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SUMMARY

The activity of neurons of themedial posterior parietal area V6A inmacaquemon-
keys is modulated bymany aspects of reach task. In the past, research was mostly
focused on modulating the effect of single parameters upon the activity of V6A
cells. Here, we used Generalized Linear Models (GLMs) to simultaneously test
the contribution of several factors upon V6A cells during a fix-to-reach task.
This approach resulted in the definition of a representative ‘‘functional finger-
print’’ for each neuron. We first studied how the features are distributed in the
population. Our analysis highlighted the virtual absence of units strictly selective
for only one factor and revealed that most cells are characterized by ‘‘mixed
selectivity.’’ Then, exploiting our GLM framework, we investigated the dynamics
of spatial parameters encoded within V6A.We found that the tuning is not static,
but changed along the trial, indicating the sequential occurrence of visuospatial
transformations helpful to guide arm movement.

INTRODUCTION

The ability to integrate and filter in a flexible way the multitude of sensory stimuli coming from inside and

outside the body relies on associative cortices. How these computations occur at single neuron and pop-

ulation levels is still an unsolved problem. It is well accepted that the information is distributed in neural

networks, with single cells modulated by many parameters at the same time, in a non-linear way. Thus,

the actual view is that neuronal activity is characterized by what has been called ‘‘mixed selectivity’’ (John-

ston et al., 2019; Parthasarathy et al., 2017; Fusi et al., 2016; Rigotti et al., 2013). According to this hypoth-

esis, just a minority of cells would be strongly modulated by a specific factor, whereas most of them would

code for combinations of different features.

The associative cortices, like the posterior parietal cortex (PPC), include a variety of multimodal associative

areas whose neurons are modulated by a plethora of different factors (Binkofski and Buccino, 2018; Galletti

and Fattori, 2018; Gamberini et al., 2020). Within macaque PPC area V6A, located in the anterior bank of

parieto-occipital sulcus, (Galletti et al., 1999), is a higher-order visuomotor area modulated by visual signals

coming from the whole visual field and somatic signals coming from the upper limbs (Gamberini et al.,

2011, 2018), as well as by oculomotor signals related to gaze position and eye movement (Galletti et al.,

1995; Kutz et al., 2003 Breveglieri et al., 2012). V6A neurons are also strongly modulated by reaching move-

ments, both during action preparation and execution (Bosco et al., 2010, 2015, 2016; Fattori et al., 2001,

2005, 2009; Hadjidimitrakis, 2017; Santandrea et al., 2018) and attentional shifts (Galletti et al., 2010, see

also Fattori et al., 2017; Galletti and Fattori, 2018 for reviews). In addition to single parameters, in some

of the previous V6A studies the influence of pairwise parameters has also been studied, as for instance,

target and gaze positions (Marzocchi et al., 2008), target position and visual condition (Bosco et al.,

2010), target and initial hand positions (Hadjidimitrakis et al., 2017), etc. Recently, Bosco et al. (2019)

used a novel dimensionality reduction method (dPCA) to extract from V6A information about a number

of different modulating signals (visual condition, target position, wrist orientation, grip type), obtaining

a compact view of the population activity. However, the authors did not address the question of whether

all parameters were encoded in single cells, in separate subpopulations, or were distributed through the

whole network.

To our knowledge, no comprehensive work has yet tried to correlate V6A single-cell activity with a full set of

modulating variables concurrently acting upon the same neuron during the execution of the same task.

Because of the multimodal nature of V6A, we expected that its neurons are characterized by ‘‘mixed
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selectivity.’’ Moreover, given the sensorimotor transformations occurring in this area, we also expected that

the influence of spatial parameters changes over time. To test our hypotheses, we first uncoupled different

parameter contributions at single-cell level, and then we moved to population level to study the dynamics

of these contributions.

Among the mathematical probabilistic models, the family of Generalized Linear Models (GLM) offers a

valid statistical framework to check how a variable of interest (i.e., the neural activity) is explained by several

features or ‘‘regressors.’’ As the Poisson distribution is the most appropriate to model single-cell activity

(see Transparent Methods), we used a Poisson GLM to study the effect on neuronal activity of the many

factors that are known to modulate V6A. We collected spiking activity of V6A neurons and gaze positions

during a delayed reaching task, and then fitted neural activity of a single cell with eye-related and reaching-

related parameters. Our analysis allowed us to represent activity modulations of each cell with a set of

weights that we named ‘‘functional fingerprint.’’ Across the population, units were not clustered in homo-

geneous groups according to their fingerprints, but were distributed in a functional continuum, suggesting

that V6A is characterized by ‘‘mixed selectivity.’’ Influences of spatial parameters were not static but

changed through space and time, indicating the occurrence of visuospatial transformations helpful to

guide movement.
RESULTS

Single-cell activity was extracellularly recorded from area V6A (see Figure 1A) while two monkeys (M1 and

M2) performed an instructed delay reaching task toward nine targets placed at eye level (Figure 1B). The

monkey pressed a home button (HB) to begin the trial. As illustrated in the temporal sequence in Figure 1C,

one of the nine LEDs lit up green and the monkey had to fixate it. After a variable delay, when the LED

changed color from green to red, the animal was required to perform a hand movement to reach and press

the LED and hold it until the LED turned off. After that, the animal returned the hand to the initial position,

pressed the HB to receive liquid reward, and a new trial began.

Our dataset consisted of cells that were recorded for 10 correct trials for each of the 9 targets (N = 181; 64

fromM1, 117 fromM2; see Figure S1 for the recording sites). To reduce sources of noise we performed a 1-

way ANOVA (factor: epoch; levels: 8) on mean firing rates within epochs of interest (for more details see

Transparent Methods) to identify task-related cells. The entire neural population resulted modulated,

i.e., the mean firing rates differed significantly for at least one epoch, with no exceptions. Furthermore,

we selected the cells according to the goodness-of-fit of our model (see below). Spikes were counted in

40 ms bins, and all trials were concatenated tip to tail in a unique vector for each cell that represented

the dependent variable. In the GLM context a dependent variable is explained with a combination of inde-

pendent variables called ‘‘regressors’’ or ‘‘features’’ in this article (Figure 1D). Each independent variable

was a vector of the same length of the dependent variable. The regressors were organized in blocks.

EYE POSITION block contained information about the average gaze position discretized in a 3D grid for

each bin (see Transparent Methods); EYE SPEED/DIR block contained information about the velocity

and the direction of eye movements; POSTSACC, FIX, PREP, PREMOV, MOV, HOLD, PREMOV2, and

MOV2 were blocks that contained spatiotemporal information about the sequence of behavioral epochs

occurring along the task (see Figure 1C for the temporal sequence of the task and Transparent Methods

for details). We refer to these blocks of regressors as ‘‘extrinsic.’’ The SPIKEHISTORY block contained infor-

mation about firing activity of the neuron in the previous 200 ms. We refer to it as ‘‘intrinsic’’ block. For each

cell, we first selected the most relevant regressors with LASSO regularization technique. This first step led

us to retain on average 90 G 20 (standard deviation) regressors over x150 across the entire population

(non-zero beta coefficients estimated by LASSO). Then, for each cell, we built several Poisson GLMs: a com-

plete model that included all the selected regressors, 10 nested models in which we removed each time a

different block of extrinsic regressors, 1 nested model removing the intrinsic block of regressors (extrinsic-

only model), and 1 nested model removing all the extrinsic blocks of regressors (intrinsic-only model). All

themodels were cross-validated, and reported results are relative to the test datasets never seen by the no-

LASSO-regularized models during the fitting (see Transparent Methods). To discard the units for which the

model failed to capture neural modulations, we chose to select only the cells for which pseudo-R2 of the

complete model reached at least 0.05, a criterion used in literature (Goodman et al., 2019; see Transparent

Methods). As a result, 50/64 (78%) M1 units and 65/117 (56%) M2 units met this criterion and were retained

for further analyses. For selected cells, pseudo-R2 was 0.102 [0.073, 0.147] (median [25th, 75th percentile]).

To evaluate the influence of the different parts of our model (blocks of regressors) on neural activity, we first
2 iScience 23, 101616, October 23, 2020



Figure 1. Anatomical Localization of Area V6A, Experimental Design, and Mathematical Model

(A) Three-dimensional reconstruction of macaque brain. Dorsal view of the left hemisphere and medial view of the right

hemisphere showing area V6A in yellow (Galletti et al., 1999). cal, calcarine sulcus; cs, central sulcus; ips, intraparietal

sulcus; ls, lunate sulcus; pos, parieto-occipital sulcus; sts, superior temporal sulcus; D, dorsal; P, posterior; A, anterior; L,

lateral.

