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We develop a method for treating a series of secularly growing terms obtained from quantum
perturbative calculations: autonomous first-order differential equations are constructed such that they
reproduce this series to the given order. The exact solutions of these equations are free of secular terms and
approach a finite limit at late times. This technique is illustrated for the well-known problem of secular
growth of correlation functions of a massless scalar field with a quartic self-interaction in de Sitter space.
For the expectation value of the product of two fields at coinciding space-time points, we obtain a finite
late-time result that is very close to the one following from Starobinsky’s stochastic approach.
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I. INTRODUCTION

The renormalization group (RG), born in the framework
of quantum field theory, has become one of its most
efficient tools (see, e.g., the reviews [1,2] and references
therein). The origin of this concept is connected with the
fact that removal of ultraviolet divergences leads to some
arbitrariness in defining the renormalized parameters of the
theory. However, physics should not be affected by this
arbitrariness: observable quantities must be independent of
the renormalization scale. Using this requirement, com-
bined with the information obtained from perturbation
theory, we can derive differential equations whose solutions
are equivalent to partial resummation of the perturbative
series.
Later it became clear that the area of application of RG

ideas is much wider than the problem of renormalization
and ultraviolet divergences in quantum field theory. One
can mention, first of all, Wilson’s version of the renorm-
alization group, which played an important role in the

physics of condensed matter and found further applications
in quantum field theory as well [3].
More recently, some new methods allowing application

of RG approach to classical problems of mathematical
physics were developed (see e.g., review [4] and references
therein). For example, in paper [5] it was shown how one
can improve the naive perturbative solutions of some rather
complicated differential equations. Namely, the authors
developed the so-called dynamical renormalization group
method by considering differential equations that involve a
small parameter and whose zeroth order solutions are
bounded functions, while the first iteration reveals a
presence of secularly growing terms. These terms spoil
the validity of the perturbative expansion past a certain
point in time; in order to deal with them, an arbitrary
intermediate timescale is introduced and the initial con-
ditions are renormalized. The RG equations for the renor-
malized initial conditions can be derived from the fact that
the intermediate timescale does not appear in the original
problem. The solutions of these RG equations allow one to
improve the original perturbative result by extending its
domain of validity.
Sometimes one encounters situations where the “tradi-

tional” ultraviolet and infrared divergences are intertwined
with secular effects. This can happen when we consider a
quantum field theory set in an expanding background. An
interesting example is the de Sitter spacetime represented
in the system of coordinates with flat spatial sections
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(Poincaré patch). Here the infrared divergences are much
stronger than in Minkowski spacetime and different kinds
of secular effects arise [6,7]. For a massless minimally
coupled scalar field there is a secular growth already
present at the level of the free theory: the long-wavelength
part of the expectation value hϕ2ðx⃗; tÞi evaluated in the
Bunch-Davies vacuum [8–10] grows linearly with time
[11–15]. If there is a self-interaction of the type λϕ4,
the perturbative calculation of the long-wavelength part
of hϕ2ðx⃗; tÞi gives a series with terms that behave like
λnðHtÞ2nþ1. When Ht > 1=

ffiffiffi
λ

p
, the perturbation theory

breaks down, so it cannot make reliable predictions at late
times.
A remarkable nonperturbative technique for calcula-

ting the late-time expectations values was proposed by
Starobinsky in [16] and further developed in many
papers, in particular in [17]. In [17] it was suggested
that the dynamics of the long-wavelength modes of the
quantum field ϕðx⃗; tÞ can be described by a classical
stochastic variable whose probability distribution satis-
fies a Fokker-Planck type equation. The authors showed
that at late times any solution of this equation
approaches the static solution, which in turn can be
used to calculate the expectation values. In essence,
Starobinsky’s Fokker-Planck equation manages to resum
the leading secular terms of the perturbative expansion
[18]. The emergence of the stochastic picture from the
full quantum evolution of the theory was presented in
more recent works [19–21].
Knowing how efficient the RG methods are, it is

tempting to try to apply them to the secular effects in de
Sitter space. An interesting attempt, based on the dynamical
renormalization group method, was undertaken in the
thought-provoking paper [22]. However, the obtained
results do not reproduce those known from the stochastic
approach.
In the present paper we develop a semi-heuristic method

for taking the late-time limit of a series of secularly growing
terms obtained from quantum perturbative calculations.
Namely, we construct autonomous first-order differential
equations such that our perturbative results can be obtained
from these equations by simple iterations. In the series we
consider, even the zeroth-order term grows secularly with
time, but when we construct an autonomous equation that
reproduces this series to linear order in the coupling
constant, its exact solution approaches a finite limit at late
times. Applied to hϕ2ðx⃗; tÞi of ϕ4-theory in de Sitter
spacetime, this procedure gives a result that coincides with
the Hartree-Fock approximation.
To see if we can improve this result, we build an

autonomous equation that reproduces the perturbative
series to second order. This equation is more complicated:
it can be integrated, but in general it is not possible to write
its exact solution as an explicit function of time. As we shall
explain in the next section, in some cases we can look for

the explicit solution in the form of perturbative expansion
in a parameter that characterizes the deviation of this
solution from the solution of the previous, simpler autono-
mous equation. At late times the function obtained in this
way approaches a finite limit, and in the case of hϕ2ðx⃗; tÞi
this finite value is very close to that known from the
stochastic approach.
The structure of the paper is the following: In Sec. II, we

present our method in rather general terms. In Sec. III, we
use it to calculate the asymptotic values for hϕ2ðx⃗; tÞi and
hϕ4ðx⃗; tÞi of ϕ4-theory in de Sitter space and compare the
results with the stochastic approach. Section IV contains
concluding remarks. In the appendixes we present pertur-
bative calculations of the leading secular terms in the two-
and four-point functions.

II. AUTONOMOUS EQUATIONS INSPIRED BY
RENORMALIZATION GROUP

Let us consider the following problem. We are looking
for a function fðtÞ, which is an expectation value of an
operator; it depends on time and a small parameter λ. We do
not have the dynamical equation governing this function,
but we have some information obtained by perturbative
methods. We know that when the parameter λ is very small,
the function has the following form:

fðtÞ ¼ Aðt − t0Þ − λBðt − t0Þ3 þOðλ2Þ; ð1Þ

where A and B are some positive constants. As t − t0
grows, the perturbation theory breaks down and the
expansion (1) can no longer be trusted. Even when
λ ¼ 0, the function f ¼ Aðt − t0Þ grows linearly with time,
and it is difficult to use the dynamical renormalization
group method [5], which works quite well when the zeroth-
order approximation is a bounded function. At the same
time we know (or we can guess from some physical
considerations) that as t → ∞, the function f should
approach a constant value. How can we model this behavior
and follow what happens at late times?
Our suggestion is the following: we shall try to find a

simple autonomous first-order differential equation that
produces the first two terms of the expression (1) by
iterations. Namely, at zeroth order we have

fðtÞ ¼ Aðt − t0Þ; ð2Þ

and this function can be obtained as a solution of a simple
differential equation

df
dt

¼ A: ð3Þ

Now we would like to generate the second term on the
right-hand side of Eq. (1) by iteration of an autonomous
first-order differential equation. To do this, it is enough to
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add to the right-hand side of the differential equation (3) the
term −λ 3B

A2 f2, so that we have the following equation:

df
dt

¼ A − λ
3B
A2

f2: ð4Þ

Solving this equation by iterations up to first order in λ we
find the expression (1).
We can also obtain Eq. (4) in a slightly different way:

notice that (1) can be represented as

fðtÞ ¼ yðtÞ − λ
B
A3

½yðtÞ�3 þOðλ2Þ; ð5Þ

where yðtÞ is the zeroth-order term,

yðtÞ≡ Aðt − t0Þ:

Differentiating (5) with respect to t, we get

df
dt

¼ A − λ
3B
A2

y2 þOðλ2Þ:

Within the given accuracy, y2 on the right side of this
equation can be replaced by f2; hence, we arrive at

df
dt

¼ A − λ
3B
A2

f2; ð6Þ

which coincides with Eq. (4). Fortunately, this equation is
integrable and its solution is

fðtÞ ¼
ffiffiffiffiffiffiffiffi
A3

3λB

r
tanh

� ffiffiffiffiffiffiffiffi
3λB
A

r
ðt − t0Þ

�
; ð7Þ

where the integration constant is chosen such that
fðt0Þ ¼ 0. It is easy to see that expanding (7) in powers
of λ, we reproduce the first two terms of Eq. (1). The
remarkable feature of this expression is that it is regular for
all values of t, and when t → ∞, one has

fðtÞ →
ffiffiffiffiffiffiffiffi
A3

3λB

r
:

Another interesting feature of this solution is its non-
analyticity with respect to the small parameter λ. Note that
appearance of nonanalyticity can also be observed rather
often when the dynamical renormalization group is
used [5].
In principle, this procedure can be generalized for the

situation when we have more than two terms coming from
perturbation theory. Suppose that we know our function f
up to the quadratic in λ term:

fðtÞ ¼ Aðt − t0Þ − λBðt − t0Þ3 þ λ2Cðt − t0Þ5 þOðλ3Þ:
ð8Þ

Rewriting everything in terms of the zeroth-order term,

fðtÞ ¼ yðtÞ − λ
B
A3

½yðtÞ�3 þ λ2
C
A5

½yðtÞ�5 þOðλ3Þ;

and taking the time derivative, we obtain

df
dt

¼ A − λ
3B
A2

y2 þ λ2
5C
A4

y4 þOðλ3Þ: ð9Þ

To the given order, y4 on the right side can be replaced by
f4. To replace y2 we notice that

f2 ¼ y2 − 2λ
B
A3

y4 þOðλ2Þ;

so, to λ2-order, Eq. (9) can be written as

df
dt

¼ A − λ
3B
A2

f2 þ λ2
�
5C
A4

−
6B2

A5

�
f4: ð10Þ

This equation is also integrable and we can obtain its
implicit solution

t ¼ tðfÞ: ð11Þ

The exact form of (11) depends on the sign of the
determinant of the right side of Eq. (10), and in general
it is not possible to find the explicit form of fðtÞ. But in
some cases we can obtain the solution of Eq. (10) in the
form of perturbative expansion in a small parameter.
What would this small parameter be? Looking at

Eq. (10), we see that if the coefficients in the expansion
(8) are such that

C ¼ 6B2

5A
; ð12Þ

then the coefficient of the quartic term f4 is equal to zero,
and we are back to Eq. (6) and its solution (7). This is not
surprising, since the expansion of (7) up to λ2-order gives
(8), with the coefficient C that satisfies the condition (12):

fðtÞ ¼ Aðt − t0Þ − λBðt − t0Þ3 þ λ2
6B2

5A
ðt − t0Þ5:

Let us now split the actual C in the following way:

