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Abstract—In the last years, remote health monitoring is becoming 
an essential branch of health care with the rapid development of 
wearable sensors technology. To meet the demand of new more 
complex applications and ensuring adequate battery lifetime, 
wearable sensors have evolved into multi-core systems with 
advanced power-saving capabilities and additional heterogeneous 
components. In this paper, we present an approach that applies 
optimization and parallelization techniques uncovered by modern 
ultra-low power platforms in the SW layers with the goal of improving 
the mapping and reducing the energy consumption of biomedical 
applications. Additionally, we investigate the benefit of integrating 
domain-specific accelerators to further reduce the energy 
consumption of the most computationally expensive kernels. Using 
30-second excerpts of signals from two public databases, we apply 
the proposed optimization techniques on well-known modules of 
biomedical benchmarks from the stateof-the-art and two complete 
applications. We observe speedups of 5.17× and energy savings of 
41.6% for the multicore implementation using a cluster of 8 cores 
with respect to single-core wearable sensor designs when processing 
a standard 12-lead electrocardiogram (ECG) signal analysis. 
Additionally, we conclude that the minimum workload required to 
take advantage of parallelization for a hearbeat classifier corresponds 
to the processing of 3-lead ECG signals, with a speed-up of 2.96× and 
energy savings of 19.3%. Moreover, we observe additional energy 
savings of up to 7.75% and 16.8% by applying power management 
and memory scaling to the multicore implementation of the 3-lead 
beat classifier and 12-lead ECG analysis, respectively. Finally, by 
integrating hardware (HW) acceleration we observe overall energy 
savings of up to 51.3% for the 12-lead ECG analysis. 

I. INTRODUCTION 

NCREASING healthcare costs [1] and hospital overcrowding 

call for new technological advances that improve re- 
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mote health monitoring and enable self-diagnose, early 

intervention or prevention [2]. In addition, population aging 

and the consequent higher incidence of noncommunicable 

diseases (NCDs) create the need for long-term health 

monitoring. Within NCDs, cardiovascular diseases (CVDs) in 

particular— which are characterized by abnormal events that 

need to be detected in real-time—are the major cause of 

death globally [3]. To prevent, predict and detect NCDs, there 

is an increasing need of automatic applications that 

continuously and remotely monitor relevant biosignals, such 

as the electrocardiogram (ECG) [4]. 

In the context of remote health monitoring, wearable sensor 

nodes (WSNs) have proven capable of attaining accurate 

inference with minimal power consumption [5]. In this way, 

WSNs have evolved from single-core systems [6], [7] into ultra-

low power (ULP) [8] and multi-core parallel computing 

platforms [9]–[13]. Most of the typical WSN-based biomedical 

applications in the state-of-the-art have been implemented on 

single-core processors [6], [7], [14], [15]. To exploit the new 

parallel capabilities of modern WSN platforms in the context 

of biomedical applications, per-lead (i.e. channel) multi-core 

computation is a natural option to achieve low-power 

operation, as in the case of multi-lead ECG analysis [10], [16]. 

However, more general WSN-based biomedical applications 

for monitoring of NCDs typically include several building blocks 

which often are not amenable to per-lead parallelization [7], 

[11], [14], [15], [17]–[22]. Modern platforms have also evolved 

into hybrid systems with a main core and an additional cluster 

of cores [9] that allow flexible design of efficient single-core 

and parallel modules, in applications where several modules 

cannot be parallelized easily. 

In addition to parallelization, modern platforms offer 

clockand power-gating mechanisms to reduce both dynamic 

and static (leakage) power when the system is not actively 

computing (e.g., when waiting for new samples to arrive in an 

input buffer considering the usual low sampling frequency of 

biomedical applications). Some platforms include specialized 

direct memory access (DMA) engines that execute data 

capturing tasks within tight power budgets while the rest of 

the system is clock-gated or executing other tasks [12], [13]. 

Additionally, other platforms contain SRAMs structured in 

independent banks that can be power-gated depending on the 

I 
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application needs [12], [13]. Moreover, application modules 

typically contain computationally expensive kernels that can 

be accelerated with domain-specific hardware such as coarse-

grained reconfigurable arrays (CGRAs) [10]. Thus, hardware 

(HW) acceleration is an orthogonal benefit to the 

parallelization and it can benefit both single-core and 

multicore application design. 

In this work, we tackle the challenge of exposing the 

parallelization and power-saving capabilities of modern 

ultralow power platforms to the designer of WSN-based 

biomedical applications. Our main contributions are: 

• We show how to parallelize the modules of typical 

biomedical applications at different levels of abstraction 

(i.e., lead, sample analysis-window, heart beat or 

datalevel) to maximize speed-up and consequently 

reduce energy consumption up to 41.6%. 

• We explore how to reduce static power by exploiting 

power management and SRAM-bank memory scaling 

with additional energy savings of up to 16.8% for a 

stateof-the-art application. 

• We investigate the use of programmable domain-specific 

accelerators to perform intensive computations at lower 

power than with general-purpose processors obtaining 

energy savings up to 46.7% in the multi-core 

implementation of the state-of-the-art application. 

• Finally, we show the orthogonality of the previous 

optimizations achieving accumulated energy savings of 

up to 51.3%. 

The rest of this paper is organized as follows. Section II 

explores the parallelization and power-saving features of 

modern ultra-low power platforms (Section II-A), an analysis 

on the optimal exploitation of these features and the typical 

modular organization of WSN-based biomedical applications 

(Section II-C). Then, Section III explains how to exploit those 

features during a typical WSN-based application 

implementation. Section IV presents the software / hardware 

experimental setup used in Section V to analyze the impact of 

our proposed methods. Finally, in Section VI we summarize the 

main conclusions of our work. 

II. BACKGROUND AND MOTIVATION 

A. Modern ultra-low power WSN platforms 

The main goal of multi-core ultra-low power WSN platforms 

is reducing energy consumption to maximize battery lifetime, 

while still running complex algorithms on the nodes. 