(B) Experimental setup. Reach movements were performed in darkness toward 1 of 9 LEDs (orange) arranged over a panel

mounted at eye level in front of the monkey. Spatial coordinates of targets are indicated as vergence and version angles

with respect to the eyes. HB: Home Button.

(C) Task sequence. From left to right: trial start (HB press), target appearance (LEDon), fixation onset (end of saccade, Fix),

go signal (Go), start of the arm movement (M1), touch and holding of the target (Touch), LED switch-off (REDoff) return

movement (M2). Color bar below the drawings illustrate the epochs considered in the model. DELAY epoch overlaps with

POSTSACC and PREP.

(D) Schematic representation of the Generalized Linear model. Behavioral data are used to build the matrix of regressors

(X, independent variables). Recorded neural activity is used to build the vector of mOBS (dependent variable). X and mOBS

are used to fit the model and estimate the vector of beta coefficients (b). mEST can be reconstructed with X and the

estimated b passing through an exponential function.
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calculated for each nested model a relative pseudo-R2 that compared its goodness of fit with the complete

model goodness of fit. We then adopted a metric that we called ‘‘w-value’’ (1 – relative pseudo-R2) directly

proportional to the weight (i.e., the importance) of each block of regressors on the fitting of the complete

model. Each w-value ranged from 0 (no influence of the removed block of regressors on spiking activity) to 1

(greatest influence of the block of regressors; see Transparent Methods for further details). The set of the 10

extrinsic w-values functionally qualifies each cell and represents what we called ‘‘functional fingerprint’’.
iScience 23, 101616, October 23, 2020 3



Figure 2. Examples of Single-Cell Activity

(A and B) (A) Neuron showing a marked selectivity for somato-motor components of the task; (B) a neuron with a mixed selectivity for several parameters.

(Top) Plots are arranged according to the spatial position of targets over the panel (rows for different depths; columns for different directions, see Figure 1B).

Recorded (mOBS, dashed line) and predicted (mEST, black continuous line) averaged firing rates (bin width: 40 ms). In each plot, data relative to the 10-fold

validation sets are averaged across trials for each of the nine targets and aligned on movement onset (time ‘‘<0>’’). Colors represent the epochs considered

in the model. (Bottom) Bars show the weights (w-values) of the 10 extrinsic blocks of regressors (the ‘‘functional fingerprints’’ of the neurons) on the neural

activity. Asterisks indicate most important w-values for each cell (their sum reaches at least 85% of the sum of all w-values of the cell, see Transparent

Methods).
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Analysis at Single-Cell Level

Figure 2 shows data of two different example neurons (A, B). The column plots in the bottom part of the

figure represent the ‘‘functional fingerprint’’ of cells shown in A and B, respectively. The first neuron (Fig-

ure 2A) showed strong changes in the discharge during the PREMOV and MOV epochs (light and dark

blue, Figure 2A top), whereas during the other time epochs little or no effects were observed. In fact,

the firing rate (dashed line) suddenly increased in PREMOV (just before the onset of arm movement) and

remained high throughout the whole movement phase. A few motor-related parameters (linked to PRE-

MOV andMOV epochs) explained most of cell modulation (highest columns, Figure 2A bottom). In the col-

umn plot, wemarked with asterisks the blocks that resulted themost important to explain the neural activity

from our analysis (see Transparent Methods).

The neuron reported in Figure 2B had more complex modulations. It showed a clear preference for far po-

sitions and a peak in the activity when the animal reached them. Indeed, starting from the beginning of fix-

ation, cell discharge was remarkably higher for far positions than for the others. Moreover, for far positions,
4 iScience 23, 101616, October 23, 2020
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it increased just before the movement onset (PREMOV) and reached a peak after it (MOV). On the contrary,

for intermediate positions the neural activity was generally low, and even lower for near positions. Interest-

ingly, during the epochs of major activity for far positions (PREMOV and MOV), the neuron was almost

completely inhibited when the animal gazed and reached near positions. The ‘‘functional fingerprint’’ (Fig-

ure 2B bottom) shows the mixed selectivity of this cell, with six regressor blocks that significantly influence

cell discharge (mainly PREMOV, MOV, HOLD, but also EYE POSITION, PREP, and MOV2).

It is worth noting that the ‘‘functional fingerprint’’ does not provide information about the spatial tuning of

the unit, because it accounts for the overall influence of different parameters upon cell discharge (aver-

aging the effect of parameters in different spatial positions) rather than accounting for changes in cell

discharge according to the spatial position. Indeed, the functional fingerprint of cell in Figure 2A is

much more selective (only a few parameters do influence cell discharge) than the one of cell in Figure 2B,

even if the spatial selectivity of cell in Figure 2B is strikingly higher than the spatial selectivity of cell in

Figure 2A.
Population Analysis

To understand how the functional properties were encoded in the V6A population, we further analyzed the

results obtained cell by cell at population level. As described above, for each recorded neuron, we calcu-

lated 10 w-values, one for each of the extrinsic blocks of regressors. We first checked whether these

w-values across the population were consistent between the two animals (Figures 3A and 3B; medians

and intervals in Table S1). Despite some differences for single blocks (such as PREMOV that was higher

in M1 than M2 or MOV and HOLD values that were slightly lower), the overall distribution of the median

values of each block of regressors was consistent (Kolmogorov-Smirnov test, p = 0.6751). Figure 3A shows

that in both animals the extrinsic regressors with higher w-values were EYE POSITION, MOV, and HOLD

(median values for M1 + M2: 0.018, 0.015, and 0.016 respectively). Data of M1 and M2 pooled together

are shown in Figure S2. The distribution of w-values sorted separately for each block of regressors showed

that just a few cells in both animals had very high w-value, whereas the remaining cells (the large majority)

showed gradually descending values (Figure 3B). It is possible to identify an elbow that splits the curve in

two parts (see Transparent Methods). On average, the dividing point corresponded to the 90%G 5% of the

population (mean and standard deviation across all blocks and the two animals). In other words, focusing

on each regressor, only a few cells (10%) were well modulated by that parameter, whereas most of the cells

(the remaining 90%) showed mild or low modulations.

Because each cell is described with a unique vector of w-values (functional fingerprint), to visualize this

multidimensional data and investigate whether a functional structure does exist, we performed a prin-

cipal-component analysis (PCA) on the extrinsic w-values (Figure 3C). No definite clustering of the data

emerged from this analysis: the majority of cells were grouped together, with some outlier, sparse units.

We tried to apply the most common clustering techniques (such as K-means and hierarchical clustering;

see Transparent Methods), but any attempt failed to identify a segregation in our data.

To visually check whether there was a trend within the population, we colored in Figure 3C the dots accord-

ing to cell modulations. For graphical purposes, we chose only the three main blocks of regressors (EYE

POSITION, MOV, HOLD). Given the three pure colors associated with each of the three regressors (black,

blue, and purple, respectively, see color code in Figure 3), each neuron (dot) was colored with a mixture of

these colors based on its series of w-values (i.e., with a linear combination of colors weighed with the three

w-values). The resulting colors of the outlier cells were similar to three pure ones, and thus they were the

most selective for these parameters, whereas the majority of cells showed a combination of the three

colors. For instance, the unit of Figure 2A, with high w-values for PREMOV and MOV, is located outside

the central cloud of points in Figure 3C (bull’s-eye indicated by filled arrow) and almost purely blue. On

the contrary, the unit of Figure 2B is located in the central part of the principal components’ (PCs’) space

and is colored according to its ‘‘mixedmodulation’’ nature (Figure 3C, bull’s-eye indicated by empty arrow).

The gradual transition from one color to another across the dots is in accordance with the continuum of the

w-values distributions (see Figure 3B).

To study cell selectivity for one block of regressors (versus non-selectivity, i.e., mixed selectivity), beyond

the three main ones considered in Figure 3C, we computed how many blocks really matter for explaining

the neural activity. Because of the variability both in the distribution and in the absolute values in the
iScience 23, 101616, October 23, 2020 5



Figure 3. Extrinsic Regressors’ Weights across the Population

(A) Boxplot of w-values for each block of regressors across the population for the two animals separately. In each box, the

central white mark represents the median, while the bottom and top edges of the box indicate the 25th and 75th

percentiles, respectively. The whiskers extend to the most extreme data points discarding outliers (MATLAB function:

boxplot).

(B) W-values are plotted in ascending order for each block of regressors. Solid and empty arrows indicate the elbow of the

curves for M1 and M2, respectively.

