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One-class classification with application to forensic analy-
sis

Francesca Fortunato, Laura Anderlucci, Angela Montanari
Department of Statistical Sciences, University of Bologna, Italy.

Summary. The analysis of broken glass is forensically important to reconstruct the events of
a criminal act. In particular, the comparison between the glass fragments found on a suspect
(recovered cases) and those collected on the crime scene (control cases) may help the police
to correctly identify the offender(s). The forensic issue can be framed as a one-class clas-
sification problem. One-class classification is a recently emerging and special classification
task, where only one class is fully known (the so-called target class), while information on the
others is completely missing. We propose to consider classic Gini’s transvariation probability
as a measure of typicality, i.e. a measure of resemblance between an observation and a
set of well-known objects (the control cases). The aim of the proposed Transvariation-based
One-Class Classifier (TOCC) is to identify the best boundary around the target class, that is,
to recognise as many target objects as possible while rejecting all those deviating from this
class.

Keywords: One-class classification, Transvariation probability, Data depth mea-
sure.

1. Introduction

Burglaries and crime offences are frequently characterized by the breakage or the damage of
some glass. Windows smashed vigorously to force the entry and get access to private places,
lamps and bottles used to hit someone or something, glass furnitures and headlamps hurt
by accident, car glasses fractured by fired bullets or collisions are just a few examples of
how it may happen. As a consequence of these acts, fragments of glass scatter randomly all
over the crime scene and on the offenders. In so doing, such fragments become unavoidable
trace evidences and, thus, they can help the police to know more about how the crime was
committed.

Usually, glass chunks arising from a breakage have a linear dimension smaller than
0.5mm; for this reason, the comparison between different fragments is often made on the
basis of some analytical results: the Glass Refractive Index (RI), measured by instrumental
methods such as m-XRF, LA-ICP-MS, SEM-EDX, and the chemical composition (Na, Mg,
Al, Si, K, Ca, Ba, Fe), measured by a scanning electron microscope.

The traditional purpose of glass analysis for forensics is to evaluate whether fragments
found on the suspect (recovered cases) can be considered from the same source as those
from the location at which the offence took place (control cases)(Evett and Spiehler, 1987).
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In the forensic science literature, this issue has been already addressed within a hypoth-
esis testing framework by using a likelihood ratio (LR) test (see Aitken et al., 2007):

LR =
f(RI,Na′,Mg′, Al′, Si′,K ′, Ca′, Ba′, Fe′|H0)

f(RI,Na′,Mg′, Al′, Si′,K ′, Ca′, Ba′, Fe′|H1)
. (1)

This requires the estimation of a full model f(·|·) for the two competing hypotheses:
H0, the prosecution/null hypothesis that both recovered and control glasses come from the
same source, and H1, the defence/alternative proposition that they have different origin.
In equation (1) each ·′ refers to the ratio of the elemental concentration to the oxigen, O,
one.

The problem of assessing whether the evidence is compatible with the control sam-
ples can also be framed as a one-class classification task. In fact, one-class classification
methods aim to decide whether an object whose origin is completely unknown belongs to
a particular class (the so-called “target” class, which, according to the terminology used
before, includes the control cases only). As no information is available on the non-target
objects, one-class classification is a difficult classification problem because it has to build
a precise descriptive instead of discriminant model of the target class with enough gener-
alisation ability (Liu et al., 2016). In Tax (2001) a detailed description of the methods for
one-class classification tasks are discussed and presented.

Several algorithms and methodologies have been proposed in the statistics literature so
far. Major approaches can be casted into three groups: density methods, boundary methods
and reconstruction methods.

Procedures in the first set estimate the probability density function of the target class
χ, f(x), with x ∈ χ, and set a threshold, t, on the resulting densities; in this way a
target and an outlier region can be obtained. The density can be estimated via the most
common density estimators: kernel density estimators (KDE) (Bishop, 1994; Tarassenko
et al., 1995), Gaussian models (Parra et al., 1996), mixtures of Gaussians (McLachlan
and Peel, 2000; Fraley and Raftery, 2002), histograms (see Scott, 2015, for an exhaustive
description), k-nearest-neighbors (kNN) estimation (Ripley, 2007), just to name a few.
These techniques usually work very well, especially when the sample size is sufficiently
large and the model assumed to describe the target distribution is appropriate. However,
their actual implementation could be limited as the choice of the best model is not trivial
and, particularly for the more flexible procedures (e.g. mixtures of Gaussians), it requires
a large number of training objects to achieve a good fit. In fact, if the selected model does
not properly fit the data a large bias may be introduced.