Multiprocessing has been proved effective in reducing energy 

consumption—through lower operating frequencies and 

supply voltages—while preserving performance in the 

biomedical [16] and multimedia [9] domains. However, SW 

tasks must be divided into parallel subtasks or organized as 

independent parallel ones, i.e. application modules. Often, a 

major obstacle to achieve adequate speed-ups is the overhead 

of synchronization. Fast HW event managers offer single-cycle 

synchronization and enable clock-gating the processors while 

waiting for events, hence saving significant amounts of energy 

even with fine-grained parallelization [13], [23]. A novel 

architecture that can overcome these obstacles and ensure 

flexible design of modular WSN-based biomedical 

applications, is the opensource RISC-V based PULP platform 

[9]. In this section, we describe the energy saving capabilities 

of parallel implementation on multi-core platforms based on 

PULP. Moreover, we describe the power and memory 

management possibilities in modern ULP platforms. Finally, we 

explore the architectural heterogeneity of adding CGRAs to 

accelerate computationally intensive kernels. 

1) Parallelization in the PULP platform: In this work, we 

target the PULP platform [9], which is divided into a main 

streamlined processor, the fabric controller (FC), and an 8core 

parallel compute cluster (CL). PULP includes a multibanked 

512KiB L2 memory, a HW event synchronizer and a shared 

multi-banked 64KiB L1 memory with single-cycle latency in 

the cluster side. Both FC and cluster are powergated while the 

DMA fills the required L2 memory bank during sample 

acquisition. Each of the cores in the cluster can be 

independently clock-gated to reduce dynamic power. For 

example, the cluster cores become clock-gated after reaching 

a synchronization point. This flexibility allows to easily 

implement parallel and single-core modular applications. 

2) Power and memory management: In addition to 

parallelization, WSN-based biomedical applications need 

power management to ensure continuous remote monitoring. 

A common technique to save energy is clock-gating, which 

reduces dynamic power. In the context of the PULP platform, 

architecture-level clock-gating is applied at different levels. 

The SoC is clock-gated when waiting for an event, such as a 

DMA transfer or the end of a computation on the cluster. 

Additionally, if no workload is assigned to some cores of the 

cluster, they are automatically clock-gated. This is relevant in 

the context of modular WSN-based biomedical applications, 

because an optimal assignment of resources to the modules 

reduces energy consumption. Conversely, power-gating 

interrupts the power supply to parts of the circuit that are 

unused for longer periods, hence suppressing leakage current. 

Powergating has a larger physical overhead than clock 

gating— due to the power switches and controllers around the 

power gated area. Hence, it is applicable only for large blocks 

(e.g., a cluster of processors). Moreover, the recovery period 

for power-gating can be in the order of tens of thousands of 

cycles, particularly if clock generators are affected, making it 

suitable only for applications that undergo long idle periods. 

Typical WSN-based applications are characterized by low 

sampling frequency (e.g., ECG acquisition is in the standard 

range of 250Hz–500Hz), hence, the main SoC can be 

powergated while waiting for the next sample. Additionally, 

modern platforms divide SRAM memories in several banks 

that can be independently power-gated or set to retention 
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mode according to the amount of memory required at a given 

moment. 

3) HW acceleration: Finally, domain-specific 

accelerators, either programmable (e.g., CGRAs [10]) or task-

specific (e.g., for FFT or sample-rate conversion [8]) are added 

to accelerate intensive application kernels. In this case, energy 

savings stem from the shorter execution times and the 

specialized implementations of the accelerators. Hardware 

accelerators can be introduced at the end of the optimization 

process to offload kernels assigned to particular cores. In this 

work, we implement a CGRA, designed to execute small loop-

based kernels with high numbers of iterations. We describe in 

detail 
Mr.Wolf 

  0.00 0.10 0.20 0.30 0.40 0.50 0.00 0.10 0.20 0.30 0.40 0.50 
 Duty-cycle % Duty-cycle % 

Fig. 1. Potential energy savings in Mr.Wolf, an implementation of the PULP 
platform, according to the application duty cycle and the attainable speedup 
through an 8-core parallelization in the cluster. On the left, we show the 
analysis on Mr.Wolf with its 8 memory banks active. On the right, we show 
the analysis on Mr.Wolf with only 1 bank active. The dotted lines mark 
different levels of energy savings. 

the architecture of the CGRA and the computational kernels 

accelerated in Section III-D. 

B. Motivational analysis for optimizations in PULP 

Considering the low duty cycle of WSN-based biomedical 

applications, we conduct an analysis of the impact of the 

application duty cycle and the attainable speed-up in an 8-core 

parallelization on the energy savings in the PULP platform. In 

this analysis, we assume that the 8 cores are all used during 

the active part of the duty cycle, while during idle periods they 

are power-gated. In contrast, in many biomedical applications 

or its modules, as the ones we present in Section V, it may 

happen that only some of the cores are active, while the 

remaining are clock-gated (i.e., unused). Moreover, we show 

how activating one bank (of 64KiB) or the full memory (i.e., 8 

banks for a total of 512KiB) affects the energy savings. Finally, 

this analysis shows that the percentage of energy consumed 

during idle time is proportionally inverse to the duty cycle. 

Consequently, platforms that execute very low duty cycle 

applications need to optimize energy consumption during idle 

periods (e.g., turning off unused memory banks). In contrast, 

with higher duty cycles, the energy consumed during active 

time prevails, hence, it becomes more relevant to optimize 

computation (e.g., increasing the speed-up to reduce active 

time) in order to lower the total energy consumption. 