(C) Representation of the neural population (a dot for each cell) using the first three principal components (PCs) of the

principal-component analysis (PCA) performed on the 10 extrinsic w-values. Dots take different combinations of three

colors according to their w-values for the three most important regressor blocks (black for EYE POSITION, blue for MOV,

pink for HOLD). Bull’s-eyes indicated by solid and empty arrows represent the example neurons showed in Figures 2A and

2B respectively.

(D) Histogram showing the minimum number of extrinsic regressors’ blocks (w-values) necessary for each cell to reach at

least the 85% of its extrinsic w-values total sum (see Transparent Methods). Solid and empty arrows indicate where

example neurons of Figures 2A and 2B, respectively fall.
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functional fingerprints, we adopted an adaptive threshold that took into account the cell total sum of w-

values (see Transparent Methods). This procedure allowed us to calculate that, on average, that each cell

was significantly modulated by 4.2 (G1.3) blocks of regressors (mean and standard deviation). Figure 3D

shows the distribution across the entire population. Units on the left of the histogram were more selec-

tive (less parameters were needed to explain neural modulations), whereas units on the right were char-

acterized by more complex and mixed modulations. In accordance with what has been already dis-

cussed, the example units of Figure 2 fell in opposite parts of the histogram: indeed, the cell of
6 iScience 23, 101616, October 23, 2020



Figure 4. Spatial and Temporal Correlations between Beta Coefficients

(A) Correlations between beta coefficients of the population of different target positions within the same epoch. In the

graphs, nodes represent the nine targets (see Figure 1B). Edges represent the correlation coefficient between beta

coefficients of two different positions. Three panels show the three main epochs (DELAY, MOV. and HOLD). Top: edges

link targets at short distance, bottom: edges for targets at long distances. Note that target positions are altered for

graphical purposes. For a general trend across the task, see (C), and for details about the other epochs, see

Supplementary Material.

(B) Correlations between beta coefficients of the population of the same target across subsequent epochs. In the graphs,

nodes represent the nine targets (see Figure 1B). Edges represent the correlation coefficient between beta coefficients of

two different epochs. The figure shows only the epochs of the central part of the task. For a general trend across the task,

see (D).

ll
OPEN ACCESS

iScience 23, 101616, October 23, 2020 7

iScience
Article



Figure 4. Continued

(C) Mean correlation between beta coefficients of different target positions within the same epoch. Same data as in (A),

but all pairwise correlations between targets are averaged. Error bars indicate the standard deviation.

(D) Mean correlation between beta coefficients of the same target across subsequent epochs. Same data as in (B), but

pairwise correlations between epochs are averaged. Error bars indicate the standard deviation.
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Figure 2A (filled arrow), more selective, with three modulating blocks of regressors, is in the left part; the

cell of Figure 2B (empty arrow), with six modulating blocks, in the right part. As we partially expected,

although V6A cells typically showed mixed selectivity, we never observed a ‘‘totally mixed’’ selectivity

(i.e., cells with 8–9 important blocks).

Spatial and Temporal Correlation Analysis

Up to here, we focused on the neural modulations explained by each block of regressors. However, our

population analysis based on w-values did not give any direct indications about the spatial tuning,

although it is known that area V6A is strongly influenced by direction and depth during reaching task (Fat-

tori et al., 2017, 2005; Hadjidimitrakis et al., 2014, 2019; Battaglia-Mayer et al., 2000). To study the dynamics

(or the lack of) of the spatial selectivity at population level, we extracted information about changes in the

beta coefficients (i.e., the modulations captured by the model) performing a correlation analysis, similarly

to recent studies (e.g., Zhang et al., 2017). Population activity for each target position and for each epoch

can be expressed by a vector of beta coefficients extracted from the GL (generalized linear) complete

models (one beta for each cell). In the graphs of Figures 4A and 4B, each node represents a target position.

The colors of the edges represent the strength of the correlation between the two beta vectors of two

different positions within the same epoch (Figure 4A) or between the two beta vectors of the same position

across two subsequent epochs (Figure 4B). For a simpler interpretation, these results are averaged and

summarized by the plots in Figures 4C and 4D.

Figure 4A shows the correlations between two different positions within the same epoch. The three panels

(DELAY,MOV, and HOLD) display the three epochs that resulted to be themost important ones after merg-

ing the data of the two animals (highest median w-values, see Figure S2/Table S1 and, for the other epochs,

Figure S3). Moreover, for graphical purposes, we split all the pairwise correlations (36 edges) in two graphs

for each epoch based on the physical distance between the linked nodes (top: short distance% 10 cm, bot-

tom: long distance >10 cm). We found differences among these epochs: HOLD was characterized by cor-

relation coefficients generally higher than the others (0.58 G 0.12, mean G standard deviation), MOV had

lower values (0.14 G 0.25), and DELAY showed an intermediate strength in correlation (0.33 G 0.15). Thus,

the strength of spatial correlations (i.e., how similar population activity is between two different targets)

varied along the trial. These fluctuations are shown in Figure 4C. In the figure, the plot represents the aver-

aged correlation for all epochs (the three presented in Figure 4A and the remaining, presented in Fig-

ure S3). The peak of the plot corresponds to HOLD epoch, confirming what we already observed in Fig-

ure 4A (higher correlations). It is noteworthy that, within each epoch, there are huge differences in the

strength of correlations depending on the physical distance of the two linked nodes (targets). Indeed,

for all the three epochs in Figure 4A, within the same panel (epoch), bottom graphs (higher distances)

show lower correlations than the upper ones (lower distances). This decrease in correlation strength with

the increase of distance is highly significant (linear correlation, r = [-0.78; �0.91; �0.70], p x [10�8;

10�14; 10�6] for DELAY, MOV and HOLD respectively; we observed the same effect in the remaining

epochs, data not shown).

To study the changes in regression coefficients in a spatial-independentmanner, we also correlated the two

beta vectors of the same position across two subsequent epochs. This allowed to study the temporal evo-

lution of the population encoding (Figure 4B). The figure displays only the epochs that represent the central

part of the task, whereas Figure 4D shows themean correlation values along thewhole task. High correlation

values indicate a stable pattern of population activity between two epochs (i.e., the neural activity for the

same target is similar across the two epochs). At the beginning of the trial, the correlations were negative

or near to 0, whereas they reached a sort of plateauwith higher values as the task progressed (see Figure 4D).

Spike History Influence

Until now, the analyses were focused on the extrinsic regressors. To also study the contribution on the

fitting of the intrinsic part of the model, we compared the intrinsic w-value with the extrinsic w-value for
8 iScience 23, 101616, October 23, 2020



Figure 5. Influence of Spike History on Neural Activity

(A) Extrinsic w-value versus intrinsic w-value (data fromM1 andM2merged). Each dot represents a cell. For dots above the

diagonal, spiking activity is predicted better by the intrinsic part of the model rather than the extrinsic one (i.e., the spike

history fits better neural data than extrinsic regressors). x axis: w-value for the extrinsic part of themodel. y axis: w-value for

the intrinsic part.

(B) Boxplot of spike history beta coefficients in the full model across population. The model includes previous cell neural

activity with five different time lags (�200, �160, �120, �80, �40 ms) and estimates a beta coefficient for each lag. For

more details about the box plot, see Figure 3A.

(C) Representation of the neural population (a symbol for each cell) using the first two PCs of the PCA performed on the

five spike history beta coefficients. Cells are divided in two clusters running a K-means clustering algorithm on the five

spike history beta coefficients.

(D) Mean of the five spike history beta coefficients grouping the cells in the two clusters. Error bars represent the standard

deviation, and asterisks indicate significant different distributions of beta coefficients between the clusters (t test, p < 0.05).
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each cell (Figure 5A). The scatterplot shows that a significant number of neurons (71/115, 62%) lied above

the diagonal, that is, the w-value for the intrinsic part of themodel was higher than that for the extrinsic part.

It is remarkable that the spike history, represented in the model by only 5 regressors over a total of x150,

predicted better the spiking activity than all the other variables in about 60% of cells. This is in accordance

with the complex associative nature of area V6A (see Discussion). As the regressors have been normalized

in the range [0,1] independently for each cell before the fitting, we extracted from the complete models the

5 beta coefficients relative to the spike history (1 for each time lag, see Transparent Methods) and directly

compared them across the population (Figure 5B). Positive beta coefficients meant an excitatory effect of

the spike history on the spiking activity, whereas negative values represented inhibition. Influence on neural

activity of �200 ms and �160 ms time lags were low. More recent spiking events had on average greater

effect. The most recent time lag (�40 ms) showed a broad distribution ranging from inhibition to the stron-

gest excitatory effects. From a visual inspection of its probability distribution (data not shown), the exis-

tence of two peaks was evident, which could indicate two different clusters of cells within the population.

