
03 April 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Published Version:

Engineering Semantic Self-composition of Services Through Tuple-Based Coordination

Published:
DOI: http://doi.org/10.1007/978-3-030-61470-6_13

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/776750 since: 2020-10-30

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1007/978-3-030-61470-6_13
https://hdl.handle.net/11585/776750

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/)

When citing, please refer to the published version.

This is the final peer-reviewed accepted manuscript of:

Caselli A., Ciatto G., Di Marzo Serugendo G., Omicini A. (2020) Engineering
Semantic Self-composition of Services Through Tuple-Based Coordination. In:
Margaria T., Steffen B. (eds) Leveraging Applications of Formal Methods,
Verification and Validation: Engineering Principles. ISoLA 2020. Lecture Notes in
Computer Science, vol 12477. Springer, Cham.

The final published version is available online at: https://doi.org/10.1007/978-3-
030-61470-6_13

Rights / License:

The terms and conditions for the reuse of this version of the manuscript are specified in the
publishing policy. For all terms of use and more information see the publisher's website.

https://cris.unibo.it/
https://doi.org/10.1007/978-3-030-61470-6_13
https://doi.org/10.1007/978-3-030-61470-6_13

Engineering Semantic Self-composition

of Services Through Tuple-based

Coordination

Ashley Caselli1[0000−0001−8492−0354], Giovanni Ciatto2[0000−0002−1841−8996],
Giovanna Di Marzo Serugendo1[0000−0001−5048−5251], and Andrea

Omicini2[0000−0002−6655−3869]

1 Centre Universitaire d’Informatique (CUI)
University of Geneva, Switzerland

{ashley.caselli, giovanna.dimarzo}@unige.ch
2 Department of Computer Science and Engineering (DISI)
Alma Mater Studiorum—Università di Bologna, Italy

{giovanni.ciatto, andrea.omicini}@unibo.it

Abstract. Service self-composition is a well-understood research area
focusing on service-based applications providing new services by auto-
matically combining pre-existing ones. In this paper we focus on tuple-
based coordination, and propose a solution leveraging logic tuples and
tuple spaces to support semantic self-composition for services. A full-
stack description of the solution is provided, ranging from a theoretical
formalisation to a technologically valuable design and implementation.

Keywords: service self-composition · semantic reasoning · tuple-based
coordination.

1 Introduction

Nowadays an ever increasing number of IT scenarios leverages a services-based
architecture. These sorts of systems are modelled as a collection of heterogeneous
and loosely-coupled fine-grained processes, namely services, that communicate
among them. Arguably, the pervasive adoption of services-based architectures
will lead to an explosion in the number of services populating the Internet. In
other words, scalability issues are going to arise soon.

On the other hand, novel business opportunities are likely to become available
as the amount of services increases. In fact, the public availability of disparate
services is commonly a key enabler for the creation of secondary services built
on top of the pre-existing ones. To this end, effective techniques – such as service
composition – are required at the technical level, in order to reuse the available
functionalities. However, service composition sets many challenges from a sys-
tem administration perspective. The experience of developers, as well as their

206 A. Caselli et al.

careful work, is a necessary prerequisite for composition of services to be effec-
tive. Unfortunately, the effectiveness of human experts in tackling an increasing
number of services does not scale up linearly with the total amount of services.

To deal with these issues, a viable solution may be represented by automati-
cally handling the composition. To this end, approaches focused on the composi-
tion of the existing services have been proposed. The mechanism that combines
two or more basic services into a more complex one is known as service compo-
sition [17]. It aims at creating higher-level functionalities within the system by
leveraging the available resources.

The static nature of traditional approaches has been challenged by dynamic
service composition approaches [7], which range over syntax-based composition
to semantic-based composition and AI planning techniques. The adoption of
such approaches paved the way to the design of systems with innate autonomous
computational properties, such as self-adaptation and self-composition.

Many research works focus on coping with “challenging problem of compos-
ing services dynamically” [2]. Nevertheless, most of them solve it only partially:
to the best of our knowledge, most of the existing solutions to the dynamic ser-
vice composition challenge present limitations—e.g., syntax-based composition.
Other approaches, although well-designed and sound at a conceptual level, are
either discontinued or based on obsolete technologies [5].

This paper aims at providing a comprehensive tuple-based technology for se-
mantic self-composition of services. A self-composition model that promotes and
supports spontaneous service composition based on Linda [15] is proposed. The
solution supports semantic reasoning leveraging on logic tuples and Linda tuple
spaces. Moreover, a Java-based implementation of such model is also proposed,
relying on the recent TuSoW [6] technology for tuple-based coordination.

The remainder of this paper is organised as follows. Section 2 provides an
overview of the current approaches for service composition. Section 3 shows a
formal definition of the designed system in terms of its syntax and operational
semantics. The Java-based software architecture that implements the proposed
technology is shown in section 4. Section 5 presents a case study in a formal way.
Finally, section 6 concludes the paper by summarising the proposed solution.

2 State of the Art

2.1 Service composition

Service composition is broadly known as the mechanism that combines two or
more basic services into a more complex one that provides higher-level function-
alities [17]. It deals with the needs of users to search for appropriate compositions
of services that meet the required processes [27].

Service composition approaches may be categorised in terms of many or-
thogonal properties. A possible grouping considers the composition policy: (i)
syntax-based: the matching among services is computed as mere equality op-
eration on the input/output parameters of the services; (ii) semantic-based: it

Engineering service self-composition through coordination 207

requires a taxonomy of concepts on which the composition process relies on to
compute the matches; and (iii) through AI-planning solutions: it concerns the
task of finding a course of action to reach a goal. From a different point of view,
a composition process may be defined as the outcome of two minor phases –
i.e., selection and binding –, hence a different grouping may be provided. A
service composition approach may then be defined as (i) static, when the bind-
ing occurs at design-time; or (ii) dynamic, when the binding occurs either at
deployment- or run-time. Using a static approach, the compositions are built
during the design of the system (design-time), by the system designer that cre-
ates them once for all. This approach leads to correct compositions but lacks
of scalability and adaptability. On the other hand, a dynamic approach ensures
scalability and adaptability by adding computational overhead to the system.
Dynamic approaches differ in the stage the binding phase occurs, which may
be at (i) deployment-time, where the service binding phase occurs each time a
service shows up in the system; or at (ii) run-time, where the binding occurs
when a request is published.