Figure 1 shows the previous analysis on one evolution of the 

PULP platform, Mr.Wolf [13]. For each platform, the graph 

reports the energy savings compared to a single-core 

implementation of a generic application in the FC. Mr.Wolf 

includes a core for the FC (Zero-riscy [24]) that is simpler than 

the RI5CY cores of the cluster [25] and runs at a higher 

frequency (170MHz for FC and 110MHz for the cluster) but 

has a lower IPC. Moreover, Mr.Wolf is more efficient for higher 

duty cycles because it was designed to handle high 

computational load and the deep sleep mode is not optimized 

for long idle periods—different PULP implementations with a 

core optimized for deep sleep exist, tough. Therefore, our 

analysis is applied on the Mr.Wolf architecture with a more 

optimized deep sleep mode based on other PULP 

implementations. The graphs in Fig. 1 are generated using the 

energy models in (1) and (2) for the single-core (ESC) and the 

multicore (EMC) configurations, respectively, where dc is the 

duty cycle of the application, FC Pdyn and FC Pleak are the 

dynamic and leakage power of the FC, respectively, DS P is the 

power in deep sleep, CL Pdyn and CL Pleak are the dynamic and 

leakage power of the CL, and fcr is the frequency correction 

ratio (170110MHzMHz) for the FC and CL. 

ESC = dc×(FC Pdyn+FC Pleak)+(1−dc)×DS P (1) 

Finally, the ratio (in percentage) 

of potential energy savings 

attainable by a multi-core 

configuration against the single-core one is computed using 

(3). 

  (3) 

On the left side of Fig. 1, we show the analysis for Mr.Wolf with 

the full memory active (i.e., 8 banks). It shows that the energy 

overhead of the multi-core cluster is recovered when a speed-

up of 4.6× is reached and becomes more energy efficient 

compared to the single-core implementation for higher speed-

ups. Additionally, each of the Mr.Wolf 8 memory banks of 

64KiB can be powered-off depending on the application. 

Consequently, on the right side of Fig. 1, we show how the 

analysis changes if there is only one bank active. Whereas the 

threshold of speed-up does not change, for lower duty cycles 

it is possible to achieve higher energy savings. 

We have also run the analysis on the full scale of duty cycle 

values to explore the benefits attainable under higher duty 

cycles. The architecture is able to achieve energy savings up to 

42% for 100% duty cycle and maximum speed-up with the 8 

cores and 8 banks always active. An interesting result is that, 

for high duty cycle applications, memory management has less 
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impact than for low duty cycle ones. Nonetheless, in this work 

we focus on the energy savings attainable on low duty cycle 

which is a characteristic of typical biomedical applications. 

From this previous analysis, we can conclude that, for this 

implementation of PULP, the speed-up required by the parallel 

application has to be at least 4.6×. This shows the importance 

of suitable optimizations (e.g., parallelization techniques) in 

order to achieve energy efficiency on modern low power 

heterogeneous platforms, which is the main motivation for 

this paper. To achieve optimal speed-up, a modular approach 

to SW parallelization is necessary. For this reason, we present 

the typical modules of WSN-based biomedical applications in 

Section II-C. Then, to maximize the speed-up of the overall 

application, we consider different parallelization techniques 

and HW acceleration. Power management is also a significant 

factor in low duty cycle applications. Finally, memory bank 

management plays an important role in energy saving and, 
Fig. 2. Typical modules of a general WSN-based biomedical application. 

specifically, for applications with low memory footprint. In 

Section III, we refer to a general conceptual architecture that 

takes advantage of all the benefits of the PULP platform 

discussed in this analysis. 

C. Typical biomedical modules 

Considering the characteristics of modern ULP platforms, 

we propose a modular design approach for biomedical 

applications that combines different types of SW 

parallelization to achieve optimal speed-up. Let us consider a 

typical WSN-based biomedical application for long-term 

health monitoring, described in Fig. 2. First, the single or 

multichannel signal is filtered to remove high or low frequency 

noise, baseline wandering or muscle noise. The second module 

includes typically some additional preprocessing of the signal 

to enhance specific characteristics or combine different 

channels. The third module is the extraction of patterns or 

features, such as the signal main waveforms and time or 

frequencydomain parameters. The final step, inference, 

includes any kind of classification or regression technique that 

uses the information of the extracted features to predict an 

outcome, such as the occurrence of a pathology. In this work, 

we apply the energy-saving capabilities of modern platforms 

to an optimized single-core version of well-known instances of 

each of those modules. Then, we evaluate them as part of 

complete state-of-the-art applications. 

1) Filtering: Digital filtering in biomedical applications is 

used to remove undesired noise at specific frequencies or 

isolate the frequencies of interest. In biosignal processing 

there exist different types of filtering [26]. In this work, we 

analyze the morphological filtering (MF), which extracts the 

signal baseline based on the shape of the original signal and 

then subtracts it. This method was originally used in image 

processing and then modified to be used on a single or a 

multilead ECG in embedded systems [27]. Additional 

techniques to filter the raw ECG input data that are suitable 

for embedded systems are described in [27]. 

2) Enhancement: Several techniques, such as the signal 

derivative or the root-mean-square (RMS) combination, are 

available to enhance a biosignal or combine different leads. 

We study a light-weight example of short-term event 

amplification: Relative Energy (Rel-En) [28]. In the context of 

an ECG signal, this technique extracts the energy of specific 

windows of analysis to amplify the R peaks, since the signal 

energy is larger when an R peak occurs. The Rel-En method is 

also used for K-complex detection in electroencephalography 

(EEG) and pulse extraction in imaging photoplethysmography 

(iPPG) [29]. Additionally, we consider the RMS lead 

combination as part of a full application in Section V. 

