
03 May 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Energy-Efficient Hardware-Accelerated Synchronization for Shared-L1-Memory Multiprocessor Clusters /
Florian Glaser; Giuseppe Tagliavini; Davide Rossi; Germain Haugoug; Qiuting Huang; Luca Benini. - In:
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS. - ISSN 1045-9219. - STAMPA. -
32:3(2021), pp. 633-648. [10.1109/tpds.2020.3028691]

Published Version:

Energy-Efficient Hardware-Accelerated Synchronization for Shared-L1-Memory Multiprocessor Clusters

Published:
DOI: http://doi.org/10.1109/tpds.2020.3028691

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/774956 since: 2021-02-12

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1109/tpds.2020.3028691
https://hdl.handle.net/11585/774956

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/)

When citing, please refer to the published version.

This is the final peer-reviewed accepted manuscript of:

F. Glaser, G. Tagliavini, D. Rossi, G. Haugou, Q. Huang and L. Benini, "Energy-
Efficient Hardware-Accelerated Synchronization for Shared-L1-Memory
Multiprocessor Clusters," in IEEE Transactions on Parallel and Distributed Systems,
vol. 32, no. 3, pp. 633-648, 1 March 2021.

The final published version is available online at:
http://dx.doi.org/10.1109/tpds.2020.3028691

Rights / License:

The terms and conditions for the reuse of this version of the manuscript are specified in the
publishing policy. For all terms of use and more information see the publisher's website.

https://cris.unibo.it/
http://dx.doi.org/10.1109/tpds.2020.3028691

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, MONTH XXXX 1

Energy-Efficient Hardware-Accelerated
Synchronization for Shared-L1-Memory

Multiprocessor Clusters
Florian Glaser, Student Member, IEEE, Giuseppe Tagliavini, Member, IEEE, Davide Rossi, Member, IEEE,

Germain Haugou, Qiuting Huang, Fellow, IEEE, and Luca Benini, Fellow, IEEE

Abstract—The steeply growing performance demands for highly power- and energy-constrained processing systems such as
end-nodes of the internet-of-things (IoT) have led to parallel near-threshold computing (NTC), joining the energy-efficiency benefits of
low-voltage operation with the performance typical of parallel systems. Shared-L1-memory multiprocessor clusters are a promising
architecture, delivering performance in the order of GOPS and over 100 GOPS/W of energy-efficiency. However, this level of
computational efficiency can only be reached by maximizing the effective utilization of the processing elements (PEs) available in the
clusters. Along with this effort, the optimization of PE-to-PE synchronization and communication is a critical factor for performance. In
this work, we describe a light-weight hardware-accelerated synchronization and communication unit (SCU) for tightly-coupled clusters
of processors. We detail the architecture, which enables fine-grain per-PE power management, and its integration into an eight-core
cluster of RISC-V processors. To validate the effectiveness of the proposed solution, we implemented the eight-core cluster in
advanced 22 nm FDX technology and evaluated performance and energy-efficiency with tunable microbenchmarks and a set of real-life
applications and kernels. The proposed solution allows synchronization-free regions as small as 42 cycles, over 41× smaller than the
baseline implementation based on fast test-and-set access to L1 memory when constraining the microbenchmarks to 10%
synchronization overhead. When evaluated on the real-life DSP-applications, the proposed SCU improves performance by up to 92%
and 23% on average and energy efficiency by up to 98% and 39% on average.

Index Terms—Energy-efficient embedded parallel computing, fine-grain parallelism, tightly memory-coupled multiprocessors.

F

1 INTRODUCTION

A FTER being established as the architectural standard for
general-purpose and high-performance computing over a

decade ago [1], [2], the paradigm of chip multiprocessors (CMPs)
is as well being adopted in the embedded computing domain
[3], [4]. One of the key drivers for the exploitation of multi-core
systems in the deeply embedded domain is the increasing perfor-
mance demand in internet-of-things (IoT) end-nodes. This class
of devices needs to flexibly handle multiple sensor data streams
[5], [6] (e.g., from low-resolution cameras or microphone arrays),
and perform complex computations to reduce the bandwidth over
energy-intensive wireless data links.

As the straightforward replacement of microcontroller cores
with more powerful core variants featuring multiple-issue,
multiple-data pipeline stages, and high operating frequencies,
naturally jeopardizes energy-efficiency [7], researchers are turning
to parallel near-threshold computing (NTC) [8]. This approach
enables improvements of energy-efficiency by up to one order of
magnitude [9] by reducing the supply voltage of the underlying
CMOS circuits to their optimal energy point (OEP) [10] while
recovering the performance degradation at low voltage through
the exploitation of parallel execution over multiple software-
programmable cores. However, parallel NTC can only achieve
the fundamental goal of increasing energy-efficiency with par-
allel workloads and when the underlying hardware can effec-
tively exploit the parallelism present in applications. Moreover,
in sequential portions of applications, parallel hardware resources
such as processing elements (PEs) and part of the interconnect
towards the shared memory consume power without contributing
to performance. Hence, during these periods, all idle components

must be aggressively power-managed at a fine-grain level.
The described requirements highlight the need for communica-

tion, synchronization, and power management support in parallel
processing clusters. Communication mechanisms are required for
PEs to exchange intermediate results and orchestrate parallel exe-
cution. In this work, we focus on shared-memory multiprocessors
that typically rely on data-parallel computational models. For this
class of systems, data exchange is trivial, reducing the synchro-
nization and communication requirements to pointer exchange
and data validity signaling. Still, waiting for and notifying PEs
fast and efficiently is essential for any application that contains
data dependencies between threads (i.e., applications that cannot
be vectorized). Consequently, the support for synchronization
mechanisms remains mandatory also for this type of parallel
processing systems.

The most straightforward way to enable functionally correct
implementations of every kind of multi-PE synchronization is to
provide atomic access to the shared memory (or a part thereof)
and use spinlocks on thereby protected shared variables. While
this approach is universal, flexible, and requires small hardware
overhead, its busy-waiting nature jeopardizes both performance
and energy efficiency, as every contestant repeatedly accesses the
shared variables until all have gotten exclusive access.

To overcome the explained challenges and limitations, we
propose a light-weight hardware-supported solution that aims at
drastically reducing the synchronization overhead in terms of
cycles and – more importantly – energy. This approach makes
fine-grain parallelization for the targeted shared-memory NTC
processing clusters affordable since all signaling is done by

2 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, MONTH XXXX

restfully waiting on events, i.e., halting and resuming execution
at synchronization points without changing the software context.
The foundation of the proposed solution is the synchronization and
communication unit (SCU), a compact, single-cycle-accessible
shared peripheral that centrally manages event generation, requir-
ing only a single additional instruction compared to the base in-
struction set architecture (ISA). The SCU features general-purpose
PE-to-PE signaling and an easily extensible set of commonly used
synchronization primitives. In this work, we focus on barriers and
mutexes, as they correspond to the parallel and critical section
constructs that are fundamental in parallel programming models
such as OpenMP [11]. For cases where a completely balanced
utilization of all PEs is not possible, the SCU features fine-grain
power management (PM) in the form of per-PE clock gating,
which allows saving energy during idle periods as short as tens
of cycles.

To demonstrate the capabilities of the solution, we integrate
the SCU into a tightly-coupled cluster that features eight digital
signal processing (DSP)-capable RISC-V cores. The SCU, as well
as the multi-core cluster, are silicon-proven in multiple technology
nodes [12], [13], [14], and are available as open-source hardware
under a permissive license [15]. We carry out all experiments on
a register-transfer level (RTL) model and a gate-level, fabrication-
ready implementation of the multi-core cluster in a 22 nm process,
allowing us to obtain cycle-exact performance numbers as well
as to measure energy with an accuracy close to that of physical
system realizations. Adopting this methodology, we illustrate
both the opportunities and relevance of lowering synchronization
overhead for parallel NTC through synthetic benchmarks and a
set of DSP kernels that are typical for the targeted system type.
The results obtained in our evaluation show that the SCU allows
synchronization-free regions (SFRs) as small as 42 cycles, which
is more than 41× smaller than the implementation based on
fast test-and-set (TAS) used as a baseline for comparison when
constraining the synthetic benchmarks to 10% synchronization
overhead. Moreover, when evaluated on the set of application
kernels, the proposed SCU improves performance by up to 92%
and energy efficiency by up to 98%. The area cost of the SCU
is small (less than 2% of the cluster), which also implies that its
added static power contribution is completely negligible, even at
low operating voltage and frequency, typical of NTC systems, with
respect to the power savings it enables in the whole cluster.

The remainder of this paper is organized as follows. Sec. 2
provides a comprehensive overview of the prior art related to
synchronization in embedded multiprocessors. Sec. 3 discusses
the relevance of fine-grain synchronization in the context of the
targeted system type. The architecture of the proposed SCU and
the multi-core cluster is explained in Sec. 4, followed by the
thereby enabled concept of aggressively reducing the overhead
for synchronization primitives in Sec. 5. The baseline method, as
well as the experimental setup and methodology which we used,
can be found in Sec. 6, followed by experiments with the mi-
crobenchmarks and real-life DSP-applications. Sec. 7 summarizes
and concludes the work.

2 RELATED WORK

The limitations of straight-forward synchronization support based
on atomic memory access have been broadly recognized by the
research community. A variety of works, therefore, proposes –
similar to our approach – hardware-accelerated solutions [16],

[17], [18], [19]. Reviews of the performance and characteristics
of software-based solutions for shared-memory multiprocessors
can be found in [20], [21], [22], [23].

Multiple works [23], [24], [25], [26] propose to dynamically
adjust the speed of individual PEs at runtime to equalize their
execution speed instead of power-managing them. However, this
approach incurs significant control and circuit complexity due
to the required asynchronous clocks and severely increases the
latency between PEs and memory. Consequently, it only pays off
if the costs for entering and leaving low-power modes are in the
order of thousands of cycles, as the authors of [23] assume. Our
approach instead aims at using a single synchronous clock, imple-
menting a simple variant of PM that is suitable for very short idle
periods, equalizing workload with fine-grain parallelization, and
ultimately gain from system-wide frequency and supply scaling.

The prior art in hardware-accelerated synchronization for
synchronously clocked embedded systems covers a wide range of
targeted system types and architectural concepts. What follows is
a review of the relevant references that target microcontroller-type
(or at least similar) systems, structured by key aspects.

Synchronization-free region size: With the constraint to
gain energy-efficiency and performance through parallelization,
the cost of synchronization tasks causes a lower bound for the
average length of periods that PEs can work independently from
each other, often referred to as the SFR size. Consequently, the
ability to handle typical synchronization tasks in the order of
tens of cycles and below is of major importance for energy-
efficient parallelization in the context of the targeted processing
clusters. For most references, the SFR size for which the respective
results are reported must be implicitly determined by analyzing the
employed benchmarks. Multiple references [27], [28], [29] utilize
parallel benchmarking suites such as STAMP [30] or SPLASH-
2 [31], which feature SFRs of at least 10.000s of cycles and
are, therefore – in addition to large data set sizes – not suitable
for the microcontroller-type clusters we target. The lack of fit
of the SPLASH-2 suite is also mentioned in [17]. As a suitable
alternative, the authors propose the usage of a subset of the
Livermore Loops [32], a collection of sequential DSP-kernels that
can be parallelized with reasonable effort as the original code is
annotated with data-hazard pragmas. The parallel versions of loops
2, 3, and 6 are provided in [17] and used in [16], [17], [18]; we
include loops 2 and 6 in our set of applications1. Our analysis in
Sec. 6 yields SFR sizes of as small as 104 cycles, which matches
the range targeted by our proposed solution.