Among these categories, we can mention the following works. From the se-
mantic web domain, Talib et al. [25] provide a semi-automatic method to gener-
ate static web service composition in BPEL4WS language. Talantikite et al. [24]
present a model for automatic Web services discovery and composition that
exploits semantically annotated web services through an upper ontology (i.e.
OWL-S [20]). In the field of ambient intelligence, Vallee et al. [26] propose an
approach that combines multi-agent techniques with semantic web services to en-
able dynamic, context-aware service composition. In the field of multi-agent sys-
tems (MAS) approaches to self-composition usually involve planification, where
agents reason on their respective services and the user’s needs [14]. In this area,
works on self-composition of method fragments bring a more dynamic solution
based on cooperative agents, each representing a fragment and participating
to the design of the fragments composition [3]. Using similar cooperative princi-
ples, Degas [9] proposes a syntax-based composition approach with collaborative
agents for dynamic composition of aerial plane trajectories. Other approaches
specifically involving chemical reactions for self-composition, possibly include
the followings. Frei et al. [13] propose the use of chemical reactions, in the field
of industrial robotics, to build self-organising assembly systems that participate
in their own design by spontaneously organising themselves. Di Napoli et al. [11]
show how a specified workflow can be instantiated using chemical reactions. In
the context of tuple spaces, Viroli [27] proposes a syntax-based approach inspired
by chemical reactions combined with the notion of competition among services.
De Angelis [7] proposes a chemical-inspired model that promotes syntax-based
self-composition of services at run-time. To alleviate the lack of semantics in the
composition in [7], Ben Mahfoudh et al. [1] extend the original tuple space model
with learning-based capabilities, thus providing pertinent and reliable services
to the user.

208 A. Caselli et al.

2.2 Linda and TuSoW

Linda [15] is the archetypal tuple-based coordination model [22], inspiring and
influencing a huge number of coordination models and technologies throughout
the years [5]. The main elements of Linda are tuples, templates, tuple spaces,
and communication primitives. A tuple is a piece of information represented
according to a well-defined tuple language, specifying the structure of admissible
tuples. A template is a concise way of representing a set of tuples: it consists of
a pattern, represented according to a particular template language, which may
be matched by several tuples. A tuple space is a repository where tuples may
be inserted, observed, or withdrawn by an arbitrary number of agents willing to
synchronise while being uncoupled in reference, space, and time. On purpose,
a communication primitive is an operation provided to interacting agents to
synchronise themselves upon tuples’ insertion, observation, and consumption.

Linda is characterised by a few peculiar features: (i) generative communica-
tion, that is, tuples existing independently of the agents who produced them; (ii)
associative access, namely, agents can access (i.e., observe or withdraw) the tu-
ples stored in a tuple space by simply specifying a template, without the need of
knowing the tuple “address” neither its “name”; and (iii) suspensive semantics,
that is, agents’ attempts of accessing a tuple matching a particular template are
suspended until a tuple of such a sort actually exists.

Linda provides three communication primitives: out to insert a tuple in a
tuple space, in to withdraw one, rd to read one. Despite their simplicity, such
primitives are expressive enough to cope with several common interaction pat-
terns [15]. Suspensive semantics, in particular, is the cornerstone of the coordina-
tion mechanism proposed by Linda, since it deals with synchronisation: whereas
the out primitive always puts a tuple in the tuple space, in and rd attempt to
get one based on a provided tuple template. If a tuple matching the template is
found, it is returned to the caller agent that can continue execution; otherwise,
the caller agent is suspended until a matching tuple becomes available.

Several variants of Linda have been proposed throughout the years, either
extending the set of communication primitives, adding features such as mobil-
ity or access control [21,8], enabling distribution of multiple tuple spaces on a
network of interconnected computers [12,19], and much more [23]. Nevertheless,
only a few have been developed as a technology [5]—and, among these, some
have already been exploited for service composition, as already discussed in the
related works section above.

TuSoW [6] is tuple-based technology for coordination for distributed agents
via Linda tuple spaces. It aims at providing a lightweight, modular, flexible, and
highly interoperable implementation of Linda. It is designed as a multi-platform
technology, making it suitable to be used by a wide community of developers in a
wide range of application domains. In particular, TuSoW coordination facilities
are provided to agents as-a-Service, via the HTTP protocol. For this reason we
chose it as reference technology in the remainder of this paper.

Engineering service self-composition through coordination 209

3 Formal model

The proposed model formalises a system composed by a number of active entities
– namely, agents – acting as either service requesters (a.k.a. clients, or users),
or service providers (a.k.a. servers). Users and servers do not interact directly
but rather they interact by means of a Linda-like shared memory – that is, the
blackboard –, acting as a coordination medium.

The interaction among users and servers is based on a simple protocol. On
the one side, servers advertise their service descriptors by publishing them on the
blackboard, upon startup. After that, they keep listening for incoming requests
issued by users. As soon as a request is issued by some user, if a server exists
which is capable of serving that request, then it is triggered. The invoked server
must then execute its service, producing a result which is eventually output on
the blackboard as well. On the other side, users are simple agents which may,
from time to time, issue requests towards a particular service descriptor. When
this happens, the user must then wait for a result to eventually appear on the
blackboard, and finally consumes it before terminating.

Automatic semantic composition of services is provided by the blackboard
using a dynamic deployment time approach [18]. In other words, whenever a
novel service descriptor is published on the blackboard, the blackboard reacts
by generating and automatically inserting a (possibly null) amount of compos-
ite service descriptors on it-self. In particular, the set of service descriptors to
be generated is computed by combining the just-inserted one with all the ser-
vice descriptors it may combine with, among the many already present on the
blackboard.