To confirm this intuition, we ran a K-means clustering algorithm with 100 replicates to find a stable partition

into the two clusters (i.e., a local minimum of the function, see Transparent Methods). We also tried to look

for a greater number of clusters, but the three common techniques (elbow, gap statistics, and silhouette)

we used to choose the optimal number failed to converge. We performed a PCA to reduce the
iScience 23, 101616, October 23, 2020 9
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dimensionality of our data points from 5-dimesional space (i.e., five spike history betas for each cell) to a 2-

dimensional space (i.e., the first two PCs that explained the 86% of the variance) to represent the clusters in

a Cartesian plane (Figure 5C). The two clusters included 70/115 (61%) and 45/115 (39%) units of the popu-

lation, respectively.

Note that, even if the clustering algorithm had been run on the original betas, the two clusters were almost

perfectly separated according to the value of the first PC. From a visual inspection of PCA loadings (data

not shown), it turned out that this PC carried information almost exclusively about the beta of the most

recent bin confirming its relevance in driving clustering. Thus, the two clusters identified automatically

by the algorithm corresponded to the two peaks observed at a glance. We did not find any correlation be-

tween the clusters and the two animals (chi-squared test on the ratios, p = 0.61). Conversely, we did find

that, whereas the first cluster is equally distributed with about 50% of cells above and under the diagonal

of the scatterplot in Figure 5A, the units of the second cluster lied mainly above the diagonal (75%). This

higher influence of spike history on the model for this cluster is coherent with its higher beta coefficients

(see below).

Figure 5D shows means and standard deviations for the five spike history betas within each cluster. The

regression coefficients distributions were overlapping and not significantly different (t test, p > 0.05) for

�200, �160, and �120 ms time lags. They were significantly different (t test, p < 0.05) for the �80 ms

time lag, even if the error bars still partially overlapped and they finally differed (t test, p < 0.05) and did

not overlap for the most recent (�40 ms) time lag, the one that drove the clustering. To sum up, whereas

the first cluster had a mild excitatory modulation for the recent spike history (�120, �80 and �40 ms) that

decreased for the previous time lags (�200 and�160 ms), the second cluster had a higher excitatory effect

that increased almost linearly for the more recent two to three time lags. Note that inhibitory effects (nega-

tive betas in the Figure 5B, especially for �40 ms lag) sporadically observed for some cells did not consti-

tute a significant trend in the population. Indeed, they almost completely disappeared computing the stan-

dard deviation (as in Figure 5D) instead of considering the boxplots (as in Figure 5B).

DISCUSSION

In this study, we defined how different factors that modulated V6A cells are encoded at single-cell level by

disentangling them with Poisson GLM. Our model inferred the dependence of activity pattern of each cell

from several factors presented together. We obtained a ‘‘functional fingerprint’’ of each cell, which is the

ensemble of factors (and their weights) modulating single cell’s discharge (see the two example neurons in

Figure 2). Present analyses revealed the virtual absence of units modulated by only one parameter. Indeed,

on average, units were selective for four different regressor blocks, supporting the view of a mixed selec-

tivity encoding in V6A. Next, we moved to the population level to study how neurons encoded spatial pa-

rameters along the trial. We found that spatial correlations were higher for neighboring positions and dur-

ing hold epoch, whereas temporal correlations were higher and stable from movement preparation to

target holding epoch. All these results taken together are coherent with the proposed role of V6A in senso-

rimotor transformations underlying eye-hand coordination in reaching and grasping.

Mixed Selectivity in V6A

The PPC is implicated in reach-to-grasp movements that are tightly coordinated in space and time. This

functionality requires to integrate different inputs (either resulting from internal computation or from sen-

sory information system). An open question is how all these parameters (visuospatial and somatic) are

mixed together to guide coherent behavior. A recent work (Bosco et al., 2019) tried to uncouple contribu-

tions of visual information, target position, wrist orientation, and grip type in V6A during reach-to-grasp

tasks using a demixed PCA technique (Kobak et al., 2016). The authors did separate the contributions of

different parameters, but they did not explore how information was mixed at single cell level, a critical

step in understanding the sensorimotor transformation, that is addressed by the present work. Theoreti-

cally, the encoding process of many inputs could occur following two hypotheses: (1) the area hosts sepa-

rate, homogeneous groups of cells, each one of them carrying information mainly about one particular

feature (or fixed combinations of them), but covering as a whole the encoding of many different features

or (2) alternatively, each cell of the area mixes information relative to many different features in what is

called ‘‘mixed selectivity’’ (Fusi et al., 2016). As demonstrated in this work, V6A contains only very few cells

strongly modulated by a specific parameter, whereas most of them are mildly modulated by many factors.

Indeed, the shape of w-values distributions for single blocks of regressors (see Figure 3B) across the
10 iScience 23, 101616, October 23, 2020
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population shows a few very high values and a gradual decrease toward 0. In particular, for every block of

regressors considered, we found an elbow that splits the curve in two parts (highest values versus gradual

descent). The shape of this distribution is very similar to that observed by Malik et al. (2015). The authors

developed a measure that quantifies the tuning of a neural signal to relevant behavioral variables and

found that the distribution of this measure in the motor cortex neural population could be well approxi-

mated with the generalized Pareto distribution. This means that regardless of how the strength of tuning

is calculated (w-value here or Modulation Depth in Malik, 2015) and which cortical area is considered, only

few cells are strongly modulated for one parameter, the majority of them showing a very low and contin-

uous decreasing modulation. Similar results were found by Raposo et al. (2014) in rat PPC where they

directly tested the hypothesis of the existence of cell types (or categories) within their population. They

demonstrated the random distribution of features in what they defined a ‘‘category-free’’ population high-

lighting the possibility for a single network to respond the evolving demands of decision-making. From a

functional point of view, in associative areas, we can hypothesize that the selective units receive specialized

inputs from other areas and then they spread (working like a distribution hub) the information to neigh-

boring cells. Mixed selectivity is demonstrated to be computationally efficient (Fusi et al., 2016) and less

prone to errors than pure selectivity even when both forms of selectivity use the same number of spikes

(Johnston et al., 2019). Neurons with mixed selectivity compute the information in a mixed way with a

complexity that increases with the distance from the source of the inputs. This hypothesis is in accordance

with computational models proposed for both parietal and other associative cortices (Barak et al., 2013;

Rigotti et al., 2010; Pouget and Snyder, 2000; Zipser and Andersen, 1988).

Thus, the hypothesis of a full mixed selectivity seems to be more appropriate to describe V6A. Notably,

Zhang et al. (2017) found that the AIP (anterior intraparietal area) area is characterized by what they called

‘‘partial mixed selectivity’’: among the tested movement parameters, body parts (shoulder or hand) are en-

coded in two functionally segregated sub-populations within which the other parameters are mixed. In our

case, none of the parameters considered in the present work leads to such a segregation, but they are

randomly distributed across the population. Future studies should address this issue to investigate whether

a similar encoding of effectors is present in area V6A (as in AIP) or whether this area is invariant to body part.

The area AIP and the dorsolateral visual stream are more responsible for a finer control of hand configura-

tion during grasping, whereas V6A and the dorsomedial visual stream are active for fast visuospatial com-

putations in reach-to-grasp actions (Galletti and Fattori, 2018), so we do not expect such a clear-cut segre-

gation between body parts.

The Importance of Eye and Arm Movement Signals Is Reflected in Mixed Selectivity

Eye-related signals, in particular gaze position signals in 3D space, strongly modulate the activity of V6A

neurons (Breveglieri et al., 2012, 2014; Galletti et al., 1995; Hadjidimitrakis et al., 2011), whereas saccadic

eye movements have a weaker influence (Battaglia-Mayer et al., 2000; Kutz et al., 2003). Indeed, in the

‘‘functional fingerprints’’, EYE-POSITION had high w-values, whereas EYE SPEED/DIR showed extremely

low values. We found transient post-saccadic modulations just after the beginning of fixation (POST

SACC block of regressors) and tonic activity all along fixation (DELAY block of regressors, see below for

a further Discussion). Relevance of eye position in V6A during reaching has a functional purpose given

the pivotal role of V6A in visuomotor transformation. Retinotopic mapping together with eye position

can support the reference frame transformation from eye- to body-centered frame, required to unfold

reach movement (Andersen et al., 1985; McGuire and Sabes, 2011). Another example of activity strictly

dependent on eye position signals is the one showed by V6A neurons with visual receptive field that re-

mains stable in space regardless of eye movements (‘‘real-position’’ cells; Galletti et al., 1993, 1995). It is

noteworthy that POST SACC and DELAY could contain information related not only to maintaining the fix-

ation but also modulations due to planning activity or spatial attention. Unluckily, our task did not allow us

to disentangle the contributions on neural activity of these processes. Beside the high influence of eye sig-

nals, we found that the early phase of arm movement, movement execution, and arm holding also strongly

modulate the activity of V6A cells (high w-values of PREMOV, MOV, and HOLD blocks of regressors in Fig-

ure 3A). This is coherent with the visuomotor nature of area V6A and its involvement in coordination of

reaching movements.