In addition to the conclusions drawn from the used bench-
marks, a closer analysis of the employed bus systems can also
help to estimate the smallest supported SFR: For example, the
synchronization-operation buffer (SB) proposed in [27], managing
all synchronization constructs locally at the shared memory, is
reachable for the PEs through a high-bandwidth network-on-chip
(NoC). A latency of at least 30 cycles for NoC transactions is
stated; for requesting and getting notified about the availability of a
lock, at least two transactions are required, pushing the affordable
SFR size far above the approximately one hundred cycles and
below targeted by us.

Due to the similarities in the targeted systems, it can be as-
sumed that [33] aims at similarly sized SFRs like ours. Results are
reported as number and types of accesses to the synchronization

1. Loop 3 is omitted as it is a fully vectorizable matrix-multiplication, and
synchronization is consequently only required between full kernel iterations.

GLASER et al.: ENERGY-EFFICIENT HARDWARE-ACCELERATED SYNCHRONIZATION FOR SHARED-L1-MEMORY MULTIPROCESSOR CLUSTERS 3

hardware for a wide range of synchronization primitives. The
barrier and mutex primitives that we discuss in detail are estimated
to take only two bus transactions or six cycles (measured at the
memory bus); we further reduce bus transactions to a single one
and latency to four cycles.

Synchronization hardware complexity: Keeping overall cir-
cuit area and complexity as small as possible is crucial for systems
that ought to be employed for parallel NTC, as explained in Sec. 1.

The cache-alike SB presented in [27] is capable of flexibly
managing a large number of synchronization constructs; however,
a considerable circuit area is required for each entry to store all
required information and the logic that performs single-cycle hit-
detection. The need to check every memory access for a matching
address causes the activity of the SB to be much higher than the
frequency of synchronization points in a given application would
require.

The concepts presented in [34] and [29] are based on snoop
devices at the memory, or system bus; [29] is of particular
interest as it distributes the synchronization-management over one
controller per PE that each hosts a locking queue for the respective
variables of interest. This concept sounds very appealing from
a hardware complexity point of view; however, an important
aspect not covered in [29] limits the applicability. In the usual
(and desirable) case where the system bus of a CMP can handle
multiple transactions at once, each local synchronization controller
must have global visibility of the bus and be able to parallelly
check the maximum number of concurrent transactions against any
of its monitored locking variables. Building a single such device
in a slim way is already challenging; replicating it for every PE
further aggravates this issue.

Based on the available knowledge about the amount of infor-
mation that each barrier filter in [17] needs to store, the complexity
of such a module can be estimated to be slightly higher than for
our proposed hardware barrier modules. We follow the presented
concept and reduce all address-related housekeeping overhead and
restrictions by assigning each barrier module a fixed address and
providing PE-parallel access.

This work is most comparable to the hardware synchronizer
(HWS) proposed in [33] that is as well connected as a shared
peripheral, enabling synchronization primitives through appropri-
ate programming of an array of atomic counters and compare
registers. While the absolute and relative circuit complexity of
the added hardware is comparable to our proposed solution,
its power consumption of tens of milliwatt is in the range of
our targeted total system consumption and, therefore, prohibitive
[13]. We follow the same approach of a memory-mapped shared
peripheral with comparable circuit area but further reduce the cost
of synchronization primitives, state them in terms of cycles and en-
ergy and quantize the achieved system-wide energy savings while
maintaining the overall power envelope of a few tens of milliwatts.
We reduce the hardware complexity and remove the burden of
configuring and mapping the atomic counters to synchronization
primitives by providing native and low-cost hardware support for
such while maintaining general-purpose signaling.

The concepts presented in [19], [35] principally match ours
since shared, dedicated registers are used to represent the state
of synchronization primitives at low hardware cost. Nevertheless,
many implementation- and integration-related aspects are left
undiscussed, and either only locks [19] or only barriers [35] are
natively supported. While a hardware lock can be employed to
realize a barrier, the cycle cost compared to a hardware barrier

is clearly prohibitive for the small SFR sizes that we target.
While our solution also features general-purpose atomic PE-
to-PE signaling, the most important feature is native hardware
support for the most commonly used synchronization primitives
as well as concurrent access to them at very small hardware
overhead. We extend the aforementioned concept to also satisfy
these requirements.

PM and signaling mechanism: With the exception of [16],
[17], [27], where no explicit statements are made, all references
implement or at least suggest idle waiting for PEs that are blocked
at synchronization points. The majority of the works with a focus
on idle waiting proposes interrupt-based mechanisms [19], [33],
[34], [35]. Even basic interrupt and PM support allows avoiding
busy-waiting with the help of software synchronization primitives
that only require all contestants to become active after updating
shared atomic variables. However, the context changes required
for interrupt handling naturally incur software overheads; the
issues associated with concurrent lock-acquire attempts and the
cost and scaling behavior of synchronization primitives remain.
As a result, the handling of a single synchronization point can
take over a hundred cycles even with less than ten involved PEs
as our experiments in Sec. 6.3 show. Our approach of event-based
signaling is supported in [33]; design details on PM and idle-
waiting are omitted. We combine event-based signaling with the
concept of power-managing idle cores through clock gating as
in [18], [28]. Our proposed hardware features lower power and
area compared to all three references ([18], [28], [33]), making it
suitable for the targeted microcontroller-class systems.

[17], [29] introduce the idea of stalling PEs that may not
continue by means of absent replies to requests on their data- or
instruction ports. As this approach favorably allows handling the
check and decision for continuation in one operation as well as
PE-externally and centrally, we follow and extend it. We combine
the concepts of stalling cores that are blocked at synchronization
points and event-based signaling, and tightly couple those with
per-core fine-grain clock gating to allow the handling of synchro-
nization primitives in less than ten active PE cycles.

3 BACKGROUND

3.1 Tightly-Coupled Processors Clusters
This work aims at accelerating synchronization tasks in the context
of tightly memory-coupled multicore processing clusters, such as
Rigel [36], STHORM [37], PULP [8], [13], or even general-
purpose GPUs (GP-GPUs). In these architectures, either simple
PEs or DSP-capable processors share a multi-banked, word-level
interleaved scratchpad memory, seized in the order of tens of
kilobytes (typically 32 to 128) [12], [13], [14]. More specifically,
we target this architectural template applied to IoT applications,
where the primary goal is to improve energy efficiency rather
than performance, by joining parallelization with low-voltage
operation.

In this context, upper-bounding the core count to 16 and the
number of memory banks to 32 (and 128 kByte) in a single
cluster allows the usage of rather simple, but fast (in terms of
latency) interconnect and bus systems, while still providing a
computational performance of several GOPS. Other architectures
like GP-GPUs scale the number of PEs to up to 32 with a two-
cycle latency shared-memory, prioritizing performance over en-
ergy efficiency. In the context of IoT end-nodes, a single-cluster 8-
cores configuration demonstrated to provide a favorable trade-off

4 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, MONTH XXXX

Shared Instruction Cache

L1 Logarithmic Interconnect
Peripheral

Interconnect

Timer

Bank 0 Bank 1 Bank 2n...
L1 Data Memory (word-interleaved)

Cluster Bus
(AXI 64-bit)

Core 0 Core 1 ...

...

Core n

DMA
L1 ↔ L2

CNN
Acceler.SCU

...
...

...

Data Demux

instr

Data Demux

instr

Data Demux

instr

EE E

E

Master-Slave Bus
Private Demux Link
Event SourceE

E

Test-and-Set

Fig. 1. Multicore cluster, incorporating the proposed synchronization
and communication unit (SCU). The private links between cores and
SCU are highlighted in orange. The Test-and-Set feature of the L1
logarithmic interconnect is employed in the baseline synchronization
implementations against which we compare our proposed solution.

between performance and energy efficiency for several application
domains (e.g., [13], [38], [39]). For this reason, although we
explore the scalability of the proposed synchronization hardware
(SCU) for a range of configurations (i.e., 2 to 16 cores), we set the
benchmarking focus of this work to an 8-cores cluster.

3.2 Relevance of Fine-Grain Synchronization Support
The memory constraints of IoT end-nodes limit the size of the
working set that can be present in the tightly coupled memory at
a given time. To avoid access to outer memory levels and preserve
performance, applications with an extensive working set must em-
ploy techniques such as data tiling coupled with double-buffering
direct memory access unit (DMA)-supported mechanisms [40],
[41]. The orchestration of tiling introduces additional dimensions
to the iteration space of the original algorithm, which map to
supplementary inner loops, iterating on smaller bounds (i.e., the
tile size). Consequently, synchronization moves to a finer level
of granularity than the original algorithm, and the number of
synchronization points increases by the number of tiles [42].

Another important aspect that contributes to the importance
of fine-grain synchronization support is to allow efficient par-
allelization of kernels that inherently exhibit small SFRs. We
list multiple examples of such kernels in Sec. 6.4, which can
only be efficiently executed in a parallel fashion when the target
platform supports the handling of typical synchronization tasks
in roughly ten cycles. The adoption of task-level parallelism,
combined with software pipelining, can work around these issues;
however, this methodology poses a significant limitation in terms
of programming flexibility and achievable computation latency.
Furthermore, it requires the constant availability of tasks that can
be independently scheduled and completely occupy the idle PEs.

4 ARCHITECTURE

This section starts with an introduction to the high-level design
principles and architecture of the hosting multiprocessor cluster
before explaining the details of the SCU architecture, its integra-
tion into the cluster as well as analyzing its scalability.

Since a significant portion of the overall energy at the OEP is
spent through static power consumption, circuit area must be kept

small as it is directly linked to the former. As a direct consequence,
a beneficial adoption of parallel NTC minimizes the circuit over-
head to provide PEs with access to shared resources (such as
memories or peripherals) and to communicate and synchronize
with each other. Apart from static power, complex synchronization
hardware also causes a significant amount of extra active power
(relative to our small PEs) that could eventually diminish any
energy savings gained from accelerated computations.

Even simple interconnect systems or caches can quickly be-
come comparable to or even exceed the area of the PEs, which
is illustrated through the area breakdown in [13]. As a result of
this constraint, features such as multi-level data caches with the
attached burden of coherency management, memory management
units (MMUs), nested vectorized interrupt support, or network-
like communication systems are unaffordable. The absence of
these blocks, in turn, prohibits the usage in a control-centric
OS-like fashion with virtual memory support but favors the em-
ployment of the clusters as programmable many-core accelerators
(PMCAs) to execute computation-centric kernels with regular
program flow and physical memory addressing [43].

4.1 Multiprocessor Cluster

As a basis for our proposed synchronization solution and adhering
to the design principles outlined above, we use the open-source
multiprocessor cluster of the PULP project [13], [15], matching
the targeted deeply embedded, data cache-less tightly-memory
coupled system type. The cluster is depicted in Fig. 1 and designed
around a configurable number (typically up to 16) of low-cost
in-order RISC-V cores. To greatly accelerate the execution of
the targeted DSP-centric processing loads, they feature several
extensions to the base instruction set [44] from which a wide range
of applications benefit. Specialized PEs such as neural network
accelerators can additionally be included in the cluster to cope
with more specific tasks requiring very high processing throughput
[45].