Boundary methods aim to define the best boundary around the target data, avoiding a
demanding estimation of the complete density. Here, the classification task is performed
by evaluating the distance of a given object from the target class and, then, by comparing
it with a threshold t; the latter is directly derived on the distance measures and adjusted
to ensure a predefined sensitivity, s, i.e. the proportion of target observations that are cor-
rectly identified. Boundary algorithms heavily rely on the distances between observations
and, thus, they are very sensitive to the scaling of the features. In this case, although the
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required sample size is smaller than for density methods, the crucial task lies on the defi-
nition of appropriate distance measures. The k-centers algorithm (Ypma and Duin, 1998),
the ν Support Vector Classification (ν-SVC) of Schölkopf et al. (2000) and the Support
Vector Data Description (SVDD) of Tax and Duin (2004) represent a few examples of such
class of methods. In addition to these, procedures based on the concept of data depth can
be added to the set (see, among others, Dang and Serfling, 2010; Chen et al., 2009; Ruts
and Rousseeuw, 1996). In fact, statistical depth functions can be exploited to measure the
“extremeness” or “outlyingness” of a data point with respect to a given data set as they
provide center-outward ordering of multi-dimensional data. In one-class classification is-
sues all the observations that significantly deviate from the data cloud are indeed expected
to be more likely characterized by small depth values. Boundary algorithms are completely
data-driven and avoid strong distributional assumption; in addition, for a low dimensional
input space, they provide intuitive visualization of the data set by finding peeling and
depth contours (e.g. bagplot, convex hull, . . . ).

Reconstruction methods aim to give a more compact description of the target set, by
assuming that the essential characteristics of the observed data can be well represented by
specific subspaces (e.g. the principal components) and/or sets of prototypes (e.g. the group
centers provided by a generic clustering algorithm), without excessive loss of information.
Such representation, differently from that of density-based methods, does not rely on any
specific distributional shape and is not supposed to reproduce a proper density function.
For each object, the approximation quality can be assessed via the reconstruction error,
εreconstr, i.e. the difference between the actual value and its corresponding representation.
Since the underlying structure is supposed to well represent the target class, εreconstr can be
considered as measure of distance of x to this set. Methods in this class have not been pri-
marily derived for one-class classification purposes, but rather to simply model and describe
the data; points that do not belong to the target class are expected to be represented worse
than true target objects and, therefore, their reconstruction error is supposed to be high.
Among the most common reconstruction algorithms, we can find k-means (Lloyd, 1982),
the Learning Vector Quantization (LVQ) by Carpenter et al. (1991), the Self-Organizing
Maps (SOM) by Kohonen (1998), Principal Component Analysis (PCA) and mixture of
PCAs (Tipping and Bishop, 1999) and the autoencoders by Japkowicz et al. (1995). The
crucial aspect is the choice of the representation and its goodness in describing the target
class; similarly to the density methods, if the fitting is not good a large bias is introduced.

Recent approaches include deep learning methods, such as deep neural networks, to
extract common factors of variations from the data (Ruff et al., 2018) and deep support
vector machines (Erfani et al., 2016). These flexible methods require large sample sizes to
train the classifier.

In this paper a novel one-class classification algorithm based on Gini’s transvariation
probability as a measure of resemblance is introduced; the proposal can be framed within
the context of boundary methods.

The article is organized as follows. Section 2 provides a detailed description of the glass
data. In Section 3 a new procedure for one-class classification is introduced. In the same
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Table 1: Glass data: correlation matrix

RI Na′ Mg′ Al′ Si′ K ′ Ca′ Ba′ Fe′

RI 1.000 0.565 0.433 -0.697 -0.772 -0.781 0.842 0.063 -0.046
Na′ 0.565 1.000 0.402 -0.574 -0.790 -0.711 0.369 0.135 -0.193
Mg′ 0.433 0.402 1.000 -0.437 -0.484 -0.540 0.186 0.007 -0.130
Al′ -0.697 -0.574 -0.437 1.000 0.506 0.770 -0.703 0.032 0.041
Si′ -0.772 -0.790 -0.484 0.506 1.000 0.720 -0.673 -0.170 0.078
K ′ -0.781 -0.711 -0.540 0.770 0.720 1.000 -0.706 -0.167 0.078
Ca′ 0.842 0.369 0.186 -0.703 -0.673 -0.706 1.000 -0.026 0.039
Ba′ 0.063 0.135 0.007 0.032 -0.170 -0.167 -0.026 1.000 -0.006
Fe′ -0.046 -0.193 -0.130 0.041 0.078 0.078 0.039 -0.006 1.000

section, a justification for this proposal is provided, along with a clear explanation of the
major limits that affect the state-of-the-art one-class methods. The proposed methodology
is tested in an extensive simulation study, described in Section 4. In Section 5 results
from the application to the motivating example dataset are presented. A final discussion
concludes the paper.

2. Glass data

The glass dataset used in this paper comes from UCI repository (https://archive.ics.
uci.edu/ml/datasets/glass+identification) and contains n = 138 glass fragments,
whereof 51 containers/tableware/headlamps (non-window) and 87 window (car and build-
ing) samples. Since all these observations derive from a crime scene and no fragments
from potential offenders are recorded, we decide to use the window set as the target class.
In other words, we derive the one-class classification rule on window objects only and we
consider the non-window ones to evaluate the rule performances. These fragments are
characterised by p = 9 features: the Refractive Index and the chemical composition of 8
crucial elements, namely sodium (Na), magnesium (Mg), aluminium (Al), silicon (Si),
potassium (K), calcium (Ca), barium (Ba) and iron (Fe). Each element is normalised to
oxygen (O) so as to remove any stochastic fluctuation in instrumental measurements. Such
features exhibit a moderately high correlation, as shown in Table 1.

