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Abstract: Multifield models with a curved field space have already been shown to be able

to provide viable quintessence models for steep potentials that satisfy swampland bounds.

The simplest dynamical systems of this type are obtained by coupling Einstein gravity to

two scalar fields with a curved field space. In this paper we study the stability properties of

the non-trivial fixed points of this dynamical system for a general functional dependence of

the kinetic coupling function and the scalar potential. We find the existence of non-geodesic

trajectories with a sharp turning rate in field space which can give rise to late-time cosmic

acceleration with no need for flat potentials. In particular, we discuss the properties of

the phase diagram of the system and the corresponding time evolution when varying the

functional dependence of the kinetic coupling. Interestingly, upon properly tuning the

initial conditions of the field values, we find trajectories that can describe the current

state of the universe. This could represent a promising avenue to build viable quintessence

models out of the swampland if they could be consistently embedded in explicit string

constructions.
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1 Introduction

Shortly before the turn of the millennium we learned that the universe is currently under-

going a phase of accelerated expansion [1–3], which reveals the existence of what is usually

referred to as dark energy. The simplest cosmological model successfully accounting for

this late-time dynamics is the so-called ΛCDM concordance model, in which a positive

cosmological constant is responsible for dark energy. Despite its compelling experimental

evidence though, this conclusion raises a number of theoretical issues which are still open

after more than two decades.

The aforementioned issues are all mainly connected with the fact that a spacetime

with positive cosmological constant turns out to possess a cosmological horizon when de-

scribed within its static patch. Hence no obvious prescription seems to exist in order to

consistently define a unitary quantum field theory on such a background. This issue has

so far represented an obstruction in understanding an accelerated universe within a UV

complete quantum theory by adopting a bottom-up approach.

On the other hand, from a top-down perspective, high-energy theoretical physicists

such as string theorists have been proposing models that could explain how a low-energy

effective de Sitter (dS) universe could possibly emerge from a suitable compactification of

string theory. Though several types of well-motivated constructions are currently available

on the market [4–10], it is often argued that they all raise a number of open issues concerning

the use of exotic ingredients or the absence of control on perturbative and non-perturbative

corrections given that supersymmetry is necessarily broken if V > 0.

While the issue is far from settled in general (see [11] for a recent critical discussion

of these issues in string compactifications), the many subtleties and obstacles encountered

along the way motivate one to try and adopt a totally different approach to the problem.
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Since the original work of [12, 13], people started conjecturing the idea that the absence

of dS vacua should actually be a desirable feature for any sensible candidate theory of

quantum gravity [14, 15]. This conjecture was then generalized and extended in [16, 17].

However, in its most recent form, the dS swampland conjecture can be formulated in terms

of a bound on the flatness of a scalar potential in the regions of field space where it becomes

positive. If this conjecture were correct, not only would dS vacua be absent in our theory

of quantum gravity, but also effectively single-field slow-roll quintessence models [18–23]

would be ruled out of the landscape. The only models which survive are those based on

steep potentials. However all known string quintessence constructions which are compatible

with the swampland bound are in disagreement with observations [24].

From the phenomenological point of view, only a small class of models seems to be

consistent with both swampland and observational constraints [25] and it is characterized

by exponential potentials of the form V = V0 e
−cφ/MPl with c . 0.6 but still for O(1)

values of the parameter c [26]. So far, no explicit string construction with this property

has been derived. Moreover such a quintessence model would inevitably share the same

control issues of existing dS vacua [11, 24] together with additional problems typical of

quintessence scenarios like those associated with the non-observation of fifth forces [27].

Given that, from the theoretical point of view, quintessence models do not seem more

robust than dS vacua, and the existing tension between the swampland bound and cosmo-

logical observations, it might well be that the dS swampland conjecture is too restrictive.