All PEs share a single-cycle accessible L1 tightly-coupled
data memory (TCDM), composed of word-interleaved single-port
SRAM macros. A banking factor of two is used to reduce the
number of contentions between PEs (i.e., the number of banks is
twice the number of PEs). Data transfers between the size-limited
TCDM and the L2 memory with larger capacity is facilitated
by a tightly-coupled DMA connected to the L1 memory like
any other PE. Access routing and arbitration between all PEs
and the TCDM banks are handled by a low-latency logarithmic
interconnect (LINT), allowing each TCDM bank to be accessed
by a PE in every cycle. If multiple PEs access the same bank in the
same cycle, sequential access is granted in a round-robin fashion
(n simultaneous accesses to the same bank take n clock cycles to
complete). All cores fetch their instructions from a hybrid private-
shared instruction cache which has – in addition to the DMA –
access to the 64-bit AXI cluster bus that connects to the rest of the
communication and memory system of a system-on-chip (SoC)
that hosts the cluster.

In addition to the TCDM interconnect, the cluster features
a peripheral subsystem with dedicated LINT. It allows the spe-
cialized PEs to be programmed and controlled through memory-
mapped configuration ports, and to connect further peripherals
such as timers and the SCU. A master port to the cluster bus allows
the RISC-V cores to access all cluster-external address space.

GLASER et al.: ENERGY-EFFICIENT HARDWARE-ACCELERATED SYNCHRONIZATION FOR SHARED-L1-MEMORY MULTIPROCESSOR CLUSTERS 5

Test-and-Set Atomic Memory Access

Besides routing and arbitrating requests, the LINT provides basic
and universal atomic memory access to the whole TCDM address
space in the form of TAS. Atomic accesses are signaled by setting
an address bit outside of the L1 address space; the LINT checks
it upon read-access. The currently stored value is returned to
the requesting core (or to the elected one in case of multiple
contending requests) and -1 written back to memory in the next
cycle before any other core gets its request granted. We use
the synchronization primitives based on this feature as a strong
baseline (TAS transactions take just three cycles) against which
we compare our proposed solution.

4.2 SCU

A beneficial implementation of hardware that accelerates synchro-
nization requires minimal changes to the hosting system (e.g., no
profound modifications or extensions to the PE data path) and,
wherever possible, reuses existing infrastructure. In this way, both
PEs and synchronization hardware can be easily exchanged should
one not fit the usage scenario of the hosting cluster. As the central
synchronization hardware is best aware of the set of PEs that is
waiting at synchronization points, it is the best place to control
fine-grain PM on a per-PE basis. Consequently, to perform power-
managing on any idle system component, one of the most impor-
tant parallel NTC principles, also the synchronization hardware
itself must be designed in an appropriate way; e.g., it should not
waste active power during phases where all PEs are busy, and none
is involved in any synchronization action.

4.2.1 SCU Base Unit

Fig. 2 depicts a high-level overview of the SCU architecture, with
a deeper focus on the SCU base unit. The base unit is instantiated
once per RISC-V core. It provides the fundamental functionality
of the SCU, i.e., event and wait-state management, as well as fine-
grain PM through direct control of the clock-enable signal of the
corresponding core. The design is based on 32 level-sensitive event
lines (per core) that are connected to associated event sources. In
a typical usage scenario, a limited number of the event sources
are located outside of the SCU (e.g., specialized PEs or cluster-
internal peripherals), while the remaining ones are responsible for
core-to-core signaling and generated within the SCU by so-called
SCU extensions.

Event lines are stored into a register called event buffer,
which is maskable through the event mask register. Basic interrupt
support is also provided to handle exceptions and other irregular
events; an interrupt mask register allows selective enabling and
disabling of event lines to trigger hardware interrupts. The central
finite state machine (FSM) orchestrates all control flow and
includes the three states, active, sleep, and interrupt-handling. The
main inputs used to evaluate state transitions are pending events
or interrupts, the core busy-status as well as sleep and buffer-clear
requests.

4.2.2 SCU Extensions

SCU extensions are responsible for core-to-core signaling; gen-
erally, they generate core-specific events that allow a subset to
continue execution. All extensions have trigger and configuration
signals connected to each base unit; as with the base units,
their associated functionality is available through memory-mapped

BarrierNotifier

cfg, triggerext. trigger

trigger lock/
unlock message

read

write

ev
en

t b
us

fr
om

 p
er

. i
nt

er
co

nn
ec

t

trigger
sources

empty

8

32

8 ...

...

...

...

...

...

...

Base unit

Mutex

NB

NC

NC

NC

32

5

32

32

32

...

...
..

...

...

NC
NC+1

NC

NB NMx

...

...

Event FIFO

routing,
decoding ID

decode

clear
logic

FSM

register
write

extension routing / decode

sleep
req?

auto
clear?

cl
us

te
r e

ve
nt

s

32

32

32 32

32

NMx×328×NB

NMx

evt
buff

evt
mask

arbiter

irq_req clock_oncore_busyirq_idack_id irq_ack

> 0

> 0

irq
mask

NB NMx

5

active

sleepirq
FSM

trigger

trigger_en

ad
dr

w
da

ta

rd
at

a

gnt

clear

32

ad
dr

rd
at

a

...

...

......

regular signalsnumber of cores
number of barriers
number of mutexes private demux bus

shared crossbar bus
event linesNB

NC

NMx

Fig. 2. Simplified overall architecture of the SCU, including the available
extensions, and detailed architecture of the base units. Signals on the
bottom connect to the cores, signals on the left to the cluster, and
higher hierarchies. The private demux busses, drawn in bold orange,
are integral to the proposed synchronization mechanism.

addresses. The four available types of extensions are depicted in
Fig. 2 and detailed in the following.

Notifier: This extension provides general-purpose, any-to-any
matrix-style core-to-core signaling. Each core can trigger one of
the eight notifier events for any subset of cores (including itself).
For write-triggered events, the write data are used as a target-
core mask; for read-triggered events, a dedicated register in each
SCU base unit holds the target mask. An all-zero value causes a
broadcast notifier to all cores in both cases. This extension is used
in the TAS-based variants of the synchronization primitives that
we profile and use in Sec. 6.3 and Sec. 6.4, respectively.

Barrier: Allows a configurable target subset of cores to
continue execution only after a (possibly different) worker subset
has reached a specific point in the program. The extension contains
a status register that keeps track of each core that has already
arrived at the barrier; this is signaled by reading or writing from or
to specific addresses (in the address space of the base units which
generate trigger signals towards the barrier extensions). Depending
on the core that caused the access, the matching bit in the status
register is set. Once the status register matches the configured
worker subset, an event is generated for all cores that are activated
in the target subset, allowing those to uninterruptedly idle-wait at
the barrier until their condition for continuation is met.

Mutex: Represents an object that can only be owned or
locked by one core at a time and, therefore, directly supports
synchronization primitives that require mutual exclusivity such
as, e.g., mutual exclusive code sections. Try-locks are, similar to
the barrier extension, signaled by reading from a specific address.
The mutex extension keeps track of all pending lock requests and
elects one core by sending an event to only that one. The elected
core must write to the same address once it releases the mutex,
causing the extension to wake up another waiting core (if any). The
election among waiting cores can either be done by core-id or in a
round-robin fashion. We chose to elect by core-id in favor of lower
area and simplicity; starvation is prevented in the programming
model by always combining a critical section with a subsequent
barrier. Other arbitration schemes can be easily included since a
separate module with a canonical interface is responsible for said
election.

6 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, MONTH XXXX

2 4 8 16
number of cores NC

10-1

100

101
un

it
ar

ea
 [k

G
E]

Base unit
Barrier unit
External event FIFO
Mutex unit

2 4 8 16
number of cores NC

0

20

40

60

80

to
ta

l S
C

U
 a

re
a

[k
G

E]

Base units
Barrier units
External event FIFO
Mutex unit
Interconnect

a) b)

Fig. 3. Scaling of the circuit area (in gate-equivalents (GE)) for the base
unit and the available extensions (a) and for the overall SCU (b). The
largest share of the overall area is in all configurations attributed to the
base units.

Event FIFO: The SCU includes the event FIFO extension
to react to (relatively slow) cluster-external event sources. It
allows handling of up to 256 cluster-external event sources that
can be triggered by, e.g., chip-level peripherals or higher-level
control cores, as can be found in modern SoCs. The external
events are sequentially received over a simple request/grant-based
asynchronous 8-bit event bus and stored into the FIFO. As long
as there is at least one event present, an event line associated with
the FIFO is asserted that is connected to all SCU base units. In a
typical use-case, the event line triggers an interrupt handler on one
core that then pops the events from the FIFO and processes them.

For the targeted parallel programming models such as, e.g.,
OpenMP [11], the barrier and mutex extensions are the most im-
portant ones as they provide hardware support for the fundamental
parallel sections and critical sections programming primitives.
The number of barrier and mutex extension instances, NB and
NMx, can be independently set at design time to, e.g., support
every team-building variant. As every core can only wait at one
barrier or try-lock one mutex at a time, the corresponding core-
specific events of all instances are combined into a single event
per extension type and core.

4.3 SCU Integration
As a part of the peripheral subsystem introduced in Sec. 4.1,
the SCU is connected as an additional shared, memory-mapped
peripheral to the corresponding LINT. However, this single-port
solution has the major drawbacks of non-deterministic core-to-
SCU access latency and sequentialized accesses whenever more
than one core wants to access the SCU in a given cycle. Since
the limitations (in terms of performance, energy-efficiency, and
scalability) of synchronization primitives that are realized with
classic atomic memory access mostly result from sequential access
to shared variables, parallel access to the SCU base units and
extensions responsible for core-to-core signaling is paramount.

Therefore, we use additional, private one-to-one buses between
each core and its corresponding SCU base unit, shown in orange
in Fig. 1 and Fig. 2. A demux at the data port of each core selects
between the L1 TCDM and peripheral LINTs and the private SCU
link. The one-to-one correspondence between the cores and SCU
base units allows to alias their address space, thereby simplifying
synchronization primitives by removing core-id dependent address
calculations. As the paths through the LINTs, the private core-
SCU links are purely combinational and allow for single-cycle
access. As we demonstrate in Sec. 6.3, the fully-parallel access

to the SCU can even result in constant cycle cost for specific
synchronization primitives, independently from the number of
involved cores – a very favorable scaling property compared to
classical atomic-memory based approaches.

In order to retain a global address space (for, e.g., debugging
purposes), all base units are as well accessible from every core
and from outside the cluster through the peripheral LINT. All
power-managing functionality of the SCU base units (resulting in
a core idle-waiting for an event) is not implemented for this access
method as it would disturb the inter-core control flow.

4.4 SCU Scalability

Fig. 3 shows both the total SCU area as well as the area of the
individual sub-units and extensions in relation to the number of
cores NC. For the total area, a typical configuration with the
number of barrier extensions NB =NC/2, and the number of mutex
extensions NMx = 1, is shown. The plots show post-synthesis
numbers; we used the same 22 nm CMOS process as for the
multicore cluster, which hosts the SCU. Design synthesis was
done in the slow-slow process corner, at 0.72 V supply voltage, a
temperature of 125 ◦C, and with a 500 MHz timing constraint.2 We
restrict NC to a maximum of 16, matching the typical scalability
limits of the targeted cluster-based architecture. An analysis of
the slopes in the double-logarithmic sub-unit area plot in Fig. 3a)
reveals a mildly super-linear scaling for the barrier extensions and
sub-linear or constant scaling for the others. The overall SCU area
favorably scales sub-linearly up to the typically used configuration
of NC = 8 and mildly super-linearly if NC is further increased to the
maximum configuration. The area contributions of the SCU base
units and barrier extensions dominate in all configurations. How-
ever, the share of the SCU-internal interconnect logic to correctly
route all NC+1 slave ports to the respectively connected sub-units
becomes as well significant for the two largest configurations.