Of course neither users nor clients are aware of the service composition per-
formed by the blackboard. In other words, the service composition is transparent
to both users and servers. To make this possible, the blackboard is in charge of
splitting users’ requests directed towards composite service descriptors into el-
ementary request, which may then be served by servers. For the same reason,
the blackboard is also in charge of handling the intermediary results possibly
produced by servers when a composite service request is being served.

In the next sections we formalise such insights by means of process algebra.
In particular, we first structurally define the most relevant notions of our model
by means of an EBNF grammar, and then provide its semantics by means of a
Labeled Transition System [16].

3.1 Syntax

Here we provide a syntax for the main concepts composing our model. To do so,
we exploit EBNF grammars.

System. We define a system (Sys) as a parallel composition of one or more
agents and a blackboard (B). In turn, each agent may be either a user agent (U)

210 A. Caselli et al.

or service agent (S), according to their role in the system. Formally:

Sys ::= SS ‖ US ‖ B main system

SS ::= S | (S ‖ SS) list of services

US ::= U | (U ‖ US) list of users

where ‖ is the parallel composition operator—commutative and associative.

Blackboard. A blackboard is modelled as the space where the interaction
among agents takes place. It is exploited as coordination medium by the agents,
which may perform basic read/write operations on it. We define a blackboard
(B) as a multi-set that may either be empty or contain four sorts of data: (i)
service descriptors, (ii) user requests, (iii) internal messages, or (iv) results.
Formally:

B ::= ∅ | SD | Req | serve(SD , C) | serve comp(SD , C) | Res | B ∪B

where ∪ is the union operator for multi-sets – associative and commutative –,
whereas ∅ denotes the empty multiset.

Service. A service represents a service agent. It is capable of two operations
embodied by publish and accept, which are grammar syntactic sugar. Intuitively,
publish denotes the operation used by a service to advertise itself on the black-
board; accept says that the service is listening for incoming requests. Formally:

S ::= publish(SD) | accept(service(Q)) | S · S

where · is the sequence operator—associative and not commutative.

User. A user represents a user agent. Similarly to a service agent, it is capable
of two operations, represented through the Req and Res terms. They embody a
request and a response message, respectively. At last, the halt term is used to
represent the eventual termination event. Formally:

U ::= Req · Res · U | halt

where · operator is equivalent to the one defined above. By construction, well-
formed users must wait for a response event after each request event.

Service descriptor. A service descriptor (SD) provides the representation of a
service. Thus, a service descriptor may either represent: (i) an atomic service –
through its formal arguments: the (possibly empty) set of the named input types
(I) it is able to accept and the output type (O) it produces as result –, or (ii)

Engineering service self-composition through coordination 211

a composed service, as the concatenation of two services in such a way that the
output of the first one is provided as input to the second one. Formally:

SD ::= service(Q) | SD
N

argof SD service descriptor

Q ::= I, O query

I ::= ε | N : T | I, I input

O ::= ε | T output

N ::= n1 | n2 | n3 | . . . name

T ::= t1 | t2 | t3 | . . . type

Request/Response. Agents may append request (Req) and response (Res)
messages to the blackboard. A request message is defined as either (i) query
(Q), or (ii) call (C). A query expresses an exploratory request, aimed at checking
whether the system is capable of serving a particular signature or not, given the
currently published services and their compositions. Conversely, a call represents
an actual invocation of some service, which may involve the execution of one or
more agents to serve the request. Requests are represented through their actual
input arguments (A) – which are named as well – and the expected output type
(O) they ask for. On the other side, response messages may instead contain a (i)
Const term, which is a boolean value, or a (ii) value (V), that allows any kind
of terminal value to be represented. Formally:

Req ::= query(Q) | call(C) request

C ::= A, O call

A ::= ε | N : T (V) | A,A arguments

V ::= v1, v2, . . . , vn terminal values

Res ::= res(Const) | res(V) response

Const ::= > | ⊥ boolean value

3.2 Operational semantics

A Labelled Transition System (LTS) is exploited to provide the operational
semantics of our model. The transition relations model the effect of executing
an action on the blackboard.

Labels. Labels are used in the LTS to formally capture events of interest for
the operational semantics of our model. In order to ease their comprehension,
all label names are suffixed by the name of the transition rules they are involved
into. Only one exception is made for τ , denoting the silent transition.

E ::= publish sd | publish query | publish call | consume call |
consume comp call | serve call | comp call | serve comp call |
last comp call | prove | compose | τ

212 A. Caselli et al.

Operators. A definition of functions and operators exploited within the tran-
sition rules is following. For the sake of brevity we only provide an intuition of
each. An exhaustive formal definition of their semantics can be found in [4]. No-
tice that, in what follows, we often leverage the notation L(X), where X is some
non-terminal symbol among the many defined in the EBNF production rules
above. There, we write L(X) meaning “the set of all possible strings produced
by all possible production rules for X”.

– The function typeof : L(C)→ L(SD) retrieves the data type of a call request
and encodes it under the form of a service descriptor.

– The match operator ∼ ⊆ L(SD) × L(SD) evaluates the matching degree
among two service descriptors through semantic reasoning.
The function execute : L(S)×L(Req)→ L(V) triggers the service execution
in order to fulfill the provided request and it subsequently provides the result.

– The function prove : L(Req)×L(SD)→ L(Const) performs the evaluation
of a query request.

– The function fringe : L(SD)→ L(I) is in charge of retrieving a set contain-
ing the inputs of a compound service descriptor, namely its fringe.

– The function compose : L(SD) × L(SD) → L(SD) designs the binding
among services, creating one or more new service descriptors which represent
the composed service.

– Finally, the function compositions : L(B)×L(SD)→ L(SD) aims to identify
all the compositions in which a given service descriptor is involved.

Transition rules. Transition rules define the admissible actions for a system
compliant with our model. In a nutshell, admissible actions include: (i) publish-
ing a service descriptor on the blackboard, (ii) composing two or more services,
(iii) publishing a request message (call or query) on the blackboard, (iv) prov-
ing a query request, (v) serving a call request, and (vi) the decay of a service
descriptor. The formal definition of the corresponding transition rules follows.