In order to evaluate how different the non-window are from the window samples, in Fig-
ure 1 we plot the data according to the directions with the lowest variability, i.e. according
to the last two principal components computed on the target set; this representation shows
that the target class (the triangles) is quite compact, while samples from the outlier one
(the circles) are scattered all around.

Figure 2 shows the distributions of the features according to sample type; the variable-
wise boxplots do not largely overlap, except for the RI and the presence of silicon. Outlying
samples exhibit overall a larger variability compared to the target class ones.
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3. The proposal

As discussed in the previous section, the goal of any one-class classifier is to define a
classification rule that accepts as many target objects as possible and rejects all those
significantly deviating from this class. The crucial aspect that should be stressed is that
one-class algorithms learn the classification rule by using a training set composed of a single
class of well-known observations that does not include any anomaly. Therefore, this issue is
substantially different from a traditional two-class classification problem, where the aim is
to assign data objects to one of two preliminarily defined categories. It also differs from an
outlier detection task, where the training set is naturally polluted by deviant observations.

In this work, a new statistical approach for one-class classification based on Gini’s
definition of transvariation probability between a group and a constant is proposed. In
particular, we refer to the concept of transvariation and to some of its related measures,
firstly introduced in a univariate context by Gini (1916) and, subsequently, extended to
the multivariate case and to a model-based formulation by Gini and Livada (1943) and
Dagum (1959), respectively.

3.1. Transvariation probability as a measure of data depth
The concept of transvariation has proved to be very useful in the traditional classification
context as a measure of group separability, especially when the assumptions that justify the
optimality of Fisher’s linear discriminant function are not met (Montanari, 2004; Nuduru-
pati and Abebe, 2009; Abebe and Nudurupati, 2011). Nonparametric classifiers based on
ranks and data depth measures represent a valid alternative to classical procedures as they
do not depend on restrictive assumptions on the underlying distribution of the data and
are robust to the presence of extreme values. By definition, data depth functions assess how
“deeply” a generic observation lies in a data cloud (Tukey, 1975), i.e. they measure the
degree of closeness of each observation to a generic group of units. The use of data depth
for classification purposes has been firstly introduced by Liu et al. (1999) and then revised
by Ghosh and Chaudhuri (2005), who proposed to assign a new observation to the group
for which its depth is maximum. More recently, Dutta and Ghosh (2011, 2012) considered
classifiers based on an affine-invariant version of the Lp-depth and on projection depth,
respectively. Li et al. (2012) proposed DD-plot classification and Paindaveine et al. (2015)
used a notion of local depth to derive a more flexible procedure. In Billor et al. (2008),
the idea of classifying the new observation as part of the group for which its depth has
highest rank was introduced; in this latter work, transvariation probability is employed as
a statistical depth function.

According to Gini (1916),

Definition 1. A group g of n units and a constant c are said to transvariate on a
variable X, with respect to a measure of central tendency mX of the group if the sign of
some of the n differences xi − c, i = 1, · · · , n, is opposite to that of mX − c, c 6= mX . Each
difference satisfying this condition is called a transvariation.
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Fig. 3: Two examples of no transvariation (first two rows) and a case of transvariation
(third row) between a given unit (the triangle) and a group. The group central tendency
measure is represented by the square.

In other words, there exists transvariation between group g and c only if the constant
value lies in an intermediate position between the central tendency measure mX of the
group and one of its extreme values.

Following this definition, transvariation probability seems to properly capture the re-
semblance between an object and a group; therefore, its use for classification purposes can
be effectively extended to the one-class domain. In fact, in such a context c can be seen as
the unit whose resemblance to the target class, group g, shall be evaluated.

In order to clarify what transvariation really means, consider the graphical example
depicted in Figure 3. In the first two scenarios, no transvariation occurs between constant
c (the triangle) and the group g as all the differences xi − c (where xi is any observation)
have the same sign pattern of mX − c. In the third case, on the contrary, there is evidence
of transvariation: in fact, there are three points on the right-hand side whose differences
with c have opposite sign with respect to that of mX−c (mX is represented by the square).

The fraction of units that actually transvariate can be computed as simply the ratio
between the number of transvariations and the number of possible differences, i.e.

τ =
sX + s′X

2

n
, (2)

where:

- sX is the number of units for which (xi − c)(mX − c) < 0, i = 1, . . . , n;



8

- s′X is the number of units for which (xi − c)(mX − c) = 0, i = 1, . . . , n;

- n is the number of differences (xi − c), i = 1, . . . , n.

Specific attention should be paid to the case where (xi − c)(mX − c) = 0, i.e. the case
where (xi − c) = 0. According to Gini, if there are s′X signless differences, half of them is
counted as transvariations and the remaining as non-transvarying units.

Gini also defines the probability of transvariation, tp, with respect to the measure of
central tendency, mX , as the ratio of τ and the maximum value it can assume, τM .

If we consider mX to be the median (as Gini did), the number of transvariations in-
creases, ceteris paribus, as c moves towards mX and it reaches its maximum when c is the
closest point to mX . In this particular case, the number of transvarying units is exactly
n/2 and thus, τM = 1/2. Hence, the probability of transvariation between a group g and
a constant c is equal to:

tp(c) =
τ

τM
=

τ

(1/2)
= 2

sX + s′X
2

n
. (3)

Tranvariation probability ranges from 0 to 1; values close to 1 reflect a high resemblance
of c to the group g.