In this work, we further investigate this possibility by looking for models of dark energy

sourced by scalar fields in ways consistent with the dS swampland conjecture. Our starting

point will be the analysis carried out in [28], which is based on the simple but crucial obser-

vation [29–31] that field space curvature may in principle allow the existence of trajectories

displaying arbitrarily many efoldings of cosmic acceleration even in presence of steep scalar

potentials. The key to these genuinely multifield realizations of quintessence is non-geodesic

motion in field space.1 In this paper we extend our analysis to include more general func-

tional dependence of the field space curvature. This will give rise to novel explicit examples

where a suitably tuned initial condition for the fields yields accelerated trajectories with

the relevant cosmological parameters compatible with those observed today.2

In this paper we shall take a phenomenological point of view and just provide examples

of multifield non-geodesic dynamics which can realize quintessence for steep potentials in

agreement with the dS swampland conjecture. This represents however only the first step

to test the robustness of this conjecture. The next crucial step would instead involve

the explicit realization of consistent string models which can reproduce the promising

phenomenological features described in this paper. A positive answer to this question

would provide a strong support in favor of the dS swampland conjecture, especially if

this kind of models would emerge naturally in string compactifications. A difficulty in

1Our use of the term ‘non-geodesic’ follows the conventions of the multifield inflation literature where

‘geodesic’ trajectories are those following the gradient of the potential, while ‘non-geodesic’ trajectories are

characterized by a non-vanishing turning rate.
2See also [32, 33] for an alternative approach where specific models can satisfy both observational and

swampland constraints via the inclusion of higher derivative interactions in the effective action.
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embedding these multifield quintessence models in string theory would instead be a severe

evidence against the dS swampland conjecture.

Notice that the existence of these new accelerating solutions in late time cosmology

would still be interesting per se, even if the dS swampland conjecture turned out to be

wrong, since they would provide a way to obtain viable quintessence models for steep

potentials based on non-geodesic motion in a curved multifield space. This property is

particularly important when quantum corrections are properly taken into account since in

general they tend to spoil the flatness of the underlying potential.

The paper is organized as follows. In section 2 we introduce the general setup, discuss

the different physical properties of the various fixed points of the system and the phase dia-

gram for generic kinetic coupling. In section 3 we analyze how a quintessence model based

on genuinely multifield dynamics and non-geodesic field space motion can be consistent

with the bounds on the flatness of the scalar potential advocated by the dS swampland

conjecture. In section 4 and 5 we go through explicit examples of models with non-trivial

two-field dynamics, with growing and decaying kinetic coupling, respectively. In section 6

we briefly discuss the phenomenological relevance of power-law kinetic couplings and scalar

potentials, thus abandoning exponential functional dependence in both. A brief summary

of results and a discussion are presented in section 7.

2 Overview of two-field dynamics with curved field space

Let us consider the effective theory of Einstein gravity coupled to two scalar fields named

(φ1, φ2), described by the following action

S[gµ,ν , φ] =

∫
d4x
√−g

(
M2

Pl

2
R− 1

2
(∂φ1)

2 − 1

2
f(φ1)

2 (∂φ2)
2 − V (φ1)

)
, (2.1)

where the arbitrary function f(φ1) specifies the scalar kinetic coupling. Our aim is to study

the dynamics of the above system on a background geometry of the FRW type, i.e.

ds24 = −dt2 + a(t)2 ds2R3 and φi = φi(t) . (2.2)

The equations of motion specified on the above ansatz read{
φ̈1 + 3Hφ̇1 − f f1φ̇22 + V1 = 0 ,

φ̈2 + 3Hφ̇2 + 2f1f φ̇2φ̇1 = 0 ,
(2.3)

where · ≡ d
dt , H ≡ ȧ

a and we furthermore use the notation f1 = ∂f/∂φ1 and similarly for

V . In the late universe, in the presence of a barotropic fluid with pressure pb = ωbρb that

evolves according to the continuity equation

ρ̇b = −3H(1 + ωb)ρb , (2.4)

the Einstein equations imply the following form of the Friedman equation

H2 =
1

3M2
Pl

(
φ̇21
2

+
f2

2
φ̇22 + V + ρb

)
. (2.5)
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Let us also define the kinetic coupling

k1(φ1) ≡ −MPl
f1
f
, (2.6)

and

k2(φ1) ≡ −MPl
V1
V
. (2.7)

Note that, in terms of the above notation, the case of constant k1 and k2 has been

analysed in [28] and corresponds to fixing V and f to have exponential form. There we have

shown that the inclusion of a kinetically coupled massless scalar enriched the quintessential

dynamics by generating a novel fixed point that can help one account for the observed

acceleration of the universe in accordance with earlier works [34, 35]. Interestingly this new

regime allows for accelerating solutions even when the scalar potential is steep (k2 � 1).