C ¼ 6B2

5A
þ ΔC ¼ 6B2

5A
ð1þ ϵÞ;

where
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ϵ≡ 5A
6B2

ΔC ¼ 5AC
6B2

− 1: ð13Þ

With the above notations, Eq. (10) can be rewritten as

df
dt

¼ A − λ
3B
A2

f2 þ λ2ϵ
6B2

A5
f4:

If we rescale fðtÞ,

FðtÞ≡
ffiffiffiffiffiffiffiffi
3λB
A3

r
fðtÞ;

our differential equation will have the following form:

dF
dt

¼
ffiffiffiffiffiffiffiffi
3λB
A

r �
1 − F2 þ 2

3
ϵF4

�
: ð14Þ

We see that if ϵ is small, we can look for the solution of this
equation in the form of the perturbative expansion

FðtÞ ¼ F0ðtÞ þ ϵF1ðtÞ þOðϵ2Þ: ð15Þ

The zeroth-order term satisfies the equation

dF0

dt
¼

ffiffiffiffiffiffiffiffi
3λB
A

r
ð1 − F2

0Þ;

and its solution, with F0ðt0Þ ¼ 0, is

F0ðtÞ ¼ tanh

� ffiffiffiffiffiffiffiffi
3λB
A

r
ðt − t0Þ

�
:

For the first-order term we have

dF1

dt
¼

ffiffiffiffiffiffiffiffi
3λB
A

r �
−2F0F1 þ

2

3
F4
0

�
;

and its solution, with F1ðt0Þ ¼ 0, is

F1ðtÞ ¼
1

3
tanh

� ffiffiffiffiffiffiffiffi
3λB
A

r
ðt − t0Þ

�
þ

2
3
tanh

h ffiffiffiffiffiffi
3λB
A

q
ðt − t0Þ

i
−

ffiffiffiffiffiffi
3λB
A

q
ðt − t0Þ

cosh2
h ffiffiffiffiffiffi

3λB
A

q
ðt − t0Þ

i :

Hence, to first-order in ϵ, our original function fðtÞ is given by

fðtÞ ¼
�
1þ ϵ

3

� ffiffiffiffiffiffiffiffi
A3

3λB

r
tanh

� ffiffiffiffiffiffiffiffi
3λB
A

r
ðt − t0Þ

�
þ
ϵ
n
2
3

ffiffiffiffiffiffi
A3

3λB

q
tanh

h ffiffiffiffiffiffi
3λB
A

q
ðt − t0Þ

i
− Aðt − t0Þ

o
cosh2

h ffiffiffiffiffiffi
3λB
A

q
ðt − t0Þ

i ; ð16Þ

and as t → ∞, it approaches the limit

fðtÞ →
ffiffiffiffiffiffiffiffi
A3

3λB

r �
1þ ϵ

3

�
¼

ffiffiffiffiffiffiffiffi
A3

3λB

r �
2

3
þ 5

18

AC
B2

�
; ð17Þ

where we used the definition of ϵ (13) to obtain the last
equality.
Let us also consider a function, whose perturbative

expansion has a slightly different secular behavior

gðtÞ ¼ Jðt − t0Þ2 − λKðt − t0Þ4 þ λ2Lðt − t0Þ6 þOðλ3Þ:
ð18Þ

If we only keep the first two terms, the corresponding
autonomous first-order differential equation that reprodu-
ces them is

dg
dt

¼ 2
ffiffiffiffiffi
Jg

p
− λ

3K

J3=2
g3=2: ð19Þ

The solution of this equation is

gðtÞ ¼ 2J2

3λK
tanh2

� ffiffiffiffiffiffiffiffiffi
3λK
2J

r
ðt − t0Þ

�
; ð20Þ

and at large times it tends to the finite limit

gðtÞ → 2J2

3λK
: ð21Þ

With a little more work we can find the autonomous
equation that reproduces all three terms in (18),

dg
dt

¼ 2
ffiffiffiffiffi
Jg

p
− λ

3K

J3=2
g3=2 þ λ2

�
5L

J5=2
−
17

4

K2

J7=2

�
g5=2: ð22Þ

To find an approximate solution of this equation, we
proceed similarly to the previous case [cf. Eq (10)]. In
the expansion of (20) in powers of λ the coefficient
proportional to λ2 is equal to 17K2=20J; if we parametrize
the relative difference between this coefficient and the
coefficient L,
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ϵ̃≡ 20J
17K2

�
L −

17K2

20J

�
¼ 20JL

17K2
− 1 ð23Þ

and also rescale the function gðtÞ

GðtÞ≡ 3λK
2J2

gðtÞ; ð24Þ

we obtain the following equation:

dG
dt

¼
ffiffiffiffiffiffiffiffi
6λB
J

r �
G1=2 − G3=2 þ 17

18
ϵ̃G5=2

�
: ð25Þ

If ϵ̃ is small, we can solve this differential equation
perturbatively. Solving it to first order in ϵ̃ and going back
to the function gðtÞ, we find that at late times it approaches
the limit

gðtÞ → 2J2

3λK

�
1þ 17

18
ϵ̃

�
¼ 2J2

3λK

�
1

18
þ 20

18

JL
K2

�
: ð26Þ

III. RESUMMATION OF SECULAR TERMS IN DE
SITTER SPACE

We shall consider the de Sitter spacetime represented as
an expanding spatially flat Friedmann universe with the
following metric:

ds2 ¼ dt2 − a2ðtÞδijdxidxj; ð27Þ

where the scale factor aðtÞ is

aðtÞ ¼ eHt: ð28Þ

Here t is a cosmic time coordinate and H is the Hubble
constant or the inverse of the de Sitter radius. The cosmic
time in an expanding de Sitter universe runs in the interval
−∞ < t < ∞. It will also be convenient to use a conformal
time coordinate η, which is related to the cosmic time t by
the condition dt ¼ aðηÞdη. Expressed in terms of the
conformal time, the metric is

ds2 ¼ a2ðηÞðdη2 − δijdxidxjÞ; ð29Þ

where

aðηÞ ¼ −
1

Hη
; ð30Þ

and η runs from −∞ to 0.
We shall consider a massless minimally coupled scalar

field with a quartic self-interaction. Its action is

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
gμν∂μϕ∂νϕ −

λ

4
ϕ4

�
: ð31Þ

The Klein-Gordon equation for the free (noninteracting)
field is

ϕ̈ðx⃗; tÞ þ 3H _ϕðx⃗; tÞ −∇2

a2
ϕðx⃗; tÞ ¼ 0; ð32Þ

where “dot” stands for the derivative with respect to the
cosmic time and ∇2 is the three-dimensional Laplacian.
Making the Fourier transformation and the transition to the
conformal time, we can rewrite Eq. (32) as follows:

ϕ00
kðηÞ −

2

η
ϕ0
kðηÞ þ k2ϕkðηÞ ¼ 0; ð33Þ

where k ¼ jk⃗j and “prime” denotes the derivative with
respect to the conformal time. The solutions of this
equation have the form

ϕkðηÞ ∼ ð1� ikηÞe∓ikη: ð34Þ

Now, ϕ can be decomposed as

ϕðx⃗; tÞ ¼
Z

d3k⃗
ð2πÞ3 fukðηÞe

ik⃗·x⃗ak⃗ þ u�kðηÞe−ik⃗·x⃗a†k⃗g; ð35Þ

where a and a† are the annihilation and creation operators
while u and u� are basis functions proportional to the
solutions (34). The choice of the function u defines the
choice of the creation and annihilation operators (which,
naturally, should satisfy the standard commutation rela-
tions), which, in turn, defines the vacuum state. If one wants
to have a vacuum that in the remote past η → −∞ (or,
equivalently, for modes with very short physical wave-
length, −kHη ≫ H) behaves like the vacuum in
Minkowski spacetime, one should choose

ukðηÞ ¼
iHffiffiffiffiffiffiffi
2k3

p ð1þ ikηÞe−ikη: ð36Þ

Such a choice is called the Bunch-Davies vacuum [8–10].
Let us emphasize here that in this paper we consider

a model problem where the de Sitter background is fixed
and the scalar field plays the role of a “spectator” field.
Thus, the Klein-Gordon equation (32) and the correspond-
ing dispersion relations are valid for all wavelengths. It is
well known that in inflationary cosmology there is the
trans-Planckian problem connected with the fact that the
physics of the modes of gravitational field and the matter
fields, whose wavelengths are smaller than the Planck
length, is unknown [23–26]. Hence, the modification of the
dispersion relations at the trans-Planckian scale can, in
principle, influence the spectrum of the fluctuations respon-
sible for the origin of the large-scale structure of the
universe. The treatment of this problem is outside of the
scope of our paper.
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For small values of the physical momentum, −kη ≪ 1,
the two-point correlator constructed from the mode func-
tions (36) behaves like 1=k3, in contrast to flat spacetime,
where it behaves like 1=k2, which means that the infrared
divergences are stronger in de Sitter spacetime. Let us take
a closer look at this correlator: at the level of the free theory
the equal-time two-point function is given by

hϕðx⃗; tÞϕðy⃗; tÞiλ0 ¼
Z

d3k⃗
ð2πÞ3 ukðηÞu

�
kðηÞeik⃗·ðx⃗−y⃗Þ

¼ H2

2

Z
d3k⃗
ð2πÞ3

ð1þ k2η2Þ
k3

eik⃗·ðx⃗−y⃗Þ: ð37Þ

We would like to find the late-time behavior of the long-
wavelength part of (37), that is, the part coming from
the modes with physical momenta much less than the
Hubble scale, −kη ≪ 1. In the case of coinciding spatial
points, we obtain (the subscript L stands for “long-
wavelength part”)

hϕ2ðx⃗; tÞiλ0;L ¼ H2

4π2

Z
−1=η

κ

dk
k
ð1þ k2η2Þ

¼ −
H2

4π2

�
ln ð−κηÞ − 1

2
þ κ2η2

2

�
; ð38Þ

where we introduced an infrared cutoff κ for the comoving
momentum k, since the integral is divergent at k ¼ 0. For
t → ∞ (i.e., −κη ≪ 1), the first term in (38) dominates, so
in the late-time limit we have

hϕ2ðx⃗; tÞiλ0;L ¼ H3

4π2
ðt − t0Þ; ð39Þ

where t0 ≡ ð1=HÞ lnðκ=HÞ; thus, it grows linearly with
time [11–15].
In the presence of the quartic self-interaction, the

expression (39) will receive perturbative corrections. In
Appendix I we used the “in-in” (Schwinger-Keldysh)
formalism [27–31] to evaluate these corrections. Because
this formalism involves four types of propagators, the
calculations are rather cumbersome; however, it is still
possible to extract the leading late-time behavior of
hϕ2ðx⃗; tÞiL: to second order in λ, it is given by the sum
of (39), (A13) and (A39),

hϕ2ðx⃗; tÞiL ¼ H3

4π2
ðt − t0Þ − λ

H5

24π4
ðt − t0Þ3

þ λ2
H7

80π6
ðt − t0Þ5: ð40Þ

Results similar to (40) were also presented in the series of
works [32–35].