The quantities in Equations (2) and (3) are defined with no reference to distributional
assumptions of the data, i.e. units equally contribute to the final results (except for mX

and the xis coinciding with c, whose contribution is halved).

When the probability density function of the target class is known or can be estimated,
such information can be exploited to compute a probabilistic version of τ , τf :

τf = min[F (c), 1− F (c)], (4)

where F (c) is the cumulative distribution function of the target class evaluated in c. As-
suming mX to be the median, its maximum is still 1/2. The resulting computation of
transvariation probability is:

tpf (c) =
τf
τM

=
τf

(1/2)
= 2 ·

{
F (c) c ≤ mX

1− F (c) c > mX
. (5)

The tp(c) in (3) can be rewritten as in (5) by replacing F (c) with the empirical distri-

bution function F̂n(c).

3.1.1. Extension to the multivariate case
Transvariation probability allows for extensions to more than one variable. Following Gini
and Livada (1943), for xi ∈ Rp, i = 1, . . . , n, the multivariate definition of τ corresponds
to the fraction of units for which all the p components of the difference vector xi − c have
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opposite sign with respect to their corresponding elements in the difference vector mX−c,
i.e.

τ =
sX + s′X

2

n
, (6)

where

- sX is the number of units for which (xiu − cu)(mu − cu) < 0 ∀u, i = 1, . . . , n;

- s′X is the number of units for which (xiu − cu)(mu − cu) = 0 ∀u, i = 1, . . . , n;

- n is the number of differences (xiu − cu), i = 1, . . . , n.

If we assume
mX = (m1, . . . ,mp)

to be the multivariate spatial median or mediancentre (Bedall and Zimmermann, 1979), i.e.
mX is the vector that minimizes

∑
n d(x,mX), where d(x,mX) is the Euclidean distance

between x and mX, the maximum τM may no longer be 1/2 and it needs to be estimated.
In particular, τM can be computed as τ in equation (6) on the shifted data y = x−(mX−c).
Therefore, the multivariate definition of transvariation probability is:

tp(c) =
sX + s′X

2

sY + s′Y
2

. (7)

Equation (4) can be extended to the multidimensional case as well. Given that τfM
may no longer be 1/2, the expression in (5) becomes:

tpf (c) =

∫ bx1

ax1
· · ·

∫ bxp

axp
f(x) dx∫ bMx1

aMx1

· · ·
∫ bMxp

aMxp
f(x) dx

(8)

where f(x) is the probability density function (pdf) of the target class and, for u = 1, . . . , p,

- axu
=

{
cu if cu ≥ mu

−∞ if cu < mu
,

- bxu
=

{
+∞ if cu ≥ mu

cu if cu < mu
,

- aMxu
=

{
mu if cu ≥ mu

−∞ if cu < mu
,

- bMxu
=

{
+∞ if cu ≥ mu

mu if cu < mu
,

Obviously, when the variables involved in the computation can be assumed to be inde-
pendent, the multivariate transvariation probability reduces to the product of the simple
univariate ones:

tp(c) =
∏
u

tp(cu) u = 1, . . . , p,

where tp(cu) is the univariate marginal transvariation probability corresponding to the
u-th variable, computed either by (3) or (5).
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3.2. Transvariation-based One-Class Classifier (TOCC)
In this paper, a new one-class classification method based on transvariation probability,
called Transvariation-based One-Class Classifier (TOCC), is introduced. In particular,
we shall refer to TOCCdf if the transvariation probability is computed according to (7)
and thus it is distribution-free; coherently, we would refer to TOCCdb when considering
equation (8), as it is distribution-based. It should be stressed that, as the only information
available pertains to the target class, the only parameter that can be tuned is the proportion
of false negatives (1-sensitivity), i.e. the maximum number of the target class units that are
allowed to be labelled as non-target ones. The classification rule of the TOCCdf [TOCCdb]
is obtained through the following steps:

(a) Set a value, s, as the desired minimum sensitivity of the one-class classifier;
(b) For each target class unit c ∈ Rp compute its transvariation probability tp(c) [tpf (c)]

with respect to the target group median, mX;
(c) Use the s−th percentile of the distribution of transvariation probabilities as a thresh-

old, t(s), for the one-class classifier.
(d) For a new test sample z, compute its transvariation probability, tp(z) [tpf (z)], with

respect to mX.
(e) Assign z to the target set if

tp(z) ≥ t(s) [tpf (z) ≥ t(s)]. (9)

In order to visualize how the TOCCs work in practice, consider Figure 4. In the
plot, target glass samples are colored in different shades of gray, according to the level of
their transvariation probabilities with respect to the target group median, mX (the cross).
Clearly, moving away from mX, the magnitude of transvariation probability decreases. By
setting s = 0.9, all the objects with a value of tp(c) smaller than the threshold t(0.9), are
classified as (false) negative (i.e. the stars).

