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Always-On 674uW @ 4GOP/s Error Resilient
Binary Neural Networks with Aggressive SRAM

Voltage Scaling on a 22nm IoT End-Node
Alfio Di Mauro, Francesco Conti, Pasquale Davide Schiavone, Davide Rossi, Luca Benini

This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be
accessible.

Abstract—Binary Neural Networks (BNNs) have been shown
to be robust to random bit-level noise, making aggressive
voltage scaling attractive as a power-saving technique for both
logic and SRAMs. In this work, we introduce the first fully
programmable IoT end-node system-on-chip (SoC) capable of
executing software-defined, hardware-accelerated BNNs at ultra-
low voltage. Our SoC exploits a hybrid memory scheme where
error-vulnerable SRAMs are complemented by reliable standard-
cell memories to safely store critical data under aggressive voltage
scaling. On a prototype in 22nm FDX technology, we demonstrate
that both the logic and SRAM voltage can be dropped to 0.5V
without any accuracy penalty on a BNN trained for the CIFAR-
10 dataset, improving energy efficiency by 2.2X w.r.t. nominal
conditions. Furthermore, we show that the supply voltage can
be dropped to 0.42V (50% of nominal) while keeping more than
99% of the nominal accuracy (with a bit error rate ∼1/1000).
In this operating point, our prototype performs 4Gop/s (15.4
Inference/s on the CIFAR-10 dataset) by computing up to 13
binary ops per pJ, achieving 22.8 Inference/s/mW while keeping
within a peak power envelope of 674uW – low enough to enable
always-on operation in ultra-low power smart cameras, long-
lifetime environmental sensors, and insect-sized pico-drones.

Index Terms—SRAM Voltage Scaling, Binary Neural Net-
works, Ultra-Low Power, IoT, Near-Threshold Computing.

I. INTRODUCTION

THE latest advances in the Internet-of-Things (IoT) are
changing the nature of edge-computing devices. End-

nodes have to support, in-place, an increasing range of func-
tionality, for example, video and audio sensory data process-
ing, and complex systems control strategies. These new capa-
bilities will enable applications such as an entirely new class
of biomedical devices [1], autonomous insect-sized drones [2],
cheap smart sensors [3] to continuously check the stability
of bridges, tunnels, and other buildings. Machine learning
algorithms and specifically deep neural networks (DNNs) have
shown outstanding performance in performing these tasks.
However, while DNNs fits well the performance and power
budgets of embedded GPUs and FPGAs, deploying such
compute-intensive algorithms on battery-powered IoT end-
node platforms, characterized by heavily constrained power
budgets (typically 100 µW to 100mW), still constitutes a huge
challenge, as they are expected to achieve lifetimes in the
orders of months, years or even decades. As such, recent
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research efforts from both industry and academia have focused
on enabling the deployment of deep inference on devices
operating in the 10–100mW power range [4]–[11].

The most common approach to reducing average power
consumption, widely used in commercial microcontrollers
and IoT end-nodes, is duty cycling (a.k.a. sleep-walking).
According to this paradigm, the system stays in deep-sleep
mode for most of the time, featuring a power consumption in
the range of 100 nW to 10 µW, and wakes up to perform the
acquisition and classification task (e.g. with a CNNs), only
when it wakes up, either by an externally triggered event or
by an internal timer. However, in the first case, this approach
requires trigger fine-tuning to reduce the number of false-
positive activations, which could be fairly difficult to achieve
in a real scenario, and which would feature poor generalization
capabilities in other contexts. Alternatively, if a time-based
trigger is employed, therefore exploiting a simple triggering
mechanism, the computing cost of an accurate CNNs is so
high that the active energy becomes rapidly dominant even
at low duty cycling rates. As a result, the latter approach is
inefficient whenever fast reaction time is required at the sensor
edge.

A common technique to reduce the active power of deeply
embedded computing platforms is near-threshold computing
[12]. Scaling voltage together with frequency allows improv-
ing significantly the energy efficiency of computations, by
exploiting the quadratic dependency of dynamic power with
supply voltage. However, aggressive voltage scaling has a
significant impact on the operating frequency of the logic,
and on the reliability of the memory elements of the sys-
tem, especially those based on SRAMs. While the frequency
degradation at low voltage can be recovered by exploiting
powerful and efficient hardware accelerators, the SRAM re-
liability issue remains an unsolved problem. Therefore, in
most cases 6T-SRAMs have to be replaced by more resilient,
custom solutions such as SRAMs composed of 8T or 10T
bitcells supported by reading and writing assist circuits [13],
[14]. Among the approaches adopted to improve the resiliency
of memory elements at low voltage, usage of standard cell
memories is particularly convenient since they are built on top
of standard library cells such as flip-flop or latches, much more
resilient than SRAMs when operating close to the threshold
voltage of transistors [15], [16]. This comes with a significant
cost in terms of area. On the other hand, a relatively large
on-chip memory is necessary to enable complex algorithms
based on DNNs [9], [17].

In the last years, BNNs [18]–[20] became popular in the
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embedded computing domain for having achieved remarkable
accuracy on many complex classification tasks, narrowing the
gap that separates them from the state-of-the-art fixed point
or floating point CNNs. Compared to fixed or floating point
CNN implementation, which relies on convolutions, BNNs are
characterized by a very lightweight hardware implementation
of the data path. Binary convolution can be implemented
with simple logic elements such as XNOR gates, requiring
a very limited amount of area-hungry adders for partial sum
accumulation. Moreover, BNNs also feature lower memory
footprints compared to CNNs, reducing the amount of energy
consumed on the memory side for weights and intermediate
results storage.

Those features make BNNs a good candidate for all those
scenarios where power consumption is a major concern, but
at the same time, a high responsiveness to the sensor stimuli
needs to be ensured (e.g. pico-sized autonomous navigation
robots or surveillance nodes). The low power envelope that
characterizes BNNs allows to use them as data pre-filtering
algorithms, specifically, to extract semantically meaningful
information in an always-on operating mode [21]. In this
context, BNNs can be used as a first inference stage of a staged
inference pipeline, composed by low-power, less-accurate
early inference stages, and computationally-powerful fixed or
floating point CNN implementations as latter stages [22].
As the memory footprint of BNNs is significantly lower
than CNNs, bigger topologies can be supported in the same
power/performance budget, enhancing the generalization ca-
pability of the early stages, thereby lowering the false positive
triggering occurrence. Additionally, the employment of BNNs
as preliminary filtering stage does not prevent the adoption
of conventional power-saving strategies like duty-cycling or
sleep-walking at run time, whenever the application latency
requirements allow it.