3) Feature extraction: This module enables the biosignal 

abstraction through the extraction of the most relevant 

features, from its waveforms or points to time and frequency 

domain parameters [7], [11], [14], [17]–[19], [21], [22]. In ECG 

analysis, for example, a common technique, called 

“delineation,” abstracts the signal main waves (i.e. QRS 

complex, P and T waves [30]) with three “fiducial points” 

representing the onset, offset and peak. These points are the 

input to the inference module or can be further processed 

extracting additional features (e.g., QRS complex duration, QT 

interval, etc.). In this work, we analyze the ECG delineation 

since it is a relevant and well-known method for long-term 

monitoring of NCDs. The process of delineation can be divided 

in two parts. First, the R peak or QRS complex are detected, 

often independently from the other ECG waves, since they 

describe the heart rhythm and are relevant for the detection 

of many arrhythmias [18]. As R peak detection technique, we 

choose to implement REWARD [28] for its claimed low 

computational load. REWARD uses amplitude thresholds to 

isolate the R peak. Moreover, it analyzes physiological peakto-

peak distance and peak width to filter false positives, such as 

dominant T-waves. The remaining fiducial points can be 

delineated in different ways. We choose a low-complexity 

method [17] that assumes that the signal’s main waves are 
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positive, which can be ensured by an RMS combination of 

leads or choosing lead II of the 12-lead ECG technique [31]. 

Under this assumption, the Q and S points are identified as 

minimum within a physiological interval near the R peak. The 

P and T peaks of the two other main waves are computed as 

maximum within physiological windows between two R peaks. 

Finally, the onset/offset of the P and T waves are computed 

considering the minimum euclidean distance between the 

original waves and their piece-wise linear approximation. The 

point with the minimum euclidean distance that intersects the 

isoelectric line is the onset/offset. 

4) Inference: The last module is commonly a 

classification or regression problem applied to a set of features 

that performs an automatic diagnosis of a medical condition, 

such as the occurrence of abnormal beats. Several types of 

arrhythmia can change the heart electrical signal, thus causing 

abnormalities in the ECG main waves. Therefore, 

automatically detecting abnormal beats and their nature helps 

treating them and prevents further complications [6], [20]. 

Other biosignals (e.g., photoplethysmogram (PPG), 

respiration, impedance cardiogram (ICG), etc.) also contain 

relevant features to classify NCDs, such as sleep apnea [19], to 

monitor a subject state in 

 

Fig. 3. Conceptual architecture following the PULP platform. From left to right: 
SoC domain containing the main processor (FC), the L2 memory, the DMA, and 
potentially a CGRA. The cluster domain contains the multi-core cluster (CL); 
the L1 memory; a CGRA. 

stressful environments [22] or for gesture recognition [11]. In 

this work, we analyze a classification module for detection of 

abnormal beats from an ECG signal using random projections 

and a neuro-fuzzy classifier [32]. 

III. SW AND HW OPTIMIZATIONS IN MODULAR BIOMEDICAL 

APPLICATIONS 

In this section, we do a top-down exploration of 

parallelization techniques at different abstraction levels. This 

strategy helps to compose a modular biomedical application in 

such a way that it can exploit the energy-saving platform 

characteristics and maximize it taking into account the analysis 

done in Section II-B. Additionally, we apply memory and power 

management according to general characteristics of the 

application (e.g., duty cycle, memory needed for acquisition, 

etc.). Finally, we integrate a domain-specific accelerator that 

can execute intensive kernels faster (and consuming less 

energy) than the general purpose cores available. In Fig. 3 we 

draw a conceptual architecture, based on the analysis 

reported in Section II-B, which can be used to apply the SW and 

HW optimizations described in this section. 

A. Modular SW optimizations 

Considering the characteristics of the algorithms described 

in Section II-C, we present several techniques to extract 

parallelism. We also propose a top-down order for exploring 

them, as follows. The first choice of parallelization is by lead 

(or channel). In fact, if leads are processed independently 

throughout the application, it is the simplest and most efficient 

implementation. However, many biomedical applications and 

their modules only work on single-lead or multi-lead 

combination. Then, a window parallelization should be 

considered where the cores work on subsegments of the 

signal. In some cases, the characteristics of the signal and the 

application make it necessary to consider a more specific type 

of parallelization, such as a beat parallelization for 

cardiovascular-based signals. This method can be extended to 

any kind of periodic or pattern signals where the features 

within a period or pattern need to be captured. When the 

previous methods cannot be applied, a 
TABLE I 

SUMMARY OF PARALLELIZATIONS APPLIED TO EACH MODULE 

Module Algorithm Opt. Notes 

Filtering Morph. Filt. (8L-MF) Lead Data-dependent 

Enhance. Relative energy (Rel-En) Window Homogen., overlap 
Enhance. Lead combination (RMS) Data Homogen., 1/8 samples 
Feat. Extr. R-peak (REWARD) Window 8×1.75s windows 
Feat. Extr. Fiducial points Beat Data-dependent 
Inference Beat classification Beat Data-dependent 

general data-level parallelization should be considered. Finally, 

if none of the previous methods can be applied, or if the 

obtained speed-up is not satisfactory, a pipelining strategy can 

be considered, where a subset of the cores is assigned to each 

of the pipeline stages. The cores at one stage process 

segments of input data and produce segments of output, 

which are processed by the cores in the next stage in a parallel 

consumer/producer pattern. However, for accuracy and 

standardization purposes, biomedical applications often 

include checks or feature combinations that need to be 

executed once the complete output of a module has been 

generated [14], [28], [33]. Given this limitation, and the fact 

that the effort to implement pipelining is larger, we consider 

only the first four types of per-module parallelization in the 

proposed top-down order. Table I summarizes the different 

types of parallelization techniques applied to each module 

described in Section II-C. 
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1) Lead parallelization: WSN-based biomedical 

applications commonly acquire multi-lead signals (e.g., 3–12 

ECG leads) to extract more information for highly accurate 

monitoring. Multi-lead parallelization, where each core 

processes the data corresponding to one lead in parallel, 

should be applied first as it typically offers almost linear speed-

ups. The most common application is the filtering module, 

which often works on multiple leads or channels [10], [11] or 

even on multiple signals [14]. Another example from the 

literature where this parallelization is applied is a multi-lead 

delineation using multi-scale morphological derivatives 

(MMD) [10]. 