We can identify the expression (40) with the general
expression for the function fðtÞ, introduced in the preced-
ing section [cf. Eq. (8)]. Then the coefficients A, B, and C
for fðtÞ ¼ hϕ2ðx⃗; tÞiL are

A ¼ H3

4π2
; ð41Þ

B ¼ H5

24π4
; ð42Þ

C ¼ H7

80π6
: ð43Þ

Let us first consider the autonomous equation arising
when we take into consideration only the first two terms
in (40),

dhϕ2ðx⃗; tÞiL
dt

¼ H3

4π2
−
2λ

H
hϕ2ðx⃗; tÞi2L: ð44Þ

The exact solution of this equation, with the initial
condition hϕ2ðx⃗; t0ÞiL ¼ 0, is

hϕ2ðx⃗; tÞiL ¼ H2ffiffiffiffiffi
8λ

p
π
tanh

" ffiffiffiffiffiffiffiffi
H2λ

2π2

s
ðt − t0Þ

#
: ð45Þ

The secular growth disappears and at late times we have

hϕ2ðx⃗; tÞiL →
H2ffiffiffiffiffi
8λ

p
π
: ð46Þ

Expansion of (45) to second order in λ gives

H3

4π2
ðt − t0Þ − λ

H5

24π4
ðt − t0Þ3 þ λ2

H7

120π6
ðt − t0Þ5 þOðλ3Þ:

Notice that the first two terms match with the terms in the
original series (40), but the λ2-term has a different coef-
ficient; this is not surprising, since, as explained in the
previous section, Eq. (44) was constructed in such a way
that its perturbative (in λ) solution matches with (40) to first
order in λ. If all three terms in expression (40) are taken into
account, then the corresponding autonomous equation is

dhϕ2ðx⃗; tÞiL
dt

¼ H3

4π2
−
2λ

H
hϕ2ðx⃗; tÞi2L þ 16π2λ2

3H5
hϕ2ðx⃗; tÞi4L:

ð47Þ

Following what we did in the previous section, we can
solve it perturbatively in the parameter ϵ defined in (13). To
first order in ϵ, the solution of (47) is the function (16), so
with the values of A, B, and C from (41)–(43) we obtain

KAMENSHCHIK and VARDANYAN PHYS. REV. D 102, 065010 (2020)

065010-6



hϕ2ðx⃗; tÞiL ¼ 7

6

H2ffiffiffiffiffi
8λ

p
π
tanh

" ffiffiffiffiffiffiffiffi
H2λ

2π2

s
ðt − t0Þ

#
þ

1
3

H2ffiffiffiffi
8λ

p
π
tanh

h ffiffiffiffiffiffi
H2λ
2π2

q
ðt − t0Þ

i
− H3

8π2
ðt − t0Þ

cosh2
h ffiffiffiffiffiffi

H2λ
2π2

q
ðt − t0Þ

i ; ð48Þ

Unlike the expansion of (45), the expansion of (48)
reproduces (40) to second order in λ.
As t → ∞, the function (48) approaches the limit

hϕ2ðx⃗; tÞiL →
7

6

H2ffiffiffiffiffi
8λ

p
π
: ð49Þ

This asymptotic value is 7=6 times greater than the
asymptotic value (46) obtained from the simpler autono-
mous equation (44).
We shall compare our results for the asymptotic behavior

of hϕ2ðx⃗; tÞiL to the ones obtained in the Hartree-Fock
approximation as well as in the stochastic approach
[16,17]. Following Ref. [17], let us write the equation of
motion for our scalar field with the action (31),

ϕ;μ
;μ ¼ −λϕ3: ð50Þ

Multiplying both sides by ϕ, integrating the left side by
parts and taking expectation values of the field operators
results in

1

2
hϕ2i;μ;μ − hϕ;μϕ;μi ¼ −λhϕ4i: ð51Þ

Using the Hartree-Fock (Gaussian) approximation,
hϕ4i ¼ 3hϕ2i2, for the term on the right-hand side,
Eq. (51) can be written as

1

2
hϕ2i;μ;μ − hϕ;μϕ;μi ¼ −3λhϕ2i2: ð52Þ

When λ ¼ 0, the dominant contribution to the infrared part
(−kη ≪ 1) of the left-hand side comes from the 3H∂=∂t
part of the d’Alembertian; from (39) we see that

dhϕ2iL
dt

¼ H3

4π2
; ð53Þ

so it can be concluded that

dhϕ2iL
dt

¼ H3

4π2
−
2λ

H
hϕ2i2L: ð54Þ

This equation coincides with our Eq. (44), and, naturally,
their exact solutions and asymptotic behavior also coincide.
This means that by using the perturbative expansion of
hϕ2ðx⃗; tÞiL to first order in λ and constructing the autono-
mous equation, we reproduce the results obtained in the
Hartree-Fock approximation.

The stochastic approach argues [17] that the behavior of
the long-wavelength part of the quantum field ϕðx⃗; tÞ can
be modeled by an auxiliary classical stochastic variable φ
with a probability distribution ρðφ; tÞ that satisfies the
Fokker-Planck equation

∂ρ
∂t ¼

H3

8π2
∂2ρ

∂φ2
þ 1

3H
∂
∂φ

�∂V
∂φ ρðt;φÞ

�
; ð55Þ

where VðφÞ ¼ λφ4=4; namely the expectation value of any
quantity constructed from the long-wavelength part of
ϕðx⃗; tÞ is equal to the expectation value of the same
quantity constructed from the variable φ.
At late times any solution of Eq. (55) approaches the

static solution

ρðφÞ ¼
�
32π2λ

3

�1
4 1

Γð1
4
ÞH exp

�
−
2π2λφ4

3H4

�
: ð56Þ

Using this distribution, one can calculate the expectation
value of φ2:

hφ2i ¼
Z

∞

−∞
dφφ2ρðφÞ ¼

ffiffiffiffiffiffiffi
3

2π2

r
Γð3

4
Þ

Γð1
4
Þ
H2ffiffiffi
λ

p : ð57Þ

Now we can compare this with our result (49) obtained by
using the autonomous equation (47):

hφ2i − hϕ2iL
hφ2i ≈ 0.0036 ¼ 0.36%: ð58Þ

We see that our method gives a result that is extremely close
to the value obtained in the stochastic approach.
There is one caveat that we would like to mention. In

order to get the asymptotic value (17) [and, hence, (49)], we
had to assume that the parameter ϵ is small, so that the
expansion (15) is a good approximation to the exact
solution of Eq. (14). If we use the values of A, B, and
C from (41)–(43), we obtain that for the ϕ4 theory in de
Sitter space this parameter is equal to 1=2, which can hardly
be considered very small as compared to 1. Nonetheless, as
we just saw, the asymptotic value of hϕ2ðx⃗; tÞiL produced
by this approximation is surprisingly close to the one from
the stochastic picture. At this point we can note that such a
situation is not uncommon when one works with pertur-
bation theory. Indeed, rather often we treat various param-
eters in a way as if they were very small and still obtain
some reasonable results.
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At the end of this section we also consider the appli-
cation of our method to the calculation of hϕ4iL. One can
calculate the perturbative expression for this correlator: to
second order in λ its leading late-time behavior is given by
the sum of (A41), (A59), and (B12) (see appendixes),

hϕ4ðx⃗; tÞiL ¼ 3H6

16π4
ðt − t0Þ2 − λ

3H8

32π6
ðt − t0Þ4

þ λ2
53H10

960π8
ðt − t0Þ6: ð59Þ

The structure of the expression (59) coincides with that
presented in Eq. (18) at the end of the preceding section; the
coefficients J, K, and L are

J ¼ 3H6

16π4
; ð60Þ

K ¼ 3H8

32π6
; ð61Þ

L ¼ 53H10

960π8
: ð62Þ

Using (26) with the appropriate values of coefficients, we
conclude that in the limit t → ∞,

hϕ4ðx⃗; tÞiL →
H4

4π2λ

�
1þ 17

18
ϵ̃

�
¼ 221

648π2
H4

λ
: ð63Þ

On the other hand, using the stationary probability dis-
tribution (56) found from the Fokker-Planck equation, we
can calculate this expectation value as

hφ4i ¼
Z

∞

−∞
dφφ4ρðφÞ ¼ 3H4

8π2λ
: ð64Þ

Comparing (63) with its stochastic counterpart,

hφ4i − hϕ4iL
hφ4i ≈ 0.0905 ¼ 9.05%; ð65Þ

we see that the difference is bigger than in the case
of hϕ2iL.
To explain why the result we obtained for hϕ2iL is so

much closer to its stochastic value than the result for hϕ4iL,
let us look back at expression (49) for the late-time value of
hϕ2iL. The factor in front of the parentheses is the
asymptotic value we obtained by solving the lower-order
autonomous equation, that is, the autonomous equation that
reproduces the perturbative series to first order in λ; this
value is already fairly close to the stochastic value (57): the
difference is about 15%. By contrast, in the case of hϕ4iL
the asymptotic value obtained from the lower-order autono-
mous equation, which is equal to the factor in front of the

parentheses in (63), is farther away from the stochastic
value (64): the difference is about 33%. This means that in
the case of hϕ4iL more iterations are needed to get closer to
the stochastic value: an autonomous equation reproducing
the perturbative series to third (or higher) order in λ should
be considered.