Service descriptor publication. The service descriptor publication is governed
by the [PUBLISH-SD] transition rule. The rule may occur anytime during the
system life-cycle. Its execution changes the blackboard state, enriching it with
the published service descriptor. Formally:

publish(SD) · S ‖ SS ‖ US ‖ B
publish sd−−−−−−→ S ‖ SS ‖ US ‖ B ∪ SD [PUBLISH-SD]

Composition The composition is governed by the [COMPOSE] transition rule. It
triggers each time a service is published and evaluates if there exists a service
that matches with the published one. If it is the case, a composed service de-
scriptor is generated and published on the blackboard.

SD = service(I,O) ∧ ∃ (N : O) ∈ fringe(SD ′) ∧ SD ′′ = compose(SD , SD ′)

SS ‖ US ‖ B ∪ SD ∪ SD ′
compose−−−−−→ SS ‖ US ‖ B ∪ SD ∪ SD ′ ∪ SD ′′

[COMPOSE]

Engineering service self-composition through coordination 213

Request publication. The request publication is governed by the [PUBLISH-QUERY]
and [PUBLISH-CALL] transition rules. Their execution publishes a query or call
message, respectively, on the blackboard. They both may occur anytime during
the system life-cycle.

query(Q) · U ‖ SS ‖ US ‖ B
publish query−−−−−−−−−→ U ‖ SS ‖ US ‖ B ∪ query(Q) [PUBLISH-QUERY]

call(C) · U ‖ SS ‖ US ‖ B
publish call−−−−−−−→ U ‖ SS ‖ US ‖ B ∪ call(C) [PUBLISH-CALL]

Proving. The result of a query request is generated by either the [POS-PROVE]

or the [NEG-PROVE] transition rules. The former (resp. latter) is triggered when
(i) there exists at least one service descriptor (either single or composed) on the
blackboard that is able (resp. unable) to fulfill the current query, (ii) there exists
a user waiting to consume the positive (resp. negative) result. Once triggered,
each transition allows the waiting user to go on with its computation.

service(Q) ∼ SD ∧ Const = prove(Q,SD)

SS ‖ res(>) · U ‖ US ‖ B ∪ SD ∪ query(Q)
prove−−−→ SS ‖ U ‖ US ‖ B ∪ SD

[POS-PROVE]

6 ∃ SD ∈ B : service(Q) ∼ SD

SS ‖ res(⊥) · U ‖ US ‖ B ∪ query(Q)
prove−−−→ SS ‖ U ‖ US ‖ B

[NEG-PROVE]

Serving. The management of a call request is governed by [CONSUME-CALL],
[SERVE-CALL], [COMP-CALL], [CONSUME-COMP-CALL], [SERVE-COMP-CALL], and
[LAST-COMP-CALL] transition rules.

The [CONSUME-CALL] rule is atomic: it is triggered each time a call request
can be fulfilled by some simple service. The rule is triggered only if a simple
service SD is listening for incoming requests. Once triggered, the rule consumes
the call request and adds an internal call message serve to the blackboard.

SD = service(I,O) ∧ typeof (call(C)) ∼ SD

accept(SD) · S ‖ SS ‖ US ‖ B ∪ SD ∪ call(C)
consume call−−−−−−−−→ accept(SD) · S ‖ SS ‖ US ‖ B ∪ SD ∪ serve(SD , call(C))

[CONSUME-CALL]

The [SERVE-CALL] transition governs the serving of a call request. The rule
is triggered only if (i) a simple service SD is listening for incoming requests, (ii)
a user is waiting for a result, and (iii) an internal message serve generated from
a call published by the same user is present on the blackboard. The transition
allows both the waiting user and the service to go on with their computations,
while the pending internal message serve is removed from the blackboard.

SD = service(I,O) ∧ typeof(call(C)) ∼ SD ∧ V = execute(accept(SD), call(C))

accept(SD) · S ‖ SS ‖ res(V) · U ‖ US ‖ B ∪ SD ∪ serve(SD , call(C))
serve call−−−−−−→ S ‖ SS ‖ U ‖ US ‖ B ∪ SD

[SERVE-CALL]

The [COMP-CALL] rule governs the serving of a call request by a composed
service. The rule is triggered only if a composed service SD able to fulfil the pub-
lished call request is present on the blackboard. During its execution, the black-
board state is modified and enriched with an internal call message serve comp

that contains the service descriptor SD of the composed service that is capable

214 A. Caselli et al.

of serving the request, in addition to the original call request call(C).

SD = SD′
N

argof SD′′ ∧ typeof(call(C)) ∼ SD

SS ‖ US ‖ B ∪ SD ∪ call(C)
comp call−−−−−−→ SS ‖ US ‖ B ∪ SD ∪ serve comp(SD, call(C))

[COMP-CALL]

The [CONSUME-COMP-CALL] rule is in charge of initiating the chain of ser-
vices executions that leads to the fulfilment of a call request with a composed
service. The rule is triggered whenever a message serve comp is published on
the blackboard. Once triggered, this transition modifies the blackboard state,
adding an internal message serve containing (i) the first service descriptor SD
of the composition, and (ii) the portion of the call request that is fulfillable by
the service described via the service descriptor SD .

SD = SD ′
N

argof SD ′′ ∧ typeof(call(C ′)) ∼ SD ′

SS ‖ US ‖ B ∪ SD ∪ serve comp(SD , call(C))
consume comp call−−−−−−−−−−−−→ SS ‖ US ‖ B ∪ SD ∪ serve(SD ′, call(C ′))

[CONSUME-COMP-CALL]

The [SERVE-COMP-CALL] rule is in charge of carrying on the execution of ful-
filment of a call request using a composed service. It requires an internal message
serve to be present. Once triggered, it generates a new internal message serve

that contains (i) the service descriptor of the following service to be executed
in the composition, and (ii) a new call with the result of the previous execution
added as input parameter.