As shown in Fig. 3, in the PULP architecture the DMA can 

access both the L2 and L1 memories. It can be used to transfer 

the samples of each lead from L2 into separate areas of L1, 

thus allowing the cluster of cores to implement the per-lead 

filtering without interference. The MF algorithm of our 

example is data-dependent; hence, the workload of each core 

depends on the amount of noise of each lead (e.g., due to 

problems in the electrode positioning). We consider an 8-lead 

ECG (8L-MF). 

2) Window parallelization: For subsequent modules in 

the processing chain, or in the case of applications that obtain 

data from a single lead, the data to be processed can be 

divided in multiple windows [11], [17]. In this way, each 

window is processed in parallel by a different core. 

Furthermore, if the samples are directly collected by the DMA 

module, this method enables power-gating of the platform 

cores over larger periods. Energy savings stem from operating 

at lower frequency and voltage than a single core and by a 

more aggressive application of power-gating than is possible 

when operating on a sample-by-sample basis. 

In our example, we apply this technique to the signal 

enhancement (Rel-En) and the feature extraction (R peak 

detection) modules. In the case of Rel-En, we divide the 

window in smaller windows, with each core starting from the 

first sample of each sub-window as explained in [34]. Since the 

Rel-En algorithm computes the signal energy at the sample n 

using information starting from ( s, a small 

window overlapping is necessary. Therefore, the 

computational workload is in this case homogeneous among 

the cores, but the speed-up is reduced by the introduced 

overhead. 

On their side, R peak detection techniques usually consider 

fixed windows of analysis to extract the peaks based on 

physiological characteristics. In our case, the REWARD 

algorithm [28] uses a fixed window of 1.75s. Therefore, 

considering 8 cores, our method collects a buffer of (8×1.75)s 

so that each core will compute one fixed window. 

3) Beat parallelization: The ECG and other 

cardiovascularbased signals (e.g., PPG) are characterized by 

beats. Applications often perform the same operation for each 

beat in which there is essential information. Therefore, beat 

parallelization is the next step to explore in the top-down 

proposed order. This technique can be applied to any upper-

level feature, time series or excerpt of relevant information 

from the signal. There are several examples of classifiers and 

feature extraction techniques in the literature where this type 

of parallelization can be applied [17], [20], [32], [35]. However, 

for simplicity we only analyze two of them, corresponding to 

two of the modules described in Section II-C, namely the beat 

classification [32] and the delineation of fiducial points [17]. In 

the former case, the beat is centered to the R peak; in the 

latter, it comprises the signal between two R peaks. Again, to 

match the characteristics of our platform, we collect 8 beats, 

one per core. During beat classification, the workload is 

datadependent and varies also with the window length (which 

may be fixed). In the case of the fiducial points delineation, 

each core’s workload is linked to the natural variability of the 

RR intervals (i.e., heart rate). In Section V, we show the effect 

of the different workloads on speed-up and energy 

consumption. 

4) General data-level parallelization: General-purpose 

parallelization techniques can be applied on the inner kernels 

of each module. Good candidates at this stage common to 

multiple applications are sorting algorithms, RMS combination 

[11], [32], training algorithms running on node [11] or several 

filtering techniques, such as those presented in [7]. In this 

work, we study the RMS combination algorithm, which is also 

used in the complete application that we analyze in Section V. 

RMS is a signal enhancement technique that computes the 

root-mean-square of a buffer of data. In WSN-based 

biomedical applications, this is used to combine a multi-lead 

signal into a single-lead one. Following the work presented in 

[32], our implementation first computes the sum of squares of 

the samples of the different leads and then applies a square-

root to the result. Since RMS works on sample ith from each 

lead independently of the other samples, each core receives a 

similarly-sized subset of the samples from all the leads. 

B. Power management and memory bank scaling 

When combining the modules into a full application, we 

apply SoC and SRAM power-management. The FC in the PULP 

platform is power-gated whenever the data is acquired, while 

it needs to be clock-gated when the DMA stores the data in L2. 

Considering the low duty cycles of typical WSN-based 

biomedical applications, such as the one reported in Section V, 

the time spent during acquisition and storing is significantly 

high compared to the processing. The power management 

strategy of power- and clock-gating during idle time allows to 

significantly reduce the energy consumption. Moreover, 

during the acquisition phase, banks not containing new data 

(nor application code) can be powered off. Banks that contain 

captured samples waiting to be processed can be placed in 

retention mode. Finally, only the bank currently receiving 
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samples needs to be active. However, since the memory 

needed for the analyzed biomedical applications is 

significantly lower than 512KiB, we explore the possibility of 

reducing the overall memory to 128KiB and assuming 8 banks 

scaling each bank size to 16KiB. This strategy allows a smaller 

resolution in bank size and a better management of the 

activated banks depending on the specific application, hence, 

reduced energy consumption. For example, let us consider an 

application that needs to process a signal window of 30s 

integer 16bit acquired at a sampling frequency of 250Hz. 

Since the buffer to store is 30s ∗ 250Hz ∗ 2 = 15KiB, only one 

bank needs to be active, on top of the banks needed for the 

code. As shown in Fig. 3, the scaling strategy can be pushed to 

the limits of feasibility and significantly lower energy 

consumption, especially for applications with low memory 

footprint. Memory scaling and management is a relevant 

design factor orthogonal to parallelization for typical low duty 

cycle biomedical applications. 