IV. CONCLUDING REMARKS

Many quantum field theories set in an expanding back-
ground have secularly growing terms in their perturbatively
calculated correlation functions. In the case of the massless
minimally coupled scalar field in de Sitter space this growth
manifests itself even at zeroth order, thereby making it
difficult to apply the renormalization group methods. In this
paper we presented a technique for taking the late-time
limit of this type of perturbative series by constructing
auxiliary autonomous first-order differential equations. By
applying this technique to ϕ4-theory in de Sitter spacetime,
we calculated the late-time limit of expectation values of
products of two and four fields at coinciding space-time
points and compared our results with those obtained from
the stochastic approach. In principle, the method developed
here can also be used to calculate the late-time limit of
correlators of fields at different space-time points.
It would be interesting to explore the subdominant

secular terms present in perturbative series, that is, the
terms that are suppressed by additional powers of the
coupling constant with respect to the leading secular terms.
If we retain these subdominant terms in the perturbative
expansion, the autonomous equations needed to reproduce
this expansion will, of course, change. How will the late-
time limit of their solutions differ from the ones obtained
with only leading secular terms? We hope to address this
question in future work.
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APPENDIX A: PERTURBATIVE CALCULATIONS
OF CORRELATORS USING THE “IN-IN”

FORMALISM

1. The “in-in” formalism

To calculate first- and second-order corrections to the
two-point function, as well as the four-point function, we
will work in the interaction picture and use the “in-in”
formalism [27–31]. In this formalism equal-time n-point
functions can be written as
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hϕðt; x⃗1Þ � � �ϕðt; x⃗nÞi ¼ h0jU†
I ðt;−∞ÞϕIðt; x⃗1Þ � � �ϕIðt; x⃗nÞUIðt;−∞Þj0i

¼ h0jðT̄ei
R

t

−∞
dt0HIðt0ÞÞϕIðt; x⃗1Þ � � �ϕIðt; x⃗nÞðTe−i

R
t

−∞
dt0HIðt0ÞÞj0i; ðA1Þ

where ϕIðt; x⃗nÞ, just as in “in-out” formalism, are inter-
action picture fields with time evolution governed by the
free theory Hamiltonian; HI is the interaction Hamiltonian
in the interaction picture; T stands for time-ordering, T̄ for
anti-time-ordering; j0i is the vacuum state of the free
theory, which, as explained in Sec. III of the main text, is
chosen to be the Bunch-Davies state. In what follows we
suppress the subscript I of the interaction picture fields.
There are some differences between this formalism and

the usual in-out formalism, which is used for calculations of
scattering processes. For scattering precesses we start from
some initial “in” state at t ¼ −∞, evolve it from t ¼ −∞ to
t ¼ ∞, and then calculate its overlap with a final “out” state
at t ¼ ∞: both the initial and final states of the system are

specified. In the case of in-in formalism (A1) only the
initial state is specified: both the “in” state j0i and its
Hermitian conjugate h0j are evolved from −∞ to a time t
with UIðt;−∞Þ and U†

I ðt;−∞Þ respectively, then the
product of fields is sandwiched between them.
There is also anotherway to interpret (A1):we startwith the

initial state at −∞, evolve forward to a time t, where the
product of fields is inserted, then evolve backwards to −∞.
This is why the in-in formalism is also called “closed-time-
path” formalism.This interpretationmakes it possible towrite
(A1) in terms of a single time-ordered expression [30,36]:
label the fields on the forward-flowing part of the path with a
“þ” superscript, the fieldson thebackward-flowingpartof the
path with a “−” superscript; thereby, (A1) can be written as

hϕðt; x⃗1Þ � � �ϕðt; x⃗nÞi ¼ h0jTðϕþðt; x⃗1Þ � � �ϕþðt; x⃗nÞe−i
R

t

−∞
dt0½Hþ

I ðt0Þ−H−
I ðt0Þ�Þj0i; ðA2Þ

where H�
I ðtÞ≡HI½ϕ�ðt; x⃗Þ�, and the time-ordering oper-

ation is extended in the following way: two “þ” fields are
ordered as usual,

Tðϕþðt; x⃗Þϕþðt0; y⃗ÞÞ ¼ Θðt − t0Þϕþðt; x⃗Þϕþðt0; y⃗Þ
þ Θðt0 − tÞϕþðt0; y⃗Þϕþðt; x⃗Þ;

“−” fields always occur after “þ” fields,

Tðϕþðt; x⃗Þϕ−ðt0; y⃗ÞÞ ¼ ϕ−ðt0; y⃗Þϕþðt; x⃗Þ;
Tðϕ−ðt; x⃗Þϕþðt0; y⃗ÞÞ ¼ ϕ−ðt; x⃗Þϕþðt0; y⃗Þ;

and two “−” fields are ordered in the opposite of the usual
sense,

Tðϕ−ðt; x⃗Þϕ−ðt0; y⃗ÞÞ ¼ Θðt0 − tÞϕ−ðt; x⃗Þϕ−ðt0; y⃗Þ
þ Θðt − t0Þϕ−ðt0; y⃗Þϕ−ðt; x⃗Þ:

We can use Wick’s theorem to express the time-ordered
products in (A2) in terms of field contractions, but unlike in
in-out formalism, there are four types of Wick contractions
(and hence, four propagators)

h0jTðϕþðt; x⃗Þϕþðt0; y⃗ÞÞj0i
¼ Θðt − t0ÞG>ðt; x⃗; t0; y⃗Þ þ Θðt0 − tÞG<ðt; x⃗; t0; y⃗Þ;

h0jTðϕþðt; x⃗Þϕ−ðt0; y⃗ÞÞj0i ¼ G<ðt; x⃗; t0; y⃗Þ;
h0jTðϕ−ðt; x⃗Þϕþðt0; y⃗ÞÞj0i ¼ G>ðt; x⃗; t0; y⃗Þ;
h0jTðϕ−ðt; x⃗Þϕ−ðt0; y⃗ÞÞj0i

¼ Θðt0 − tÞG>ðt; x⃗; t0; y⃗Þ þ Θðt − t0ÞG<ðt; x⃗; t0; y⃗Þ;
where G>ðt; x⃗; t0; y⃗Þ and G<ðt; x⃗; t0; y⃗Þ are Wightman
functions

G>ðt; x⃗; t0; y⃗Þ ¼ h0jϕðt; x⃗Þϕðt0; y⃗Þj0i

¼
Z

d3k⃗
ð2πÞ3 e

ik⃗ðx⃗−y⃗ÞG>
k ðt; t0Þ;

G<ðt; x⃗; t0; y⃗Þ ¼ h0jϕðt0; y⃗Þϕðt; x⃗Þj0i

¼
Z

d3k⃗
ð2πÞ3 e

ik⃗ðx⃗−y⃗ÞG<
k ðt; t0Þ:

TheWightman functions associated with the Bunch-Davies
vacuum are

G>
k ðt; t0Þ ¼ ukðηÞu�kðη0Þ

¼ H2

2k3
ð1þ ikηÞð1 − ikη0Þe−ikðη−η0Þ

G<
k ðt; t0Þ ¼ u�kðηÞukðη0Þ

¼ H2

2k3
ð1 − ikηÞð1þ ikη0Þeikðη−η0Þ: ðA3Þ
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2. The two-point function and mass counterterm
at first order in λ

For the scalar field with quartic self-interaction, the
interaction Hamiltonian is

HIðtÞ ¼
Z

d3x⃗

�
a3ðtÞ λ

4
ϕ4 − Lc

�
;

where Lc is the counterterm Lagrangian required to
renormalize the theory (31),

Lc ¼ a3ðtÞ
�
δ1
2
_ϕ2 −

δ2
2a2ðtÞ ð∂iϕÞ2 −

δm
2
ϕ2 −

δλ
4
ϕ4

�
:

From (A2) the first-order correction to hϕðx⃗; tÞϕðy⃗; tÞi is
given by

hϕðx⃗; tÞϕðy⃗; tÞiλ ¼ −i
Z

t

−∞
dt0h0jTðϕþðx⃗; tÞϕþðy⃗; tÞ

× ½Hþ
I ðt0Þ −H−

I ðt0Þ�Þj0i:

Diagrammatically, it is the sum of one-loop and counter-
term diagrams shown in Fig. 1 Contractions that corre-
spond to the one-loop diagram give

12

�
−iλ
4

�Z
d3k⃗
ð2πÞ3 e

ik⃗·ðx⃗−y⃗Þ
Z

η

−∞
dη0a4ðη0Þ½ðG>

k ðη; η0ÞÞ2 − ðG<
k ðη; η0ÞÞ2�

Z
d3l⃗
ð2πÞ3G

>
l ðη0; η0Þ; ðA4Þ

and for the counterterm diagram we have

2

�
−iδm
2

�Z
d3k⃗
ð2πÞ3 e

ik⃗·ðx⃗−y⃗Þ
Z

η

−∞
dη0a4ðη0Þ½ðG>

k ðη; η0ÞÞ2 − ðG<
k ðη; η0ÞÞ2�; ðA5Þ

where we switched from the cosmic time t to the conformal
time η, and aðη0Þ ¼ 1=ð−Hη0Þ. The loop integral in Eq. (A4),

Z
d3l⃗
ð2πÞ3G

>
l ðη0;η0Þ ¼

H2

2

Z
d3l⃗
ð2πÞ3

ð1þl2η02Þ
l3

; ðA6Þ

has both infrared (IR) and ultraviolet (UV) divergencies. To
regulate them we introduce IR and UV cutoffs, with the UV
cutoff set at a fixed physical momentum ΛUV and the IR
cutoff set at a fixed comoving momentum κ (for explanation
of this choice see [37,38]):

H2

4π2

Z
aðη0ÞΛUV

κ

dl
l

ð1þ l2η02Þ

¼ H2

4π2

�
ln

�
ΛUV

κ

�
− ln ð−Hη0Þ þ Λ2

UV

2H2

�
: ðA7Þ

We can see that in order to absorb the UV divergencies, the
mass counterterm should be equal to

δm ¼ −
3λ

4π2

�
Λ2
UV

2
þH2 ln

�
ΛUV

μUV

��
: ðA8Þ

Taking this counterterm into account and choosing the UV
renormalization scale μUV to be equal to H, we obtain the
UV-renormalized result

hϕðx⃗; tÞϕðy⃗; tÞiλ ¼
3iλH2

4π2

Z
d3k⃗
ð2πÞ3 e

ik⃗·ðx⃗−y⃗Þ
Z

η

−∞
dη0a4ðη0Þ

× ½ðG>
k ðη;η0ÞÞ2 − ðG<

k ðη;η0ÞÞ2� ln ð−κη0Þ:
ðA9Þ

The arguments of the exponents in the Wightman functions
are products of the momentum and conformal time,
[�kðη− η0Þ], so in order to perform the time integration
we need to change the integration variable from η0 to
z0 ≡ kη0. Because of this, we also need to rewrite the
ln ð−κη0Þ in terms of z0

ln ð−κη0Þdη0 ¼
�
ln ð−z0Þ − ln

k
κ

�
dz0

k
: ðA10Þ

When performing the time integral in (A9), the time contour
is deformed to have a small imaginary part in order to project
out the vacuum state of the interacting theory from the
vacuum state of the free theory [39,40]. Hence, there are no
contributions coming from the lower limit of the integral,
where η0 ¼ −∞ð1� iϵÞ and the oscillatory exponents in the
Wightman functions turn into damping exponents. For late
times, the contribution of the upper limit of the integral can
be obtained by using the following expansion (η → 0 and
η0 → 0):

FIG. 1. One-loop and counterterm diagrams. (δ1, δ2, and δλ are
equal to zero at first order in λ).
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a4ðη0Þ½ðG>
k ð0; η0ÞÞ2 − ðG<

k ð0; η0ÞÞ2� ¼
i

3k3η0

�
1þ 2

5
k2η02 þOðk4η04Þ

�

¼ i
3k2z0

�
1þ 2

5
z02 þOðz04Þ

�
: ðA11Þ

Using (A10) and (A11) we obtain that, for η → 0, (A9) goes as

hϕðx⃗; tÞϕðy⃗; tÞiλ →
λH2

4π2

Z
d3k⃗
ð2πÞ3

eik⃗·ðx⃗−y⃗Þ

k3

�
ln
k
κ
ln ð−kηÞ − 1

2
ln2ð−kηÞ

�
; ðA12Þ

and its long-wavelength part, for x⃗ ¼ y⃗, is

hϕ2ðx⃗; tÞiλ;L ¼ λH2

8π4

Z
−1=η

κ

dk
k

�
ln
k
κ
ln ð−kηÞ − 1

2
ln2 ð−kηÞ

�

¼ λH2

24π4
ln3 ð−κηÞ ¼ −

λH5

24π4
ðt − t0Þ3; ðA13Þ

where t0 ≡ ð1=HÞ lnðκ=HÞ as before [cf. Eq. (39)].