5 SINGLE-INSTRUCTION SYNCHRONIZATION

With our goal of aggressively reducing synchronization overhead
in mind, we propose a scheme that allows handling common syn-
chronization tasks with the execution of a single instruction in each
involved RISC-V core. To achieve this, we extensively leverage
the dedicated link between each core and the corresponding SCU
base unit, the associated aliased address space of 1 Kibit, and the
possibility to stall a core by not granting read accesses made over
the private links.

A fundamental aspect of our proposed solution is that whether
a core can continue at a synchronization point is always signaled
through events that are generated inside the SCU by one of the
extensions. Each involved core idle-waits for the appropriate event
to occur; the corresponding event line has to be activated in the
event mask. Waiting is universally initiated by executing the elw
instruction that we added to the extensible RISC-V ISA. The
mnemonic stands for event-load-word; the instruction is identical
to the regular load-word (lw) of the base ISA with the exception
of an altered opcode such that the core controller can distinguish
them. Whenever a core executes elw with an address that requests
waiting for an event, the SCU will block the resulting transaction
on the private link by not asserting the grant signal (given that no

2. Even though our multicore clusters are usually constrained to slower clock
frequencies (see Sec. 6.2), we chose this constraint to also verify the suitability
of the SCU for systems that target slightly higher clock speeds.

GLASER et al.: ENERGY-EFFICIENT HARDWARE-ACCELERATED SYNCHRONIZATION FOR SHARED-L1-MEMORY MULTIPROCESSOR CLUSTERS 7

events are currently registered in the event buffer). This process is
depicted in the left shaded part of Fig. 4, which shows the details
of a private core-SCU link and the most important signals of
the corresponding SCU base unit. Due to the in-order nature of
the employed cores, the stall at the data port propagates through
the core pipeline. The elw opcode causes the core controller to
release the busy signal once any prior multi-cycle instructions
have been executed; consecutively, the SCU power-manages the
requesting core by lowering its clock-enable signal. Depending
on the address of the discussed read transaction, an extension in
the SCU gets simultaneously triggered (e.g., try-lock a mutex, set
the status bit in a barrier, send a notifier event). The extension
triggering is controlled by the FSM in the SCU base unit to ensure
that per elw-transaction triggering is only done once.

The right shaded part of Fig. 4 shows the process of a core
waking up and continuing execution, initiated by an incoming
event. The event is present in the event buffer in the consecutive
cycle, causing the SCU both to re-enable the core clock and assert
the grant for the still-pending read request. Another cycle later, the
response channel of the private link is used to deliver additional
information to the requesting core: Often, the content of the event
buffer is sent such that in the case of multiple activated event
lines, the core can immediately evaluate the reason for the return
from sleep. More interestingly, however, the response channel can
also be used to pass extension-specific data. In the example of
the mutex extension, it allows the unlocking core, done with a
write transaction, to intrinsically pass a 32-bit message to the core
that locks the mutex next. Once the response data is consumed,
the event buffer can – again controlled through the address of the
elw – automatically be cleared, freeing cores from yet another
common task, especially for the usual case of waiting for a single
event line only.

Fig. 4 shows the process of entering and leaving a wait state
with an address that results in both triggering an extension and
automatically clearing the buffer. This example highlights the
small amount of only six cycles of active core clock for handling
a synchronization point (excluding the possibly required address
calculation for elw). For cases where an event occurs before or
during a wait request (e.g., when the last core arrives at a barrier),
the grant is immediately given, and no power-managing is done to
not waste any cycles. The required changes in the core to support
the described, powerful mechanism are limited to decoding the
elw instruction to release the busy signal, which would otherwise
remain asserted on a pipeline stall due to the pending load at the
data port.

Fused Interrupt Handling

The targeted type of clusters is primarily meant for executing
kernels with a regular program flow, the synchronization of which
can be purely handled with events and idle waiting. Still, interrupts
are often required to, e.g., handle data exceptions or react to
other spontaneous, irregular, but important events that require an
immediate change of program flow. A dedicated FSM state and
an additional mask register in each SCU base unit are employed
to fulfill said requirement; the event buffer is shared between both
masks for increased area and energy efficiency. The few cases
where a core needs to be sensitive to the same event source
both as an interrupt and event trigger can be handled with a
combination of an interrupt handler and a self-triggering notifier
event. Two dedicated request/identifier pairs connect each core and

event in

event buffer

ext. trigger

request

grant

resp. valid

resp. data ebuf

-x -1 elw +1 +2

core clock

core busy

program counter (instr. decode stage)

private link core SCU

SCU base

Fig. 4. Interfacing of the SCU with a RISC-V core and corresponding
timing. Shaded intervals correspond to transitions to (left) and from
(right) sleep state, respectively. The core executes a single instruction
during the whole process. Note the absence of the grant (controlled by
the SCU) until one cycle after an incoming event.

the corresponding SCU base unit for both signaling and clearing
interrupts, respectively. The SCU arbitrates one of the pending
interrupts to the core, which, in turn, acknowledges the processing
of the arbitrated interrupt upon entering the respective handler.
Similar to the auto-clearing capability when waking up through
events, the bit corresponding to the called interrupt handler is
cleared in the event buffer to reduce management overhead in
the handlers.

Should an activated event line trigger during an interrupt
handler, regular program flow is immediately continued after its
termination. In the usual case, the FSM transits to sleep again and
awaits further incoming events and interrupts. After termination
of the interrupt handler, the elw instruction responsible for the
original wait state is re-executed, allowing the SCU to detect said
termination and power-manage the core again. In such cases, the
FSM takes care of inhibiting erroneous extension re-triggering
upon the repeated sleep request after interrupt handling.

6 EXPERIMENTAL RESULTS

To demonstrate the effectiveness of the proposed event-based,
hardware-supported synchronization concept, we present two
types of experimental results in this section. We first show the
theoretically achievable improvements through synthetic bench-
marks where all experiment parameters can be controlled. We
successively analyze the performance and energy efficiency im-
provements that are observed when executing a range of ap-
plications that the targeted class of deeply embedded CMPs is
typically used for. As the leading principle and motivation for
this work is to reduce the energy that the cluster consumes for
a given workload or task, we report not only the total cluster
energy but also power and execution time in all cases to provide
insight into how the energy reduction is achieved. We additionally
provide power breakdowns into the main contributors to highlight
the importance of fine-grain power management in the form of
clock gating. Finally, an analysis of both the amount of total and
active cycles spent on synchronization shows how the proposed
solution drastically reduces synchronization-related overhead.

6.1 Baseline
As a baseline, we use purely software-based implementations
of synchronization primitives that employ spin-locks on TAS-
protected variables in the L1 TCDM with the help of the TAS-
feature of the logarithmic interconnect. This concept is inherently

8 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, MONTH XXXX

disadvantageous not only from an energy-efficiency viewpoint due
to the wasted energy for every failing lock-acquire attempt but also
from a performance point-of-view as the concurrent attempts can
put high loads on the TCDM interconnect and cause contentions
on the shared memory system. Additionally, as every contestant
has to acquire the lock sequentially, the cost of synchronization
primitives in terms of cycles is even in the best case lower
bounded by the product of memory access latency and the number
of involved PEs, therefore growing with the number of contes-
tants. Consequently, most modern multiprocessor systems feature
hardware support for idle waiting, thereby avoiding the active
and continuous polling of synchronization variables. This policy
removes a very significant amount of core activity and memory
accesses and, therefore, wasted energy and memory bandwidth.

To take account of this, we include a second TAS-based
solution in our comparisons where cores that do not succeed in
acquiring a synchronization variable (e.g., to update the barrier
status stored in the variable) are put to sleep with the help of
the SCU (by idle waiting on an event as described in Sec. 5).
Whenever the current owner updates or releases the variable, it
also uses an SCU notifier broadcast event to wake up all the
remaining, sleeping cores, which will then again try to acquire
the synchronization variable. While the described synchronization
mechanism can also be realized with similar solutions for idle
waiting and notifying cores that may be found in comparable
systems, it – in our case – already benefits from the low latencies
for notifiers and idle state handling that are enabled through the
SCU. In the following, the purely spin-lock based implementations
of synchronization primitives will be referred to as SW and the
idle-waiting extended versions as TAS.

6.2 Experimental Setup and Methodology
All experiments were carried out on an eight-core implementation
of the multicore cluster of Fig. 1. It features 64 kByte L1 TCDM
and eight kByte of shared instruction cache; the SCU contains four
barrier and one mutex extensions. For all cycle-based results, an
RTL description of the cluster and cycle-exact simulations were
used. A range of observation tools both in the RTL description of
the RISC-V cores as well as in the testbench is employed to obtain
more detailed insight than total execution time only:

• Per-core performance counters record the number of executed
instructions, active cycles, stall cycles at both data and
instruction ports, and the like. Due to area considerations,
only one general-purpose counter per core is kept in the
synthesized version.

• Non-synthesizable, per-core instruction tracers that allow de-
tailed analysis of the executed applications and benchmarks.

• Overall execution time is measured with the help of a cluster-
global timer that is part of the cluster peripherals and kept
during synthesis.

The timer is activated only during periods where the actual
benchmark (synthetic or application) is executed to exclude, e.g.,
initialization and boot periods. The enable signal of the timer
is monitored in the testbench, and the timestamps of rising and
falling edges recorded to a text file, allowing the identification of
the relevant portions of the instruction traces.

Physical Implementation
The majority of the previous works employs behavioral models of
the individual system components (PEs, interconnect, memories,

synchronization hardware) written in higher-level languages and
instruction- or transaction-level simulators such as, e.g., GRAPES
in [27], MPARM in [28], [34], or M5 in [16], [29]. While
this approach enables the simulation of complex and large-scale
architectures in reasonable times, it has the drawback of reduced
accuracy for the figures of interest, performance (or execution
time) and power, when compared to cycle-exact simulations based
on synthesizable modules captured in a hardware description
language (HDL) or gate-level implementations. The loss in ac-
curacy may be acceptable for evaluating the performance of
synchronization solutions for task-level parallelism or the support
of transactional memory (TM) [28]. For our goal of enabling fine-
grain parallelism with few tens or hundreds of cycles between
synchronization points, however, cycle-level accuracy is required
to reliably evaluate the effects of different solutions with an
increasing degree of hardware support (from atomic memory
access to full synchronization primitives). For example, slight
differences in the arrival instants of PEs at synchronization points
due to cache misses or small workload imbalances can have a large
impact on the subsequently caused contention during lock acquire
trials.

We consequently use a cycle-exact RTL implementation of
the whole cluster to measure performance and a post-layout,
fabrication-ready3 physical implementation in a current 22 nm
CMOS process as a basis for the most important figure of merit,
the total system energy with and without our proposed solution for
fine-grain parallelism. An important rationale for the post-layout
implementation stage is that it considers the clock distribution
network, which typically consumes a significant share of the
overall dynamic power of synchronous digital circuits, yet often
gets neglected in energy analyses. Furthermore, the efficacy of
fine-grain PM in the form of silencing parts of the clock network,
a central part of our concept, can only be shown in this way.

The RTL model of the cluster was synthesized and a placed
and routed physical implementation created; both steps were done
with a 350 MHz timing constraint and in the slow-slow process
corner at 0.72 V supply voltage and a temperature of 125 ◦C4.
The resulting module measures 1.4 mm×0.8 mm with pre-placed
SRAM macros for the L1 TCDM; the SCU accounts for less
than 2% of the total circuit area. The synthetic benchmarks and
the applications were run on the resulting gate-level netlist and
VCD activity files recorded during the benchmarking periods
for every electrical net in the cluster. Again, the enable signal
of the cluster-global timer is used to start and stop the activity
recording. The subsequent hierarchical power analysis was done
in the typical-typical process corner at 0.8 V supply voltage and
25 ◦C, allowing us to report not only the total power and energy but
also the respective breakdowns to analyze the contributions of the
individual cluster building blocks. The reported power and energy
results correspond to a cluster operating frequency of 350 MHz.