C. Application-level optimizations 

In addition to general purpose power and memory 

management, specific algorithmic-level optimizations for 

WSN-based biomedical applications need to be applied. For 

example, one of the applications we evaluate is the beat 

classifier discussed in Section II-C, which requires several of the 

modules described previously. The single-core 

implementation of this algorithm adapts its computational 

complexity based on the outcome of the classification. First, it 

analyzes a single-lead ECG and performs only R peak detection 

to save energy. Then, if the algorithm detects an abnormal 

beat, it performs an RMS combination of a 3-lead ECG and a 

full delineation. However, this approach can be counter-

productive in multicore platforms because the direct 

execution of the 3-lead ECG analysis on three cores consumes 

roughly half time than the “1+2” analysis approach. In 

particular, with the database used in our experiments (MITDB, 

see Section IV), approximately 27% of the patients experience 

abnormal beats more than 50% of the time, thus requiring the 

full 3-lead processing. This can be exploited at run-time by 

determining the frequency of execution of the full analysis: if 

a certain threshold is exceeded, the system switches to the 

parallel version. Another application that we evaluate is the 

delineation of a complete set of 12-lead ECG. The resources 

assigned in this case include the full 8-core cluster. However, 

after processing 8 leads with an approximately equal 

distribution of computation, 4 cores are automatically clock-

gated while the other 4 process the remaining leads. 

 
1 If LLVM is not available for the target platform, cycle accurate simulators, 

such as those available in the PULP SDK, can be used in combination with 
processor hardware counters to profile the application main blocks. 

D. HW acceleration for intensive computational kernels 

MorphoSys [36] is one of the earliest examples of CGRAs 

originally proposed to accelerate multimedia applications with 

strong computational demands. Later works showed how a 

CGRA can be used in the domain of biomedical applications to 

reduce power by both accelerating common operations and 

reducing the energy cost of executing those operations [10]. 

We extend the open-source PULP platform [37] with a CGRA 

following the design presented in [10] for biomedical 

applications, which is composed of 16 reconfigurable cells 

(RCs) forming a 4 × 4 torus interconnect. The CGRA can be 

integrated in the SoC-domain (i.e., connected to the FC), or in 

the cluster-domain (i.e., connected to the cores of the cluster), 

accessing the L2 or L1 memories directly, respectively, as 

shown in Fig. 3. In this work, we use a CGRA divided into four 

independent columns of RCs; each kernel may use 1, 2 or 4 

columns. Unused columns remain clock-gated. The 

configuration memory is implemented as a 2KiB standard cell 

memory (SCM). The cores make acceleration requests by 

writing a kernel ID to the CGRA peripheral registers (one per 

core). The CGRA synchronizer takes care of mapping the 

request to the number of columns necessary to execute the 

specified kernel. When a core requests an acceleration, it 

becomes clock-gated until the request is completed. The CGRA 

RCs have a 16-bit datapath, which is adequate for most WSN-

based biomedical applications whose input data is normally 

limited by ADC resolution. However, several modules, such as 

the signal enhancement, require 32-bit accumulation; thus, it 

cannot be accelerated with the current platform design. 

1) Kernel selection: The kernel selection procedure for 

the CGRA follows the steps described in [38, Chap. 3]. LLVM is 

used to analyze the application from the C code and generate 

an execution profile report. This enables the identification of 

computationally intensive loops that are good candidates for 

CGRA acceleration. 1  Finally, kernels that do not meet the 

design constraints of our CGRA are discarded. In that sense, 

the main limiting factor is the small instruction memory of the 

CGRA (16 32-bit instructions per RC), which restricts the 

selection to short kernels. Table II lists the kernels executed on 

the CGRA. 

2) Kernel mapping: To map kernels on the CGRA, we 

inspect the C code disassembly to identify operations that can 

be parallelized. Then, these operations are translated to the 

CGRA instruction set and distributed over the CGRA’s RCs and 

columns. This last step is done manually to fully exploit the 

torus interconnect of the CGRA—each RC is connected to its 

neighbours—generating the data flow execution that is one of 

the advantages of this CGRA design. 
TABLE II 

COMPUTATIONAL KERNELS EXECUTED ON THE CGRA 
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Algorithm 
Morph. Filt. dblmin / dblmax Linear 1st and 2nd min./max. search in a 

vector 
Fiducial points maxpeak Linear peak (absolute max.) search in a vector 

 Beat classification min max Circular min. and max. search 

 

IV. EXPERIMENTAL SETUP 

A. Test benches for biomedical modules 

We design a test bench for each module that includes 

appropriate input signals. For the filtering, signal 

enhancement and signal delineation modules, we consider 

excerpts of signals from the Physionet QT database (QTDB) 

[39]. This database was used to analyze the three single-core 

benchmarks presented in Section II by [28]. We choose four 

signals from the QTDB, as four examples that represent worst, 

best and two average cases in terms of a combination of noise 

and shape of the three ECG waves. For the inference module, 

we consider the MIT-BIH Arrhythmia Database (MITDB) [40], 

as reported in [32]. We choose four signals as worst, best and 

two average cases in terms of percentage of abnormal beats 

over the total number of annotated beats. Its output is a label 

classifying the beat depending on the pathology: “N” for 

normal beats, “V” for premature ventricular contraction, etc. 

For all the modules, the choice of four cases should describe 

most of the design space in terms of complexity and energy 

consumption due to data-dependent variability. 

B. Test benches for biomedical application 

To better evaluate the impact of the proposed 

optimizations, we evaluate two applications, with data 

capturing periods, using our biomedical modules. First, we 

consider a 3-lead heartbeat classifying application [32]. This 

application applies filtering, relative energy, and R peak 

detection on one lead (lead I). If the heartbeats are classified 

as normal, it stops there. However, if any abnormality is 

detected, then it applies the same methods to the other two 

leads (leads II & III) to supply additional information. Second, 

we implement an application processing the complete set of 

12-lead ECG signals. Such application is required for medical 

compliance and used in intensive care units of hospitals, or in 

athletic or military training supervision. It combines the 

modules MF, RMS (to combine all the signals into a single one), 

R peak and fiducial points detection. Both applications capture 

ECG samples during 15s; then, the system becomes active to 

process. 