One of the advantages of DNNs, as well as BNNs, is the
high robustness to noise [23]. The high resiliency of BNNs to
random errors is given by the fact that as opposed to traditional
neural networks, where activations and weights are represented
by integer numbers, no bit in their activations and weights is
inherently more significant than any other. As a consequence,
no bit is more vulnerable than any other: information process-
ing is spread equally among all bits, and only a very high error
rate can bring a dramatic loss in quality-of-results. The BNNs
noise robustness is a very powerful feature since it enables
very aggressive power reduction techniques to be applied also
on the memories.

In this work, we advance the state-of-the-art with regards
to ultra-low power deep inference with BNNs with three key
contributions:

i) We propose a strategy to execute noisy BNNs on micro-
controllers. To the best of our knowledge, in this work, we
propose the first complete and fully programmable end node
SoC architecture and BNN inference data and code allocation
strategy enabling the execution of hardware accelerated BNNs
at ultra-low voltage.
ii) We describe and demonstrate on silicon a hybrid memory
architecture composed of big SRAMs for error-resilient data
and smaller (Standard Cell Memories) SCMs to hold vulner-
able data such as microcontroller instructions and stacks. In

this work, we also provide a methodology to efficiently exploit
such memory architecture. The hybrid memory architecture
template presented in this work is easily applicable to other
platforms.
iii) We present a self-test strategy for Bit Error Rate mea-
surement performed on large SRAM. This approach allows
characterizing SRAM memories at ultra-low voltages, thereby
estimating the amount of noise injected in the BNN.
iv) We demonstrate the validity of this architectural concept
on an advanced prototype manufactured in GlobalFoundries
22nm FDX technology, using the safe SCMs to hold a micro-
controller program testing SRAM bit error rates with millions
of random reads/writes, operating down to 420 mV (50% of
the nominal supply voltage) for both logic and memories.

Finally, we show that using the embedded hardware accel-
erator for BNNs, our prototype can be operated at 18MHz
down-scaling voltage to 420mV for both logic and memories.
In this operating point, the prototype achieves up to 99% of
the nominal accuracy on a BNN trained for the CIFAR-10
dataset, while operating with an energy efficiency of 170fJ/op
and within a power envelope of 674 µW – enabling embedding
of advanced BNN-based cognitive functionality in ultra-low
power ”TinyML” devices such as biomedical sensors, long-
lifetime environmental sensors, and insect-sized pico-UAVs.

The rest of the paper is organized as follows: Section II
discusses other works in the state-of-the-art related to this
proposed work. Section III introduces the proposed SoC ar-
chitecture. Section IV discusses the simulations we performed
to evaluate the resilience of BNNs against SRAM errors. Sec-
tion V details the experimental methodology used to evaluate
the SoC and the results of the evaluation in terms of Bit Error
Rate (BER), power and energy efficiency. Section VI draws
conclusions.

II. RELATED WORK

Recently, there has been a strong push towards the de-
ployment of sophisticated artificial intelligence (in particular
DNNs) on tiny end-node architectures dedicated to the extreme
edge of the IoT – fostering a fast-growing TinyML research
community [24], which has explored the field from two
converging directions. On the one hand, in the direction of
shrinking DNN topology [25], reducing the amount [26] and
numerical precision of network parameters [27], moving from
floating point down to highly quantized numerical represen-
tations, e.g. 8 or 4 bits, and ultimately to BNNs [18]. On
the other hand, edge computing platforms are supporting this
trend by becoming more and more specialized to efficiently
execute machine learning workloads [17], [28]. In this section,
we focus on the latter research direction and describe research
works related to the SoC proposed in this paper in a top-down
fashion. We start from software-programmable architectures
targeting the end-nodes of the IoT, go through specialized
heterogeneous and error-resilient hardware architectures, and
end with dedicated architectures for CNN inference exploiting
extreme quantization and error resiliency.

A. IoT End-Node Architectures
A fundamental element of all IoT end-node architectures

is software programmability, typically based on tiny micro-
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controllers with ARM Cortex-M class processors. Significant
commercial examples of such micro-systems have been pro-
posed by all major embedded systems vendors such as TI [29],
STMicroelectronics [30], NXP [31], and Ambiq [32]. These
systems feature aggressive sleep-walking capabilities thanks to
sub-10 µW deep-sleep modes leading to an extremely small
average power. On the other hand, current research in IoT
end nodes is moving towards optimizing both active and sleep
states exploiting near-threshold and sub-threshold operation.
These techniques further improve the energy efficiency and
reduce power consumption during computation [33] [34] [35]
[36] [37]. Mr. Wolf [38] couples aggressive deep-sleep ca-
pabilities with an energy-proportional architecture, exceeding
the computational capabilities of ULP microcontrollers by
2 orders of magnitude while offering a competitive energy
efficiency also at low and sporadic workloads. This is achieved
thanks to a heterogeneous parallel architecture composed of an
always-on autonomous I/O subsystem, coupled with a parallel
accelerator with 8 floating-point capable RISC-V cores. To
target specific computation domains such as CNNs, some
commercial architectures leverage lightweight SW accelera-
tion and optimized DSP libraries to improve performance. A
well-known example is that of CMSIS developed by ARM,
a set of libraries to optimize DSP applications on Cortex-M
architectures, and CMSIS-NN [39], tuned to the deployment of
embedded neural networks. An extension to these libraries has
been proposed by Rusci et al. [40] targeting highly quantized
networks such as 4-bit, 2-bit and binarized networks [41].

However, due to their 32-bit nature, fully programmable
solutions can only partially exploit the benefits of quantized
NNs. While this approach significantly reduces the memory
footprint of CNN, several additional operations are required
to pack/unpack activation and weights to arithmetic formats
suitable for software processing (e.g. 16-bit or 8-bit) [40],
degrading performance and energy efficiency of inference.
Modern microcontrollers introduced dedicated ISA extensions
to efficiently perform sub-word, sub-byte and SIMD opera-
tions [42], [43], and mitigate such performance degradation.