A Dynamic Representation of Visuospatial Information

To investigate how the neural population is spatially tuned along the trial, we performed a correlation anal-

ysis on the beta coefficients (Zhang et al., 2017). First, we computed all the correlations between different
iScience 23, 101616, October 23, 2020 11
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targetswithin a fixed epoch. For all the epochs considered, we found that target spatial positions close one

to another were linked by higher correlations than farthest positions because, as expected, differences in

population activity increased, increasing the distance. This trend is consistent with a gain field mechanism

that typically plays an important role in multisensory integration, sensorimotor transformations, action

planning, and visual stability (Morris et al., 2013, 2019; Salinas and Sejnowski, 2001).

From a temporal point of view, overall correlations fluctuate along the trial. PREMOV (Figure S3) and MOV

(Figure 4C) were characterized by low correlation values because cells were more spatially selective during

the arm movement or just before it, than in other periods of the task. The strongest correlations character-

ized the HOLD epoch, so the activity was less differentiated between different targets. This could be

caused by the similar hand shape and wrist orientation used in the reaching task that can elicit similar re-

sponses in the cells sensitive to these parameters (Breveglieri et al., 2018, 2016). Furthermore, as V6A en-

codes target position, target information is no longer required in hold phase (because the target has

already been reached), so it is plausible that some cells tuned for the goal of action were no longer selective

during this epoch.

Intermediate correlations were present during DELAY period. This can be explained by two opposite

trends: somatosensory inputs of the static position of the arm during HB pressing were the same across

all trials and positions eliciting similar somatosensory discharges in many neurons, whereas activity is differ-

entiated by spatial attention, motor planning, and gaze fixation toward different targets. Then, we

computed the correlations between the same target across subsequent epochs (Figures 4B and 4D). In

the first part of the trial, the activity of the population changed rapidly (low or negative correlations) to

reach a pattern of activation sustained from the early phases of the movement up to the end on the

hold epoch (higher correlations). The results therefore support a switch from a visual code to a more mo-

tor-related one or, alternatively, the superimposition of motor-related and proprioceptive information with

previous underlying visual-related inputs. Similar results were recently found in V6A using a decoding anal-

ysis; the authors reported an evolution of visuo-to-motor coding during the execution of reaching and

grasping (Filippini et al., 2017,2018). Moreover, the stability of the correlations found in most epochs is

reminiscent of the stability of a mixed body/hand reference frame found in V6A (Hadjidimitrakis et al.,

2020; Piserchia et al., 2017). Dynamic processing in PPC is controversial with some works reporting station-

ary or not-stationary encoding of information (Astrand et al., 2015; Crowe et al., 2010; Meyers et al., 2008). A

certain grade of stability in encoded information, useful in state estimation and error correction, is coherent

with the implication of V6A in the process of comparing the desired position of moving limb with the actual

movement (Fattori et al., 2017; Medendorp and Heed, 2019).
Separate Subpopulations Differently Process Past Activity

We showed that the spike history (intrinsic block of regressors) explained neural activity better than the

extrinsic part of the model (see intrinsic w-values versus extrinsic w-values in Figure 5A). This can be due

to the result of the complex internal processes of the area (Takahashi et al., 2017). Notice that the spike

history was only indirectly related to the ongoing task and behavior, and, thus, it could account for neural

modulations caused by uncontrolled parameters (and so not directly included in the model as regressors).

These modulations may be either internal (for instance, general state of attention or local circuitry) or

external (e.g., kinematics and kinetics or fatigue) to the brain. Among these hypothetical contributions,

attentional modulations known to affect V6A activity (Caspari et al., 2018, 2015; Ciavarro et al., 2013; Gal-

letti et al., 2010) likely play a central role, but our task did not allow to disentangle it from other processes.

We then wondered whether contribution of past activity was different moving away from actual time. It

turned out that two separable classes of neurons were present according to the importance of past activity:

a first population with an increasing positive influence approaching current time and a second population

where the past activity influence had quite constant and generally lower values. A possible explanation for

these different patterns could be a functional difference between the two types of cells. Neurons with a

ramp-like activity pattern, i.e., the first type, are common in PPC, and such activity could support progres-

sive sensorimotor transformations. The second type, less modulated by past activity, could be part of an

online control network, working as comparator between expected and actual movement (Medendorp

and Heed, 2019; Fattori et al., 2017). Firing rates in this case could reflect faster transient activity like

afferent feedback signals from the premotor cortex (found in V6A, see Passarelli et al., 2011; Gamberini

et al., 2009). The possibility that the PPC works as a state estimator with an internal forward model
12 iScience 23, 101616, October 23, 2020
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constantly updated by different sensory inputs (Medendorp and Heed, 2019) makes the existence of

different subpopulations with different functions plausible. However, further studies are needed to eluci-

date their functions.
Limitations and Future Directions

The task used in the present work (fix-to-reach) allowed us to study the effect on cell discharge of brief

saccadic eye movement to foveate the target, eye position, arm-movement preparation, direction and

extent of arm movement, and spatial position of the extended arm in the peripersonal space. Our task

(with the visual target and movement target being the same, see Transparent Methods) does not allow

to study separately the effects of spatial attention and motor planning, although both factors are known

to strongly influence the activity of many V6A cells, in the same way we are aware that the attentional effect

could be included in the eye position signals (Breveglieri et al., 2014; Fattori et al., 2017; Galletti et al.,

2010). Due to the high variable timing of these processes between one cell and another, traces of their

modulations were taken into account by few blocks of regressors (POST SACC, DELAY, and PREP; see

above).

We did not record reaching kinematics during the task; therefore our model does not incorporate move-

ment regressors that can describe arm position and joints rotation. As somatosensory cells are present in

V6A (Breveglieri et al., 2002), future works could enhance our actual GLMwith armmovement descriptors to

test how finely this area is involved in the control of arm movements. Finally, recent imaging studies have

found the putative human homolog of area V6A in the anterior part of the superior parieto-occipital cortex

(Pitzalis et al., 2013; Tosoni et al., 2015). GLMmethods could be applied also to multivoxel analysis helping

to study dynamics of activations and separating different contributions of task parameters. This analysis on

human V6A could confirm analogies between human SPL andmonkey allowing a direct transfer of our accu-

mulated knowledge on animal model to the deepening of human pathologies related to visuospatial pro-

cessing performed by PPC (Gamberini et al., 2020).

Another interesting outcome of the analysis here presented could be the selection of the areas more suit-

able to extract information about specific parameters in the fast-growing BMI (brain-machine interfaces)

field. Alternatively, the functional fingerprints could be used to feed a decoder with only the units more se-

lective to the features of interest with a great computational advantage.

To summarize, we analyzed in detail many different parameters known to modulate area V6A during a

reaching task. We fitted several GLMs for each cell to explain neural modulations. From these models,

we computed the weight that each feature has on the cells to extract information about the population ac-

tivity. Our results suggest that V6A encodes reaching parameters in a ‘‘mixed’’ fashion, with single cells that

form a continuous functional spectrum and with no evidence of any segregation.
Limitations of the Study

Our task required the monkey to fixate the reaching target, thus we were not been able to decouple the

effect of spatial attention and planning on cell activity. In addition, no kinematic data were recorded during

the experiment, thus our model did not include such information that could have shed light on how finely

V6A neurons track reaching movements.
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SUPPLEMENTAL INFORMATION 

 

FIG. S1 Recording sites in the two animals, Related to Fig. 1. 

 On the left, posteromedial view of 3D-reconstructed macaque brain. The posterior part of the occipital lobe was cut off 

to visualize the entire extent of the anterior bank of parieto-occipital sulcus. Superimposed, a flattened map of the caudal 

part of the SPL. The level of the cut is shown in grey. On the right, the 2D map of caudal SPL with the locations of 

recorded neurons in area V6A for the 2 monkeys (red M1, blue M2).  Abbreviations:  cal, calcarine sulcus;  pos, parieto-

occipital sulcus; cin,  cingulate sulcus. 