Following [36] it turns out to be useful to define the dimensionless variables

x1 ≡
φ̇1√

6HMPl

, x2 ≡
fφ̇2√

6HMPl

, y1 ≡
√
V√

3HMPl

, (2.8)

which allow us to rewrite the dynamics of the system as an autonomous system

x′1 = 3x1(x
2
1 + x22 − 1) +

√
3

2
(−2k1x

2
2 + k2y

2
1)− 3

2
γx1(x

2
1 + x22 + y21 − 1) , (2.9)

x′2 = 3x2
(
x21 + x22 − 1

)
+
√

6k1x1x2 −
3

2
γx2

(
x21 + x22 + y21 − 1

)
, (2.10)

y′1 = −
√

3

2
k2x1y1 −

3

2
γy1

(
x21 + x22 + y21 − 1

)
+ 3y1

(
x21 + x22

)
, (2.11)

where ′ ≡ d
d ln a . Given that in the general case k1 and k2 are field dependent, these are to

be supplemented by

φ′1 = 6x1MPl , (2.12)

or alternatively by one of the following equations for the time evolution of the parameters

k1 and k2
k′i =

√
6k2i x1 (1− Γi) , (2.13)

where i = 1, 2, Γ1 ≡ f11f
f21

and Γ2 ≡ V11V
V 2
1

. We note that the field space curvature can be

written as

R =
f21 − 2ff11

2f2
=
k21
2
− Γ1 . (2.14)

The dynamics of the system can equivalently be recast in terms of the late time observables

ωφ =
pφ
ρφ

=
x21 + x22 − y21
x21 + x22 + y21

, (2.15)

and

Ωφ = x21 + x22 + y21 . (2.16)

The evolution of these quantities follows from

Ω′φ = −3(Ωφ − 1)Ωφ(ωb − ωφ) , (2.17)
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and

ω′φ = (ωφ − 1)

(
−k2

√
3(ωφ + 1)Ωφ − 6x22 + 3(1 + ωφ)

)
. (2.18)

Instantaneous fixed points are solutions to x′1 = x′2 = y′1 = 0. For Γ1,Γ2 6= 1 these are

not actual fixed points of the system, but are nonetheless useful for describing the dynamics

of the system in a regime where the corresponding energy densities evolve faster than the

couplings k1 and k2. There turn out to exist six instantaneous fixed points, whose different

physical properties were already studied in [28]. They are again described below, for the

sake of clarity.

• Kinetic dominated fixed points: K±
These fixed points correspond to kinetic domination. They are located at

(x1, x2, y1)|c = (±1, 0, 0) , (2.19)

and therefore, through eqs. (2.15) and (2.16), Ωφ = 1 and ωφ = 1. These are always

unstable nodes.

• Fluid dominated fixed point: F
This fixed point is located at

(x1, x2, y1)|c = (0, 0, 0) . (2.20)

The scalar sector does not contribute to the energy density: Ωφ = 0. This fixed point

turns out to be a saddle for −1 < ωb < 1.

• Scaling solution: S
At such a point the scalar field mimics the barotropic fluid and constitutes a sub-

dominant component of the overall energy density. It is located at

(x1, x2, y1)|c =

√3/2(ωb − 1)

k2
, 0,

√
3/2
√

1− ω2
b

k2

 , (2.21)

with ωφ = ωb and Ωφ = 3(1+ωb)
k22

. The scaling fixed point is stable for k2 >
√

3 and

k2 > 2k1.

• Geodesic fixed point: G
At G, φ1 slow-rolls down the slope of its potential, while φ2 remains frozen. It is

located at

(x1, x2, y1)|c =

(
k2√

6
, 0,

√
1− k22

6

)
, (2.22)

and is stable in the regime k2 <
√

3 and 0 < k2 <
√
k21 + 6 − k1 and k1 > 0 or

k2 > −
√

3 and −
√
k21 + 6 +k1 < k2 < 0 and k1 < 0. In this fixed point ωφ = −1 +

k22
3

and Ωφ = 1.
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Figure 1. Full stability diagram for ωb = 0.

• Non-geodesic fixed points: NG
At these fixed points φ2 is dragged by the velocity of φ1. They are located at

(x1, x2, y1)|c =

( √
6

2k1 + k2
,±
√
k22 + 2k1k2 − 6

|2k1 + k2|
,

√
2k1

2k1 + k2

)
, (2.23)

and are stable in the region
√
k21 + 6 − k1 < k2 < 2k1 and k2 > 0 and 2k1 < k2 <√

k21 + 6− k1 and k2 < 0. In this fixed point ωφ = k2−2k1
k2+2k1

and Ωφ = 1.