To improve the overall efficiency of systems dedicated to
NN acceleration, recent SoCs couple programmable processors
with hardwired accelerators, in some cases exploiting low-
precision functional units to exploit resiliency of CNNs to
quantization. Intel presented an IoT edge mote integrating an
x86 processor accelerated by dedicated functional units for
CNN cryptography workloads [44]. Conti et al. proposed
Fulmine [28], a heterogeneous SoC coupling four general-
purpose processors with a convolutional accelerator. While
convolutional layers of CNNs run on the accelerator, other
functions such as activations and pooling execute on the
software processing cluster. GAP-8 [45] includes a specialized
accelerator for convolutional neural networks supporting 16-bit
precision for activations and 16-bit, 8-bit and 4-bit precision
for weights, achieving up to 600 GMAC/s/W within 75mW
of power envelope. Another notable device is the low-power
vision sensor node presented by Qualcomm Technologies [46],
which performs end-to-end always-on visual detection tasks
thanks to an ultra-low power QVGA CMOS sensor and a full
digital processor subsystem integrated as a single device. Such
architecture allows to perform video processing at the sensor

edge in a 1mW power envelope, exploiting low-resolution
sensing, data sparsity and event-driven computing, ultimately
outputting only meta-information when meaningful events are
detected.

In this work we propose a near-threshold SoC joining the
flexibility of a software programmable 32-bit RISC-V proces-
sor integrated into a state-of-the-art microcontroller featuring
a rich set of peripherals, with the performance boost of a ded-
icated accelerator for BNN workloads, pushing quantization
to the limit. On top of the flexibility and performance of this
heterogeneous architecture, in this paper, we propose a hetero-
geneous memory architecture exploiting the error resiliency of
BNN with respect to random errors in the memory system. To
our best knowledge, the SoC described in this paper reports the
lowest full system power for active operation and always-on
BNN inference presented in industry or academia.

B. Heterogeneous and Error Resilient Memory Architectures

Optimizing the memory hierarchy is one of the main
concerns in IoT end-nodes operating in near-threshold, since
memory can be the dominant source of power consumption,
potentially jeopardizing their energy efficiency [34], [47],
[48]. While many approaches rely on the custom design
of low-voltage memories [14], [49], which come with the
associated area and power overheads (e.g. 8T or 10T bitcells,
read and write assist circuits) [13], an emerging trend relies on
approximate SRAMs, often joined with precision/performance
tunability or heterogeneous memory architectures. Frustaci et
al. [50] proposed an approximated SRAMs for error-tolerant
applications, in which energy is saved at the cost of the
occurrence of read/write errors by exploiting voltage scaling,
selective error correction code (SECC), and selective write
assist techniques (SNBB). Compared to the voltage scaling at
iso-quality, the joint adoption of these techniques can provide
more than 2× energy reduction at a negligible area penalty.
Other works propose the adoption of emerging technologies
to realize approximate memory cells, such as RRAM [51] and
memristors [52].

Although all the aforementioned approaches are effective,
they all require the design of custom SRAM banks (either
approximated or not), they feature deep circuit-level opti-
mizations, that cannot be easily integrated into automatic
memory generators. Other approaches exploit heterogeneous
memory architectures mixing standard SRAMs and latch-
based Standard Cell Memories (SCM). While SRAMs can not
be considered reliable at relatively high voltages (e.g. 0.8V in
the technology considered in this work), SCMs can operate
in the same operating range of the rest of the logic, typically
much wider [15]. Tagliavini et al. [53], proposed an HW/SW
methodology to design energy-efficient ULP systems which
combine the key ideas of a hybrid memory design where part
of the memory system is approximated and part is precise,
with an error-aware allocation strategy. Similarly to this work,
our approach leverages standard 6T-SRAM cells that can be
realized with memory generators provided by silicon vendors,
and SCM that can be implemented with standard semi-custom
design flows relying on industrially qualified standard-cells
for implementation. On the other hand, our work exploits
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resiliency of binarized neural networks, where the position of
the flip-bit error within the words is irrelevant to the quality of
the final result, making them a much more suitable candidate
for approximate computing.

C. Dedicated Hardware Accelerators for DNNs and BNNs
Many dedicated hardware accelerators specifically designed

to bring deep learning at an ultra-low power budget have been
proposed. Most designs employ fixed-point representation for
weights and activations (e.g. Orlando [54] achieving up to 2.9
Top/s/W). Pruning and compression are popular techniques to
further reduce the power budget [55]–[59].

Binary Neural Networks [18], [19] constitute a particularly
interesting niche application due to their properties, as they
can be trained to achieve similar results to full-precision
counterparts [60] while keeping a smaller footprint, a more
scalable structure and a higher resilience to errors, as further
explored in Section IV. FINN [61], was the first architecture
capable of reaching more than 200 Gop/s/W on an FPGA.
Many of the most recent efforts towards the deployment
of BNNs on silicon, such as BRein [62], XNOR-POP [63],
Conv-RAM [6], as well as the BTNN accelerator proposed
by Yin et al. [64], and the BNN accelerator presented by
Wang et al. [65], and Khwa et al. [66] have achieved an energy
efficiency in the range of 10-50 TOP/s/W using in-memory
computing. Similar results have been claimed by more “tradi-
tional” ASICs such as UNPU [4] and XNORBIN [67]. Mixed-
signal [5], and in-memory mixed-signal approaches [68]–
[71] are able to achieve up to 10-100× higher efficiency,
but paying a very significant cost in terms of design time,
verification, and scalability to real systems. Yang et al. [23]
exploits one such system in their work, where similarly to what
we propose SRAM is aggressively voltage-scaled to achieve a
power benefit.

Our own system exploits a similar technique to Yang’s,
with the important distinction that their work is an extremely
specialized ASIC, capable of executing a single BNN topol-
ogy. Rather, our design is a complete and fully programmable
IoT end node on the line of those discussed in Section II-A,
augmented with a very small hardware accelerator [72].

III. QUENTIN SOC
This section introduces the system architecture of Quentin

SoC, focusing on the micro-architecture of the binarized
neural network accelerator (XNE) and on the heterogeneous
system architecture and its implementation strategy enabling
the power/performance/precision tunable capabilities of the
system. The architecture of Quentin is reported in Fig.1.

A. System Architecture
The system in exam consists of an advanced microcontroller

based on the open-source PULPissimo system1, part of the
Parallel Ultra-Low-Power (PULP) platform2. The SoC is built
around a RISC-V processor (RI5CY) [42] optimized for
energy-efficient digital signal processing. The core’s pipeline

1https://github.com/pulp-platform/pulpissimo
2https://pulp-platform.org
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features 4 stages, floating-point and it is fully compliant with
the RV32IMFC ISA [73]. On top of the standard RISC-V
ISA the processor features digital signal processing extensions
targeting energy-efficient near-sensor data analytic. These ex-
tensions include hardware loops, the automatic increment of
pointers accesses, bit manipulation instructions, fixed-point
and packed single-instruction-multiple-data (SIMD) opera-
tions, and unaligned memory accesses.