C. Multi-core WSN platform: PULP+CGRA 

To measure the execution time of both independent 

modules and full applications we used the open PULP platform 

[37]. PULP provides the RTL description of the multi-core 

platform and an SDK to run RTL simulations, using Modelsim, 

in order to obtain cycle accurate timings. Additionally, to 

further explore the advantages of heterogeneous platforms, 

we added 

 

Fig. 4. Computation time of each module. 

TABLE III 

EXECUTION TIME OF THE DELINEATION MODULE FOR DIFFERENT 
SUBJECTS FROM THE PHYSIONET QTDB [39] AND THE SUBSEQUENT 

VARYING SPEED-UPS 

 

 SUBJECT SINGLE-CORE MULTI-CORE SPEED-UP 

 

 

the CGRA to the cluster domain integrating it in the existing 

cycle-accurate simulation flow. We use the power numbers 

reported for a chip based on the PULP architecture 

implemented in TSMC 40nm LP CMOS technology, Mr.Wolf 

[13]. This SoC features a streamlined 12 k-gates RISC-V main 

processor (Zero-riscy [24]) and an 8-core compute cluster with 

DSP extensions (RI5CY). This platform includes 8 physical 

memory banks for the 512KiB L2 memory. We pick the lowest 

energy point of the platform, at 0.8V. The platform requires 

3.6µW when power-gated2 and 12.6µW with full L2 

retention—since typical biomedical applications require small 

amounts of memory, we reduce the size of the L2 to one fourth 

(i.e., 128KiB), maintaining the same bank number, and 

correspondingly reduce its power requirements. When the 

SoC is active, it requires 0.98mW with its main processor 

clockgated, and 6.66mW with it operating at 170MHz. Once 

the cluster is activated, it requires 0.61mW with all cores 

clockgated and 18.87mW with the 8 cores running at 

110MHz. We obtained the power estimations for the CGRA 

through prelayout netlist simulation with the TSMC 40nm LP 

CMOS technology. The CGRA requires 104µW when idle, with 

an average power of 669µW when active. The CGRA and the 

cluster are power-gated together. 

 Notes 
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First, we performed the RTL simulation and estimated the 

energy consumption on the test benches for biomedical 

modules to show the impact of the modular SW optimizations, 

as shown in Section V-A. Then, we ran the RTL simulation and 

estimated the energy consumption on the full applications to 

report in Section V-B the impact of parallelization, memory 

2As reported for GAP-8 [12], which is an industrial version of PULP with SoA 
deep sleep optimizations not yet included in its academic counterpart. 

 

Fig. 5. Per-module energy consumption and savings (geometric mean) 
compared to the single-core design. 

TABLE IV 

ENERGY SAVINGS IN THE DELINEATION MODULE ON FOUR SUBJECTS 
FROM THE PHYSIONET QTDB [39] FOR THE SINGLE-CORE (S) AND MULTI-CORE (M) 

PLATFORMS 

 

 SUBJECT SINGLE-CORE MULTI-CORE SAVINGS 

 

 

scaling and HW acceleration. 

V. EXPERIMENTAL RESULTS 

A. Per-module speed-ups and energy savings on PULP 

Figure 4 shows the execution time of each module with the 

single- and multi-core implementations and the geometric 

mean of the obtained speed-ups. The maximum speed-up 

(7.1×) is reached in the Rel-En module, despite its small 

overhead due to the window overlapping scheme. For the 

remaining modules, the speed-up varies between 4.8× and 

7.0×, which is above the threshold of speed-up for the PULP 

platforms discussed in Section II-B. The RMS module, which 

applies a data-level parallelization, reaches a speed-up of 7.0×, 

since the eight cores work independently on similar workloads. 

The MF module is executed on the same trace repeated for the 

8 leads in order to have the same workload and show a data-

independent multi-core processing. This module achieves a 

similar speed-up of 6.8×, which is justified by two factors: the 

8 cores in the CL run at a lower frequency than the FC (i.e., ≈ 

0.65×), but they have a higher IPC. The minimum speed-up 

(4.8×) is obtained for the delineation module (Del) because the 

workload cannot be divided evenly among the cores: first, the 

R peak detection algorithm has several datadependent 

conditional branches that change the execution path for 

different cores; second, the beat parallelization used during 

the delineation depends on how many peaks are detected; 

finally, the beat length (i.e., the RR interval) is variable and 

hence the size of the input varies for each core. This effect can 

be observed in the time spent in the delineation module (Table 

III) for four different subjects from QTDB. 
TABLE V 

AVERAGE RESULTS OF ENERGY CONSUMPTION (INCLUDING DATA 
CAPTURE) AND EXECUTION TIME ON PULP (WITH MEMORY SCALING) FOR THE COMPLETE 

APPLICATIONS ON FOUR SUBJECTS 

# of leads Single core Multi-core 
Energy Time Energy Savings Time Speed-up (mJ) (s) (mJ) (%) 

(s) (×) 

1 lead 0.326 0.025 0.302 7.3 0.019 1.28 
1+2 leads 0.611 0.068 0.588 3.7 0.041 1.66 3 leads 0.611 0.068 0.493 

19.3 0.023 2.95 12 leads 1.78 0.238 1.00 43.5 0.046 5.14 

The previous speed-ups translate neatly into energy savings. 

Figure 5 reports the geometric mean of the energy 

consumption for each module over the four chosen subjects of 

[39] and [40]. The maximum energy savings of the multi-core 

design correspond to the RMS (60%) and Rel-En (58%) 

modules, which are also the modules with the highest 

speedup, whereas it can save at least a 45% in the remaining 

modules. 

B. Application-level energy savings on PULP 

We evaluate the impact of the previous optimizations on 

two different modular applications, including the energy spent 

during data capturing periods. First, we consider a 3-lead 

heartbeat classifying application [32] in three different 

configurations depending on the optimizations discussed in 

Section III-C. Then, we consider the 12-lead ECG delineation 

application. Table V shows the energy and time results for 

these applications. The values reported include memory 

scaling to banks of 16KiB on both single- and multi-core 

implementations. 