Consider again Figure 1. As it can be easily noticed, the triangle cloud (i.e. the target
class) is polluted by several non-target objects. As the TOCC can be seen as a data
depth measure, it tends to ‘peel’ the target set and, therefore, it may fail to detect those
deviating observations that do not lie on the external border. In order to efficiently handle
such situations, a modified version of the TOCCdf that is inspired by those algorithms
that use a set of prototypes to represent the input data (e.g. k-means, PAM, SOM, . . . )
is introduced.

The idea is to combine the TOCCdf with the clustering information on the target class
provided by Partitioning Around Medoids, PAM (Kaufman and Rousseeuw, 1990). Each
cluster is analysed separately; as a result, the PAM-TOCCdf returns a set of thresholds,
rather than a single one. In so doing, the algorithm is able to detect those deviating
observations that are scattered within the target set.

Figure 5 shows the two different solutions yielded by the the TOCCdf and the PAM-
TOCCdf . As discussed, the TOCCdf (left panel) is able to identify only those deviating
points placed on the target class perimeter. For this reason, such procedure is suggested
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when there is no reason to believe that the two sets strongly overlap. In all the other
situations, the PAM-TOCCdf (right panel) should be preferred: in fact, as clearly displayed,
this algorithm is able to detect non-target objects that deviate along different directions.

The following steps outline the PAM-TOCCdf two-phases process:

Phase I:

(a) run the PAM algorithm on the target class, with a number of clusters K chosen
beforehand; store the resulting information on both the group membership and
the prototype vectors.

Phase II: for each cluster k,

(b) set a value, sk, as the desired minimum sensitivity of the one-class classifier
(usually, sk is set equal ∀k);

(c) for each target unit c ∈ Rp in the k-th cluster compute its transvariation proba-
bility tp(c) with respect to the group prototype, kmX. As mX is no longer the
median, but the cluster centroid, there is no guarantee that τM is equal to 1/2.
For this reason, the transvariation probability should be computed according to
equation (7), in both the univariate and the multivariate contexts;

(d) use the sk−th percentile of the (increasing) ordered distribution of transvariation
probabilities as a threshold, kt(sk), for the one-class classifier.

(e) assign a new sample z to the closest group g. Then, compute its transvariation
probability, tp(z) with respect to gmX.

(f) Decide on z according to the rule described in (9), where t(s) = k=gt(sk).

3.3. Discussion
The transvariation-based one-class classifier is fast and simple and can cope with many
limits of the existing one-class strategies. For example, density-based methods such as
those relying on Gaussian models give good results only when these hypotheses are fulfilled.
Mixture of Gaussians and kernel density estimation procedures allow for more flexibility,
but they require a large sample size in order to identify the proper number of components
and to provide adequate density estimates. Furthermore, these approaches tend to focus
on the highest density areas, while neglecting those target regions that are characterised
by low-density values.

Reconstruction methods are very sensitive to the choice of the structure that is supposed
to properly describe the data. In fact, when the assumed representation does not fit
the data well, a large bias is introduced and results break down. For example, the k-
means algorithm implicitly assumes that data are spherical around the group centroid;
therefore, if the “real” clusters are differently shaped (namely, if the variables are correlated
and/or heteroscedastic), such procedure does not capture the correct pattern. In addition,
the resulting clustering strongly depends on the random initialization and, thus, different
runs may lead to completely different data partitions. Self-organizing-maps represent data
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by a set of prototypes whose placing is constrained to form a low-dimensional manifold,
i.e. a topologically organized lattice structure. Usually 2- or 3-dimensional subspaces
are employed so that data projected on these manifolds can be easily visualized; higher
dimensional spaces are possible, but computationally prohibitive. If the dimensionality of
output space is not adequate to the problem, the topological constraint might result in
a suboptimal placing of the representative prototypes. Usually, reconstruction methods
employ the Euclidean distance to define the reconstruction error, εreconstr and, therefore,
they are very sensitive to the scaling of the features.

Boundary algorithms only require the definition of a closed boundary around the target
class and do not rely on any distributional assumption. Many of these algorithms involve
functions of (Euclidean) distances to assess the resemblance between test and target ob-
servations and between target units as well. Therefore, their performances may degrade if
the input features are skewed or exhibit different scales.

The use of a depth-based measure to evaluate similarity represents a novel ingredient
within this class of methods that allows to overcome existing limits related to the distance
functions. Namely, our TOCC is invariant under scale transformations and location shifts
and robust to the presence of outliers. Furthermore, the distribution-free version of the
algorithm is fully nonparametric, as it only relies upon a mere count (see equation 7).

3.4. Practical considerations
The computational cost of the TOCCs increases with the number of features p involved in
the problem at hand.

For the TOCCdf this relationship is (at most) linear : the algorithm examines one
variable at a time and, thus, it requires the calculation of (at most) n × p differences
(xiu − cu)(mu − cu), i = 1, . . . , n, u = 1, . . . , p, in order to decide whether the object
c ∈ Rp transvariates.