The system features a full set of peripherals which include
Quad-SPI (QSPI) supporting up to two external devices, I2C,
2x I2S, a parallel camera interface, UART, GPIOs, JTAG,
and a DDR HyperBus interface to connect off-chip up to
64 Mbytes of external Dynamic RAM (DRAM) or FLASH
memory, and a small ROM used to store the boot-code. An
I/O DMA (µDMA [74]) autonomously manages data transfers
through peripherals to minimize the workload of the processor.
To improve the efficiency of the system and the flexibility of
transfer from/to the peripherals each peripheral has a dedicated
clock domain. Two Frequency Locked Loops (FLLs) adjust the
frequency of the peripheral subsystem and core subsystem.
Moreover, peripherals are equipped with clock dividers that
allow fine-tuning the frequency of according to the desired
bandwidth. This architecture allows to tune the performance
of computation and IO transfers, minimizing the system-level
power consumption for the desired performance target.

B. Hybrid Memory Architecture

The L2 memory of the proposed SoC, shown in the bottom
part of Fig. 4 consists of a heterogeneous memory architecture
designed to operate on a wide voltage range and to optimize
access to the different regions of the memory depending on
their purpose. From an architectural point of view, the memory
is composed of two regions. The first one is a 64 kB private
memory that can be used by Fabric Controller (FC) for storing
its program, the stack, and other private data. This portion
of the memory, connected to the interconnect through two
ports (e.g. one for instructions and one for data), is typically
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not shared with other initiators, hence it does not incur any
kind of conflicts guaranteeing full bandwidth. The second
portion, called L2 interleaved memory (Fig. 4), is composed
of four 114 KB banks that can be accessed in parallel by the
masters (i.e., µDMA [74], instruction, and data port) while
minimizing the banking conflict probability thanks to the in-
terleaved addressing scheme implemented by the interconnect.
From a performance viewpoint, this memory organization
enables transparent sharing of the L2, increasing by 4x the
system memory bandwidth compared to the traditional single-
port memory architecture typical of AHB-based MCUs [30],
without the usage of power-hungry dual-port memories.

Both memory regions described above are heterogeneous
also from the memory technology point of view, being im-
plemented as a hybrid mix of SRAM and standard-cell based
memory cuts (SCM). The SCMs are based on the architecture
described in [75]. Each of the interleaved banks has 112 kB
of SRAM and 2kB of SCM, while the private banks have
8 KB of SCM as shown in Figure 1 while the rest is
implemented as SRAM. The SCM portion of the private bank
is implemented as a 3-read 2-write ports register file: two of
the read ports and one of the write ports are dedicated to
the data and instructions interfaces of the RISC-V core while
one read and one write ports are used by the interconnect
arbiter for any other master node of the system. Despite the
intrinsic flexibility of synthesizable IPs that make them more
suitable to implement multi-port cuts, one of the main advan-
tages of latch-based memories is the capability, empirically
proven in this work, to operate reliably in a much wider
supply voltage range than SRAMs. Moreover, they feature
significantly smaller read and write energy with respect to
traditional SRAMs, up to 4x depending on the configuration
(i.e. leakage dominated vs. dynamic dominated) [75]. On the
other hand, they pay a significant area overhead with respect
to SRAMs, that makes them suitable only for implementing
very small memory regions, usually in the orders of few kB
[75].

C. XNOR Neural Engine and BNN Execution Model

To execute with high performance and energy efficiency
binary neural networks, the Quentin SoC also contains a
dedicated hardware accelerator called XNOR Neural Engine
(XNE) [72]. The XNE is connected as a master to the inter-
leaved L2 memory. It has four ports, for an overall memory
bandwidth of 128 bits per cycle. All the configuration registers
are memory-mapped and accessible by the core. The XNE
can execute both convolutional and fully connected layers,
autonomously from the core, once all data reside in L2.

Figure 2a schematizes the internal architecture of the XNE.
It is divided in a control submodule responsible of receiving
jobs from the core; a streamer submodule translating internal
data streams into actual memory transfers on the memory
interconnect towards L2; and a datapath that performs binary
matrix-vector products. The controller includes a memory-
mapped slave interface to a configuration register file, a
controller finite-state machine and a small microcoded loop
that is used to implement the following BNN layer execution
pattern.
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              acc[ko_minor] += popcount          # accumulate popcount
      for ko_minor in range(128):                # thresholding
        y[i,j,ko_major+ko_minor] = 0 if acc[ko_minor] < threshold[ko_minor] else 1
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Fig. 2: a) XNE internal architecture, showing the streamer
(green shades), control (orange) and datapath (blue) sub-
modules; b) BNN layer execution pseudo-code highlighting
microcoded loops (orange) and datapath execution (blue).

// x0, x1, x2, x3, y are statically allocated in L2 memory
// W0, W1, W2, W3 are statically allocated in L2 memory and filled with weight values
uint8_t *x[4] = { x0, x1, x2, x3 };
uint8_t *W[4] = { W0, W1, W2, W3 };
int xne_job_id;
// first execution
udma_get_input(x0); // fill x0 with next input data frame
while(1) {
  for(int i=0; i<3; i++) {
    xne_program(x[i], W[i], x[i+1], CH_OUT[i], CH_IN[i], HEIGHT[i], WIDTH[i], FILTER_SIZE[i]);
    xne_job_id = xne_run(); // start execution of layer
    xne_wait(xne_job_id);   // RI5CY sleeps and waits for XNE end of computation
  }
  xne_program(x[3], W[3], y, CH_OUT[3], CH_IN[3], HEIGHT[3], WIDTH[3], FILTER_SIZE[3]);
  xne_job_id = xne_run();
  udma_get_input(x0); // fill x0 with next input data frame
  xne_wait(xne_job_id);   // RI5CY sleeps and waits for XNE end of computation
}

lay0

in

RI5CY

XNE

uDMA i/o

layer 1 layer 2 layer 3

in

lay0 …
A B C D E F

A, F

B, C, D

E

a)

b
      

Fig. 3: a) Execution profile for an example 4-layer fully on-
chip BNN; b) ANSI C runtime code executed on RI5CY for
the same 4-layer BNN.