SD = SD ′
N

argof SD ′′ ∧ typeof (call(C ′)) ∼ SD ′ ∧ V = execute(accept(SD ′), call(C ′))

accept(SD ′) · S ‖ SS ‖ US ‖ B ∪ SD ′ ∪ serve(SD ′, call(C ′))
serve comp call−−−−−−−−−−→ S ‖ SS ‖ US ‖ B ∪ SD′ ∪ serve(SD ′′, call(N : T (V), C ′))

[SERVE-COMP-CALL]

The [LAST-COMP-CALL] rule concludes the computational chain. It handles
the last service execution providing the final result. Therefore, the user that
published the call may consume the result and go on with its computation.

SD = SD ′
N

argof SD ′′ ∧ typeof(call(C ′′)) ∼ SD ′′ ∧ V = execute(accept(SD ′′), call(C ′′))

accept(SD ′′) · S ‖ SS ‖ res(V) · U ‖ US ‖ B ∪ SD ′′ ∪ serve(SD ′′, call(C ′′))
last comp call−−−−−−−−−→ S ‖ U ‖ SS ‖ US ‖ B ∪ SD ′′

[LAST-COMP-CALL]

Decay. The [DECAY] rule is defined with the purpose of keeping the blackboard
(B) clean over the time.

B′ = B − compositions(B,SD)

SS ‖ US ‖ B ∪ SD
τ−→ SS ‖ US ‖ B′

[DECAY]

This rule grants the system the capability of cleaning out the blackboard from
obsolete services. The operation also requires to clean out the composed services
in which the service targeted to be removed is involved. Label τ is used here to
denote a time-related recurrent operation. No specific frequency or rate is defined
by our formal specification. Yet, we assume [DECAY] executes frequently enough
to clean up stale service descriptors, but not so much frequently to hinder the
activity of services.

4 Architecture

This section discusses how a rigorously engineered solution for semantic self-
composition of services based on our model can be attained. In particular, be-

Engineering service self-composition through coordination 215

cause of space limitations, our discussion is articulated in two parts, describing
the design and implementation phases of our solution, respectively. More pre-
cisely, in the first part we show how a software architecture for our model can be
constructed by leveraging the Linda coordination model; whereas in the second
part we show how such a software architecture can be reified into some actual
JVM technology via the TuSoW framework.

4.1 Linda-based architecture

A Linda system is composed by a number of agents interacting via tuple spaces.
Our formal model as well can be briefly described in terms of agents interacting
via blackboard, enacting a particular protocol. Thus, drawing a software archi-
tecture based on Linda for our framework essentially requires (i) the blackboard
behaviour to be mimicked via some tuple space, and (ii) users and service agents
to be designed as agents performing Linda operations on that tuple space.

We stick to a logic-based interpretation of Linda, where both tuples and
templates are first-order logic terms, and tuples are matched against templates
via logic unification. Furthermore, we assume a wide spectrum of Linda primi-
tives are available for agents, including (i) Linda’s classic primitives – namely,
out, in, rd –, with their ordinary generative and suspensive semantics; (ii) bulk
primitives – such as out all, in all, rd all –, letting agents insert, consume, or
read multiple tuples at once; and (iii) predicative primitives – such as inp, rdp
–, which differ from their classic counterparts because they are not suspensive.

Of course, given that the blackboard abstraction in our model is not a simple
container of information – as it is in charge of automatically composing services
as soon as they are deployed –, it cannot be simply reduced to a tuple space.
To tackle this issue, at the architectural level, we introduce the notion of helper
agent. An helper agent is a reactive entity which is in charge of implementing
some transition rule from the model semantics described in section 3.2. In other
words, we translate each transition rule from section 3.2 into an helper agent
implementing it on the blackboard via Linda operations. Thus, there exists a
fixed number of helper agents, whose names and functions are described below.
For the sake of readability, helper agents are named using the pattern

To{EventName}{MessageName}Agent

where {EventName} denotes the invocation of some Linda operation on the
blackboard tuple spaces – commonly, an out operation –, whereas {MessageNa-
me} is the tuple or template characterising that Linda operation.

Accordingly, in the following we present a semi-formal definition of the Linda-
based architecture of our model via UML sequence diagrams. User agents publish
the requests on the tuple space by means of the out primitive. Subsequently, they
perform an in operation, waiting for a tuple to consume. Service agents, likewise,
follow the same pattern of interactions. They publish their service descriptor and
they consequently wait for tuples to be consumed.

216 A. Caselli et al.

(a) Reaction to service publication in the
tuple space

(b) Handling a call request that cannot be
served

(c) Serving a call request with a single
service

(d) Serving a call request with a composed
service

Fig. 1: An overview of the most salient interactions among the system compo-
nents during the publication, composition, and request serving phases

Engineering service self-composition through coordination 217

Service descriptor publication and service composition. The transition
rule [COMPOSE] has been implemented within the ToOutServiceAgent compo-
nent. It reacts to the service publication action ([PUBLISH-SD]), evaluating all
its viable compositions. If any, the composed service is generated and published
on the TupleSpace. Figure 1a shows the full chain of interactions starting from
the single service descriptor publication action to the subsequent composition
evaluation and potential publication. Note that after a service descriptor is pub-
lished, a list of unhandled call requests stored in a secondary tuple space is
published on the primary tuple space. A more detailed description is provided
in the following paragraphs.

Prove a query request. Operations [POS-PROVE] and [NEG-PROVE] are im-
plemented by the ToOutQueryAgent component. It reacts to the publication
action ([PUBLISH-QUERY]) of a query message, evaluating if there is an existing
service configuration able to fulfil it: a positive result is returned iff any exists.