 

 



   

 

 

FIG. S2 Extrinsic regressors’ influence across the population (two animals’ data were pooled together, related to Fig. 3 

Box plot of the w-values for each block of regressors across the population obtained merging data from the 2 animals. Other 

conventions as fig. 3A. 



   

 

 

FIG. S3 Correlations between beta coefficients relative to different target positions across the population, related to Fig. 4 

Panels are paired for short/long distances and columns are results for POSTSACC, PREP, PREMOV, PREMOV2, MOV2 

epochs. Other conventions as fig. 4C. 

 

 

 

 

 



   

 EYEPOS EYESPEED POSTSACC DELAY PREP PREMOV MOV HOLD PREMOV2 MOV2 

 
M1 

'0.018 
[0.004 
0.050]' 

'0.003 
[0.0005 
0.009]' 

'0.008 
[0.0008 
0.014]' 

'0.006 
 [0  

0.016]' 

'0.0015  
[0 

0.007]' 

'0.014 
[0.001 
0.030]' 

'0.011 
[0.003 
0.033]' 

'0.011 
[0.003 
0.032]' 

'0.006 
 [0.001 
0.017]' 

'0.007 
[0.0005 
0.019]' 

 
M2 

'0.017 
[0.005 
0.044]' 

'0.001 
 [0 

 0.007]' 

'0.0003 
 [0  

0.009]' 

'0.007 
 [0 

0.019]' 

'0.001 
 [0 

 0.005]' 

'0.005 
 [0 

0.013]' 

'0.030 
[0.008 
0.066]' 

'0.019 
[0.003 
0.054]' 

'0.004 
[0.0005 
0.012]' 

'0.007 
[0.002 
0.016]' 

M1 
+ 

M2 

'0.018 
[0.004 
0.045]' 

'0.002  
[0 

 0.008]' 

'0.004  
[0 

 0.011]' 

'0.005  
[0  

0.017]' 

'0.001    
  [0  

0.005]' 

'0.007  
[0 

 0.019]' 

'0.015 
[0.006 
0.054]' 

'0.015 
[0.003 
0.039]' 

'0.005 
[0.001 
0.014]' 

'0.007 
[0.001 
0.018]' 

 

Table S1. ‘Median [25-th percentile 75-th percentile]’ of the w-values for the M1, M2, M1+M2 relative to every block 

of regressors, related to Fig. 3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   

Transparent methods 

The current study consisted in an extended computational analysis of neural data reported previously 

(Breveglieri et al., 2014). Accordingly, the procedures described herein focus on analytical treatment 

of the data and provide only essential details of the behavioural and electrophysiological procedures. 

Full details of experimental methods are provided in our previous reports. 

The study was performed in accordance with the guidelines of the EU Directives (86/609/EEC; 

2010/63/EU) and the Italian national law (D.L. 116-92, D.L. 26-2014) on the use of animals in 

scientific research. Protocols were approved by the Animal-Welfare Body of the University of 

Bologna. During training and recording sessions, particular attention was paid to any behavioral and 

clinical sign of pain or distress. 

 

Experimental Procedures  

Two male macaque monkeys (Macaca fascicularis) weighting 4.4 kg (M1) and 3.8 kg (M2) were 

used. Single cell activity was extracellularly recorded from the anterior bank of the parieto-occipital 

sulcus (POs). The electrodes entered directly into the cortex of the exposed surface of the caudal 

aspect of superior parietal lobule or passed through the occipital pole and the POs to reach the anterior 

bank of the sulcus in the depth (inclination angle of electrodes was 28–30°posteriorly from the 

coronal plane). After passing through areas V1–V2 of the occipital lobe, the electrode reached the 

anterior bank of the POs at a variable depth (up to 8mm) according to the anteroposterior coordinate 

of penetration. Area V6A was initially recognized on functional grounds following the criteria 

described in (Galletti et al. 1999) and later confirmed based on the cytoarchitectonic criteria of 

(Luppino et al. 2005).  

We performed multiple electrode penetrations using a five-channel multielectrode recording system 

(Thomas Recording GmbH, Giessen, Germany). The electrode signals were amplified (at a gain of 

10,000) and filtered (bandpass between 0.5 and 5 kHz). Action potentials in each channel were 



   

isolated with a waveform discriminator (Multi Spike Detector; Alpha Omega Engineering Nazareth, 

Israel) and were sampled at 100 kHz. Quality of single-unit isolation was determined by the 

homogeneity of spike wave forms and clear refractory periods in ISI histograms during spike-sorting. 

Only well-isolated units not changing across tasks were considered. The animal behaviour was 

controlled by custom-made software implemented in LabVIEW (National Instruments, Austin, TX) 

environment (Kutz et al. 2005). Eye position signals were sampled with two cameras (one for each 

eye) of an infrared oculometer system (ISCAN, Woburn, MA) at 100 Hz. The vergence angle was 

not recorded online, but it was reconstructed offline from the horizontal eye positions of the two eyes. 

A sort of control for vergence resulted from the presence of electronic windows (one for each eye, 4° 

× 4° each) that controlled the fronto-parallel gaze position, so that we could set an offset of the 

horizontal eye position signal for targets located in the same direction, but at different depths. 

 

Behavioural Task 

Electrophysiological signals were collected while the monkeys were performing an instructed-delay 

body-out reaching task (Fig. 1B-C). The targets were located in different positions in the 3-D space. 

During the task the animals were fixating a target that they would reach when instructed. Monkeys 

sat in a primate chair, with the head restrained, and faced a horizontal panel located at eye level. Nine 

light-emitting diodes (LEDs) mounted on the panel at different distances from the eyes were used as 

fixation and reaching targets (Fig. 1B, left). As shown in the right part of Fig. 1B, the target LEDs 

were arranged in three rows: one central, along the sagittal midline, and two laterals, at isoversion 

angles of −15° and +15°, respectively. Along each row, three LEDs were located at isovergent 

positions of 17.1°, 11.4°, and 6.9°, respectively. The two animals had the same interocular distance 

(3.0 cm), so we placed the isovergent rows at the same distance from the monkeys in both animals 

(nearest targets: 10 cm from monkey eyes; intermediate targets: 15 cm; far targets: 25 cm).  The range 

of vergence angles was chosen to be within the limits of peripersonal space, so the monkeys were 

able to reach all target positions. The animals performed the task with the limb contralateral to the 



   

recording site while maintaining steady fixation. The hand started the trial pushing a button (home 

button, 2.5 cm in diameter, Fig. 1B, C) placed outside the monkeys’ visual field, 5 cm in front of its 

trunk. 1000 ms after home button pressing one of the 9 LEDs lit up green. The monkeys were required 

to fixate the fixation point while keeping the button pressed. The fixation point served as a cue 

concerning the direction of the arm movement to perform. However, the monkeys needed to withhold 

the instructed behaviour without performing any eye or arm reaching movement for 1700–2500 ms, 

till the change in colour of fixation LED (green to red). The colour change of fixation target was the 

go signal for the animal to release the home button and start an arm movement toward the target. The 

monkeys had 1 sec after the go signal to reach the target; otherwise, the trial was aborted. Then, 

monkeys pushed the target and held the hand on it for 800–1200 ms. The target offset cued the 

monkeys to release the LED and return to the home button, which ended the trial and allowed 

monkeys to receive reward. Notice that since target offset, the animals were allowed to break fixation. 

Only correctly executed trials were used in this analysis. 

 

Poisson GLM and LASSO optimization 

Generalized linear models (GLMs) are a flexible generalization of ordinary linear regression used for 

variables that have distribution other than Gaussian. In this sense, ordinary linear regressions can be 

seen as a specific type of GLM. 

In premotor (Takahashi et al., 2017) and somato-motor (Goodman et al., 2019) (Hatsopoulos et al., 

2007), for instance, GLMs (or ordinary linear regressions) provided interesting insights about the 

neural modulations for several kinematic parameters of the upper limb. In different contexts, also 

gaze position can be included in these models (Lehmann and Scherberger, 2013). 

Poisson distribution is used for modelling the number of times that an event occurs in an interval of 

time. So, the behaviour of a neuron (i.e. variations of its spiking activity) can be modelled as a Poisson 

process (Fig. 1D) (Triplett and Goodhill, 2019; Pillow et al., 2008; Truccolo et al., 2005;  Paninski et 



   

al., 2004b; Dayan and Abbott, 2001). Thus, the probability of observing the spike count y from a 

neuron in a short period of time is:  

 
P(y|μ, Δ) =

e−μΔμΔy

y!
  

where μ represent the firing rate over unit time and Δ is the bin width.  