An INPUT BUFFER is loaded with a stationary set of 128
input feature bits, with each bit representing a different input
channel (0 represents a ’-1’ value, 1 a ’+1’ value). The
stationary input is multiplied with 128 bits of weights that
are dynamically streamed in each cycle, using 128 parallel
XNOR gates. The XNOR gates are followed by a 128-way
reduction tree that performs a POPCOUNT operation. Overall,
the XNOR & POPCOUNT unit performs a full 128x128 binary
matrix-vector product in 128 cycles, which is used to imple-
ment the innermost loops of a convolutional or linear BNN
layer. To implement the outer loops, popcount outputs are
accumulated in a set of 128 registers (one per output channel)
of 16-bit each. After the accumulation is completed, the
accumulated values are activated and binarized by comparing
them with a set of 8-bit activation thresholds that are streamed
in from memory and left-shifted by a configurable amount to
be comparable with the 16-bit accumulators. The execution is
iterated as specified by the microcoded loop to implement a
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Fig. 4: Quentin SoC floorplan.

TABLE I: Quentin SoC features.

Technology CMOS 22nm FD-SOI
Chip Area 2.3mm2

Memory Transistors 520 kbytes
Equivalent Gates (NAND2) 1.8 Mgates

Voltage Range 0.42 V – 0.8 V
Body Bias Range 0.00 V – 1.4 V
Frequency Range 32 kHz – 670 MHz

Frequency Range (with FBB) 32 kHz – 938 MHz
Power Range 300 µW – 10.4 mW

Power Range (with FBB) 300 µW – 66.2 mW

full BNN layer; if the granularity of the layer is smaller than
128 input or output channels, the datapath can be configured
accordingly. Figure 2b describes the full execution schedule as
pseudo-Python code; we refer to Conti et al. [72] for further
detail.

Since the XNE operates at the granularity of a single
BNN layer, the execution of a full network relies also on
the operation of two other modules in the SoC: the RI5CY
core, operating as a lightweight controller; and the UDMA
engine, which is used to load inputs from I/O. While the
Quentin SoC is designed with the capability to access an
external IoT DRAM if necessary, in this work we focus on
the execution of relatively small, fully on-chip BNNs, which
can be run within an ultra-low power budget by means of
aggressive voltage scaling and access I/O exclusively to fetch
input frames. Figure 3 shows the execution profile of an
example four-layer BNN, along with the C runtime code that
is used to run it. Runtime API calls wrap the memory-mapped
control interfaces that both the UDMA and the XNE expose to
configure them; therefore control is realized with fully com-
pliant ANSI C code using regular load/store operations and
requires no extension to the RISC-V ISA. In the runtime code,
udma_get_input API calls are synchronous and xne_run
asynchronous, with an explicit xne_wait bringing RI5CY to
sleep.

D. Chip Implementation
Figure 4 shows the floorplan of the Quentin SoC, while Ta-

ble I summarizes its main features. The SoC was implemented
in 22nm FD-SOI technology using a flip-well (LVT) standard
cell library. The design was synthesized with Synopsys Design

1.6%

67.1%
24.0%

0.7%

4.6% 1.2% 0.7%

CPU SRAM SCM ROM IO XNE Interconnect

Fig. 5: Quentin SoC area breakdown.

TABLE II: Quentin Area breakdown in mm2

CPU subsystem 0.020
SRAM (504kB) 0.817

SCM (16kB) 0.292
ROM 0.009

I/O subsystem 0.056
XNE 0.014

Interconnect 0.009

Compiler 2016.12, while Place & Route was performed with
Cadence Innovus 16.10. Fig. 6 shows a micrograph of the
Quentin SoC3

The floorplan area of the SoC is 2.31 mm2 and its effective
area is 1.22 mm2 (6154KGE). Its main modules are high-
lighted in Figure 4. The two largest components of the SoC
are the SRAM banks of the L2 memory subsystem (i.e., 504
kB), and by the 16 kB of SCM banks. Although the latch based
implementation features approximately a 10X area overhead
compared to approaches based exclusively on SRAMs (Table
II, Fig.5), it allows major energy savings [75], and it enables
more flexible power management strategies that can be played

3The area of the micrograph that is not annotated contains independent
designs fabricated on the same chip
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Fig. 7: Quentin SoC Power Domains.

at the system level. For example, SRAMs and SMCs can
be independently power-gated. Additionally, on SCMs, it is
possible to scale the operating voltage more aggressively than
for SRAM. Our tests reported no errors when the supply
voltage on the SCMs is scaled down to 0.42V; contrarily, errors
on SRAMs become appreciable already at 0.575V (section V),
limiting the voltage scaling capability of the system.

To exploit both the energy advantage of SCMs and
area density advantage of SRAMs, and to enhance the
power/performance/precision tuning capabilities of Quentin,
the chip was implemented as a multi power-domain system.
The SRAM cuts have separate power connections from the rest
of the logic for both periphery and array, as shown in Figure
7. This configuration allows us to independently tune the
supply voltage of logic circuits, memory arrays, and memory
periphery. Moreover, it allows the system to operate in an ultra-
low-power, highly voltage-scaled mode using only the 16 KB
SCM memories, and to shut down the SRAM via an off-chip
power switch.

IV. BNN ERROR RESILIENCE ANALYSIS

As argued in Section I, BNNs have been shown to be par-
tially resilient to high error rates. For example, Yang et al. [23]
use a statistical model to quantify the accuracy drop of a
BNN in an application-specific architecture, reporting ∼5%
of accuracy loss with respect to the nominal accuracy un-
der a bit error rate of 10−4. In this section, we evaluate
the final classification accuracy of different pre-trained BNN
topologies under multiple SRAM BER conditions. The goal
of our analysis is to exploit the BNNs error resilience to
enable major energy efficiency on SoC architectures featuring
heterogeneous memory subsystems. Our results are silicon-
proven on the Quentin chip. We performed our analysis on
the CIFAR-10 classification data set.

The BER reported in our experiments refers to data being
fetched from the SRAM. In Quentin, the source where XNE
fetches and stores binary data (i.e. weights, activations and
partial results of internal BNN layers) is not fixed at design
time. As described in Section III, this data can be resident
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Fig. 8: uVGG BNN topology.

in either the interleaved SCM or SRAM memories; the XNE 
accelerator always holds partial sums inside its accumulation 
buffer; only fully binarized outputs are stored back to the 
shared memory.

In this scenario, we identified three potential sources of er-
rors affecting the final BNN classification accuracy: i) weights 
reading ii) input features reading iii) activations storage. In 
our experiments, the XNE data-flow partial results are not 
affected by errors, as they are held inside the local buffer of 
the accelerator. Additionally, output activations are binarized 
by comparing the final accumulation value y with a safe 8-
bit threshold value τ , which is stored in the error-free SCM 
memory. Input features, weights, and activations reside in the 
SRAM, potentially corrupted by errors.