Serve a call request. Operations [CONSUME-CALL] and [SERVE-CALL] are im-
plemented by the ToOutCallAgent. It reacts to the publication of a call request
and evaluates if the current system configuration is capable of serving it—i.e.
if there exists some service descriptor for the request at hand. Figure 1b shows
the actions performed when a published call request cannot be fulfilled by any
available service. Briefly, the matching among the call request and the avail-
able service is computed. If there exists no service that successfully matches the
call, it is moved to another (secondary) tuple space, which is explicitly aimed at
storing pending call requests which cannot be currently served. These calls are
eventually moved back to the (primary) TupleSpace as soon as a service publica-
tion occurs—as the new service may make it possible to serve some of them. The
involvement of two tuple spaces is an optimisation aimed at avoiding the waste of
computational resources due to the processing of (currently) unsatisfiable calls.

Conversely, when the current system configuration allows the fulfillment of
the call request, the request message is taken and processed. Figure 1c shows the
serving of a call request in case it exists a single service that may wholly fulfil it.
The opposite case is presented in figure 1d. In this case the rule [COMP-CALL], im-
plemented by ToOutCallAgent, occurs; while operations [CONSUME-COMP-CALL],
[SERVE-COMP-CALL] and [LAST-COMP-CALL] are performed within the ToOut-
ServeComposedAgent control flow.

4.2 Implementation details

The aforementioned Linda-based architecture is implemented upon TuSoW.
Briefly, the elements composing the system are (i) the Linda-like tuple space,
i.e. blackboard, (ii) a number of agents, and (iii) a fixed number of helper agents.

TuSoW defines the Linda-like tuple space as the so-called LogicSpace ar-
chitectural entity, representing an abstract version of an actual tuple space that
can be provided in several versions—e.g. local, remote, inspectable. TuSoW

218 A. Caselli et al.

agents are implemented as simple control flows—i.e. threads. We implement the
user and service agent entities as threads that communicate among them through
the shared LogicSpace. Helper agents, in turn, are implemented as threads aug-
mented with a tuProlog engine [10]. In particular, they hold reasoning capabili-
ties exploited within the system to evaluate (i) the viable service compositions,
and (ii) the match degree between a request message and a service descriptor.

Adopting TuSoW makes handling the non-determinism of Linda read and
consume operations challenging. In order to cope with it, the inspectable version
of the LogicSpace comes to our aid, since it presents an inspectable interface,
allowing tuple space state to be observed. To clarify how the feature is exploited
within our implementation, an example is provided. An helper agent constantly
consumes tuples matching a tuple template. For instance, the ToOutServiceAgent
consumes tuples unifying with a tuple template that resembles a service descrip-
tor, in order to react to a service descriptor publication. However, when many
service descriptors coexist in the tuple space, such operation consumes one of
them in a non-deterministic manner. Therefore it might return any service that
is currently published. To cope with it, the inspectable feature of the tuple space
is exploited by filtering out the tuples that do not belong to the tuple space in-
ternal writing event. In other words, a routine is bound to the internal writing
event of the tuple space, filtering out the tuples resulting from the writing event
that do not comply with the provided tuple template.

5 Case Study

A real-world scenario is here provided. Due to space reasons, we only show its
formal representation. The corresponding implementation leveraging a TuSoW-
based system architecture is publicly available3.

Let us assume that there exists a system holding a knowledge base composed
of the taxonomy of concepts depicted in figure 2. Let us now consider the system
as including two services willing to advertise themselves by publishing their
service descriptors, respectively SD and SD′, on the blackboard (B). We assume
the formal parameters (input and output) of those services are defined using
concepts that belong to the knowledge base of the system. In particular, we define
SD as the service that given a city name is able to provide its GPS coordinates.
In turn, we define SD′ as the service that provides the current temperature (in
Kelvin degrees) at the location described by some GPS coordinates.

Formally, service descriptors are described as follows:

SD = service(name : City , GPS)

SD ′ = service(loc : GPS , Kelvin)

3 https://gitlab.com/ashleycaselli/tusow-semantic-composition

https://gitlab.com/ashleycaselli/tusow-semantic-composition

Engineering service self-composition through coordination 219

(for the sake of simplicity, we define GPS coordinates as a single value uniquely
identifying a city), whereas the service initial configurations are as follows:

S0 = publish(SD) · accept(service(Q)) · S0

S′0 = publish(SD ′) · accept(service(Q′)) · S′0

We also assume the blackboard is initially empty (B0 = ∅), and that the system
includes a user willing to perform a service invocation:

U0 = Req · res(v) · halt

where Req = call(name : City(Geneva), Temperature) denotes an invocation
to a service computing the current temperature for a city (namely, Geneva), and
returning a temperature through any possible measurement unit. Under these
hypotheses, the initial state of the system is Sys0 = S0 ‖ S′0 ‖ U0 ‖ B0

The publication of the service descriptors (operation [PUBLISH-SD]) changes
the state of the system as follows:

Sys1 = accept(service(Q)) · S0︸ ︷︷ ︸
S1

‖

S′
1︷ ︸︸ ︷

accept(service(Q′)) · S′0 ‖ U0 ‖

B1︷ ︸︸ ︷
SD ∪ SD ′

Eventually, their publication triggers the component that computes the se-
mantic matching among the two service descriptors, computing all the possible
compositions (operation [COMPOSE]). In particular, in this case the compose op-
eration detects that the services represented by SD and SD ′ are composable

w.r.t the parameter named loc. We call ŜD = SD
loc

argof SD ′ the composed

service attained by composing SD and SD ′. The composed service ŜD is then
published on the blackboard, which can now be described as follows:

B2 = SD ∪ SD ′ ∪ ŜD

The presence of ŜD on the blackboard is what makes the user’s invocation
satisfiable. Suppose now that the user publishes (operation [PUBLISH-CALL])
its call request (Req). This would lead to a system state like the following:

Sys3 = S1 ‖ S′1 ‖ U0 ‖ SD ∪ SD ′ ∪ ŜD ∪ Req︸ ︷︷ ︸
B3

Fig. 2: An illustration of a taxonomy of concepts used in the presented case study

220 A. Caselli et al.

According to the current system configuration (Sys3) there is no simple service
capable of serving the request. However, the request may be fulfilled using the
composed service ŜD . In more details, ŜD and Req are compatible because (i) the

input (I
ŜD

) of the composed service ŜD and the input of the request (IReq) hold

the exact match degree, and (ii) the output (O
ŜD

) of the composed service ŜD
and the output of the request (OReq) hold the subsume match degree according
to the provided taxonomy. Formally:

I
ŜD
≡ IReq ∧OŜD

v OReq

The call request publication triggers the helper agent that is in charge of handling
the request message. Such component, leveraging a Prolog engine for reasoning
purposes, computes the semantic matching among the request and the available
services. In this case, the reasoning process leads to the solution proposed above,
inferring that the request may only be served by the composed service ŜD. In
order to manage the execution of all the services involved in the composition,
another helper agent is triggered (operation [COMP-CALL] is executed). Formally:

B4 = SD ∪ SD ′ ∪ ŜD ∪ serve comp(ŜD , call(...))