In the case of the TOCCdb, the area under the curve is split into 2p regions, identified at
the intersection of the p axes that originate from the spatial median, mX = (m1, . . . ,mp),
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as shown in Figure 6.
Differently from the TOCCdf , the TOCCdb is not a step-wise procedure, as it considers

all the variables together (see equation 8). However, the cost of the algorithm increases
exponentially with p, since 2p regions must be defined; unfortunately, this step is not
scalable and may lead, for large p, to null areas. For these reasons, similarly to many other
depth-based classifiers, preliminary dimension reduction or variable selection procedures
may be advisable. In the following, several strategies are outlined and new ones introduced.

3.4.1. Dimension reduction and variable selection
For dimension reduction, the classical Principal Component Analysis (PCA) or its sparse
version (sPCA) introduced by Zou et al. (2006) proved to produce good results in the
one-class framework, especially when only the low-variance projections are retained (Tax
and Müller, 2003). In fact, as such directions provide the tightest description of the target
set, they result to be the most informative ones for the one-class classification problem.

Besides PCA, the Random Projection (RP) method represents a valid alternative for
reducing the data dimensionality. In the context of supervised classification, Cannings and
Samworth (2017) proposed an ensemble method that identifies the best B1 RPs according
to the smallest misclassification error rate. Within the one-class classification framework,
a similar approach can be implemented. In this context the information on non-target
objects is unavailable, therefore a possible solution is to select those RPs that minimise the
Median Absolute Deviation (MAD) of the projected data. Coherently with the definition of
transvariation probability in equation (1), such strategy provides indeed the most compact
projection of the target set with respect to its median. The resulting classification vectors
are then aggregated through a majority vote scheme.

To deal with the variable selection task, many approaches have been developed in the
model-based clustering and classification framework, e.g. Scrucca and Raftery (2014),
Murphy et al. (2010) and McLachlan et al. (2005). Among them, varSel algorithm intro-
duced by Sartori (2014) uses Gaussian Mixtures to identify the most suitable variables for
classification (and clustering) purposes.

Random projections can also be exploited to perform variable selection. The input
features could be ranked according to a modified version of the Importance Coefficient
(CI) introduced by Montanari and Lizzani (2001) in the context of projection pursuit. For
the generic d-dimensional RP (d� p), the CI of the u-th variable is computed as:

CIub =

d∑
q=1

|auqb|su√∑p
z=1 (auzbsu)2

where auqb indicates the attribute u coefficient in the q-th vector of the d-dimensional
random projection solution b and su the variability (i.e. the standard deviation) of the
attribute in the original space. Since B1 random projections are available, the overall
importance measure for each variable can be derived as the median CI across projections
and it is called Variable Importance in Projection (VIP):
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VIPu = median
b=1,...,B1

CIub. (10)

The median is used here so as to mitigate the effects of potential not-so-good projections
on the VIP. The number of variables to be kept is decided by the user.

The presence of highly associated input features pollutes the capability of the VIP to
detect those actually relevant since, by its nature, it tends to assume approximately the
same value for very correlated variables. Thus, a specific correction procedure for this
measure is advisable in order to mitigate the correlation effect.

A possible strategy is to retain the variables with the highest VIP value whilst discarding
those that strongly correlate, on average, with the variables already considered; i.e. those
that exhibit an average absolute correlation ρ̄ larger than a given threshold, κ. From our
empirical experience, a reasonable interval for κ would be 0.4 − 0.7, depending on the
average degree of the association in the original data: the strongest the association, the
lower is the threshold. We shall refer to the adjusted-for-correlation VIP as the κ−VIP.

4. Simulation study

The performances of the TOCCs have been evaluated in an extensive simulation study. In
each of the simulation settings described below, target objects (χ) are generated according
to different bivariate distributions, so as to visualise how the proposals work in practise.
Non-target data (Υ) are employed to evaluate the performances of the classification rules
learned on χ only.

For the first four scenarios, the mean vector of non-target data is obtained by shifting
the mean vector of target objects. The magnitude of the shift is described by a parameter,
called λ; different magnitudes (i.e. λ = 1, small shift; λ = 2, large shift) are considered.

(a) In the first scenario, we simulate target objects from a bivariate Gaussian distribution,
whose components are standard normal random variables with a correlation equal to
0.35.

(b) The second scenario considers a skew target class, i.e. the bivariate Gaussian distri-
bution of scenario (a) is squared and used as generative model.

(c) Differently, in the third scenario, target data are generated by taking the square root
of the absolute bivariate Gaussian distribution of scenario (a).

(d) In scenario four, data are log-transformed drawn from the bivariate Gaussian distri-
bution of scenario (a).

Further settings have been explored, i.e. scenarios (e)-(h), so as to evaluate the be-
haviour of the TOCCs in the presence of non-target objects uniformly scattered within
a box over the target class. The size of the box is determined by the target data itself;
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basically, the center of the box is the median of the features, and the sides are 3 times
the interquartile range of each dimension. The same distributions of scenarios (a)-(d) are
considered as target class.

An additional scenario (i) with non-standard data shape is also evaluated. Specifically,
in this case, both target and non-target objects are generated according to a bivariate
banana-shaped distribution with different location shifts.

For each scenario, different sizes of the target class, nT , are considered (i.e. 100, 200,
500); non-target class size, nNT , is always taken to be 0.5nT . For each setting, 100 repeti-
tions are run and results are compared with several state-of-the-art one-class classifiers.