3. λ2 correction

Expanding (A2) to second order and taking all possi-
ble field contractions, we obtain several diagrams with
different topologies that contribute to hϕðx⃗; tÞϕðy⃗; tÞi at
λ2 order.

a. Two independent loops

Figure 2 shows the diagram with two independent loops
and the appropriate counterterm diagrams that should be
combined with it.
Taking field contractions that correspond to the diagram

with two independent loops and making use of the theta
functions in the propagators, for this diagram we obtain

2ð288Þ 1
2

�
−iλ
4

�
2
Z

d3k⃗
ð2πÞ3 e

ik⃗·ðx⃗−y⃗Þ
Z

η

−∞
dη0a4ðη0Þ½G>

k ðη; η0Þ −G<
k ðη; η0Þ�

Z
d3p⃗
ð2πÞ3G

>
p ðη0; η0Þ

×
Z

η0

−∞
dη00a4ðη00Þ½G>

k ðη0; η00ÞG>
k ðη; η00Þ −G<

k ðη0; η00ÞG<
k ðη; η00Þ�

Z
d3l⃗
ð2πÞ3G

>
l ðη00; η00Þ: ðA14Þ

The diagrams with one loop and one cross (the mass counterterm insertion) give

48

�
−iλ
4

��
−iδm
2

�Z
d3k⃗
ð2πÞ3 e

ik⃗·ðx⃗−y⃗Þ
Z

η

−∞
dη0a4ðη0Þ½G>

k ðη; η0Þ −G<
k ðη; η0Þ�

×
Z

η0

−∞
dη00a4ðη00Þ½G>

k ðη0; η00ÞG>
k ðη; η00Þ −G<

k ðη0; η00ÞG<
k ðη; η00Þ�

Z
d3p⃗
ð2πÞ3 fG

>
p ðη0; η0Þ þG>

p ðη00; η00Þg; ðA15Þ

and the diagram with two mass counterterm insertions gives

2ð8Þ 1
2

�
−iδm
2

�
2
Z

d3k⃗
ð2πÞ3 e

ik⃗·ðx⃗−y⃗Þ
Z

η

−∞
dη0a4ðη0Þ½G>

k ðη; η0Þ −G<
k ðη; η0Þ�

×
Z

η0

−∞
dη00a4ðη00Þ½G>

k ðη0; η00ÞG>
k ðη; η00Þ −G<

k ðη0; η00ÞG<
k ðη; η00Þ�: ðA16Þ

FIG. 2. Diagram with two independent loops and the counterterm diagrams.
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The sum of (A14) and of the first part of (A15) (the part with only the first term kept in the curly brackets) gives

18λ2H2

4π2

Z
d3k⃗
ð2πÞ3 e

ik⃗·ðx⃗−y⃗Þ
Z

η

−∞
dη0a4ðη0Þ½G>

k ðη; η0Þ − G<
k ðη; η0Þ�

Z
d3p⃗
ð2πÞ3G

>
p ðη0; η0Þ

×
Z

η0

−∞
dη00a4ðη00Þ½G>

k ðη0; η00ÞG>
k ðη; η00Þ −G<

k ðη0; η00ÞG<
k ðη; η00Þ� ln ð−κη00Þ: ðA17Þ

The sum of (A16) and of the second part of (A15) (the part with only the second term kept in the curly brackets) gives

6λδmH2

4π2

Z
d3k⃗
ð2πÞ3 e

ik⃗·ðx⃗−y⃗Þ
Z

η

−∞
dη0a4ðη0Þ½G>

k ðη; η0Þ −G<
k ðη; η0Þ�

×
Z

η0

−∞
dη00a4ðη00Þ½G>

k ðη0; η00ÞG>
k ðη; η00Þ − G<

k ðη0; η00ÞG<
k ðη; η00Þ� ln ð−κη00Þ: ðA18Þ

Finally, putting together (A17) and (A18), we get

−
9λ2H4

8π4

Z
d3k⃗
ð2πÞ3 e

ik⃗·ðx⃗−y⃗Þ
Z

η

−∞
dη0a4ðη0Þ½G>

k ðη; η0Þ −G<
k ðη; η0Þ� ln ð−κη0Þ

×
Z

η0

−∞
dη00a4ðη00Þ½G>

k ðη0; η00ÞG>
k ðη; η00Þ − G<

k ðη0; η00ÞG<
k ðη; η00Þ� ln ð−κη00Þ: ðA19Þ

To obtain (A17), (A18), and (A19), we used the result (A7) for the loop integral and (A8) for the mass counterterm (with
μUV ¼ H). Similar to the previous section, in order to perform the integrals over the time variables, we need to change the
integration variables: from η00 to z00 ≡ kη00 and from η0 to z0 ≡ kη0. Consequently, we also need to rewrite the time-dependent
logarithms

ln ð−κη0Þ ln ð−κη00Þdη00dη0 ¼
�
ln ð−z0Þ − ln

k
κ

��
ln ð−z00Þ − ln

k
κ

�
dz00dz0

k2
: ðA20Þ

Just as in (A9), there are not any contributions coming from the lower limits of the time integrals in (A19). To evaluate the
upper limit contributions we expand the Wightman functions (η → 0, η0 → 0 and η00 → 0)

a4ðη0Þa4ðη00Þ½G>
k ð0; η0Þ −G<

k ð0; η0Þ�½G>
k ðη0; η00ÞG>

k ð0; η00Þ − G<
k ðη0; η00ÞG<

k ð0; η00Þ�

¼ −
1

9H2k3η0η00
ð1þOðk2η02; k2η002ÞÞ ¼ −

1

9H2kz0z00
ð1þOðz02; z002ÞÞ: ðA21Þ

Using (A20) and (A21) to perform the time integrals, we find that at late times the long-wavelength part of (A19), with
coinciding external spatial points (x⃗ ¼ y⃗), goes as

λ2H2

32π6

Z
−1=η

κ

dk
k

�
ln2

k
κ
− ln

k
κ
ln ð−kηÞ þ 1

4
ln2 ð−kηÞ

�
ln2 ð−kηÞ ¼ −

λ2H2

240π6
ln5 ð−κηÞ ¼ λ2H7

240π6
ðt − t0Þ5: ðA22Þ

b. Snowman diagram

Next, we consider the diagrams on Fig. 3: the snowman diagram and the corresponding counterterm diagram with the
mass counterterm insertion in its loop.
The sum of these diagrams gives

ð−iÞ2 λ
4

Z
d3k⃗
ð2πÞ3 e

ik⃗·ðx⃗−y⃗Þ
Z

η

−∞
dη0a4ðη0Þ½ðG>

k ðη; η0ÞÞ2 − ðG<
k ðη; η0ÞÞ2�

×
Z

η0

−∞
dη00a4ðη00Þ

Z
d3p⃗
ð2πÞ3 ½ðG

>
p ðη0; η00ÞÞ2 − ðG<

p ðη0; η00ÞÞ2�
�
288

2
·
λ

4

Z
d3l⃗
ð2πÞ3 G

>
l ðη00; η00Þ þ 24 ·

δm
2

�
:
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Using (A7) and the result (A8) for the mass counterterm (with μUV ¼ H), the above expression becomes

9λ2H2

4π2

Z
d3k⃗
ð2πÞ3 e

ik⃗·ðx⃗−y⃗Þ
Z

η

−∞
dη0a4ðη0Þ½ðG>

k ðη; η0ÞÞ2 − ðG<
k ðη; η0ÞÞ2�

×
Z

η0

−∞
dη00a4ðη00Þ

Z
d3p⃗
ð2πÞ3 ½ðG

>
p ðη0; η00ÞÞ2 − ðG<

p ðη0; η00ÞÞ2� ln ð−κη00Þ: ðA23Þ

Unlike in (A4), where the loop momentum l⃗ is
associated with only one time variable, η0, in (A23)
the momentum p⃗ appears in the products with η0 as well
as η00. This means that if we want to regulate the
integral over p⃗ with the UV cutoff set at a fixed
physical momentum scale ΛUV, there is ambiguity in
choosing the comoving cutoff scale: should it be
aðη0ÞΛUV or aðη00ÞΛUV? One way to overcome this
problem is to perform the η00 integration before the p⃗
integration.

So we start by evaluating the integral over η00. This time
variable enters the exponents in (A23) as ð�pη00Þ; hence,
we change the integration variable from η00 to z00 ≡ pη00 and
express the time-dependent logarithm in terms of z00:

ln ð−κη00Þdη00 ¼
�
ln ð−z00Þ − ln

p
κ

�
dz00

p
: ðA24Þ

Using the late-time expansion of the Wightman functions
(η → 0, η0 → 0 and η00 → 0)

a4ðη0Þa4ðη00Þ½ðG>
k ð0; η0ÞÞ2 − ðG<

k ð0; η0ÞÞ2�½ðG>
p ðη0; η00ÞÞ2 − ðG<

p ðη0; η00ÞÞ2�

¼ −
1

9η0η00k3p3
ð1þOðk2η02; p2η02; p2η002ÞÞ ¼ −

1

9η0z00k3p2
ð1þOðk2η02; p2η02; z002ÞÞ;

and integrating over z00, we find the leading late-time
behavior of the integrand of the integral over η0 in (A23):

H2

9k3η0

Z
d3p⃗
ð2πÞ3

1

p3

�
1

2
ln2ð−pη0Þ − ln ð−κη0Þ ln ð−pη0Þ

�
:

ðA25Þ

It is convenient to split this momentum integral (UVand IR
regulated) in the following way:

Z
aðη0ÞΛUV

κ

d3p⃗
ð2πÞ3 ¼

Z
−1=η0

κ

d3p⃗
ð2πÞ3 þ

Z ΛUV
−Hη0

−1=η0

d3p⃗
ð2πÞ3 : ðA26Þ

At late times the first term on the right side dominates, so
the leading late-time behavior of (A25) is

H2

9k3η0

Z
−1=η0

κ

d3p⃗
ð2πÞ3

1

p3

�
1

2
ln2ð−pη0Þ − ln ð−κη0Þ ln ð−pη0Þ

�

¼ H2

54k3η0π2
ln3ð−κη0Þ:

To perform the η0 integral, we switch the integration
variable from η0 to z0 ≡ kη0, and hence split the above
logarithm

ln3 ð−κη0Þ dη
0

η0
¼

�
ln ð−z0Þ − ln

k
κ

�
3 dz0

z0
:

Evaluating the integral over z0 and, subsequently, over k⃗,
we find the dominant late-time behavior of the long-
wavelength part of (A23) (with x⃗ ¼ y⃗)

λ2H2

48π6

Z
−1=η

κ

dk
k

�
3

2
ln2

�
k
κ

�
ln ð−kηÞ − ln

�
k
κ

�
ln2 ð−kηÞ

− ln3
�
k
κ

�
þ 1

4
ln3 ð−kηÞ

�
ln ð−kηÞ

¼ −
λ2H2

240π6
ln5 ð−κηÞ ¼ λ2H7

240π6
ðt − t0Þ5: ðA27Þ

c. Sunset diagram

For the field contractions that correspond to the sunset
diagram (Fig. 4) we obtain the following expression:

FIG. 3. Snowman diagram and the corresponding counterterm
diagram with the mass counterterm insertion in its loop.
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2ð192Þ 1
2

�
−iλ
4

�
2
Z

d3k⃗
ð2πÞ3 e

ik⃗·ðx⃗−y⃗Þ
Z

η

−∞
dη0a4ðη0Þ½G>

k ðη; η0Þ −G<
k ðη; η0Þ�

Z
η0

−∞
dη00a4ðη00Þ

×
Z

d3q⃗
ð2πÞ3

d3p⃗
ð2πÞ3

d3l⃗
ð2πÞ3 ð2πÞ

3δ3ðk⃗þ p⃗þ ⃗lþ q⃗Þ

× ½G>
k ðη; η00ÞG>

p ðη0; η00ÞG>
l ðη0; η00ÞG>

q ðη0; η00Þ −G<
k ðη; η00ÞG<

p ðη0; η00ÞG<
l ðη0; η00ÞG<

q ðη0; η00Þ�: ðA28Þ

As in the case of the snowman diagram, the loop momenta in (A28) is associated with two time variables, η0 and η00, which
makes it unclear how to choose the comoving UV cutoff. Hence, we will integrate over η00 before integrating over momenta.
Expanding the Wightman functions in (A28) (η → 0, η0 → 0 and η00 → 0)

a4ðη0Þa4ðη00Þ½G>
k ð0; η0Þ −G<

k ð0; η0Þ�
× ½G>

k ð0; η00ÞG>
p ðη0; η00ÞG>

l ðη0; η00ÞG>
q ðη0; η00Þ −G<

k ð0; η00ÞG<
p ðη0; η00ÞG<

l ðη0; η00ÞG<
q ðη0; η00Þ�

¼ −
H2

72k3η0η00

�
k3 þ p3 þ l3 þ q3

p3l3q3

�
þ � � � ; ðA29Þ

and changing the integration variable from η00 to z00 ≡ ðkþ pþ lþ qÞη00, since that is how it appears in the exponents in
(A28), we obtain

−
H2

72k3η0

Z
d3q⃗
ð2πÞ3

d3p⃗
ð2πÞ3

d3l⃗
ð2πÞ3 ð2πÞ

3δ3ðk⃗þ p⃗þ ⃗lþ q⃗Þ k
3 þ p3 þ l3 þ q3

p3l3q3
ln ½−η0ðkþ pþ lþ qÞ�

¼ −
H2

72k3η0

Z
d3p⃗
ð2πÞ3

d3l⃗
ð2πÞ3

k3 þ 3q3

p3l3q3
ln ½−η0ðkþ pþ lþ qÞ�; ðA30Þ

where q ¼ jk⃗þ p⃗þ l⃗j.
As in (A26), we split the momentum integrals in the following way:

Z
aðη0ÞΛUV

κ

d3p⃗
ð2πÞ3

Z
aðη0ÞΛUV

κ

d3l⃗
ð2πÞ3 ¼

Z
−1=η0

κ

d3p⃗
ð2πÞ3

Z
−1=η0

κ

d3l⃗
ð2πÞ3

þ
Z ΛUV

−Hη0

−1=η0

d3p⃗
ð2πÞ3

Z ΛUV
−Hη0

−1=η0

d3l⃗
ð2πÞ3 þ 2

Z
−1=η0

κ

d3p⃗
ð2πÞ3

Z ΛUV
−Hη0

−1=η0

d3l⃗
ð2πÞ3 :

We can see that at the late-time limit the leading
contribution comes from the first term on the right-hand
side of the equality. Also, since our goal is to evaluate the
long-wavelength part of (A28) (i.e., −kη is small), the k3

term in the numerator of (A30) can be neglected. Hence, the
leading behavior of (A30) is

−
H2

24k3η0

Z
−1=η0

κ

d3p⃗
ð2πÞ3

Z
−1=η0

κ

d3l⃗
ð2πÞ3

ln ½−η0ðpþ lÞ�
p3l3

¼ −
H2

96π4k3η0

Z
1

α

dy1
y1

Z
1

α

dy2
y2

ln ðy1 þ y2Þ; ðA31Þ

where y1 ≡ −pη0, y2 ≡ −lη0 and α≡ −κη0. To perform
these integrals, we split the logarithm in the following way:

Z
1

α

dy1
y1

Z
1

α

dy2
y2

ln ðy1 þ y2Þ

¼
Z

1

α

dy1
y1

�Z
1

α

dy2
y2

ln y1 þ
Z

1

α

dy2
y2

ln

�
1þ y2

y1

��

¼ 1

2
ln3 αþ

Z
1

α

dy1
y1

Z
1

0

dy2
y2

ln

�
1þ y2

y1

�
: ðA32Þ

In the integral over y2 in the second term we set α ¼ 0
because there is no divergence at y2 ¼ 0: it is an integral
representation of the dilogarithm function

Li2ðxÞ ¼ −
Z

1

0

ln ð1 − xtÞ
t

dt; ðA33Þ

so (A32) can be written asFIG. 4. Sunset diagram.
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Z
1

α

dy1
y1

Z
1

α

dy2
y2

ln ðy1 þ y2Þ

¼ 1

2
ln3 α −

Z
1

α
Li2

�
−

1

y1

�
dy1
y1

: ðA34Þ

In order to deal with the integral that involves the
dilogarithm function, we will use the large argument
expansion [41]: for x ≫ 1 (i.e., y1 ≪ 1),

Li2ð−xÞ ¼
π2

6
−
1

2
ln2 xþOð1=xÞ: ðA35Þ

Replacing the dilogarithm by the logarithmic term of this
expansion, we obtain the leading behavior of (A34)

→
1

2
ln3 αþ 1

2

Z
1

α

ln2 y1
y1

dy1 ¼
1

3
ln3 ð−κη0Þ: ðA36Þ

To perform the η0 integral, we switch the variable from η0 to
z0 ≡ kη0, and hence split the above logarithm

ln3ð−κη0Þ dη
0

η0
¼

�
ln ð−z0Þ − ln

k
κ

�
3 dz0

z0
: ðA37Þ

Using (A32) and (A37) to integrate (A31) over η0, and then
integrating over k⃗, we obtain that at late times the long-
wavelength part of (A28), with x⃗ ¼ y⃗, goes as

λ2H2

16π6

Z
−1=η

κ

dk
k

�
1

2
ln2

�
k
κ

�
ln ð−kηÞ − 1

3
ln

�
k
κ

�
ln2 ð−kηÞ − 1

3
ln3

�
k
κ

�
þ 1

12
ln3 ð−kηÞ

�
ln ð−kηÞ

¼ −
λ2H2

240π6
ln5 ð−κηÞ ¼ λ2H7

240π6
ðt − t0Þ5: ðA38Þ

We would like to say a few words about the counterterm
diagrams shown in Fig. 5.
For t → ∞, the Fourier transform of the first diagram is

proportional to ðln2 ð−kηÞ=k3Þδλ, so its contribution to
hϕ2ðx⃗; tÞiL is proportional to λ2t3; the Fourier transform
of the second diagram is proportional to ðln ð−kηÞ=k3Þδmjλ2 ,
and its contribution to hϕ2ðx⃗; tÞiL is proportional to λ2t2. The
Fourier transforms of the second and third diagrams do not
have any late-time divergencies, because only two powers of
the scale factor enter the vertex time integration, unlike all
other graphs, which have four powers of the scale factor at
each vertex. Straightforward calculation of these diagrams
shows that one of them is proportional to δ1ðk2η2 − 1Þ=k3,
and the other one to δ2ðk2η2 þ 3Þ=k3, so their contributions
to hϕ2ðx⃗; tÞiL are proportional to λ2t. Hence, we can see that
the late-time contributions of the diagrams in Fig. 5 are
subdominant.
Finally, we conclude that the leading late-time behavior

of hϕ2ðx⃗; tÞiλ2;L is given by the sum of (A22), (A27), and
(A38),

hϕ2ðx⃗; tÞiλ2;L ≈
λ2H7

80π6
ðt − t0Þ5: ðA39Þ

4. hϕ4ðx⃗;tÞi to first order in λ

At zeroth order in λ the equal-time four-point function is
the sum of products of the free theory two-point functions

hϕðx⃗1; tÞϕðx⃗2; tÞϕðx⃗3; tÞϕðx⃗4; tÞiλ0
¼ h0jϕðx⃗1; tÞϕðx⃗2; tÞϕðx⃗3; tÞϕðx⃗4; tÞj0i
¼ G>ðx1; x2ÞG>ðx3; x4Þ þG>ðx1; x3ÞG>ðx2; x4Þ
þ G>ðx1; x4ÞG>ðx2; x3Þ: ðA40Þ

For coinciding spatial points this gives

hϕ4ðx⃗; tÞiλ0 ¼ 3ðG>ðx; xÞÞ2 ¼ 3ðhϕ2ðx⃗; tÞiλ0Þ2;

and hence, for t → ∞, the long-wavelength part of
hϕ4ðx⃗; tÞiλ0 can be obtained from (39):

hϕ4ðx⃗; tÞiλ0;L ¼ 3H6

16π4
ðt − t0Þ2: ðA41Þ

The first-order correction to the equal-time four-point
function is given by

FIG. 5. Counterterm diagrams.
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hϕðx⃗1; tÞϕðx⃗2; tÞϕðx⃗3; tÞϕðx⃗4; tÞiλ ¼ −i
Z

t

−∞
dt0h0jTðϕþðx⃗1; tÞϕþðx⃗2; tÞϕþðx⃗3; tÞϕþðx⃗4; tÞ½Hþ

I ðt0Þ −H−
I ðt0Þ�Þj0i

¼ hϕðx⃗1; tÞϕðx⃗2; tÞiλ0hϕðx⃗3; tÞϕðx⃗4; tÞiλ þ ðx⃗1 ↔ x⃗3; x⃗2 ↔ x⃗4Þ
þ hϕðx⃗1; tÞϕðx⃗3; tÞiλ0hϕðx⃗2; tÞϕðx⃗4; tÞiλ þ ðx⃗1 ↔ x⃗2; x⃗3 ↔ x⃗4Þ
þ hϕðx⃗1; tÞϕðx⃗4; tÞiλ0hϕðx⃗2; tÞϕðx⃗3; tÞiλ þ ðx⃗1 ↔ x⃗2; x⃗4 ↔ x⃗3Þ
þ hϕðx⃗1; tÞϕðx⃗2; tÞϕðx⃗3; tÞϕðx⃗4; tÞiconnectedλ : ðA42Þ