To evaluate the accuracy loss when data are corrupted by 
a certain BER, we performed a set of simulations using the 
PyTorch 1.0.1 framework. We targeted a set of pre-trained 
networks on CIFAR-10 based on Hubara’s implementation4. 
We added uniformly distributed errors to input, weights, and 
activations of all layers of the network according to the target 
BER values to evaluate. We tested the noisy BNNs on the test 
set of the CIFAR-10 data-set. The networks have not been re-
trained to compensate for the additional noise injected during 
the simulation. This exploration ultimately allows evaluating 
the overall effect, in terms of final classification accuracy, of an 
aggressive voltage scaling performed on the SRAM. In other 
words, the SRAM supply voltage change can be performed 
dynamically, depending on the tolerable quality-of-results drop 
of a target application. In our experiments, we also explored 
the case where errors were occurring with recurring patterns. 
In this scenario, we did not observe any significant difference 
in the final classification accuracy with respect to the case 
where errors were uniformly distributed.

Fig. 9 shows the results in terms of classification accuracy 
versus the BER. The classification accuracy of each network 
is reported as an average over 100 randomized experiments 
over the CIFAR-10 test set; the standard deviation of the 
results over this sample is always less than 1% of the reported 
value. We report results on Hubara’s topology, as well as on a 
network inspired by the one proposed by Yang et al. We also 
report results on our topology, similar to Hubara’s [19] but fit to 
be deployable on the Quentin SoC. Figure 8 shows the topology 
of this latter network, which we called micro-VGG (uVGG). 
Table III reports the salient characteristics of these networks. 
For what concerns the network proposed by Yang et al. 
[23], we were not able to reproduce the exact training setup 
of their paper. Our PyTorch implementation, on which our

4https://github.com/itayhubara/BinaryNet.pytorch
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BNN topology Nominal accuracy Mem. footprint

78.6%a 319 kB
90.9 4545 kB

Based on Yang et al. [23] 
Hubara et al. [19], 

uVGG 85.6% 312 kB
a Including both activations and weights.

TABLE III: Parameters of BNNs used in the resilience exper-
iment.
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Fig. 9: BNN resilience versus bit-error rate.

experimental results are based, achieves significantly lower 
accuracy results than what Yang et al. [23] report (78.6%
instead of 85%).

In the remainder of the paper, we focused on our proposed 
network, which can tolerate a BER of 10−4 with negligible 
accuracy drop (<4‰) and a BER of 10−3 with an accuracy 
drop of 7‰, while fitting perfectly in the SRAM of the 
Quentin SoC.

V. EXPERIMENTAL RESULTS

In this section, we describe the results of experiments that 
allowed us to correlate the SRAM supply voltage scaling 
to the classification accuracy of the uVGG BNN presented 
in Section IV. As a first step, we evaluated the level of 
noise that could potentially corrupt the data stored in the 
SRAM by measuring how the Bit Error Rate (BER) correlates 
with the memory array and peripheral voltage supplies. As a 
second experiment, we measured the current drained by each 
power domain of the SoC to extract the power consumption. 
The power contribution reported in this section refers to 
the independent power rails described in Fig.7. Finally, we 
computed the energy efficiency of the SoC and evaluated 
the power saving when the supply voltage of the SRAM is 
scaled and the quality-of-results (i.e. top1 network accuracy) 
is degraded by less than 1%.

A. Experimental setup
All the measurements related to SRAM BER evaluation

and power domains power consumption have been performed
using an Advantest SoC hp93000 integrated circuit testing
device. Supply voltages have been precisely regulated utilizing
dedicated hp93000 power supply device channels. Power mea-
surements have been performed using current measurement

UART Connector

Tester Board

Quentin Chip

Quentin Board
JTAG Connector

Advantest SoC Tester Host PC

COM Port

Test result 

IC Tester software

- Quentin binary load

- Chip Boot

- Return check 

Fig. 10: High level block diagram of the experimental setup.

channels integrated into the hp93000 device and connected in
series to the voltage supply channels.

BER experimental data have been obtained by running a
self-test C application on the RISCY microprocessor executing
from the private SCM of the core, which is error-free in all
operating points tested. We loaded the test program into the
SCM through the SoC internal debug interface via a standard
JTAG interface driven by the hp93000 digital channels. Fig.10
shows the block diagram of the experimental setup.

B. Bit Error Rate analysis

Measuring Bit Error Rates from outside, i.e. directly from
the tester equipment, requires a very large testing time. In our
tests, we observed that the number of bits to observe to detect a
single-bit memory failure can be in the order of 109 or higher,
e.g. for SRAM operating at nominal supply voltage conditions.
Additionally, to acquire relevant statistics on memory errors,
tests have to be repeated many times. To reduce the number
of pads dedicated to SoC debug subsystems, modern micro-
controllers often employ serial debug interfaces connected
to a shared bus. Therefore, accessing the memory locations
through a serial JTAG debug interface designed for reliability
rather than for high speed, could be a severe limitation for
the execution of tests targeting BER measurement. In our
tests, we estimated that a single BER measurement point is
acquired in several 10th of minutes, assuming to test 448kB of
memory for 1800 iteration, at a JTAG frequency of 1MHz, and
repeating each measurement 10 times. To overcome the serial
debug interface bottleneck, we designed an on-chip BER test
application, which was executed by the microcontroller core.
This allowed to reduce the time to test a single BER point by
a factor of approximately 100X.

To issue memory transactions to the SRAM, and observe
errors on the bits, our self-test application runs directly on the
RISCY core of the SoC, which operates at the highest reliable
frequency for each condition. Pseudo-random test patterns
are generated by the core using a lightweight 32 bits Linear
Feedback Shift Register (LFSR) implemented in C code. The
test application sequentially covers the entire SRAM shared
address space. Errors are counted by comparing, bit-wise, the
data read at each memory location with the ground-truth value
generated by the LFSR generator using the same initial seed.
At each supply voltage point, the test is repeated in a loop
to have a reliable measurement of the BER. Note that this
approach could generate artifacts in the error statistics when
a memory location is filled in successive iterations with the
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same test vector; to avoid this problem, and to make our
measurement more robust, the software LFSR uses a different
seed to generate test data at each new iteration.

In our tests, we measured only the BER related to SRAM
banks. SCM, which is hosted by the same power domain as
the circuit logic, was reserved for storing the core instructions
of the self-test application and test results (i.e. the number of
errors). Note that the storage of the software instruction on
an error-free memory space is mandatory for the application
to be able to run. In SoCs featuring single-power-domain
memory subsystems (i.e. not having the possibility to store
core instructions in a separate error-free memory), SRAM
errors could affect also core instructions – making aggressive
voltage scaling infeasible, as a single corrupted bit on a core
instruction could cause errors in the core control flow, making
the entire SoC entering unpredictable states, and ultimately the
system to fail. For each operating point in our experiments,
we performed 1800 on-chip test runs, writing 448kB at each
iteration.