In particular, these methods include the Gaussian model (Gauss, implemented using
the mahalanobis function), the Mixture of Gaussians approach (Mix-Gauss, implemented
using the mclust package (see Scrucca et al., 2017), where the optimal number of com-
ponents, ranging from 1 to 9, was chosen so as to maximize the BIC), the kernel density
estimate (KDE, implemented using the ks package with the normal kernel and the uncon-
strained plug-in bandwidth selector), the k-means algorithm (KM, implemented using the
kmeans function with K = 5 clusters), the 2-dimensional self organizing map (SOM, imple-
mented using the kohonen package with a 5×5 grid and a learning rate α = (0.5, 0.3)) and
the support vector data description (SVDD, implemented by Spencer (2015), with a cost
parameter for the positive examples C = 0.1). For each method, the threshold t(s) which
defines the decision boundary is derived directly from the target data (xi ∈ χ, i = 1, . . . , n).
Namely, t(s) is adjusted so as to achieve a predefined sensitivity level s, i.e.:

t(s) :=
1

n

n∑
i=1

1{p(xi) ≥ t(s)} = s or t(s) :=
1

n

n∑
i=1

1{d(xi) ≤ t(s)} = s,

depending on whether the algorithm is based on a measure of resemblance, p(·), or of
distance, d(·), respectively.

Mixtures of Gaussians are fitted to the data for the TOCCdb in each scenario. The
PAM-TOCCdf has run with a number of clusters K = 5, coherently with the settings of
the competing methods.

Figures 7 and 8 contain the aggregated results for each scenario. The boxplots show
the behaviour of the specificity rates for a sensitivity level of at least 90%, i.e. s = 0.9; the
horizontal line helps the comparison among the approaches, by highlighting the median
specificity for the TOCCdf . A detailed description of the data generation models and of
the complete results is reported in the Supplementary Material.

Results coming from this study clearly show the general effectiveness of the transvariation-
based one-class classifier. In particular, for all the simulated models, the algorithms attain
specificity rates that are always better than or, at least, comparable with those from the
state-of-the-art methods. These promising outcomes allow to efficiently use the proposed
procedures in a wide variety of problems.

A separate evaluation should be carried out for the PAM-TOCCdf ; the performances
of this classifier strongly depend on the behavior of the non-target observations. In fact,
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Fig. 7: Simulation results for scenarios (a) - (d): specificity rates for s = 0.9 sensitivity
level. The horizontal line highlights the median specificity for the TOCCdf .
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Fig. 8: Simulation results for scenarios (e) - (h): specificity rates for s = 0.9 sensitivity
level. The horizontal line highlights the median specificity for the TOCCdf .
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Scenario (i): Banana−shaped

Fig. 9: Simulation results for scenario (i): specificity rates for s = 0.9 sensitivity level. The
horizontal line highlights the median specificity for the TOCCdf .

as clearly depicted in the boxplots of Figure 7, it tends to outperform the other methods
when the detection problem is particularly difficult, that is, when non-target observations
pollute the core of target set and do not limitedly lie on its external perimeter.

Boxplots in Figure 8 exhibit a generally improved performance for almost all the meth-
ods in the presence of non-target samples uniformly scattered over the target set: overall,
the median specificity for s = 0.9 is above 75%. Also in these scenarios, the PAM-TOCCdf

is able to globally detect the largest number of deviating observations.

Among the considered state-of-the art methods, the KDE appears to perform poorly
almost everywhere. This is probably due to a wrong specification of the bandwidth matrix
H for the non-target class: H is estimated only on the target set and, therefore, the kernel
ϕH(.) is likely to produce incorrect estimates for the observations that differ too much from
this class. When the data are skewed, the self-organizing maps usually work well (Kiang
and Kumar, 2001); in scenario (b) SOMs outperform all the other one-class classifiers,
with a slight improvement on TOCCs; such result does not hold in general, for other skew
scenarios: in setting (d) the low-dimensional lattice placing is not optimal, thus yielding
poorer accuracy.

A special mention should be made for the results of the last scenario, depicted in
Figure 9. In general, the non-convexity of the banana-shaped data appears very hard to be
detected, particularly by the less flexible methods. In such situations, the most adaptive
procedures (i.e. PAM-TOCCdf , Mix-Gauss and SOM) handle the “non-typicality” of the
target class distribution more appropriately.
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Table 2: Glass data: area under the ROC curve (AUC). The subscript below each dimension
reduction or variable selection procedure refers to the dimension of the feature space used.
κ = 0.5

AUC
PCA2 RP2 varSel2 κ-VIP2

TOCCdf 0.946 0.988 1.000 0.986
TOCCdb 0.905 0.987 0.997 0.988
PAM-TOCCdf 0.963 1.000 0.985 0.988

5. Glass data analysis

The analysis of the glass fragments is carried out by the TOCC algorithms proposed and
described in the previous sections. Preliminarily, dimension reduction and variable selection
procedures are applied and compared, as suggested in Section 3.4.

PCA is computed on the window fragments and the last two components are retained.
For the RP method, the best B1 = 101 bi-dimensional projections are considered, each
carefully chosen within B2 = 50 possible solutions via MAD.