In figure 1 we plot the stability diagram for the S,G and NG fixed points.

In this paper we extend the analysis performed in [28], where both k1 and k2 were

constant by considering non-trivial functional dependence in the ki’s. For most of the

paper we shall however restrict ourselves to situations where k2 is still kept constant, while

only relaxing the assumption of constant k1 in our search for phenomenologically viable

models of dark energy. The philosophy is akin to what has been done in the case of single

field quintessence models, where the analysis of exponential potentials and the classification

of all fixed points allows for a qualitative understanding of more general cases. In the last

section though, we will also explore a particular situation where both k1 and k2 exhibit

non-trivial functional dependence.

It is evident, both from the equations of motion and from figure 1, that the system is

symmetric under φ1 → −φ1, k1 → −k1 and k2 → −k2, and therefore one can focus on the

k2 > 0 half-plane without loss of generality. Given these assumptions one finds that x1 > 0

as φ rolls down its potential. Through eq. (2.13) this implies that

• k1 grows when 1− Γ1 > 0,

• k1 decreases when 1− Γ1 < 0.

We will therefore organise our analysis by considering these two regimes separately. In

order to be systematic, for each of these regimes, we will consider the subcases of steep

(k2 >
√

3) and shallow (k2 <
√

3) potentials.

– 6 –
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3 Non-geodesic dynamics and the swampland bound

Let us now discuss an issue that serves as a motivation to perform this analysis and search

for interesting alternative descriptions of dark energy in the context of effective theories

with more than one scalar. As anticipated in the introduction, the dS swampland conjecture

proposes an O(1) bound on the steepness of the scalar potential valid in those regions

where the potential itself takes positive values. Such a bound would obviously rule out

the existence of a dS vacuum, but in addition to this, it would also be in tension with any

model of quintessence based on (effective) single-field dynamics.

On the other hand, a phase of accelerated expansion, like the one observed today or

of the type postulated by the inflationary paradigm in the early universe requires

εH ≡ −
Ḣ

H2
< 1 . (3.1)

Whenever the energy density of the universe is dominated by minimally coupled (both to

gravity and among themselves) scalar fields, this requirement generically translates into a

bound on the flatness of the potential

εV ≡
M2

Pl

2

(
Vφ
V

)2

≈ εH < 1 , (3.2)

suggesting that flat potentials may be needed in order to support a phase of accelerated

expansion.

While these flatness conditions are easily accommodated at the level of model building,

it has been conjectured that consistent theories of quantum gravity might impose a lower

bound on the flatness of the scalar potentials of the form [12]

Vφ
V
≥ c

MPl
, (3.3)

where c is an O(1) constant parameter, that can in principle be derived from the UV theory.

Such a lower bound is in clear tension with the desire for scalar field driven accelerated

cosmic expansion, both at early and at late times.

In fact it has been shown in [26] that in the context of quintessence models with

exponential potentials of the form V = V0 e
−k2φ/MPl , only models with c = k2 < 0.6 remain

compatible with the latest data [25], thus highlighting the tension between the swampland

bound and cosmological observations. As stressed in the section 1, these models, besides

lacking an explicit string embedding, would also share the same control issues of dS vacua

with additional phenomenological constraints coming from fifth-forces.

It is worth noting that the current observational bounds constrain not only the present

ωφ and Ωφ but also the time variation of ωφ at low redshifts. For the purposes of this paper

we neglect the redshift dependence of ωφ and consider the observational window to be given

by Ωφ = 0.7 and ωφ = −1 with an uncertainty of ±0.09 at 95% CL in the equation of state

parameter, which we represent by two red dots in the (ωφ,Ωφ) plane.3

3We consider these numbers as a ballpark measure of the dark energy parameters, specific dataset

combinations yield slightly different figures that lie in this range, see [25].
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One way to alleviate this tension is to consider kinetically coupled scalar fields (through

non-canonical kinetic terms) and work in the regime of large field space curvature. This

way, one gains the opportunity to support a small εH by using scalar potentials which are

not at all flat, provided though that the field space trajectories selected by the dynamics

of the system by suitable initial conditions have a sharp turning rate along non-geodesic

trajectories.4

It is perhaps worth mentioning that such constructions, which could in principle yield

an arbitrarily high number of efoldings of cosmic acceleration, would not in principle be

in manifest contrast with the distance swampland conjecture. This is because it has been

argued that the conjecture would only pose sharp constraints on purely geodesic distances,

and these would not grow very large in these models. More quantitatively, the geodesic

distance can be defined as

∆φ ≡
∫
dt

√
γijφ̇iφ̇j . (3.4)