Fig. 11 reports the BER at each SoC operating voltage.
By construction, our test could not observe more than 8 ∗
108 bits. Therefore, the reciprocal of this value represents the
lower bound of the on-chip test application, i.e. 1.25 ∗ 10−9.
The results of the BER analysis versus the supply voltage are
reported in Fig.11. When the supply voltage is higher than
0.6V, no BER is observable by our tests.

Below a supply voltage of 0.6V, as expected, we observed
a BER increasing with the memory supply voltage decrease,
reaching a BER of 10−2 at the lowest supply voltage point
where the memory was still accessible. The BER measure-
ments confirm that SRAM supply voltage can be scaled at the

OP mode V ddma/mp/quentin Freq.

Nominal 0.8V 565 MHz
HEFF 0.5V 145 MHz
ULP 0.42V 18 MHz

TABLE IV: Supply voltage range of Memory Array (MA),
Memory Periphery (MP) and Quentin power domains at Nom-
inal, High Efficiency (HEFF) and Ultra-Low Power (ULP)
modes.
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Fig. 12: SoC maximum operating frequency.

cost of a higher number of errors, noise-tolerant applications
can be deployed on Quentin SoC and there is enough margin
for trading off the amount of noise injected on the data and
the potential energy efficiency gain deriving from the voltage
scaling.

C. Power and energy consumption

In this section, we discuss results related to the power and
energy consumption of the SoC. These measurements, together
with the evaluation of the maximum operating frequency,
which is reported in Fig.12, allow evaluating the overall energy
efficiency of the system. The critical path of the system is
in the paths going from the core to the memory system.
Power measurements were performed during the execution of
a test application on the Quentin SoC. To precisely control the
supply voltages and clock frequencies of the SoC, therefore
to measure the energy consumption of individual SoC power
domains with enough accuracy, all the measurements were
performed on the Advantest SoC IC tester mentioned in V-A.

The application we used as a benchmark was designed to
emulate realistic working conditions, using the XNE acceler-
ator over a randomized pattern of bits. By using a synthetic
uniformly distributed and uncorrelated set of binary inputs,
we maximized the switching activity both on the XNE input
circuitry and the XNOR-based datapath, practically obtaining
a worst-case power consumption. The main application is
executed by the core while the BNN layer output computation
is accelerated by the XNE; while the accelerator is active, the
core is in clock-gating and it wakens up at the end of each
XNE job. Instruction code was stored in the error-free SCM,

Weights Activation
thresholds

Input
features

Output
features

Instructions
and Stack

SRAM
Exec. SRAM SCM SRAM SRAM SCM

SCM
Exec. SCM SCM SCM SCM SCM

TABLE V: Network parameters and core instruction memory
storage
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operating from supply voltage scaled SRAM.

supplied at the same voltage as the core. Data (i.e. binary
weights, activation, and partial results) were stored in the
error-prone SRAM supplied at the scaled voltage, except for
critical 8-bit threshold data which is stored in the interleaved
SCM. Table V reports more details on how data are stored in
memory.

The measurements reported in this section refer to three
relevant operating conditions of the SoC. The nominal oper-
ating point (namely Nominal) refers to a supply voltage of
0.8V. This is the operating point for which we performed the
Static Timing Analysis (STA). The High Efficiency (HEFF)
point is the operating condition at which the chip reported
the highest energy efficiency. The Ultra-Low Power (ULP)
point is the operating condition where the chip reported the
minimum power consumption. Table IV provides more details
about those three points.

Fig.13 reports the power consumption breakdown of the
Quentin SoC. We measured contributions from the three power
domains by observing the total current drained from the
power supply by each power domain. We performed all power
measurements at three different frequencies (fmax, fmax/2,
10 MHz) and used a simple least squares model to detect
static and dynamic power. As shown by the plot in Fig.13,
in ULP mode (i.e. at a supply voltage of 0.42V), leakage
power dominates the dynamic power. In this operating point,
the SoC reliably works at its lowest power consumption,
674 µW, yet achieving a sustainable frequency of 18 MHz,
and energy efficiency of 6.2 Tops/s/W, which is not lower
than the one reported at the nominal operating condition. In
ULP mode, the leakage power contributes to approximately
80% of the total power consumption. In this operating point,
Quentin can perform 15.4 Inference/s, reaching an energy
efficiency of 22.8 Inference/s/mW. When compared to the
execution of the same workload on the embedded RI5CY core,
hardware-accelerated execution achieves 21.6× better energy
efficiency in the Nominal operating point (167 fJ/op using
the XNE, 3.6 pJ/op performing it in software at VDD=0.8V):
whereas the overall power consumption drops when using
the core, the performance achieved is significantly lower
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Fig. 14: SoC energy efficiency comparison when operating
with supply voltage scaled SRAM, and when executing from
SCM.

(6.6 op/cycle) [41]. Note that the software baseline used as
a comparison represents already a significant improvement
(more than 10X) to the performance reported by leading
microcontroller architecture (e.g. arm cortexM4).

Overall, we observed that the biggest leakage contribution
originates from the SRAM arrays, which are working 380 mV
below the nominal specifications. In HEFF mode (i.e. at
a supply voltage of 0.5V), the SoC can sustain a clock
frequency of 145 MHz, consuming 2.5mW. In this operating
point, we report the highest energy efficiency achieved by the
system, i.e. 12.7 Tops/s/W (49.2 Inference/s/mW). In HEFF
operating mode, the leakage represents 32% of the total power
consumption. Fig.12 reports the SoC maximum frequency
used for the energy efficiency computation. Other relevant
measurement points covering the entire operating range are
reported in Table VII.

Fig.14 shows the energy per binary operation when the
SoC is executing either from SCMs only or SCMs plus
SRAMs; The absolute lowest energy per binary operation is
76 fJ OP, which is achieved at 0.46V when executing from
SCM only. Note that to execute a full neural network from
SCM only is unrealistic since those memories are generally too
small because of the low area density. The lowest energy per
operation achievable when executing from SCMs and SRAMs
is 78 fJ OP, and is reached at 0.5V. Overall, this plot demon-
strates that our approach allows achieving comparable energy
per operations both on SCMs and SRAMs. The aggressive
voltage scaling performed in our experiments, together with
a carefully crafted memory partition, significantly improves
the energy efficiency when executing from dense SRAMs,
ultimately relaxing the memory constraints for error-resilient
applications deployment. The energy per operation reached at
0.5V represents an improvement of 2.2X compared to the
energy per operation measured at nominal condition 170 fJ.