The first six terms are simply the products of the λ correction to the two-point function, calculated in Sec. III, and the free
theory two-point function. The last term is the fully connected piece shown in Fig. 6.
Evaluating contractions that correspond to this piece, we obtain

24

�
−iλ
4

�Z
d3k⃗1
ð2πÞ3

d3k⃗2
ð2πÞ3

d3k⃗3
ð2πÞ3

d3k⃗4
ð2πÞ3 e

ik⃗1·x⃗1eik⃗2·x⃗2eik⃗3·x⃗3eik⃗4·x⃗4ð2πÞ3δ3ðk⃗1 þ k⃗2 þ k⃗3 þ k⃗4Þ

×
Z

η

−∞
dη0a4ðη0Þ½G>

k1
ðη; η0ÞG>

k2
ðη; η0ÞG>

k3
ðη; η0ÞG>

k4
ðη; η0Þ −G<

k1
ðη; η0ÞG<

k2
ðη; η0ÞG<

k3
ðη; η0ÞG<

k4
ðη; η0Þ�: ðA43Þ

What is the late-time behavior of (A43)? As we mentioned before, when performing the integral over η0, there are no
contributions coming from its lower limit because the time contour is deformed to have a small imaginary part: at the lower
limit η0 ¼ −∞ð1� iϵÞ, and the oscillatory exponents in the Wightman functions turn into damping exponents. To evaluate
the contribution of the upper limit of the integral for the late-time case, we expand the integrand as follows:

a4ðη0Þ½G>
k1
ð0; η0ÞG>

k2
ð0; η0ÞG>

k3
ð0; η0ÞG>

k4
ð0; η0Þ −G<

k1
ð0; η0ÞG<

k2
ð0; η0ÞG<

k3
ð0; η0ÞG<

k4
ð0; η0Þ�

¼ iH4

24η0

�
1

k31k
3
2k

3
3

þ 1

k31k
3
2k

3
4

þ 1

k31k
3
3k

3
4

þ 1

k32k
3
3k

3
4

�
þ � � � ; ðA44Þ

where dots stand for the terms that go to zero as η0 → 0, starting from the term that is linear in η0. Using this expansion we
can obtain the leading late-time behavior of (A43). Hence, in the case of coinciding spatial points, we have

λH4

4

Z
d3k⃗1
ð2πÞ3

d3k⃗2
ð2πÞ3

d3k⃗3
ð2πÞ3

d3k⃗4
ð2πÞ3 e

iðk⃗1þk⃗2þk⃗3þk⃗4Þ·x⃗ð2πÞ3δ3ðk⃗1 þ k⃗2 þ k⃗3 þ k⃗4Þ

×
�

1

k31k
3
2k

3
3

þ 1

k31k
3
2k

3
4

þ 1

k31k
3
3k

3
4

þ 1

k32k
3
3k

3
4

�
ln ½−ηðk1 þ k2 þ k3 þ k4Þ�: ðA45Þ

As previously explained, there is a reason why the
argument of the logarithm, which we obtained from the
integration of 1=η0, is made dimensionless by the sum of the
magnitudes of the momenta, and not by some other quantity
(e.g., by H or by any of the kn separately): the arguments of
the exponents in the Wightman functions look like �ðk1þ
k2 þ k3 þ k4Þðη − η0Þ, so in order to perform the time inte-
gration in (A43) we need to change the integration variable
from η0 to ðk1 þ k2 þ k3 þ k4Þη0. Taking into account that
all four terms in the parentheses produce identical momen-
tum integrals and using the delta function we get

λH4

Z
d3k⃗1
ð2πÞ3

d3k⃗2
ð2πÞ3

d3k⃗3
ð2πÞ3

×
ln ½−ηjk⃗1 þ k⃗2 þ k⃗3j − ηðk1 þ k2 þ k3Þ�

k31k
3
2k

3
3

ðA46Þ
FIG. 6. Connected diagram for the four-point function.
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Wewould like to find the long-wavelength part of the (A46), i.e., the part coming from the modes with physical momenta
much less than the Hubble scale, −knη ≪ 1. Since

jk⃗1 þ k⃗2 þ k⃗3j ≤ k1 þ k2 þ k3; ðA47Þ

in evaluating the leading part of (A46) for small momenta, we can neglect jk⃗1 þ k⃗2 þ k⃗3j. Hence, we arrive at the following
expression that we need to calculate:

λH4

8π6

Z
1

α

dy1
y1

Z
1

α

dy2
y2

Z
1

α

dy3
y3

ln ðy1 þ y2 þ y3Þ; ðA48Þ

where yn ≡ −knη and α≡ −κη, with κ being some IR cutoff for the comoving momenta kn. In order to integrate over y3, let
us split the logarithm just as we did in the previous section:

Z
1

α

dy3
y3

ln ðy1 þ y2 þ y3Þ ¼
Z

1

α

dy3
y3

ln ðy1 þ y2Þ þ
Z

1

0

dy3
y3

ln

�
1þ y3

y1 þ y2

�

¼ − ln α ln ðy1 þ y2Þ − Li2

�
−

1

y1 þ y2

�
; ðA49Þ

where on the third line we used the integral representation of the dilogarithm function (A33). Similarly, splitting the
ln ðy1 þ y2Þ to perform the integration over y2, we obtain

−
Z

1

α

dy1
y1

Z
1

α

dy2
y2

�
ln α ln ðy1 þ y2Þ þ Li2

�
−

1

y1 þ y2

��
¼ − ln α

Z
1

α

dy1
y1

�
− ln α ln y1 − Li2

�
−

1

y1

��

−
Z

1

α

dy1
y1

Z
1

α
Li2

�
−

1

y1 þ y2

�
dy2
y2

¼ − ln α

�
1

2
ln3α −

Z
1

α
Li2

�
−

1

y1

�
dy1
y1

�

−
Z

1

α

dy1
y1

Z
1

α
Li2

�
−

1

y1 þ y2

�
dy2
y2

: ðA50Þ

Using the large argument expansion (A35) to replace the dilogarithms by the logarithmic term of this expansion, we obtain
the leading behavior of (A50)

−
1

3
ln4 αþ 1

2

Z
1

α

dy1
y1

Z
1

α
ln2 ðy1 þ y2Þ

dy2
y2

: ðA51Þ

The second term of this expression can be broken up in the following way:

1

2y1

Z
1

α
ln2ðy1 þ y2Þ

dy2
y2

¼ −
ln αln2y1

2y1
−

1

y1

Z
1

α

ln y2 ln ðy1 þ y2Þ
y1 þ y2

dy2

¼ −
ln αln2y1

2y1
−

1

3y1
ln3ð1þ y1Þ þ

1

3y1
ln3ðy1 þ αÞ

−
1

y1

Z
y1þ1

y1þα

ln ð1 − y1
y Þ ln y

y
dy: ðA52Þ

The second term on the third line has no divergence at y1 ¼ 0, so its integral over y1 gives an α-independent constant. The
integrals over y1 of the first and the third term of this line give logarithm to the forth of the IR cutoff α (in the third term α can
be set to zero):

1

12
ln4 α: ðA53Þ
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The term on the last line of (A52) can be written in terms of
dilogarithm and trilogarithm functions:

Z
y1þ1

y1þα

ln ð1 − y1
y Þ ln y

y
dy

¼
Z

1=ðy1þ1Þ

0

ln ð1 − y1zÞ ln z
z

dz

−
Z

1=ðy1þαÞ

0

ln ð1 − y1zÞ ln z
z

dz

¼
Z

1

0

ln ð1 − y1
1þy1

tÞ ln t
t

dt

− ln ð1þ y1Þ
Z

1

0

ln ð1 − y1
1þy1

tÞ ln t
t

dt

−
Z

1

0

ln ð1 − y1
αþy1

tÞ ln t
t

dt

þ ln ðy1 þ αÞ
Z

1

0

ln ð1 − y1
αþy1

tÞ ln t
t

dt

¼ Li3

�
y1

1þ y1

�
þ ln ð1þ y1ÞLi2

�
y1

1þ y1

�
− Li3ð1Þ − ln y1Li2ð1Þ; ðA54Þ

where we used an integral representation of the trilogarithm
function

Li3ðxÞ ¼
Z

1

0

ln ð1 − xtÞ ln t
t

dt; ðA55Þ

and also set α ¼ 0 when obtaining the last equality.
Expanding the dilogarithm and trilogarithm (divided by
y1) for small y1

ð1=y1ÞLi3
�

y1
1þ y1

�
¼ 1þOðy1Þ;

ðln ð1þ y1Þ=y1ÞLi2
�

y1
1þ y1

�
¼ y1 þOðy21Þ; ðA56Þ

we see that there is no divergence at y1 ¼ 0, so integrating
them over y1 results in an α-independent constant.
Integration of the terms (divided by y1) on the last line
of (A54) gives linear logarithm and logarithm squared of
the IR cutoff α.
Finally, we can conclude that the leading part of the

(A48) is the sum of the first term in (A51) and (A53);
hence,

hϕ4ðx⃗; tÞiconnectedλ;L ≈ −
λH4

32π6
ln4 α ¼ −

λH4

32π6
ln4 ð−κηÞ

¼ −
λH8

32π6
ðt − t0Þ4: ðA57Þ

Writing (A42) for coinciding spatial points,

hϕ4ðx⃗; tÞiλ ¼ 6hϕ2ðx⃗; tÞiλ0hϕ2ðx⃗; tÞiλ þ hϕ4ðx⃗; tÞiconnectedλ ;

