to tackle some of the
most challenging Radiative Transfer problems such as multi-slab case [40], time-dependent integrodifferential
Boltzmann Equations, and, subsequently, 3D time-dependent Radiative Transfer Problems. Moreover, the
application of X-TFC to time-dependent radiative transfer problems would aim to offer an alternative to
the existing frameworks based on spectral and collocation methods such as [41, 42, 43]. We are currently
applying the X-TFC physics-informed framework in solving a series of Rarefied-Gas Dynamics problems such
as Poiseuille Flow and Thermal Creep Flow in a plane channel. Extension of the X-TFC to multi-dimensional
RTEs is expected to be relatively straightforward.
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