Considering the field space metric as implicitly defined in eq. (2.1) and putting the fields

on-shell (assuming negligible accelerations) it can be shown that

∆φ

MPl
=

∫
dN

√
−
(

3

2k1

)2

+ 3
k2
k1
, (3.5)

where N ≡ ln a is the number of efoldings of expansion. In the regime k1 � k2 ∼ O(1)

and noting that for quintessential dynamics ∆N ≤ 10 it seems natural to conclude that

parametrically
∆φ

MPl
∼ ∆N√

k1
< 1 , (3.6)

in accordance with swampland distance bounds.

4 Growing kinetic coupling

As anticipated earlier, our systematic analysis starts from the case in which the kinetic

coupling k1 is a growing function of φ1. In this situation, we had seen that the inequality

1− Γ1 > 0 holds. This regime encompasses several interesting kinetic couplings:5

• f = ln(φp1), implying k1 = −1
φ1 lnφ1

and 1− Γ1 = 1 + lnφ1 with φ1 > 1/e;

• f = φp1, implying k1 = − p
φ1

and 1− Γ1 = 1
p with p > 0;

• f = eαφ
p
1 , implying k1 = −pαφp−11 and 1 − Γ1 = (1−p)

pα φ−p1 in the regime α > 0 and

p ∈ [0, 1] or alternatively α < 0 and (p < 0 or p > 1).

In all these cases the system will tend to evolve towards a NG fixed point in the asymptotic

future. The dynamics of the transition from a matter dominated regime to NG will differ

depending on the steepness of the scalar potential, on the particular form of the function

f(φ1), and on the initial conditions chosen for the vacuum expectation value of φ1.

4Notice that in the multifield case the bound (3.3) generalizes to
√
γijViVj/V ≥ c/MPl which would

however still reduce to Vφ1/V ≥ c/MPl for the case under consideration described by the action (2.1).
5From this point on, in order to reduce clutter in the formulae, we set MPl = 1.
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Figure 2. (Ωφ, ωφ) plane evolution for matter dominated initial conditions and k2 = 3. Trajectories

that seem to end at S without passing through NG should be considered as a numerical artifact.

Steep scalar potentials: for steep scalar potentials, with k2 >
√

3, if the initial condi-

tions for φ1 are such that φ1|i � φ1×, where

k1(φ1×) =
k2
2
, (4.1)

the system will initially evolve towards the scaling fixed point S, before settling into the NG
regime. Several examples are illustrated in figure 2, where the blue trajectories correspond

to initial conditions that lead to a transition S → NG, whereas the red trajectories converge

directly to NG. We see that the marked oscillations in the transition between the scaling

and the NG regimes make it difficult to obey observational bounds on ωφ (given by line

between the two red dots). Initial conditions that lead directly to NG are in that respect

more promising, despite also featuring a strong oscillatory behavior that inevitably leads

to a tension with the bounds on the variation of ωφ at low redshifts.

In what concerns the initial evolution and the final state of the system, this is qualita-

tively similar to the scaling-freezing models in single field quintessence where the potential

takes the form

V (φ) = e−k2|iφ + e−k2|fφ , (4.2)

where k2|i >
√

3 and k2|f <
√

3, even though in our case the steepness of the potential is

kept fixed. A crucial difference with scaling-freezing models arises from the fact that the

oscillatory motion in the transient between S and NG makes it difficult to account for the

current state of the universe with this type of dynamics.

Shallow scalar potentials: if the potential is too shallow to support a scaling regime,

k2 <
√

3, the system can initially converge into a scalar dominated G fixed point, before

eventually settling into the NG regime. This happens provided φ1|i � φ1×, where now

k1(φ1×) =
6− k22

2k2
. (4.3)

Should the initial conditions parametrically violate this requirement, the system will then

evolve directly towards NG. An example is illustrated in figure 3. We observe that viable
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Figure 3. (Ωφ, ωφ) plane evolution for matter dominated initial conditions and k2 = 1.

transients that are compatible with the swampland bound k2 ≥ 1 are more easily attained

if the initial conditions cause the system to evolve direclty towards NG.