ðA58Þ

and using (A57), (39), and (A13), we can deduce the
leading late-time behavior of the long-wavelength part
of (A58):

hϕ4ðx⃗; tÞiλ;L ¼ −
3λH8

32π6
ðt − t0Þ4: ðA59Þ

APPENDIX B: FULL AND FREE INFRARED
REDUCED SCALAR FIELDS AND RETARDED

GREEN’S FUNCTIONS

In Ref. [35] a very convenient technique for calculation
of the leading infrared contributions to the correlation
functions at different spacetime points is elaborated.
Here we shall use this technique to present very simple
calculations of the corresponding coefficients in the expect-
ation values hϕ2ðx⃗; tÞi and hϕ4ðx⃗; tÞi. We shall use, as in
[35], the infrared reduced scalar field, where only the
modes with H < k < HaðtÞ are retained. Then there are
two kinds of infrared reduced scalar fields: the free field
ϕ0ðx⃗; tÞ, which satisfies the Klein-Gordon equation in the
absence of the self-interaction, and the full infrared reduced
scalar field ϕðx⃗; tÞ. These two fields are connected by the
equation

ϕðt; x⃗Þ ¼ ϕ0ðt; x⃗Þ −
Z

t

0

dt0a3ðt0Þ
Z

d3xGðt; x⃗; t0x⃗0Þ V 0ðϕÞ
1þ δZ

:

ðB1Þ

Here the Green’s function G satisfies the retarded boun-
dary conditions, Z is the renormalization constant of the
scalar field, and the potential V includes the mass and
coupling constant counterterms. Simple considerations
[35] show that the counterterms do not give contributions
to the leading infrared terms into the correlators. The
leading infrared part of the retarded Green’s function has
the form

Gðt; x⃗; t0x⃗0Þ ¼ 1

3H
θðt − t0Þδ3ðx⃗ − x⃗0Þ

�
1

a3ðt0Þ −
1

a3ðtÞ
�
:

ðB2Þ

This expression in Eq. (B1) is multiplied by the integra-
tion measure a3ðt0Þ. The first term in the square brackets,
a3ðt0Þ=a3ðt0Þ ¼ 1, contributes over the whole range of the
integration; the second term, which is proportional to
a3ðt0Þ=a3ðtÞ, contributes significantly only for t0 ∼ t, and
hence, is negligible in the approximation we consider.
Thus, the formula (B1) is boiled down to
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ϕðt; x⃗Þ ¼ ϕ0ðt; x⃗Þ −
1

3H

Z
t

0

dt0V 0ðϕðt0; x⃗Þ

¼ ϕ0ðt; x⃗Þ −
λ

3H

Z
t

0

dt0ϕ3ðt0; x⃗Þ: ðB3Þ

Solving Eq. (B3) by iterations we obtain the following
expression for the full scalar field ϕðx⃗; tÞ expressed in
terms of the free scalar field ϕ0ðx⃗; tÞ up to the second order
in the coupling constant λ. In what follows we omit the

argument x⃗ since it is the same in all the terms in our
equations. Thus,

ϕðtÞ ¼ ϕ0ðtÞ −
λ

3H

Z
t

0

dt0ϕ3
0ðt0Þ

þ λ2

3H2

Z
t

0

dt0ϕ2
0ðt0Þ

Z
t0

0

dt00ϕ3
0ðt00Þ: ðB4Þ

Using this expression we obtain

hϕ2ðtÞi ¼ hϕ2
0ðtÞi −

λ

3H

�	
ϕ0ðtÞ

Z
t

0

dt0ϕ3
0ðt0Þ



þ
	Z

t

0

dt0ϕ3
0ðt0Þϕ0ðtÞ


�

þ λ2

3H2

�	
ϕ0ðtÞ

Z
t

0

dt0ϕ2
0ðt0Þ

Z
t0

0

dt00ϕ3
0ðt00Þ


	Z
t

0

dt0ϕ2
0ðt0Þ

Z
t0

0

dt00ϕ3
0ðt00Þϕ0ðtÞ




þ 1

3

	Z
t

0

dt0ϕ3
0ðt0Þ

Z
t

0

dt00ϕ3
0ðt00Þ


�
: ðB5Þ

We shall also need the following formula

hϕ0ðt; x⃗Þϕ0ðt0; x⃗Þi ¼
H2

4π2
lnðaðt0ÞÞ ¼ H3t0

4π2
; ðB6Þ

where

t0 ≤ t; ðB7Þ
Remarkably, in the formula (B6) the left-hand side con-
tains both time moments t and t0, while the right-hand

side of (B6) depends only on the earlier moment t0. Note
that in the formula (B2) for the Green’s function both
time moments t and t0 are present, but when we inte-
grate this Green’s function with the corresponding measure,
only the term depending on aðt0Þ gives the essential
contribution.
We are now in a position to make the necessary

calculations. To calculate the λ-order contribution to the
correlator we shall use Wick’s theorem:

hϕ2ðtÞiλ ¼ −
λ

3H

�	
ϕ0ðtÞ

Z
t

0

dt0ϕ3
0ðt0Þ



þ
	Z

t

0

dt0ϕ3
0ðt0Þϕ0ðtÞ


�

¼ −
λ

3H

�
3

Z
t

0

dt0hϕ0ðtÞϕ0ðt0Þihϕ2
0ðt0Þi þ 3

Z
t

0

dt0hϕ2
0ðt0Þihϕ0ðt0Þϕ0ðtÞi

�
: ðB8Þ

Now using the formula (B6) and taking into account the order of the time moments (B7), we can rewrite the expression
(B8) as follows:

hϕ2ðtÞiλ ¼ −
2λ

H

�
H2

4π2

�
2
Z

t

0

dt0H2t02 ¼ −
λH5

24π4
t3;

which coincides with the known result. Analogously, the λ2 contribution to the correlator has the following form:

hϕ2ðtÞiλ2 ¼
2λ2

3H2

Z
t

0

dt0
Z

t0

0

dt00½6hϕ0ðtÞϕ0ðt0Þihϕ0ðt0Þϕ0ðt00Þihϕ2
0ðt00Þi

þ 3hϕ0ðtÞϕ0ðt00Þihϕ2
0ðt0Þihϕ2

0ðt00Þi þ 6hϕ0ðtÞϕ0ðt00Þiðhϕ0ðt0Þϕ0ðt00ÞiÞ2�

þ λ2

9H2

�Z
t

0

dt0
Z

t0

0

dt00ð6ðhϕ0ðt0Þϕ0ðt00ÞiÞ3 þ 9hϕ0ðt0Þϕ0ðt00Þihϕ2
0ðt0Þihϕ2

0ðt00ÞiÞ

þ
Z

t

0

dt0
Z

t

t0
dt00ð6ðhϕ0ðt0Þϕ0ðt00ÞiÞ3 þ 9hϕ0ðt0Þϕ0ðt00Þihϕ2

0ðt0Þihϕ2
0ðt00ÞiÞ

�
: ðB9Þ
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Again, using the formula (B6) and taking into account the order of the time moments (B7), we can reduce the expression
(B9) to simple integrals:

hϕ2ðtÞiλ2 ¼
2λ2

3H2

�
H2

4π2

�
3

H3

Z
t

0

dt0
Z

t0

0

dt00ð6t0t002 þ 3t0t002 þ 6t003Þ

þ λ2

9H2

�
H2

4π2

�
3

H3

�Z
t

0

dt0
Z

t0

0

dt00ð6t003 þ 9t0t002Þ þ
Z

t

0

dt0
Z

t

t0
dt00ð6t03 þ 9t02t00Þ

�
¼ λ2H7

80π6
t5: ðB10Þ

By this method we can also easily calculate the four-point correlator. To first order in λ,

hϕ4ðtÞi ¼
	�

ϕ0ðtÞ −
λ

3H

Z
t

0

dt0ϕ3
0ðt0Þ

�
4



¼ 3hϕ4
0ðtÞi −

4λ

3H

	
ϕ3
0ðtÞ

Z
t

0

dt0ϕ3
0ðt0Þ




¼ 3ðhϕ2
0ðtÞiÞ2 −

4λ

3H

Z
t

0

dt0ð9hϕ0ðtÞϕ0ðt0Þihϕ2
0ðtÞihϕ2

0ðt0Þi þ 6ðhϕ0ðtÞϕ0ðt0ÞiÞ3Þ

¼ 3H6t2

16π4
−

4λ

3H

�
H3

4π2

�
3
Z

t

0

dt0ð9tt02 þ 6t03Þ ¼ 3H6t2

16π4
−
3λH8t4

32π6
; ðB11Þ

and for the λ2 contribution we have

hϕ4ðtÞiλ2 ¼
4λ2

3H2

Z
t

0

dt0
Z

t0

0

dt00hϕ3
0ðtÞϕ2

0ðt0Þϕ3
0ðt00Þi þ

2λ2

3H2

Z
t

0

dt0
Z

t

0

dt00hϕ2
0ðtÞϕ3

0ðt0Þϕ3
0ðt00Þi

¼ 4λ2

3H2

�
H3

4π2

�
4
Z

t

0

dt0
Z

t0

0

dt00½18hϕ2
0ðtÞihϕ0ðtÞϕ0ðt0Þihϕ0ðt0Þϕ0ðt00Þihϕ2

0ðt00Þi

þ 9hϕ2
0ðtÞihϕ0ðtÞϕ0ðt00Þihϕ2

0ðt0Þihϕ2
0ðt00Þi þ 18hϕ2

0ðtÞihϕ0ðtÞϕ0ðt00Þihϕ0ðt0Þϕ0ðt00Þi2
þ 18hϕ0ðtÞϕ0ðt0Þi2hϕ0ðtÞϕ0ðt00Þihϕ2

0ðt00Þi
þ 36hϕ0ðtÞϕ0ðt0Þihϕ0ðtÞϕ0ðt00Þi2hϕ0ðt0Þϕ0ðt00Þi þ 6hϕ0ðtÞϕ0ðt00Þi3hϕ2

0ðt0Þi�

þ 2λ2

3H2

�
H3

4π2

�
4
Z

t

0

dt0
Z

t

0

dt00½9hϕ2
0ðtÞihϕ2

0ðt0Þihϕ0ðt0Þϕ0ðt00Þihϕ2
0ðt00Þi

þ 6hϕ2
0ðtÞihϕ0ðt0Þϕ0ðt00Þi3 þ 18hϕ0ðtÞϕ0ðt0Þi2hϕ0ðt0Þϕ0ðt00Þihϕ2

0ðt00Þi
þ 18hϕ0ðtÞϕ0ðt0Þihϕ0ðtÞϕ0ðt00Þiihϕ2

0ðt0Þiihϕ2
0ðt00Þi

þ 18hϕ0ðtÞϕ0ðt00Þi2hϕ0ðt0Þϕ0ðt00Þihϕ2
0ðt0Þi þ 36hϕ0ðtÞϕ0ðt0Þihϕ0ðtÞϕ0ðt00Þihϕ0ðt0Þϕ0ðt00Þi2�

¼ 53λ2H10

960π8
t6: ðB12Þ

Using this method one can easily calculate the leading infrared contributions into various correlators (in coinciding
points) up to higher orders in the coupling constant λ. The calculations are also easy for the coinciding spatial points but
with different time coordinates.
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