GLM with Poisson distribution assumes that the varying firing rate at a specific time t can be 

represented as the exponential of the linear combination of the parameters called regressors (Fig. 1D), 

and so:  

 
μt = exp(β0 + β1X1,t+. . . +βKXK,t)  

where K is the number of regressors, {β𝑘}𝑘=1,...𝐾 are the regression coefficients, eachXk,1...T is a vector 

of regressors and β0 is the constant of the model. 

 The regression coefficients are estimated through a procedure called Maximum Likelihood 

Estimation (MLE) that maximizes the log-likelihood (the logarithm of the likelihood, 

computationally easier to calculate), i.e. the probability, given a model, to observe a given spike train. 

The log-likelihood function for Poisson GLMs can be calculated as (Goodman et al., 2019):  

 
ℓ(y, β) = log[L(y, β)] = ∑ yt

T

t=1

log(μt) − μt  

We followed a procedure similar to the one recently adopted by Goodman and colleagues (2019). In 

a first phase of the fitting, we applied an optimization method called LASSO, which is used to avoid 

over-fitting and to select the more significant regressors because it shrinks the size of the regression 

coefficient and sets the unimportant ones to zero. For this aim, we added the LASSO penalty term to 

the log-likelihood and maximized the resulting function:  

 
β̂LASSO = argmaxβ (ℓ(y, β) − λ ∑ |

𝐾

k=1

β𝑘|)  



   

 

 
 

and where λ represents the strength of the LASSO shrinkage. After this, we applied the classic MLE 

regression with only the selected regressors to get not penalized β coefficients:  

 
β̂MLE = argmaxβℓ(y, β)  

in this way we estimate only coefficients related to significant regressors.  

 

Data pre-processing  

We aligned data on the release of home button, then we considered neural activity and eye tracks for 

all neurons for all trials from -3000 ms to +1720 ms. Cropping trials in this way allowed us to capture 

the last part of free epoch and the beginning of fixation for every trial; after the release of home button 

we captured the whole hold epoch and the returning of arm to the resting position for most of trials. 

We then binned spiking activity at 40 ms calculating the number of spikes in each bin. We chose this 

binning interval because we wanted to focus the influence of each regressor on cell activity expressed 

as its firing rate, rather than predict each spike precisely and direct the attention on spiking mechanics.  

For each bin, we calculate the averaged gaze position along x and y coordinates for the two eyes (each 

40 ms bin contains 4 points of the raw eye track sampled at 10 ms). We averaged x-position for the 

two eyes (Rx, Lx) and y-position for the two eyes (Ry, Ly), getting a couple of values that indicates for 

each bin real gaze direction (version and elevation).  

𝑉𝐸𝑅𝑆𝐼𝑂𝑁 =
Rx + Lx

2
;  𝐸𝐿𝐸𝑉𝐴𝑇𝐼𝑂𝑁 =

Ry + Ly

2
 

We also got horizontal vergence for each bin applying the formula: 

VERGENCE = 𝐿x − 𝑅x 

 

 

 



   

Extrinsic regressors  

As gaze modulations are not linear (Breveglieri et al., 2012; Galletti et al., 1995), in order to capture 

the responses’ non-linearity with our model, we discretized the space in front of the monkey. This 

allowed us to assign a beta coefficient for each spatial volume we considered and allowed to take into 

account both linear and non-linear gaze modulations with a unique model, approximating neural 

activity within each volume. First, considering that the reaching targets are in a central frontal position 

and the animal has to fix them for most part of the trial, we focused on this subregion of the space. 

We considered the position of the central nearest target as the origin of our x-y (version-elevation) 

coordinates system. Then we discretized the space in a 15° wide 2D grid that spanned from -22,5° 

(left side) up to 22,5° (right side) of version (with targets located at -15°,0°,15°) and from -22,5° 

(bottom) to 22,5° (up) of elevation; we divided the remaining space outside the grid in 4 quadrants 

(top-right, bottom-right and so on). Note that, since the targets were located at the eye level, elevation 

during all the fixations was ideally always 0°. For this reason, variations along the vertical coordinate 

happened most during the free epoch at the beginning of each trial.  In addition, we created a 5° wide 

subdivision based on the vergence obtaining 4 layers of depth (from 20° up to 0°). This subdivision 

spanned from 20° of vergence (about 8-10 cm of distance from cyclopic eye) up to 0° (infinite 

distance, with targets located at 17°, 11°, 7°). We chose 20° as maximum limit for the vergence 

because no object or point of interest for the monkey was nearer than 8-10 cm. We considered each 

volume obtained from this double-discretization as a dummy variable that took value of 1 only when 

the monkey ‘watches in it’. To have a reliable reference level we removed the dummy variable 

corresponding to the volume with coordinates (-7,5)°-7,5° (version) x (-7,5)°-7,5° (elevation) 15°-

10° (vergence). In this manner we obtained 51 dummy variables ((9 squares in the 2D grid + 4 

quadrants) x 4 layers of vergence – 1) indicating for each bin where the animal was looking. We 

considered them as the EYE POSITION block of regressors of our model. 

Then, to compute x,y eye movement velocity, for each bin, for each eye, we subtracted the initial 

position from the final position of raw eye track , then we divided this angular variation for bin width 



   

(40 ms) and averaged the values of the two eyes. Thus we obtained an average of gaze movement 

velocity in that particular bin (°/ms) (x>0, rightward movements; for y>0, upward movements). We 

normalized it for its highest value across all condition and all trial. In order to take into account actual 

saccadic neural activity, but also post- and pre-saccadic activity (Kutz et al., 2003), we built several 

pairs of vectors applying this procedure to eye tracks at bin t, but also to eye tracks at bin t-1, t-2 ... 

t+1, t+2, … t+n, spanning for the 4 previous and  following bins. In this way we fed the model with 

information on eye movements going from -160 ms up to +160 ms around each bin. We used these 

vectors as the EYE SPEED/DIR block of regressors of our model. 

We built other regressors to take into account the main behavioural epochs of the task. We chose the 

following epochs: POSTSACC (from fixation start to 500ms after it), DELAY (from target onset to 

go signal), PREP (from 500ms before go signal to go signal itself), PREMOV (from 200ms before 

home button release to home button release itself, if more than 200 ms passed after go signal; 

otherwise, from go signal to home button release) , MOV (from home button release to target touch), 

HOLD (from target touch to led colour switch), PREMOV2 (from 200ms before target release to 

target release itself, if more than 200 ms passed after go signal; otherwise, from led colour switch to 

target release), MOV2 (from target release to Home button pression).  

Each of these blocks of regressors contained 9 dummy variables (1 for each target). The first dummy 

variable for MOV, for example, took the value of 1 in bins in which the animal was moving the arm 

toward first position in the space and it took 0 in all other bins; the second dummy variable, was 1 

for movements toward second targets and so on. We added to the blocks of PREMOV and PREMOV2 

regressors a variable containing the reaction time for each trial (normalized on the maximum across 

all trials and all conditions). We added to the blocks of MOV and MOV2 regressors a variable 

containing the average movement velocity calculated as the ratio between the distance home button-

target and the movement time (normalized on the maximum across all trials and all conditions). 

 EYE POSITION, EYE SPEED/DIR, POSTSACC, DELAY, PREP, PREMOV, MOV, HOLD, 

PREMOV2, MOV2 were our blocks of extrinsic regressors. 



   

 

Intrinsic regressors 

We added to the model 5 independent variables providing information about spike history grouped 

in the block of intrinsic regressors. The first one associated each bin t to spike count at bin t-1, the 

second one associated each bin t to spike count at bin t-2 and so on. Past spike count had been 

normalized for his maximum value across all trials and all conditions. In this way, we provided to the 

model information about the neural activity in the previous 200 ms.  In the context of GLMs, it is 

common to give the model information about other cells’ activity in order to take into account cross 

correlations within the population of neurons (Truccolo et al., 2010). In our case, as our recordings 

were performed with single electrodes and not simultaneously, we exclude the possibility of crosstalk 

between neurons of our population and we did not provide any information about other cells’ activity. 

 

Fitting procedures  

With data consisting on the spike count (dependent variable) and all the vectors of regressors 

(independent variables), for each cell independently we fitted different Generalized Linear Models 

following a double-step procedure. Note that our dataset consisted more than 104 datapoints for each 

cell (118 bins for each trial, 10 trials for target, 9 targets), enough to handle the ≃150 variables we 

had with a good confidence interval. 