6.3 Synthetic Benchmarks
We start our analysis by quantifying the cost in terms of cycles
and energy for executing barriers and critical sections, the two
synchronization primitives that are most commonly used in the

3. A SoC that contains the cluster has been fabricated and functionally
verified. The same applies to multiple application-specific integrated circuits
(ASICs) that contain very similar clusters in various technology nodes [12],
[13], [14].

4. Timing was verified with all permutations of the slow-slow/fast-fast pro-
cess corners, 0.72 V/0.88 V supply voltage, and temperatures of -40 ◦C/125 ◦C.

GLASER et al.: ENERGY-EFFICIENT HARDWARE-ACCELERATED SYNCHRONIZATION FOR SHARED-L1-MEMORY MULTIPROCESSOR CLUSTERS 9

targeted parallel programming models. We compare the hardware
variants featured in the SCU with the purely spin-lock based as
well as with the idle-wait extended baseline variants as described
in Sec. 6.1. To highlight the favorable scaling behavior (with
respect to the number of participating cores) of the SCU, we
provide the quantification for two, four, and eight cores even
though the cluster is mainly designed for execution on all eight
cores. We let the involved cores execute a loop eight times that
contains the respective primitive 32 times; the first loop iteration
is used for cache-warming and excluded from benchmarking. The
resulting cycle costs are obtained by dividing the total cluster-
wide cycle count by the product of cache-hot loop iterations and
primitive executions per loop iteration. A typical use-case for
critical sections in the type of targeted systems is the placement
at the end of an SFR to perform small control tasks like updating
a shared variable by all worker cores. Consequently, the critical
section is usually very short (up to ten cycles only), a circumstance
that we consider in our experiments.

We compiled the synthetic benchmarks with an extended
version of the riscv-gcc 7.1.1 toolchain that supports the elw
instruction, using the -O3 flag. To compute the absolute cost
figures reported in Tbl. 1 and the relative energy overhead, we also
measure the power during the execution of 512 nop instructions
on a varying number of cores. While the choice of the nop
instruction may intuitively not be a suitable representation of
actual processing loads, the resulting relation between SFR size
and overhead still is a very reasonable estimate for the behavior
that results when executing actual applications, as our analysis in
Sec. 6.4 shows.

Barriers
When considering the pure primitive cost, the SCU barrier requires
between 7.8× (2 cores, SW) and 29× (8 cores, SW and TAS)
fewer cycles, as can be seen in Tbl. 1. The gap widens when
considering energy where the reduction ranges between 10× (2
cores, SW and TAS) and 38× (8 cores, TAS) or 41× (8 cores,
SW), respectively. With higher core counts, the TAS version
shows slightly lower energy compared to the SW version thanks
to the idle-wait behavior. For the SCU variant, not surprisingly,
the fully parallel access to the barrier extension makes the cycle
cost independent from the number of cores and incurs minimal
additional energy when increasing the number of participants. As
a result, the SCU supported barrier is especially favorable when a
task is parallelized on all eight cores, which is the intended way
of using the cluster.

Fig. 5a) and d) illustrate the raw barrier cost in relation to a
preceding SFR of varying size by showing the relative overhead
for executing the barrier in terms of cycles and energy. While
significant overhead reductions can be observed with SFRs of up
to around 1000 cycles and eight active cores, the graphs reveal
another even more important characteristic of the SCU barrier:
With a typical constraint of allowing up to 10% of synchronization
overhead, the SCU drastically reduces the smallest allowable
SFR. The cycle-related relative minimum SFR reductions are
(mathematically) identical to those for the raw primitive-cost;
the energy-related reductions show only insignificant differences
compared to the corresponding raw cost ratios. Besides the relative
overhead reductions, the absolute size of the smallest allowable
SFR is important, which is with the SCU barrier for both cycle
and energy overhead and all core counts below 100 cycles and
therefore matches the in Sec. 2 stated requirement for fine-grain

synchronization. This is in stark contrast to the overheads resulting
from the TAS and SW variants, where both cycle and energy-based
SFR sizes must be at least multiple hundreds of cycles when
considering two or four participating cores. The energy-related
minimum SFR with all eight cores participating, representing the
most important case, is with 1622 cycles (TAS) and 1771 cycles
(SW), two orders of magnitude higher than the corresponding SFR
size when employing the SCU barrier (42 cycles). This outcome
poses a strong limitation on the range of applications that can be
efficiently parallelized on the targeted architecture.

Critical Sections
Compared to barriers, the critical or mutual exclusive section
synchronization primitive can be more easily implemented with
basic atomic memory access. The ability to enter the critical
section can be managed with a single TAS-protected variable
that needs to be tested upon entering and written with the test
value by the owning core upon exiting. For the TAS-variant of
this primitive, we link each access to the synchronization variable
to the usage of a notifier event to avoid constant testing of the
variable by all cores that are waiting to enter the critical section:
Any core that fails to enter will idle-wait for the related event. The
core that currently executes the critical section triggers the event
upon exiting, causing all queued cores to quickly wake up and
re-test the TAS-variable, with all but the elected one immediately
going back to sleep afterwards.

In the SCU-based implementation, we execute elw with an
address mapped to the mutex extension, which elects one core for
which continuation is enabled through the generation of a core-
specific event. All others idle-wait at the mutex load until they are
elected. Similar to the variants based on TAS-variables, a write to
the mutex by the previously elected core upon leaving the critical
section unlocks the mutex and triggers the election of the next core
to enter the section alongside the appropriate event generation. The
distinction between locking and unlocking the mutex is done with
the access type (read/write) and allows to use the same address
for both operations, further reducing the software overhead for the
synchronization primitive.

As with barriers, we provide both raw-primitive cost (Tbl. 1)
as well as relative overheads in terms of performance and energy
(Fig. 5), each, for two different critical section sizes. The latter is
necessary since the wait behavior of cores that yet have to enter
the critical section greatly differs between the implementations:
For the SW variant, waiting cores do not only test the synchro-

TABLE 1
Cost of synchronization primitives in terms of cycles and energy. The

reported figures reflect the costs for the whole cluster, i.e., the number
of cycles and energy used for all cores to execute a primitive.

cycles energy [nJ]
NC (core count) 2 4 8 2 4 8

Barrier
SCU 6 6 6 0.1 0.1 0.1
TAS 52 91 176 0.8 1.7 4.3
SW 47 87 176 0.8 1.8 4.7

5-cycle crit. sect.
SCU 12 23 44 0.2 0.3 0.6
TAS 25 39 69 0.4 0.7 1.6
SW 12 25 72 0.2 0.5 1.6

10-cycle crit. sect.
SCU 13 24 50 0.2 0.3 0.7
TAS 26 50 89 0.4 0.9 2.1
SW 13 26 55 0.2 0.6 1.5

10 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, MONTH XXXX

101 102 103

10-cycle Critical Section

c)

101 102 103
0%

20%

40%

60%

80%

R
el

at
iv

e
C

yc
le

 O
ve

rh
ea

d

5-cycle Critical Section

b)

101 102 103 104
0%

20%

40%

60%

80%

100%
R

el
at

iv
e

C
yc

le
 O

ve
rh

ea
d

Barrier

10% overhead

a)

101 102 103

SFR Size [cycles]

f)

101 102 103

SFR Size [cycles]

0%

20%

40%

60%

80%

R
el

at
iv

e
En

er
gy

 O
ve

rh
ea

d e)

101 102 103 104

SFR Size [cycles]

0%

20%

40%

60%

80%

100%

R
el

at
iv

e
En

er
gy

 O
ve

rh
ea

d

10% overhead

d)
2 4

cores

SW
TAS
SCU

8

2 4 8
cores

SW
TAS
SCU

8
cores

SW
TAS
SCU

2

8
cores

SW
TAS
SCU

2

8
cores

SW
TAS
SCU

2

8
cores

SW
TAS
SCU

2

Li
ve

rm
or

e6
D

ijk
st

ra

PC
A

FA
N

N
-A

M
FC

C
Li

ve
rm

or
e2

FF
TD
W

T

A
ES

Fig. 5. Relative overhead in terms of cycles (a)-c), top) and energy (d)-f), bottom) vs. SFR size for the three realizations of barriers (a), d), left) and
critical sections with two lengths (b), c), e), f), right). The markers in a) indicate the relative share of active synchronization cycles for the range
of DSP applications discussed in Sec. 6.4. For critical sections, the graph lines corresponding to four cores have been omitted to improve graph
readability. The scaling behavior in terms of overhead vs. core count is strictly monotonic (see raw costs in Tbl. 1).

nization variable upon another one exiting the critical section but
constantly. Consequently, the duration of the critical section has
an impact on so-caused parasitic energy. We calculate the cost
figures reported in Tbl. 1 as the difference between ideal cycle
count and energy and the measured ones. The ideal number of
cycles is Tideal = NCTcrit and the ideal energy Eideal = TidealPcomp,1
with Tcrit denoting the length of the critical section, Pcomp,1 the
single-core cluster power, and NC the number of cores that need
to execute the critical section.

In relation to the barrier results, the differences between the
SCU and the TAS-based variants are considerably smaller: As can
be seen in the right half of Fig. 5, for two cores, the minimum SFR
size for 10% overhead is at most reduced by 2.5× from 232 cycles
to 91 cycles when comparing the energy overhead of the TAS
and SCU variants. The differences in the relative cycle overhead
are smaller or even non-existent. The picture changes, however,
when considering eight participating cores: While the cycle-
related differences remain small, the energy-related gap widens.
The smallest SFR for 10% relative energy overhead is reduced by
at least 2.3× (10-cycle critical section, SW to SCU) and up to
3.3× (10-cycle critical section, TAS to SCU). Still, compared to
the barrier, the savings achievable with the SCU mutex extension
are one order of magnitude lower. The reason for this behavior
is twofold: First, a mutex is a much simpler synchronization
primitive than a barrier, and second, a TAS-protected variable
inherently allows for very efficient implementations. Still, the
avoidance of any TCDM accesses when using the SCU results
in consistently lower power and energy for all core counts and
critical section lengths.

Counterintuitively, the TAS-variant performs both in terms of
cycles and energy worse than the straight-forward SW version
for all core counts and critical section lengths. This circumstance
can be explained by analyzing the software footprint of each

implementation variant. With fully inlined functions for entering
and leaving critical sections, leaving always requires the execution
of a single instruction for the SW and SCU variants and two
for the TAS variant. For entering, however, only the SCU variant
guarantees a single instruction for all cores. The naive SW variant
requires two instructions per locking attempt; the TAS variant can
only match this count if the first attempt is successful. For all
additional ones, five instructions need to be executed to handle the
idle-wait functionality. Conclusively, the TAS variant can reduce
the number of lock attempts; however, each attempt is more expen-
sive. For cases where re-election occurs after roughly ten cycles,
this can lead to an overall increase in both cycles and energy
used for the primitive that outweigh the energy saved with cores
that sleep for very short instances only. Hence, the critical section
lengths used in our experiments are too short for the TAS variant
to show a benefit over the SW one; without the SCU, programmers
have to choose the optimal implementation in dependency of Tcrit.
Additionally, the usage of nop instructions during the critical
section hides a disadvantage of the SW implementation that would
show with real applications: The repeated synchronization variable
polling by all cores that yet have to enter the critical section puts a
significant load on both the TCDM and the associated interconnect
that would slow down the execution of any critical section which
contains TCDM accesses.