The helping agent is also in charge of collecting the intermediary responses that
each service provides, and of providing the final response. Each time a service is
triggered to serve the call, it computes the result and publishes it as Res message
on the blackboard (operation [SERVE-COMP-CALL]). For the sake of brevity we
only show one round of the “service execution-response publication” loop:

B5 = SD ∪ SD ′ ∪ ŜD ∪ serve(SDx , callx(...))

where SDx and callx represent respectively the service descriptor of the x-th
service of the composition and the call request that is served by such service.

Finally, operation [LAST-COMP-CALL] is executed and the user agent gets the
result.

B6 = SD ∪ SD ′ ∪ ŜD

U6 = halt

6 Conclusion

This paper proposes a solution for the semantic self-composition of services,
exploiting tuple-based coordination. We provide an end-to-end description of
the engineering challenges hidden in the production of such sorts of systems, and
sketch the formalisation of a middleware supporting (i) the self-composition of
services, at deploy time, and (ii) the transparent invocation of the composed
services from the client-side. In particular, we rely on a central blackboard used
by service providers to advertise their own service descriptors, and in charge of

Engineering service self-composition through coordination 221

orchestrating the execution of composed services. In this way, clients may invoke
both composed and simple service through a uniform API.

Accordingly, the design of our solution is deliberately minimal as our focus is
on the engineering of an actual implementation. In particular, the actual design
of our middleware leverages (i) Linda-like tuple spaces exploiting logic terms as
both clauses and templates, and (ii) logic programming to provide the system
components with semantic reasoning. Finally, a prototype implementation is
described exploiting the TuSoW coordination technology, and the tuProlog logic
reasoner.

We consider this work as a starting point for a number of research directions.
In fact, in the future, we plan to assess different strategies for implementing our
model, from both the theoretical and technological perspectives. For instance,
we are planning the exploitation of different matching mechanisms – possibly
modelling semantic matching as a similarity function rather than a binary rela-
tion –, as well as different interaction protocols for the helper agents used in our
prototype—possibly focusing on the scalability of service composition.

Acknowledgements

The authors would like to thanks the anonymous reviewers for their valuable
remarks.

This work has been partially supported by the H2020 Project “AI4EU” (G.A.
825619).

References

1. Ben Mahfoudh, H., Di Marzo Serugendo, G., Naja, N., Abdennhader, N.: Learning-
based coordination model for spontaneous self-composition of reliable services in a
distributed system. International Journal on Software Tools for Technology Trans-
fer (2020). https://doi.org/10.1007/s10009-020-00557-0

2. Benatallah, B., Dumas, M., Fauvet, M.C., Rabhi, F.A.: Towards patterns of web
services composition. In: Rabhi, F.A., Gorlatch, S. (eds.) Patterns and Skeletons
for Parallel and Distributed Computing, pp. 265–296. Springer, London (2003).
https://doi.org/10.1007/978-1-4471-0097-3 10

3. Bonjean, N., Gleizes, M.P., Maurel, C., Migeon, F.: Score: a self-organizing multi-
agent system for decision making in dynamic software developement processes. In:
International Conference on Agents and Artificial Intelligence (ICAART) (2013),
(short paper)

4. Caselli, A.: Logic-based coordination: a semantic approach to self-composition
of services. Master’s thesis, Alma Mater Studiorum—Università di Bologna,
School of Engineering (2019), http://amslaurea.unibo.it/17984

5. Ciatto, G., Di Marzo Serugendo, G., Louvel, M., Mariani, S., Omicini, A., Zam-
bonelli, F.: Twenty years of coordination technologies: COORDINATION contribu-
tion to the state of art. Journal of Logical and Algebraic Methods in Programming
113, 1–25 (Jun 2020). https://doi.org/10.1016/j.jlamp.2020.100531

https://doi.org/10.1007/s10009-020-00557-0
https://doi.org/10.1007/978-1-4471-0097-3_10
http://amslaurea.unibo.it/17984
https://doi.org/10.1016/j.jlamp.2020.100531

222 A. Caselli et al.

6. Ciatto, G., Rizzato, L., Omicini, A., Mariani, S.: TuSoW: Tuple spaces for edge
computing. In: The 28th International Conference on Computer Communica-
tions and Networks (ICCCN 2019). IEEE, Valencia, Spain (29 Jul–1 Aug 2019).
https://doi.org/10.1109/ICCCN.2019.8846916

7. De Angelis, F.L.: A Logic-Based Coordination Middleware for Self-Organising Sys-
tems: distributed reasoning based on many-valued logics. Ph.D. thesis, University
of Geneva, School of Social Sciences - Information Systems (2017)

8. De Nicola, R., Ferrari, G.L., Pugliese, R.: Klaim: a kernel language for agents
interaction and mobility. IEEE Transactions on Software Engineering 24(5), 315–
330 (May 1998). https://doi.org/10.1109/32.685256

9. Degas, A.: Auto-structuration de trafic temps-réel multi-objectif et multi-critère
dans un monde virtuel. Ph.D. thesis, Université de Toulouse III – Paul Sabatier,
IRIT - UMR 5505, Toulouse, France (2020)