5 Decaying kinetic coupling

In this regime the kinetic coupling is such that k1 decreases as φ1 rolls down its potential.

These trajectories will converge at late times either towards a scaling or a geodesic fixed

point, depending on the steepness of the scalar potential. Just like in section 4 there are

various kinetic couplings that can lead to this behavior:

• f = 1/ ln(φp1), implying k1 = p
φ1 lnφ1

and 1− Γ1 = −1− lnφ1 with φ1 > 1/e;

• f = φp1, implying k1 = − p
φ1

and 1− Γ1 = 1
p with p < 0;

• f = eαφ
p
1 , implying k1 = −pαφp−11 and 1 − Γ1 = (1−p)

pα φ−p1 in the regime α < 0 and

p ∈ [0, 1] or alternatively α > 0 and (p < 0 or p > 1).

Once more we can assume that k2 > 0 and consider the k2 >
√

3 and k2 <
√

3 separately,

i.e. distinguishing between steep and shallow potentials, respectively.

Steep scalar potentials: for steep scalar potentials, the border between the stability

regions of S and NG is once again given by eq. (4.1). Initial field displacements φ1|i � φ1×
lead to an initial transient of large k1, which pushes the system towards the NG fixed

point. As φ1 increases k1 decreases and the system will eventually settle into the S fixed

point, as illustrated in figure 4. Initial conditions leading to a smaller initial value of k1
converge directly towards the late time attractor S.

Shallow scalar potentials: the border between the stability domains of G and NG is

given by the solution of (4.3) for each kinetic coupling, and therefore if φ1|i � φ1× the

system will initially converse to NG before settling into G, as illustrated in figure 5. This

type of dynamics allows for observational viable transients even in the presence of steep

potentials.
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Figure 4. (Ωφ, ωφ) plane evolution for matter dominated initial conditions and k2 = 3.
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Figure 5. (Ωφ, ωφ) plane evolution for matter dominated initial conditions and k2 = 1.

6 Non-exponential potentials

The analysis of section 4 and 5 and of [28] relied, at least partially, on the simplifications

afforded by the assumption of exponential potentials and/or kinetic functions. In order to

better understand the dynamics of the system in a more general manner, in this section

we extend our analysis by simultaneously considering both non-exponential potentials and

kinetic couplings. Given the wide space of possible functional combinations for V and f

and our reliance on numerical methods, we will focus on the simplest cases, where both

potential and kinetic coupling are monomial functions of φ1:

V = V0 φ
p2
1 and f = f0 φ

p1
1 . (6.1)

For this choice we find

k1 = − p1
φ1

and k2 = − p2
φ1

. (6.2)

In this special case, though k1 and k2 are field dependent, their ratio is not

k1
k2

=
p1
p2
. (6.3)

One therefore sees that the trajectories in the (k1, k2) plane are straight lines through the

origin. The direction of the trajectories depends on the sign of p2: for p2 < 0, φ1 grows with
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Figure 6. (Ωφ, ωφ) plane evolution for matter dominated initial conditions and k1 = − p1
φ1

and

k2 = − p2
φ1

.

the expansion and so at late times k1, k2 → 0. Conversely, for p2 > 0, φ1 decreases with the

expansion causing k1, k2 → ∞. Clearly NG dynamics can play a role in the expansion of

the universe only if k1 and k2, or equivalently p1 and p2, have the same sign (see figure 1),

and hence we will focus exclusively on these cases.

The equation-of-state parameter for the NG fixed point is constant, even though k1
and k2 are not, and fixed by the ratio p1/p2 as

ωNG =
p2 − 2p1
2p1 + p2

, (6.4)

and thus viable trajectories can be found in the regime where p1 � p2.

In figure 6 we plot two representative examples of the k1, k2 > 0 and k1, k2 < 0 regimes.

We see that an appropriate choice of initial conditions allows the system to converge to

NG irrespective of the signs of k1, k2, provided they are the same. For the case k1, k2 > 0

one chooses φ1|i small (10−3 in the figures) in order to have k1, k2 � 1.

For k1, k2 < 0, φ1 decreases with expansion and the system approaches the regime

k1, k2 � −1. Note that in this case, in order to avoid slow-roll/G dynamics one must have

φi|initial <
√
p2.