The multi-core configuration of the platform is the most 

efficient option in the four cases analyzed. Even for the 1-lead 

application, where MF is the most expensive module (i.e., 

81.6% of the active time) and it is executed on the FC, by 

parallelizing the other modules on the cluster we obtain 

modest energy savings (7.3%). The total speed-up is low 

(1.28×) due to the small percentage of parallel code. However, 

the average speed-up of all the other parallel modules 

(approximately 5.6×) and the memory scaling are enough to 
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achieve fair savings. However, when the application detects 

abnormal beats the following strategies (1+2 leads and 3 leads) 

can be applied. In the first case, which follows the 

optimizations of [32], processing the additional two leads after 

the first one limits the energy savings since the obtained 

speed-up is not enough to offset the energy of the cluster 

cores during the extended period. However, if the beat 

classifier detects abnormal events often enough, the 

application can use the second strategy and process the three 

leads in parallel. In that case, the parallel version would 

achieve a reduction in computation time of 66% and 19.3% in 

energy. In this way, the 3 leads are analyzed simultaneously on 

3 active cores of the cluster while the others are clock-gated, 

enabling better energy savings. 

Considering the low computational load of this application, 

the energy savings of the multi-core optimization are modest 

but still significant. However, applications requiring medical 

 

Fig. 6. Decomposition of energy consumption for the 3-leads and 12-leads ECG 
applications for PULP, including memory scaling. 

compliance such as in intensive care units of hospitals, or in 

athletic or military training supervision, must process the 

complete set of 12-lead ECG signals, which generates higher 

computational load. The last row of Table V shows that the 

parallel version achieves in this case a speed-up of 5.14× and 

energy savings of 43.5%. 

We investigate the use of HW acceleration for the cases of 

3-lead and 12-lead ECG signals, which can be observed in Fig. 

6. The savings achieved by accelerating some intensive 

computational kernels in the 3-lead beat classifier application 

are 67% in time and 2.9% in energy compared to the multi-

core implementation. The reason for the modest energy saving 

is the low computational load of the 3-lead application. 

Moreover, our minimalist CGRA design covers only a small 

amount of the total number of executed instructions, which 

limits its impact. Compared to the single-core implementation, 

it represents 21.6% of energy savings. For the 12-lead 

application, the impact is more significant due to the higher 

computational load, with 9.6% of additional energy savings 

compared to the multi-core implementation. However, as the 

figure shows, for low duty cycle applications, such as the 

3leads beat classifier, the energy consumed by the memories 

during sampling, although not dominant, is significant. In the 

case of the 12-lead application, the energy consumed during 

computation is much higher than the energy consumed by the 

memories during the sampling period (Fig. 6), hence the higher 

savings achieved. In fact, we scale the size of each memory 

bank from the original 64KiB of [13] to 16KiB and we apply 

memory management to keep only the bank needed by the 

application in active or retentive state. In applications with low 

computation load, one possible solution would be to design 

the SRAMs with a larger number of banks and scale to the 

feasible resolution to enable a more aggressive power 

management during data sampling periods. 

Finally, in Table VI we show a summary of the energy savings 

compared to the single-core configuration applying the 

optimizations described in Section III. The three main 

optimizations, including parallelization, memory scaling and 

HW acceleration, can be applied orthogonally and significantly 

reduce the energy consumption compared to the traditional 

single-core implementation. For example, we can apply 

memory scaling directly to the single-core implementation and 

have energy savings of up to 23.45% (this result corresponds 

to the value of the first column of Table V within a small 

rounding error). Additionally, we can apply HW acceleration 

not only on the multi-core implementation but on the 

singlecore design, achieving energy savings from 9.03% up to 

27.05%. Therefore, the designer of WSN-based biomedical 

applications should take into account modularity and parallel 

implementation, memory scaling and HW acceleration. 

TABLE VI 
SUMMARY OF ENERGY SAVINGS APPLYING THE SW PARALLELIZATION TECHNIQUES, THE HW ACCELERATION AND THE MEMORY SCALING FOR THE 

ANALYZED APPLICATIONS ON THE PULP PLATFORM 

 

        
      Memory       

   
 mJ   %   %   %   %   %   %   %  

  0 . 43 6 . 51 3 . 61 23 . 6 45 . 59 29 . 95 27 . 05 30  03 
  0 . 71 3 . 18 4 . 14 68 . 6 05 . 37 17 . 23 18 . 73 20  42 

  0 . 71 16 . 56 4 . 14 68 . 05 18 . 58 30 . 60 18 . 73 32  62 

  1 . 86 41 . 57 3 . 61 4 . 53 46 . 73 46 . 10 9 . 03 51  26 
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VI. CONCLUSIONS 

Modern ultra-low power WSN platforms offer 

characteristics such as multiprocessing, clock- and power-

gating that enable power and memory management and HW 

acceleration. In this work, we have proposed a top-down 

approach to expose these characteristics to the SW layers via 

parallelization techniques to improve the mapping of modular 

biomedical applications. Additionally, we have shown how 

heterogeneous platforms can benefit from domain-specific 

accelerators, such as CGRAs, and memory scaling to further 

reduce energy consumption. 

We have demonstrated our proposal on a set of 

independent modules typical of WSN-based biomedical 

applications and on two composed multi-lead ECG-based 

applications. Our results show energy savings of up to 60% for 

the RMS module and up to 41.6% for a complete multi-core 

application processing 12-lead ECG signals for a general PULP 

platform. Furthermore, we demonstrated that memory scaling 

is an orthogonal optimization that can be exploited to achieve 

additional energy savings up to 23.45%. Finally, our 

experiments have also established that our domain-specific 

accelerator can increase the energy savings to 46.7% for the 

12-lead delineation and 18.6% for the complete heartbeat 

classifier. Thus, the overall combined energy savings reach up 

to 51.3%. 
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