10. Denti, E., Omicini, A., Ricci, A.: tuProlog: A light-weight Prolog for Internet
applications and infrastructures. In: Ramakrishnan, I. (ed.) Practical Aspects of
Declarative Languages, Lecture Notes in Computer Science, vol. 1990, pp. 184–198.
Springer Berlin Heidelberg (2001). https://doi.org/10.1007/3-540-45241-9 13, 3rd
International Symposium (PADL 2001), Las Vegas, NV, USA, 11–12 Mar. 2001

11. Di Napoli, C., Giordano, M., Németh, Z., Tonellotto, N.: Using chemical re-
actions to model service composition. In: 2nd International Workshop on Self-
Organizing Architectures (SOAR’10). pp. 43–50. ACM, New York, NY, USA
(2010). https://doi.org/10.1145/1809036.1809047

12. Freeman, E., Arnold, K., Hupfer, S.: JavaSpaces Principles, Patterns, and Practice.
Addison-Wesley Longman Ltd., Essex, UK (1999)

13. Frei, R., Şerbănuţă, T.F., Marzo Serugendo, G.D.: Self-organising assembly sys-
tems formally specified in Maude. Journal of Ambient Intelligence and Humanized
Computing 5(4), 491–510 (Aug 2012). https://doi.org/10.1007/s12652-012-0159-2

14. Gabillon, Y., Calvary, G., Fiorino, H.: Composing interactive systems by
planning. In: 4th French-speaking conference on Mobility and ubiquity com-
puting (UbiMob ’08). pp. 37–40. ACM, New York, NY, USA (2007).
https://doi.org/10.1145/1376971.1376979

15. Gelernter, D.: Generative communication in Linda. ACM Transactions
on Programming Languages and Systems 7(1), 80–112 (Jan 1985).
https://doi.org/10.1145/2363.2433

16. Gorrieri, R.: Labeled transition systems. In: Process Algebras for Petri Nets: The
Alphabetization of Distributed Systems, chap. 2, pp. 15–34. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-55559-1 2

17. Kalasapur, S., Kumar, M., Shirazi, B.A.: Dynamic service composition in pervasive
computing. IEEE Transactions on Parallel and Distributed Systems 18(7), 907–918
(Jul 2007). https://doi.org/10.1109/TPDS.2007.1039

18. Lemos, A.L., Daniel, F., Benatallah, B.: Web service composition: A survey
of techniques and tools. ACM Computing Surveys 48(3), 1–41 (Dec 2015).
https://doi.org/10.1145/2831270

19. Louvel, M., Pacull, F.: LINC: A compact yet powerful coordination environment.
In: Kühn, E., Pugliese, R. (eds.) Coordination Models and Languages (COOR-
DINATION), Lecture Notes in Computer Science, vol. 8459, pp. 83–98. Springer,
Berlin, Germany (Jun 2014). https://doi.org/10.1007/978-3-662-43376-8 6

20. Martin, D., Burstein, M., Hobbs, J., Lassila, O., Mcdermott, D., Mcilraith, S.,
Narayanan, S., Paolucci, M., Parsia, B., Payne, T., Sirin, E., Srinivasan, N., Sycara,
K.: Owl-s: Semantic markup for web services. W3C Memb. Submiss. 22 (2004)

https://doi.org/10.1109/ICCCN.2019.8846916
https://doi.org/10.1109/32.685256
https://doi.org/10.1007/3-540-45241-9_13
https://doi.org/10.1145/1809036.1809047
https://doi.org/10.1007/s12652-012-0159-2
https://doi.org/10.1145/1376971.1376979
https://doi.org/10.1145/2363.2433
https://doi.org/10.1007/978-3-319-55559-1_2
https://doi.org/10.1109/TPDS.2007.1039
https://doi.org/10.1145/2831270
https://doi.org/10.1007/978-3-662-43376-8_6

Engineering service self-composition through coordination 223

21. Murphy, A.L., Picco, G.P., Roman, G.C.: LIME: A coordination model and
middleware supporting mobility of hosts and agents. ACM Transactions on
Software Engineering and Methodology (TOSEM) 15(3), 279–328 (Jul 2006).
https://doi.org/10.1145/1151695.1151698

22. Omicini, A.: On the semantics of tuple-based coordination models. In: 1999 ACM
Symposium on Applied Computing (SAC’99). pp. 175–182. ACM, New York, NY,
USA (28 Feb – 2 Mar 1999). https://doi.org/10.1145/298151.298229

23. Omicini, A., Zambonelli, F.: Coordination for Internet application develop-
ment. Autonomous Agents and Multi-Agent Systems 2(3), 251–269 (Sep 1999).
https://doi.org/10.1023/A:1010060322135

24. Talantikite, H.N., Aissani, D., Boudjlida, N.: Semantic annotations for web services
discovery and composition. Computer Standards & Interfaces 31(6), 1108 – 1117
(2009). https://doi.org/10.1016/j.csi.2008.09.041

25. Talib, M.A., Yang, Z.: Semi-automatic code generation of static web services com-
position. In: Student Conference On Engineering, Sciences and Technology. pp. 132
– 137. IEEE (Jan 2005). https://doi.org/10.1109/SCONES.2004.1564784

26. Vallée, M., Ramparany, F., Vercouter, L.: A multi-agent system for dynamic service
composition in ambient intelligence environments. In: PERVASIVE 2005. Advances
in Pervasive Computing, vol. 191, pp. 175–182. Austrian Comp. Soc. (OCG) (2005)

27. Viroli, M.: On competitive self-composition in pervasive services.
Science of Computer Programming 78(5), 556–568 (May 2013).
https://doi.org/10.1016/j.scico.2012.10.002

https://doi.org/10.1145/1151695.1151698
https://doi.org/10.1145/298151.298229
https://doi.org/10.1023/A:1010060322135
https://doi.org/10.1016/j.csi.2008.09.041
https://doi.org/10.1109/SCONES.2004.1564784
https://doi.org/10.1016/j.scico.2012.10.002

	Engineering Semantic Self-composition of Services Through Tuple-based Coordination