6.4 DSP Applications

After exploring the theoretically achievable improvements with
dummy code between synchronization points, we ran actual
DSP-centric applications on the multicore cluster, each with
the three different implementations of synchronization prim-
itives. The applications are, e.g., in turn, applied in real-
world use-cases such as [38], [39]. Compilation was done
in the same way as with the synthetic benchmarks from

GLASER et al.: ENERGY-EFFICIENT HARDWARE-ACCELERATED SYNCHRONIZATION FOR SHARED-L1-MEMORY MULTIPROCESSOR CLUSTERS 11

TABLE 2
Main properties and results for the range of benchmarked DSP applications. Active cycles reflect core-active cycles, i.e., cycles where the core
clock is active, averaged over all eight cores. The share of active synchronization cycles is based on the total amount of active execution cycles.

Name Domain Barrier SFR Size Energy Execution Cycles Synchronization Cycles IPC
count type [cycles] [µJ] total active (stddev) total active

DWT Signal processing 10
SCU 1.1k 0.7 11.3k 10.8k (155) 0.6k (5.2%) 84 (0.8%) 5.01
TAS 1.1k 0.8 12.9k 12.7k (63) 1.5k (11.7%) 1.3k (10.0%) 4.65
SW 1.1k 0.8 12.9k 12.9k (0) 1.6k (12.6%) 1.6k (12.7%) 4.56

Dijkstra Graph search 238
SCU 122 2.0 33.7k 30.6k (2.9k) 4.6k (13.7%) 1.53k (5.0%) 4.72
TAS 156 4.0 71.3k 69.1k (0.7k) 34.1k (47.9%) 32.0k (46.3%) 4.48
SW 130 4.0 64.9k 64.9k (0) 34.0k (52.3%) 34.0k (52.3%) 4.09

AES Cryptography 4
SCU 10.2k 2.8 41.2k 40.9k (188) 339 (0.8%) 34 (0.1%) 5.84
TAS 10.2k 2.8 41.6k 41.5k (123) 732 (1.8%) 547 (1.3%) 5.82
SW 10.2k 2.9 41.6k 41.6k (0) 719 (1.7%) 719 (1.7%) 5.80

Livermore6 Linear recurrence 127
SCU 104 1.1 24.5k 14.0k (6.8k) 11.3k (46.1%) 760 (7.7%) 6.00
TAS 104 1.7 32.3k 28.1k (3.4k) 19.1k (59.0%) 14.9k (55.0%) 5.25
SW 105 2.1 32.8k 32.8k (0) 19.6k (59.5%) 19.6k (59.5%) 4.74

Livermore2 Gradient descent 12
SCU 744 0.6 9.2k 9.0k (46) 0.3k (2.8%) 71 (0.8%) 6.67
TAS 789 0.7 11.3k 11.2k (17) 1.8k (16.1%) 1.7k (15.4%) 5.94
SW 788 0.8 11.3k 11.3k (0) 1.8k (16.1%) 1.8k (16.1%) 5.84

FFT Frequency analysis 4
SCU 1.5k 0.5 6.1k 6.0k (73) 203 (3.3%) 39 (0.7%) 5.53
TAS 1.4k 0.5 6.4k 6.3k (23) 606 (9.5%) 540 (8.6%) 5.40
SW 1.4k 0.5 6.4k 6.4k (0) 670 (10.5%) 670 (10.5%) 5.34

FANN-A Machine learning 160
SCU 519 6.9 92.4k 84.0k (2.2k) 9.3k (10.1%) 982 (1.2%) 6.72
TAS 483 7.7 103.0k 100.3k (0.9k) 25.7k (25.0%) 23.0k (23.0%) 6.48
SW 482 7.9 103.8k 103.8k (0) 26.7k (25.8%) 26.7k (25.8%) 6.24

MFCC Audio processing 693
SCU 718 36.1 0.53M 0.50M (14.8k) 33.1k (6.2%) 4.64k (0.9%) 6.84
TAS 714 41.5 0.64M 0.60M (10.5k) 142.3k (22.3%) 106.7k (17.8%) 6.28
SW 709 43.5 0.63M 0.63M (0) 142.3k (22.4%) 142.3k (22.4%) 6.05

PCA Data analysis 2305
SCU 375 75.0 2.48M 0.88M (0.6M) 1.62M (65.2%) 20.55k (2.9%) 4.47
TAS 388 89.6 2.66M 1.20M (0.6M) 1.76M (66.3%) 0.30M (29.6%) 4.08
SW 381 148.3 2.73M 2.73M (0) 1.85M (67.8%) 1.85M (67.8%) 3.45

Sec. 6.3; additionally, the combination of the GCC-flags -flto
and -fno-tree-loop-distribute-patterns that yields
best performance (for each application individually) has been
determined and applied. To obtain accurate results, each appli-
cation was run seven times on the RTL model, where the two
first iterations are used to warm the instruction cache and are not
counted towards any results. All cycle-based results are calculated
from the averaged outputs of the observation tools over the last five
iterations. For calculating power results, the applications were run
in the same manner on the post-layout model with signal activity
being recorded during a cache-hot iteration. As with the synthetic
experiments, all results reflect running the cluster at 350 MHz.

A short description of each application and its synchronization
behavior is as follows: DWT: 512-element 1D Haar real-valued
32-bit fixed-point discrete wavelet transform (DWT); one barrier
after the initial variable and pointer setup phase and after each
DWT step. Dijkstra: Dijkstra’s minimum distance algorithm for
a graph with 121 nodes; for each node, the minimum distance to
node zero is calculated. Two barriers per node that ensure each
core is done with its part of the graph before deciding on the
minimum distance for each node. AES: One round of encryption
and one round of decryption of 1 kByte of data using the Advanced
Encryption Standard (AES) in counter mode. Barriers are only
used before and after the two phases of the algorithm, as it can be
fully vectorized. Livermore6: General linear recurrence equation
from the Livermore Loops [32]; the transformed, parallelizable
version of the algorithm proposed in [17] was used with a 128-

element single-precision input vector. A barrier must be passed
on each iteration of the outer loop as there are data dependencies
between the iterations. Livermore2: Excerpt from an incomplete
Cholesky-Conjugate gradient descent that processes an 8 kByte
single-precision input vector. The algorithm reduces the part of the
vector that is processed in each iteration by a factor of two and,
therefore, only requires 12 outer loop iterations after each of which
a barrier is required. FFT: 512-point complex-valued single-
precision radix-8 fast Fourier transform (FFT) with precomputed
twiddle factors. Barriers are only required between each radix-8
butterfly step (two with the input size at hand) and at the end of the
algorithm to arrange the output values in the correct order. FANN-
A: Hand gesture recognition from [46], based on a 32-bit fixed-
point fully-connected fast artificial neural network (FANN) with
five layers, 691 neurons, and over 0.4 MByte of weights. Barriers
are required both after processing each layer (outer loop) as well
as after each fully-parallel inner loop iteration in which each core
calculates a neuron value. The barrier at the inner loop is required
to manage the loading of the currently required weight values into
the TCDM by the DMA in the background as the TCDM is far
too small to fit all weight values at once. MFCC: Calculation of
the Mel-frequency cepstrum (MFC) (inverse FFT of the logarithm
of the power spectrum) of a 20.000-element 16-bit fixed-point
vector. An outer loop runs over frames of four bytes with a barrier
after each iteration. For each frame, nine processing steps with a
barrier in between each are carried out. With the exception of the
forward FFT to compute the power spectrum, all processing steps

12 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, MONTH XXXX

-20%

0%

20%

40%

60%

80%

100%
Normalized Performance Improvement w.r.t. SW Barrier

a)

-20%

0%

20%

40%

60%

80%

100%
Normalized Energy Efficiency Improvement w.r.t. SW Barrier

b)

DWT
Dijkstra

AES
Livermore6

Livermore2
FFT

FANN-A
MFCC

PCA

 SCU
 TAS

Fig. 6. Normalized performance (a) and energy improvements (b) for
the range of DSP-applications and the SCU and TAS barrier implemen-
tations relative to the SW baseline.

are fully vectorized and free from synchronization points. PCA:
32-bit fixed-point principal component analysis (PCA) based on
Householder rotations on a dataset composed of 23 channels and
256 observations; the algorithm is distributed over five processing
steps (data normalization, Householder reduction to bidiagonal
form, accumulation of the right-hand transformation, diagonal-
ization, final computation of principal components) with a barrier
in between each. Four of the processing steps contain numerous
barriers due to data dependencies and short sequential sections for
combining intermediate results from preceding parallel sections;
the diagonalization part of the algorithm is largely sequential.

The applications were selected with a focus on covering both
a wide range of domains and the relevant parameter space: As
Tbl. 2 shows, barrier count, the number of execution cycles as
well as total energy all range over four orders of magnitude. The
range of average SFR sizes is roughly lower bound at around
100 cycles (Dijkstra), a size for which Fig. 5a) and d) show that
synchronization overheads achieved with the SCU barrier are still
well below the acceptable margin of 10%. At the upper end of
the spectrum, applications with SFR sizes of one thousand cycles
and more are as well included (AES, FFT), representing the range
of SFR sizes where Fig. 5a) and d) indicate only small overhead
reductions when comparing the SCU barrier to the TAS and SW
baselines.

Both discussed Livermore Loops were mainly chosen for
benchmarking to allow for quantitative comparison to literature.
We could identify no case where systems from literature per-
formed better when comparing against the SCU-type primitives
and only two cases when comparing against the TAS- or SW-type
primitives (they resulted in uniformly very similar cycle counts
for both Livermore Loops). Additionally, the systems in question
feature at least a doubled core count compared to our cluster:
For Livermore6 with data size 256, the 16-core CMP from [17]
performs 6% better; for Livermore2 with a 2048-element vector,
the 128-core system of [16] achieves 14% lower cycle count.
For Livermore2 and all other vector sizes used in [16], [17], we
achieved performance improvements between 7% and 38% with
the TAS and SW barrier variants and between 26% and 6.2× with
the SCU barrier. For Livermore6, the improvements in comparison

to [17] range between 17% and 55% with the TAS and SW barriers
and between 13% and 4.9× when using SCU barriers.

In relation to the 7-core system used in [18], performance
for Livermore2 was improved by over 5× with TAS and SW
barriers and by over 8.9× with the SCU barrier. For Livermore6,
we observe an improvement of 2.7× with the TAS and SW type
primitives and 3× when using the SCU. For both benchmarks,
[18] uses a 1024-element vector.

Calculation of Synchronization Overhead
As the main goal of this work is to boost energy efficiency by dras-
tically reducing the synchronization-related overhead, we provide
for each application and synchronization primitive implementation
both the number of total and active cycles that cores use to
execute synchronization primitives. The cycle counts have been
determined with a profiling script that parses the trace files of
each core and application. For SCU-type synchronization primi-
tives, the detection is done by searching for the elw instruction
with matching physical address. Any preceding instructions that
are used to calculate the address are as well counted towards
the synchronization cycles. In the case of the TAS and SW
variants, two detection methods have to be used: By analyzing
the disassembly of each application, the address range(s) of
synchronization functions are extracted. If this step succeeds,
the traces are scanned for time periods where a core executes
instructions within a relevant address range. However, this method
fails for many applications due to the fact that the compiler inlines
synchronization functions. Consequently, the inlined functions
must be detected by matching the disassembly against patterns that
unambiguously identify synchronization primitives. This method
requires much more careful analysis as the functions can be spread
across multiple non-contiguous address ranges with linking jump
or branch instructions. Furthermore, multiple entry- and exit points
to and from the primitives may exist. The output of the described
analysis methods is, in any case, a list of synchronization periods
where each entry contains a begin and end cycle number. Com-
bining these timestamps with the benchmarking intervals allows
us to calculate both the total and active number of synchronization
cycles for each core and benchmark iteration, the average of which
is shown in Tbl. 2.