Table VI compares our work to BNN accelerator implemen-
tations that, similarly to our case, exploit BNN error-resilience
to maximize energy efficiency. To our best knowledge, this
work represents the first complete general purpose microcon-



11

Name Technology Core area
[mm2]

Power
[mW ]

Energy eff.
[TOP/s/W ]

On-chip memory
[kByte]

Peak perf.
[GOP/s] Type BNN

BRein [62] 65nm
(Digital) 3.9 600 6 - 1380 DNN ASIC Configurable

UNPU [4] 65nm
(Digital) 16 7.37 51 256 7372 DNN ASIC Configurable

Bankman et al. [5] 28nm
(Mixed signal) 4.84 0.094 772 329 72 DNN ASIC Fixed topology

BinarEye [76] 28nm
(Digital) 1.4 2.2 230 328 90 DNN ASIC Configurable

Yin et al. [64] 28nm
(Digital) 4.8 3.4-20.8 765 224 3270 DNN ASIC Configurable

This work (0.8V)
22nm

(Digital) 2.3

21.6a 5.98a/14b

520

129a Heterog. SoC
core + periph +
mem + BNN acc.

SW definedThis work (0.8V)
SW Impl. 16a 0.276a 3.73b

This work (0.5V) 2.52a 13a/23.9b 33a

This work (0.42V) 0.674a 6.2a/14b 4a

a - full SoC
b - core domain

TABLE VI: Comparison of silicon-proven Application-Specific ICs for Binary Neural Networks.
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Fig. 15: SoC supply voltage / Accuracy tradeoff.

troller architecture capable to exploit a heterogeneous memory
hierarchy to execute error-resilient applications at the highest
achievable energy efficiency.

D. Power accuracy tradeoff
From the analysis discussed in the previous section, we

concluded that the final classification accuracy can be traded in
spite of higher energy efficiency or lower power. Fig.15 shows
the accuracy loss versus the supply voltage on both memories
and core logic. Fig.16 reports the accuracy loss versus the
power consumption reduction enabled by the aforementioned
supply voltage scaling.

When the SoC operates in HEFF mode, we did not observe
any accuracy loss. Thereby, we can conclude that, if perfor-
mance (e.g. in terms of inference per second) is not a critical
constraints, the energy efficiency can be improved by 2.2X
(from 170 fJ OP to 78 fJ OP) without any appreciable penalty
on the quality of the result, i.e. the classification accuracy of
a BNN.
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Fig. 16: Power accuracy tradeoff evaluation for the uVGG
BNN topology.

Furthermore, if a small classification accuracy loss can be
tolerated by the application, smaller than 1% in our analysis on
typical target network topologies, the power consumption can
be further pushed down, reducing it by 3.7X with respect to the
HEFF operating mode. In this operating condition, the energy
efficiency degrades compared to the HEFF operating point.
This is caused by the fact that the total power consumption
becomes leakage dominated as the supply voltage is reduced
(Fig.13). Thereby, the performance reduction caused by the
voltage scaling is not followed by a proportional power
reduction. The ULP mode, where the chip consumes 674 µW,
is suitable for always-on operating scenarios, or IoT end-node
with an expected lifetime in the order of months or years,
as well as applications where the peak power dissipation is a
critical concern (e.g. implantable devices).
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VDD F linfit
max P tot

MA P tot
MP P tot

Quent. P leak
MA P leak

MP P leak
Quent. P dyn

MA P dyn
MP P dyn

Quent. Energy BERexp−fit

[V] [MHz] [uW] [pJ/OP] [%]

0.42 18 247.5 135.2 292.1 226.4 105.4 211.7 21 29.8 80.4 0.290 0.001723
0.46 56.9 353.1 244.9 598.1 272.9 127.6 265.2 80.2 117.3 332.9 0.114 0.000109
0.5 145 589.2 544.5 1383 328.7 154.9 332.6 260.5 389.7 1050.3 0.079 6.93E-06
0.54 205.1 823.5 839.5 2146.8 393.9 186.9 415.9 429.6 652.6 1730.9 0.080 4.40E-07
0.58 265.3 1115.8 1219.8 3097.4 469.6 225.4 516.8 646.2 994.4 2580.6 0.087 2.79E-08
0.62 325.4 1525.7 1792.2 4479.7 560.4 272.3 641.2 965.4 1519.8 3838.5 0.098 1.77E-09
0.66 405.5 2022.3 2507.7 6167.2 670.6 330 797 1351.7 2177.7 5370.2 0.108 1.12E-10
0.7 445.6 2473.1 3155.6 7616.3 799.6 399.6 993.5 1673.5 2756 6622.8 0.122 7.11E-12
0.75 525.8 3075.6 4045.9 9622.4 953.5 480.8 1233.8 2122.1 3565.1 8388.6 0.136 4.51E-13
0.80 565.8 3692 4945.1 11612.8 1137.9 582.6 1534.7 2554.1 4362.5 10078 0.154 2.86E-14

TABLE VII: Raw data for frequency, power and energy at various voltage scaled operating points

VI. CONCLUSION

In this paper, we presented a strategy to maximize energy
efficiency in complex heterogeneous SoC. Our results demon-
strated how to trade-off the energy consumption of an FDX
22nm SoC with the final classification accuracy of Binary Neu-
ral Networks, executed on a dedicated hardware accelerator.
The proposed approach exploits the intrinsic noise robustness
of BNN, i.e. the fact that a significant amount of noise on
network parameters, quantified in terms of BER, marginally
degrades the final classification accuracy. Our measurements
show that thanks to a wise L2 memory partitioning, the system
can operate reliably at very low voltages (i.e. down to 0.42V).
Therefore, we show that by over scaling the supply voltage
of the SRAMs of the SoC significantly below the nominal
specifications, the energy per binary operation can be reduced
by a factor of 2.2X compared to the nominal supply voltage.
In this voltage over-scaled regime, we demonstrate that the
reported energy efficiency gain does not affect the end-to-end
classification accuracy of the BNN when the voltage is scaled
down to 0.5V. Additionally, we show that, if a small penalty
on the final classification accuracy is tolerable, e.g. within 1%,
the SoC can be operated in an ultra-low power mode, further
reducing the overall power consumption (674 µW at 18MHz,
0.42V) without exceeding the energy consumption per binary
operation shown at nominal operating conditions.
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