Following this criterion for the choice of initial conditions, one finds that though the

trajectories followed by the system approach the instantaneous fixed point NG, they do so

in a significantly different manner: for k1, k2 > 0 the motion is dominated by the oscillations

of the field around the minimum of its potential, leading to oscillatory trajectories in the

(ωφ,Ωφ) plane, which make it difficult to obey current constraints on the equation of state

for dark energy, regardless of the relative size of p1 and p2. On the other hand for k1, k2 < 0

such oscillations are absent (the potential has no local minimum) and provided p1 � p2 one

can find trajectories with viable transients where the dynamics is inherently multi-field.
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7 Conclusions and outlook

In this paper we have studied the dynamics of Einstein gravity coupled to a system of

two scalar fields with a curved field space with a rather general functional dependence of

the kinetic coupling function and the scalar potential. Our aim has been to find viable

quintessence models that could effectively describe a phase of accelerated expansion like

the one which is observed in late-time cosmology even for steep potentials, generalizing

our earlier work [28]. Interestingly, as opposed to the single field case, this multi-field

situation can account for a quintessence phase without being manifestly in tension with

possible lower bounds on the steepness of the corresponding scalar potential arising from

the dS swampland conjecture. The richer structure present here is due to the existence of

a novel fixed point in the phase diagram of the system, which crucially relies on genuinely

multifield effects such as non-geodesic motion in field space.

In particular, we analyzed a situation where a non-canonical kinetic coupling with

various functional dependences, together with a suitable choice of initial conditions on the

field displacements, can give rise to explicit realizations of the aforementioned phenomenon.

When restricting ourselves to exponential scalar potentials with an exactly flat direction,

our analysis turns out to be exhaustive. To conclude, we also exhibited explicit examples

of models consistent with the current cosmological data, where the scalar potential is not

of an exponential form. Though a wide variety of cases are still not covered by our present

work, we already have evidence for a very interesting structure in the most general case.

It is certainly worth mentioning that, while the models studied here are motivated

by the recent dS swampland conjecture and offer a new spectrum of possibilities for con-

structing a UV embedding of dark energy, it remains to be seen whether any of these

appealing features survive once an honest and complete top-down construction is consid-

ered. Addressing this question in detail is of utmost importance and we hope to come

back to it in the future. For the time being, let us just mention that the flat direction

φ2 can be realized as an axion which enjoys a perturbatively exact shift symmetry. Non-

perturbative effects break this symmetry and generate a potential for φ2. However in the

regime where the effective field theory is fully under control, stringy axions are expected

to be ultra-light [37–39], in agreement with our flat direction approximation.6

Another interesting issue that we have not studied in detail is the coupling of φ1 and

φ2 to matter. A direct coupling between one of the scalars and the barotropic fluid can

have drastic effects on the late universe dynamics (see [40] for a review of interacting dark

energy models in the context of single-field quintessence). However if φ1 couples to ordinary

matter with Planckian strength, fifth force bounds would require φ1 to be as heavy as at

least O(1) meV (φ2, being a pseudo-scalar, would instead not suffer from this problem).

It can be easily checked that this result can be achieved only by a huge tuning of the

6In fact, the axion mass is set by the axion decay constant f and the overall size of the axion potential

Λ as mφ2 ∼ Λ2/f . However in string compactifications these two quantities are not independent since Λ

is set by the instanton action S, Λ4 ∼M4
Pl e

−S , which in many cases is inversely proportional to the axion

decay constant f , i.e. S ∼ MPl/f [37–39]. This implies that for S � 1 where the instanton expansion is

under control, or equivalently for f � MPl as required by swampland bounds, the axion potential is in

general very suppressed.
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underlying parameter k2 once the scale of scalar potential is required to be V ∼ 10−120M4
Pl.

This implies that viable models would require a decoupling of φ1 from ordinary matter

which could for example be realized via geometrical separation in the extra dimensions as

in [21, 27] (notice that φ1 could instead still have a direct coupling to dark matter).

Let us finally point out that quintessence models exacerbate the present tension be-

tween low-redshift data and the Planck determination of the Hubble constant based on

ΛCDM [41]. Given that at the level of the background our models are indistinguishable

from standard quintessence, we expect them to feature the same H0 tension. Let us however

stress that the solution to this tension, if its observational evidence keeps gaining strength,

does not need necessarily to come from the underlying dark energy model. Just to mention

an example, we refer to extra dark radiation in the early universe [42] which arises rather

naturally in string models where relativistic ultra-light axions tend to be produced from

the decay of heavy moduli [43, 44].

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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