It is important to note that the total number of synchroniza-
tion cycles naturally includes core wait periods that are mostly
caused by workload imbalance. Therefore, the number of active
synchronization cycles is a much better measure for the actual
synchronization overhead and substantially lower than the former
count for the idle-wait featuring SCU and TAS variants and con-
sidering applications that exhibit significant workload imbalance
(Livermore6, PCA).

Discussion of Results
Tbl. 2 lists the most important properties of each application
alongside the cycle-based and energy results. In order to provide
full insight into the components contributing to energy, Fig. 7
shows both the total power and the corresponding breakdown into
the shares associated with the main cluster components. Even
at the nominal voltage of 0.80 V, at which we performed the
experiments, the share of static power already ranges between
8% and 20%. Operating the cluster at lower voltages to increase
energy efficiency (e.g., at 0.65 V) further increases the share,
highlighting the importance of area-efficient circuit design in the
context of parallel NTC systems. Finally, Fig. 6 highlights the

GLASER et al.: ENERGY-EFFICIENT HARDWARE-ACCELERATED SYNCHRONIZATION FOR SHARED-L1-MEMORY MULTIPROCESSOR CLUSTERS 13

DWT Dijkstra AES Livermore6 Livermore2 FFT FANN-A MFCC PCA
0

5

10

15

20

25

Po
w

er
 [m

W
]

SCU TAS SW SCU TAS SW SCU TAS SW SCU TAS SW SCU TAS SW SCU TAS SW SCU TAS SW SCU TAS SW SCU TAS SW

 Cores I-cache TCDM Interconnect Peripherals Others

Fig. 7. Total cluster power and breakdown into the main contributors (different shadings) for the range of DSP applications. The SCU is contained
in the Peripherals group.

normalized improvements in terms of cycles and energy that we
were able to achieve with each application when employing the
SCU- and TAS-based synchronization primitives in relation to the
SW baseline.

Our solution increases the energy-efficiency of the cluster
in two ways, where both essentially stem from reducing the
execution time for a given task or application: First, the energy
spent gets reduced roughly proportionally to execution time as
long as the power of the SCU-accelerated task variant is similar
to that of the baseline variants. Second, the reduction in execution
time allows lowering the operating point (voltage and frequency)
of the cluster, moving it closer to the OEP for a given throughput
or latency target.

Over the range of the benchmarked applications, the SCU
achieves relative performance improvements between 1% and
92%, with an average of 23%. While the lower and upper bounds
for relative energy improvement are very similar, amounting to
2% and 98%, respectively, power reductions with the SCU result
in a higher average gain of 39%.

The instructions-per-cycle (IPC) shown in Tbl. 2 is calculated
as the ratio between the amount of executed instructions and
active cycles, individually for each core, and then summed up
over all eight cores. Since the SCU adds both a minimal amount
of instructions (between one and three) and active cycles (between
six and eight) per barrier, the IPCs achieved with the SCU barriers
closely reflect those of the applications themselves and how well
they parallelize on the employed cluster. As can be seen in Tbl. 2,
using TAS or SW barriers degrades the IPC in all cases, even
though one might think test-and-set related instructions have a
high IPC of close to one. The unavoidable contentions that result
from simultaneous accesses to the TAS-protected locking variable,
however, degrade the IPC.

When relating the average SFR size from Tbl. 2 with the
normalized improvements from Fig. 6, one can see that the SFR
size is a strong indicator of whether the type of synchronization
implementation influences overall performance and energy or not.
Consequently, the most significant improvements are achieved
with applications that exhibit SFRs of few hundreds of cycles
(Dijkstra, Livermore6, PCA) and the lowest with SFR sizes of
around one thousand or several thousands of cycles (AES, FFT).

Overhead Modeling
The relative overhead of active synchronization cycles (averaged
over all cores) in relation to the SFR size for each application
and barrier variant is marked in Fig. 5a. The number of active
synchronization cycles is used since, in the synthetic benchmarks,
all cores arrive at almost the same time at a barrier. It can be

noticed that the results of the synthetic benchmarks in Sec. 6.3
can provide a reasonably accurate estimate of the synchronization
overhead to be expected, given the SFR size. At the same time,
in real applications, core-to-core workload imbalances cause a
higher variation of the arrival instances. For the SCU barrier, the
overhead estimated by the synthetic benchmarks closely matches
the actual application-related one for all applications. For the
TAS and SW barriers, however, the synthetic experiments mostly
provide a conservative overhead estimation. This effect can be
explained with the already mentioned workload imbalances; the
spread-out arrival instances also reduce core-concurrent access to
the TAS-variable that protects the barrier status from hazardous
modification. As a consequence, fewer cycles are wasted due to
contention while accessing the said variable. The fully-parallel
access to the SCU barrier extension, on the other hand, causes the
barrier overhead to be completely independent of the distribution
of the arrival instances, leading to a greatly improved (cycle)
overhead modeling.

Implications on Power Consumption

An important observation is that the SCU does not reduce power
for most applications: It does not affect it significantly (see
DWT, AES, FANN-A) or slightly increases power compared to
the TAS variant, which also features idle-waiting (see Dijkstra,
Livermore2, FFT, MFCC). As Fig. 7 shows, the increase in the
latter case is due to higher power consumption in the cores.
This effect is a consequence of the reduction of synchronization
cycles and the therefore relatively higher share of (usually) energy-
intensive processing cycles. However, there are two exceptions to
this behavior (Livermore2 and PCA), where total power is reduced
by 15% and 38% when using the TAS barrier, or, respectively, 29%
and 44% with the SCU variant. In these cases, application-inherent
workload imbalances, indicated through the standard deviation
of active execution cycles (over cores) in Tbl. 2, result in large
differences for the times that individual cores wait at barriers.
Avoiding active spinning on synchronization variables during the
resulting prolonged wait periods with both the TAS and SCU
barriers reduces the power of the involved components (cores,
interconnect, TCDM) and – since they consume the majority of
overall power – also of the whole cluster very significantly. This
circumstance also shows when comparing the normalized cycle
and energy efficiency improvements in Fig. 6, where the gains in
energy efficiency are very similar to those for performance except
for the two applications in question. In those cases, the discussed
power reduction results in much greater improvements for energy
efficiency.

14 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, MONTH XXXX

This work focuses on the optimization of the core-to-core
communication and synchronization in ultra-low-power clusters
of processors in the IoT domain, leveraging parallelism to im-
prove energy-efficiency of computations rather than performance
only. In different contexts, such as high-end devices, having
power/performance scalable systems, able to scale-up to 100s or
1000s of cores, is a desirable feature. However, state-of-the-art
parallel computing systems, such as GP-GPUs, feature a clear
trade-off between performance and efficiency, both from the point
of view of the parallelism available in embedded applications as
well as from a physical implementation perspective (as discussed
in Sec. 3.1). In the context of PULP-based systems, where energy
efficiency cannot be traded off against performance, scalability is
still an open problem, and we plan to explore this scenario as
future work.

7 CONCLUSION

We proposed a light-weight hardware-supported synchronization
solution for embedded CMPs that aggressively reduces synchro-
nization overhead, both in terms of execution time and energy,
the latter being a crucial metric for most embedded systems.
Both the proposed SCU and the hosting PULP cluster are silicon-
proven and available as open-source hardware [15] under a very
permissive license. In addition to showing energy cost reductions
for synchronization primitives of up to 41× and resulting min-
imum SFR sizes of as little as tens of cycles, we demonstrated
the importance of energy-efficient synchronization on a range
of typical applications that covers four orders of magnitude of
execution time. The proposed solution improves both performance
and energy efficiency in all cases and has a beneficial impact of
up to 92% for performance and 98% for energy efficiency for
applications with SFR sizes of around one hundred cycles. In the
future, we plan to explore hierarchical architectures composed of
multiple tightly-coupled clusters, with the target of scaling up the
performance of PULP systems with no compromises on energy
efficiency.

ACKNOWLEDGMENTS

This work was supported in part by the EU Horizon 2020 Projects
OPRECOMP under Grant 732631, in part by Eurostars EUREKA
EXCITING under Grant 10691, and in part by WiPLASH under
Grant 863337.

REFERENCES

[1] D. Genbrugge and L. Eeckhout, “Chip multiprocessor design space
exploration through statistical simulation,” IEEE Trans. on Computers,
vol. 58, no. 12, pp. 1668–1681, Dec. 2009.

[2] D. Geer, “Chip makers turn to multicore processors,” IEEE Computer,
vol. 38, no. 5, pp. 11–13, May 2005.

[3] D. Bertozzi et al., “NoC synthesis flow for customized domain specific
multiprocessor systems-on-chip,” IEEE Trans. on Parallel and Dis-
tributed Systems, vol. 16, no. 2, pp. 113–129, Feb. 2005.

[4] T. M. Conte and M. Levy, “Embedded multicore processors and systems,”
IEEE Micro, vol. 29, no. 03, pp. 7–9, May 2009.

[5] R. Khan, S. U. Khan, R. Zaheer, and S. Khan, “Future Internet: The Inter-
net of Things Architecture, Possible Applications and Key Challenges,”
Proc. Int. Conf. on Frontiers of Information Technology (FIT), Dec. 2012.

[6] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of things
(IoT): A vision, architectural elements, and future directions,” Future
Generation Computer Systems, vol. 29, no. 7, pp. 1645–1660, Sept. 2013.

[7] O. Azizi, A. Mahesri, B. Lee, S. Patel, and M. Horowitz, “Energy-
performance tradeoffs in processor architecture and circuit design: A
marginal cost analysis,” in ACM SIGARCH Computer Architecture News,
vol. 38, 06 2010, pp. 26–36.

[8] D. Rossi et al., “Energy-efficient near-threshold parallel computing: The
PULPv2 cluster,” IEEE Micro, vol. 37, no. 5, pp. 20–31, Sept. 2017.

[9] R. G. Dreslinski, M. Wieckowski, D. Blaauw, D. Sylvester, and
T. Mudge, “Near-threshold computing: Reclaiming Moore’s Law through
energy efficient integrated circuits,” Proc. of the IEEE, vol. 98, no. 2, pp.
253–266, Feb. 2010.

[10] S. Salamin, H. Amrouch, and J. Henkel, “Selecting the optimal energy
point in near-threshold computing,” Design, Automation & Test in Europe
Conf. & Exhibition (DATE), pp. 1670–1675, March 2019.

[11] OpenMP Architecture Review Board, The OpenMP API specification for
parallel programming, https://www.openmp.org.

[12] E. Flamand et al., “GAP-8: A RISC-V SoC for AI at the edge of the
IoT,” IEEE Int. Conf. on Application-specific Syst., Architectures and
Processors (ASAP), July 2018.

[13] A. Pullini, D. Rossi, I. Loi, G. Tagliavini, and L. Benini, “Mr. Wolf:
An energy-precision scalable parallel ultra low power SoC for IoT edge
processing,” IEEE J. Solid-State Circuits, pp. 1–11, 2019.

[14] P. Schönle et al., “A multi-sensor and parallel processing SoC for minia-
turized medical instrumentation,” IEEE J. Solid-State Circuits, vol. 53,
no. 7, pp. 2076–2087, July 2018.

[15] PULP Platform. [Online]. Available: http://www.pulp-platform.org
[16] J. Sartori and R. Kumar, “Low-overhead, high-speed multi-core barrier

synchronization,” Int. Conf. on High-Performance Embedded Architec-
tures and Compilers (HiPEAC), pp. 18–34, 2010.