In the first step, to make a selection of the regressors and retain only the important on cell neural 

activity, we fitted a GLM with all the available regressors applying the LASSO regularization. This 

regularization has the property to shrink the unimportant regressions coefficients to zero, so these 

features can be removed from the model. During this first phase, we performed a 10-fold automatic 

cross-validation (option ‘CV’ in lassoglm Matlab function that random datapoints to one out of 10 

subsets of roughly equal size) to choose the value of  λ (see equation 4) that minimizes the deviance 



   

of the model. This step allowed us to exclude from the subsequent phase the regressors that got a 

regression coefficient equal to zero.  

In the second step, we fitted different classic GLMs with Poisson distribution using the remaining 

selected features, grouped in blocks (see Extrinsic Regressors) We performed a leave-one-out cross-

validation (training on 9 randomly chosen trials for each target and validating the model on the left-

out 1). We repeated this cross-validation procedure 10 times for each model for each cell.  

Note that each subset contained ≃9500 datapoints for training and ≃1000 points for testing. Predicted 

firing rate and the other statistics reported are computed on the test sets.  

For each cell, we fitted several models: a ''complete'' one using all the regressor blocks, 10 ''nested'' 

models excluding from the complete model a different extrinsic block of regressors at a time, an 

''intrinsic only'' model removing all the extrinsic regressor blocks, an ''extrinsic only''  model 

removing all the intrinsic regressor blocks and finally a ''null'' model with only the intercept that 

represented the ground zero goodness of fit. All the analyses and results reported in this paper were 

relative to these non-LASSO-regularized models. 

 

Units selection and analysis of fitted models 

Single cell level 

We tried to select task-related cells to reduce noise in our population. For this purpose, we computed 

the mean firing rate in each epoch of interest (8, see ‘Extrinsic regressors’ for more details) in each 

trial and we performed one-way ANOVA (factor: epoch; levels: 8). All units resulted significantly 

modulated in at least one epoch (ANOVA p<0.05 for every unit). Thus, we proceeded with a cell 

selection based on the fitting of our model (see below). 

To quantify our complete model goodness of fit and make it easy to interpret, we used a pseudo-R2. 

McFadden’s pseudo-R2, for Poisson GLMs, can be calculated (Cameron and Windmeijer, 1997) 

starting from the log-likelihood of the complete fitted (ℓcomplete)  and null (ℓnull) models: 



   

𝑅pseudo
2 = 1 −

ℓcomplete

ℓnull

 

The log-likelihood of the null model (a model with only the intercept) represented the ground zero 

value and, by definition, it is independent from every regressor Note that McFadden’s pseudo-R2 can 

be interpreted as the more common R2 in ordinary linear regression, ranging from 0 (extremely poor 

fit) to 1 (perfect fit), but its values tend to be considerably lower (values of 0.2 to 0.4 are considered 

excellent fit). When calculated on test datasets (data never seen by the model during the fitting), 

pseudo-R2 values are even lower. We selected those units that reached at least a pseudo-R2 relative to 

the complete model of 0.05 to discard the noisier part of population or neurons for which our model 

failed to capture neural activity modulations (Goodman et al., 2019; Paninski et al., 2004a).  

To analyze the nested models (see ‘Fitting procedures’) and to get a score associated with the 

importance on neural activity of the information contained in every block of regressors, we proceeded 

as follows. 

First at all, we calculated a relative pseudo-R2 as: 

𝑅relativepseudo
2 =

ℓnested − ℓnull

ℓ𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 − ℓnull

 

Where ℓnested is the log-likelihood of the nested model. This value compares the log-likelihood (i.e. 

the goodness-of-fit) of each nested model with the one of the complete model (and of the null model). 

Then, for an higher interpretability, we converted the relative pseudo-R2 in a weight (w-value):= 1 - 

relative pseudo-R2 .We used this as a score directly associated with the importance of groups of 

variables on the complete model. The idea behind this metric is that to build each nested model, we 

removed from the complete model a block of regressors, leading a worsening in the fitting. Whether 

a block of regressors contained important information for the model, its removal causes a great 

worsening of the fit, the relative pseudo-R2 will decrease (towards 0) and the w-value will increase 

(towards 1). Vice versa, whether a regressors’ block had little influence on the complete model, its 

removal will cause a little worsening of the fit, an increase (towards 1) in the relative pseudo-R2 

resulting finally in a little w-value (towards 0). From these computations, we obtained a set of w-



   

values (1 for each extrinsic block of regressors, 10 in total; 1 for the extrinsic-only model that 

corresponds to the removal of the SPIKE HISTORY block and 1 for the intrinsic-only model) for 

each selected cell that allowed us to evaluate the influence of the different parts of our model on 

neural activity. 

It is worthy to remark that the w-values express the goodness of fit of the nested model in comparison 

with the complete one. Thus, a neuron can have a larger w-value for a block of regressors than another 

having less deviance explained by that block in absolute. Furthermore, they do not carry necessarily 

information about the spatial tuning of the cell. We used the 10 w-values of the extrinsic blocks to 

build the ‘functional fingerprint’ for each unit. This fingerprint shows how the cell is sensitive to the 

various external factors considered by our model. 

Population level: extrinsic blocks of regressors 

We further analyzed the extrinsic blocks of regressor across the population. We checked consistency 

of the results in the animals comparing the distribution of median values for all the blocks of 

regressors between the two animals (two-samples Kolmogorov-Smirnov test, p<0.05). To find the 

elbow of the w-values distributions (Fig. 3B), we first split the curves in two parts and then fitted one 

line for each part. We repeated this procedure to find the dividing point (the elbow) that minimize the 

sum of fitting errors. 

 We used PCA to reduce dimensions of data and to visualize them in a 3D space (the first 3 PCs). To 

look for a clustering in the population based on type of modulations (for example visual cells, motor 

cells, visuomotor cells modulated by gaze-position and movement, but not by hold epoch…), we then 

applied K-means clustering algorithm on the raw w-values (not manipulated with PCA). This 

algorithm needs the number of clusters to seek in input. So, to find out the optimal one, we tried with 

three of the most common procedures: elbow, average silhouette and Gap statistic method. 

Furthermore, we also tried a hierarchical clustering of the w-values. All the techniques we employed 

failed in finding different clusters in the data. To highlight the continuity in the modulations and the 



   

mixed selectivity characteristic of area V6A, we coloured the dots in PCA representation according 

to the w-values of the three most important extrinsic blocks of regressors.  

In order to study the selectivity for one of the extrinsic blocks of regressors (or the lack of it, i.e. 

mixed selectivity), we chose to calculate the number of important blocks on each unit spiking activity. 

For each cell, we summed all its extrinsic w-values. Then, we iteratively added together in descending 

order the extrinsic w-values up to reach 85 % of the total sum. The blocks required to achieve this 

value have been identified as important on that cell spiking activity. The obtained number can range 

from 1 (cell selective for only one feature) to 9 (cell equally selective for all the 10 features). 

Spatial and temporal correlations 

To study the spatial and temporal evolution of the population encoding, we performed a correlation 

analysis on the beta coefficients resulting from the complete models (Zhang et al. 2017). For each 

cell, we averaged the beta coefficients resulting from the 10 cross-validation training subsets. We 

then built a population vector with the beta coefficients of each cell for every spatial position and 

every epoch. We evaluated the correlations between vectors of beta coefficients of each pair of 

positions within each epoch separately (spatial correlations) and between vectors of beta coefficients 

of each position in subsequent epochs (temporal correlations) with the Spearman's rank correlation 

coefficient (RSpearman). This coefficient does not assess linearity between the variables, but only 

monotonic relationships and, exploiting the rank, it is less sensitive to the outliers.  

We used a linear regression to assess the dependence (r) of strength of correlations (RSpearman) on the 

spatial distance between two target position (measured directly on the reaching panel, Fig. 1B). 

Finally, we averaged both the spatial and the temporal correlations to have results easier to interpret. 

Spike history influence 

The influence of the intrinsic part of the model on the fitting has been evaluated plotting the w-values 

for the intrinsic part of the model and for the extrinsic part(calculated on the extrinsic-only and 

intrinsic-only models, respectively) in a scatterplot where each dot represents a cell. We extracted 



   

from the complete model the 5 beta coefficients relative to different lags of the spike history for each 

cell and we ran on them a K-means clustering algorithm with 100 replicates with different random 

initial centroids and choosing the result with the lowest sum of point-to-centroid distances. We tested 

whether there was an association between the 2 clusters and the 2 animals with a chi-squared test (n° 

of M1 units in one cluster / total n° of M1 units vs n° of M2 units in the same cluster / total n° of M2 

units). To represent these data, we used PCA to reduce their dimensionality projecting the cells and 

their clustering in the plane of the first 2 PCs. We averaged the 5 beta coefficients within each cluster 

and tested if distributions of the 5 beta coefficients were different between the clusters (t-test, p<0.05).  
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