When performing variable selection procedures, the two most important features ac-
cording to both the VarSel and the VIP algorithms are retained; in particular, given the
moderately high degree of association (see Table 1), the adjusted-for-correlation VIP is
applied, with a threshold κ = 0.5.

As the target class distribution is unknown, a reasonable choice could be to fit a mixture
of Gaussians as reference model, given that the bi-dimensional representation of Figure 1 is
approximately elliptical. The chemical composition of the two sets of fragments is similar,
thus we can expect them to be (at least) partially overlapping; for this reason, the PAM-
TOCCdf is run with a number of clusters moderately large compared to the number of
units, i.e. K = 4.

Figure 10 depicts the ROC curves for the three TOCCs, distinguished by the different
strategies implemented to reduce the data dimensionality; Table 2 contains the corre-
sponding area under the ROC curve (AUC). Overall results are very good, as almost all
the non-window fragments have been recognised. However, a few considerations can still be
made. In particular, for this set of data variable selection procedures slightly outperform
the dimension reduction ones; plots in the second row exhibit a quasi-perfect performance.
As shown in Figure 11, the two sets of fragments look well separated when plotted accord-
ing to the most relevant features, even if these are different for the two methods (varSel
chose potassium and magnesium, whilst κ-VIP selected silicon and magnesium).

When the characteristics of the target and non-target objects are not so easily dis-
tinguishable (see, Figure 1), the PAM-TOCCdf should be preferred; this method is, by
construction, more capable to identify the non-window glasses scattered within the win-
dow samples; in addition, it requires the lowest computational time, as shown in Table 3.
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Fig. 10: Glass data: ROC curves of the proposals, distinguished by the different strategies
implemented to reduce the data dimensionality.

0

1

2

3

4

0 2 4 6

K’

M
g

’

Non−Window Window

VarSel2 variable selection data representation

Glass Data

0

1

2

3

4

70 72 74

Si’

M
g

’

Non−Window Window

κ−VIP2 variable selection data representation, κ=0. 5

Glass Data

Fig. 11: Glass data: bi-dimensional data representation according to the variable selection
procedures.



22

Table 3: Glass data: specificity rates corresponding to a sensitivity level s = 0.9 and corre-
sponding computational time (in seconds). The subscript below each dimension reduction
or variable selection procedure refers to the dimension of the feature space used. κ = 0.5.

Specificity Time
PCA2 RP2 varSel2 κ-VIP2 PCA2 RP2 varSel2 κ-VIP2

TOCCdf 0.882 0.980 1.000 0.961 0.23 7.19 0.09 0.08
TOCCdb 0.804 0.980 0.980 0.961 1.19 121.94 1.19 1.43
PAM-TOCCdf 0.922 1.000 0.980 0.980 0.09 2.30 0.04 0.03

6. Discussion and conclusions

In this work, new directions for forensic analysis of glass fragments have been considered.
In particular, the problem of identifying glass samples that come from different sources in
a crime scene has been addressed for the first time (to the best of our knowledge) within
a one-class classification framework.

We proposed to consider transvariation probability as a measure of resemblance between
an observation and a set of well-known objects. Basing on tp, three different algorithms
have been introduced, according to the available information on the target set. Namely,
TOCCdf is a distribution-free method that does not rely on any assumption to compute
transvariation probabilities. When information on the distributional shape of the target
units is available, a distribution-based TOCC, TOCCdb, can be successfully implemented.
These methods perform very well, especially when non-target objects lie on the external
perimeter of the target class.

However, information on the deviating samples is, in principle, not available and the
situation just described may not be realistic as non-target units can actually pollute the
target set intrinsically. For this reason, a more flexible method that allows to peel the
target objects within the data cloud has been developed. The PAM-TOCCdf identifies
homogeneous groups of target samples and exploits such information to spot the units that
deviate from each cluster.

The performances of the proposed method have been evaluated in terms of specificity,
i.e. the proportion of actual negatives that are correctly predicted, on multiple synthetic
datasets. Simulation results demonstrate that the use of tp as a tool for one-class clas-
sification outperforms several state-of-the-art methods, being tp a data depth measure
that is invariant to linear transformations and robust to the presence of anomalous target
observations.

The chemical composition of the two sets of glass fragments that motivate our work is
very similar and the samples cannot be easily distinguished. For this reason, the PAM-
TOCCdf appears to be the most appropriate transvariation-based one-class classifier, being
able to detect all the non-window objects.

The methodology we propose is very flexible and can be employed to solve different one-
class classification tasks, such as food authentication, fraud detection, central statistical
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monitoring issues, to name a few. In Fortunato (2018) excellent performances achieved
by the TOCCs on other datasets are shown. In particular, the proposed classifier has
been applied to two sets of near infrared spectroscopic food data, in order to evaluate food
samples’ authenticity (namely, one related to honey samples and the other concerning olive
oil). In addition, the Water Treatment Plant dataset from the UCI repository (https://
archive.ics.uci.edu/ml/datasets/water+treatment+plant) was successfully explored
in a fault detection perspective. This dataset is well-known in the literature as a difficult
classification task, since no method turned out to be able to correctly identify the days in
which the plant wrongly operated.
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