[17] J. Sampson, R. Gonzalez, J. Collard, N. P. Jouppi, M. Schlansker,
and B. Calder, “Exploiting fine-grained data parallelism with chip
multiprocessors and fast barriers,” IEEE Micro, pp. 235–246, Dec. 2006.

[18] H. Xiao, T. Isshiki, D. Li, H. Kunieda, Y. Nakase, and S. Kimura,
“Optimized communication and synchronization for embedded multipro-
cessors using ASIP methodology,” Information and Media Technologies,
vol. 7, no. 4, pp. 1331–1345, Jan. 2012.

[19] B. E. Saglam and V. J. Mooney, “System-on-a-chip processor synchro-
nization support in hardware,” Design, Automation & Test in Europe
Conf. & Exhibition (DATE), pp. 633–639, March 2001.

[20] T. E. Anderson, “The performance of spin lock alternatives for shared-
memory multiprocessors,” IEEE Trans. on Parallel and Distributed
Systems, vol. 1, no. 1, pp. 6–16, Jan. 1990.

[21] A. Kagi, D. Burger, and J. R. Goodman, “Efficient synchronization: Let
them eat QOLB,” Int. Symp. on Computer Architecture (ISCA), pp. 170–
180, June 1997.

[22] J. M. Mellor-Crummey and M. L. Scott, “Algorithms for scalable
synchronization on shared-memory multiprocessors,” ACM Trans. on
Computer Systems (TOCS), vol. 9, no. 1, pp. 21–65, Feb. 1991.

[23] C. Ferri, R. I. Bahar, M. Loghi, and M. Poncino, “Energy-optimal
synchronization primitives for single-chip multi-processors,” Proc. of
ACM Great Lakes Symp. on VLSI (GLSVLSI), pp. 141–144, 2009.

[24] T. Tsai, L. Fan, Y. Chen, and T. Yao, “Triple Speed: Energy-aware real-
time task synchronization in homogeneous multi-core systems,” IEEE
Trans. on Computers, vol. 65, no. 4, pp. 1297–1309, April 2016.

[25] M. Loghi, M. Poncino, and L. Benini, “Synchronization-driven dynamic
speed scaling for MPSoCs,” Proc. of Int. Symp. on Low Power Electronics
and Design (ISLPED), pp. 346–349, Oct. 2006.

[26] C. Liu, A. Sivasubramaniam, M. Kandemir, and M. J. Irwin, “Exploiting
barriers to optimize power consumption of CMPs,” Proc. of Int. Parallel
and Distributed Processing Symp. (IPDPS), April 2005.

[27] M. Monchiero, G. Palermo, C. Silvano, and O. Villa, “Efficient synchro-
nization for embedded on-chip multiprocessors,” IEEE Trans. Very Large
Scale Integ. (VLSI) Syst., vol. 14, no. 10, pp. 1049–1062, Oct. 2006.

[28] S. H. Kim et al., “C-Lock: Energy efficient synchronization for embedded
multicore systems,” IEEE Trans. on Computers, vol. 63, no. 8, pp. 1962–
1974, Aug. 2014.

[29] C. Yu and P. Petrov, “Low-cost and energy-efficient distributed synchro-
nization for embedded multiprocessors,” IEEE Trans. Very Large Scale
Integ. (VLSI) Syst., vol. 18, no. 8, pp. 1257–1261, Aug. 2010.

[30] Chi Cao Minh, JaeWoong Chung, C. Kozyrakis, and K. Olukotun,
“STAMP: Stanford transactional applications for multi-processing,”
IEEE Int. Symp. on Workload Characterization (IISWC), pp. 35–46, Sept.
2008.

[31] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, “The SPLASH-
2 programs: Characterization and methodological considerations,” Int.
Symp. on Computer Architecture (ISCA), pp. 24–36, June 1995.

[32] J. T. Feo, “An analysis of the computational and parallel complexity of
the Livermore Loops,” Parallel Computing, vol. 7, no. 2, pp. 163–185,
June 1988.

[33] F. Thabet, Y. Lhuillier, C. Andriamisaina, J.-M. Philippe, and R. David,
“An efficient and flexible hardware support for accelerating synchro-
nization operations on the STHORM many-core architecture,” Design,

GLASER et al.: ENERGY-EFFICIENT HARDWARE-ACCELERATED SYNCHRONIZATION FOR SHARED-L1-MEMORY MULTIPROCESSOR CLUSTERS 15

Automation & Test in Europe Conf. & Exhibition (DATE), pp. 531–534,
2013.

[34] C. Ferri, A. Viescas, T. Moreshet, R. I. Bahar, and M. Herlihy, “Energy
efficient synchronization techniques for embedded architectures,” Proc.
of ACM Great Lakes Symp. on VLSI (GLSVLSI), pp. 435–440, May 2008.

[35] C. J. Beckmann and C. D. Polychronopoulos, “Fast barrier synchroniza-
tion hardware,” Proc. of ACM Int. Conf. on Supercomputing, pp. 180–
189, Nov. 1990.

[36] J. H. Kelm et al., “Rigel: An architecture and scalable programming in-
terface for a 1000-core accelerator,” Int. Symp. on Computer Architecture
(ISCA), vol. 37, no. 3, pp. 140–151, June 2009.

[37] L. Benini, E. Flamand, D. Fuin, and D. Melpignano, “P2012: Building
an ecosystem for a scalable, modular and high-efficiency embedded
computing accelerator,” Design, Automation & Test in Europe Conf. &
Exhibition (DATE), pp. 983–987, March 2012.

[38] D. Palossi et al., “A 64-mW DNN-based visual navigation engine for
autonomous nano-drones,” IEEE Internet of Things J., vol. 6, no. 5, pp.
8357–8371, Oct. 2019.

[39] V. Kartsch et al., “BioWolf: A sub-10-mW 8-channel advanced
brain–computer interface platform with a nine-core processor and BLE
connectivity,” IEEE Trans. on Biomed. Circuits and Systems, vol. 13,
no. 5, pp. 893–906, Oct. 2019.

[40] G. Tagliavini, G. Haugou, and L. Benini, “Optimizing memory band-
width in OpenVX graph execution on embedded many-core accelera-
tors,” Proceedings of the 2014 Conference on Design and Architectures
for Signal and Image Processing, pp. 1–8, 2014.

[41] A. Burrello, F. Conti, A. Garofalo, D. Rossi, and L. Benini, “Work-
in-progress: DORY: Lightweight memory hierarchy management for
deep NN inference on IoT endnodes,” Int. Conf. on Hardware/Software
Codesign and System Synthesis (CODES+ISSS), 2019.

[42] G. Tagliavini, G. Haugou, A. Marongiu, and L. Benini, “Enabling
OpenVX support in mw-scale parallel accelerators,” IEEE Int. Conf. on
Compilers, Architectures, and Sythesis of Embedded Systems (CASES),
pp. 1–10, Oct. 2016.

[43] P. Vogel, A. Marongiu, and L. Benini, “Lightweight virtual memory
support for zero-copy sharing of pointer-rich data structures in het-
erogeneous embedded SoCs,” IEEE Trans. on Parallel and Distributed
Systems, vol. 28, no. 7, pp. 1947–1959, July 2017.

[44] M. Gautschi et al., “Near-threshold RISC-V core with DSP extensions
for scalable IoT endpoint devices,” IEEE Trans. Very Large Scale Integ.
(VLSI) Syst., vol. 25, no. 10, pp. 2700–2713, Oct 2017.

[45] F. Conti et al., “An IoT endpoint System-on-Chip for secure and energy-
efficient near-sensor analytics,” IEEE Trans. Circuits Syst. – I: Reg.
Papers, vol. 64, no. 9, pp. 2481–2494, Sept 2017.

[46] X. Wang, M. Magno, L. Cavigelli, and L. Benini, “FANN-on-MCU:
An open-source toolkit for energy-efficient neural network inference
at the edge of the internet of things,” 2019. [Online]. Available:
https://arxiv.org/abs/1911.03314

Florian Glaser received the M.Sc. degree in
electrical engineering from ETH Zurich, Switzer-
land, in 2015, where he is currently pursuing the
Ph.D. degree at the Integrated Systems Labora-
tory. His current research interests include low-
power integrated circuits with a special focus
on energy-efficient synchronization of multicore
clusters and mixed-signal systems-on-chip for
miniaturized biomedical instrumentation.

Giuseppe Tagliavini received the Ph.D. degree
in electronic engineering from the University of
Bologna, Bologna, Italy, in 2017. He is currently
an Assistant Professor with the Department of
Computer Science and Engineering (DISI) at the
University of Bologna. He has co-authored over
30 papers in international conferences and jour-
nals. His research interests include parallel pro-
gramming models for embedded systems, run-
time optimization for multicore and many-core
accelerators, and design of software stacks for

emerging computing architectures.

Davide Rossi received the Ph.D. degree from
the University of Bologna, Bologna, Italy, in
2012. He has been a Post-Doctoral Researcher
with the Department of Electrical, Electronic and
Information Engineering “Guglielmo Marconi,”
University of Bologna, since 2015, where he is
currently an Assistant Professor. His research
interests focus on energy-efficient digital archi-
tectures. In this field, he has published more than
100 papers in international peer-reviewed con-
ferences and journals. He is recipient of Donald

O. Pederson Best Paper Award 2018, 2020 IEEE TCAS Darlington Best
Paper Award, 2020 IEEE TVLSI Prize Paper Award.

Germain Haugou received the Engineering De-
gree in telecommunication from the University of
Grenoble, in 2004. He was with ST Microelec-
tronics as a Research Engineer, for ten years.
He is currently with ETH Zurich, Switzerland,
as a Research Assistant. His research interests
include virtual platforms, run-time systems, com-
pilers, and programming models for many-core
embedded architectures.

Qiuting Huang received the Ph.D. degree in
applied sciences from the Katholieke Univer-
siteit Leuven, Leuven, Belgium, in 1987. Be-
tween 1987 and 1992, he was a lecturer at the
University of East Anglia, Norwich, UK. Since
January 1993, he has been with the Integrated
Systems Laboratory, ETH Zurich, Switzerland,
where he is Professor of Electronics. In 2007,
he was also appointed as a part-time Cheung
Kong Seminar Professor by the Chinese Ministry
of Education and the Cheung Kong Foundation

and has been affiliated with the South East University, Nanjing, China.
His research interests span RF, analog, mixed analog-digital as well
as digital application specific integrated circuits and systems, with an
emphasis on wireless communications and biomedical applications in
recent years. Dr. Huang currently serves as vice chair of the steering
committee, as well as a sub committee chair of the technical program
committee of the European Solid-State Circuits Conference (ESSCIRC).
He also served on the technical program and executive committees of
the International Solid-State Circuits Conference (ISSCC) between 2000
and 2010.

Luca Benini received the Ph.D. degree from
Stanford University and currently holds the chair
of the Digital Circuits and Systems Group at the
Integrated Systems Laboratory, ETH Zurich and
is Full Professor at the Universita di Bologna.
He served as chief architect in STMicroelec-
tronics France. Dr. Benini’s research interests
are in energy-efficient parallel computing sys-
tems, smart sensing micro-systems and ma-
chine learning hardware. He has published more
than 1000 peer-reviewed papers and five books.

He is a Fellow of the ACM and a member of the Academia Europaea.
He is the recipient of the 2016 IEEE CAS Mac Van Valkenburg award
and of the 2019 IEEE TCAD Donald O. Pederson Best Paper Award.

