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Hierarchical Archimedean Dependence

in Common Shock Models

Umberto Cherubini∗, Sabrina Mulinacci †

University of Bologna

Abstract

In this paper we show how to extend a simple common shock model with Archimedean
dependence of the hidden variables to the non-exchangeable case. The assumption is that the
hidden risk factors are linked by a hierarchical Archimedean dependence structure, possibly
fully nested . We give directions about how to implement the model and to address the issue
that the hidden variables must be put in descending dependence order. We show how the
model can be simplified in the Gumbel-Marshall-Olkin distribution in Cherubini and Mulinacci
(2017), the only case in which exponential distribution of the observed variables is preserved.

Keywords: Common shock models, Marshall-Olkin distribution, Hierarchical Archimedean
copulas, Systemic risk

1 Introduction

Common shock models are extremely useful tools for many applications in reliability
theory, insurance and risk management, but are tools that are quite difficult to
exploit in full generality. The reason for this complexity is that the common feature
of these models is that most of the assunptions must be made about the hidden risk
factors that trigger the events observed in reality. Since these risk factors are in the
background, the task of identifying their dependence structure from the dependence
of the events observed may be very involved.

The seminal paper of this literature, due to Marshall and Olkin (1967), was
based on the simplest possible assumptions, that the occurrance times of the hidden
factors be independent and exponentially distributed. Even in this simple setting,
the model may very quickly grow in complexity if one considers the extension to
higher dimensions. It is immediate to see that addressing in full generality the
common shocks linking all the possible subsets of a large number of hidden factors
and observed events runs into a classical curse of dimensionality problem. But this
is not the complexity that we are going to address in this paper. So, throughout the
paper we will keep the model to the lowest possible dimensional complexity. Our
model will consist of a system of d components, in which the lifetime of each of them
can come to an end either for idiosyncratic or a common systemic shock.

∗Corresponding author: umberto.cherubini@unibo.it, Department of Economics, University of Bologna
†Department of Statistics, University of Bologna
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Different streams of literature have addressed other extensions of the classical
Marshall-Olkin model. Some of these contributions have focussed on the shape
of the marginal distributions, providing extensions beyond the exponential model:
this is the case of the bivariate model of Li and Pellerey (2011) and the multivatiate
extension in Lin and Li (2014). A large part of the extensions presented in the
literature was instead devoted to the need to drop the independence assumption of
the hidden shocks. The first contribution in this direction was due to Li (2009), in
which the dependence induced by a mixing procedure is considered. More general
frameworks in which both the assumption of independence as well as that of marginal
distributions of exponential type are relaxed, are considered, among the others, in
Durante et al. (2010), Bernhart et al. (2013), Mai et al. (2013) and Mulinacci
(2015, 2018).

In many applications, allowing for dependence in the hidden factor is crucial
because it enables to take into account contagion effects among idiosyncratic shocks,
that is shocks that only trigger the end of one component in the system, and the
others hidden shocks, included the common shock that would trigger the failure
the system. So, in systemic risk analysis it is reasonable to assume that a trouble
affecting a large bank could trigger the default of many other companies, financial
and non financial, in the system. In reliability theory, it may happen that the
failure of one element in a system may impact on the lifetime of the others, and of
the system as a whole, for example because of a surcharge of labor.

The Archimedean dependence represents the natural extension of the Marshall
Olkin model. The reason is that Archimedean dependence is obtained by conditional
independence of exponential variables. The exponential distribution assumed by the
original Marshall-Olkin model is then only extended by introducing dependence of
these exponential variables on the same common factor. The distribution of this
common factor linking the hidden shock times and its Laplace transform generate
a specific model of the Archimedean family. One question is whether the result
of the original Marshall-Olkin model, that is the exponential distribution of the
observed times, may be preserved in the analysis with Archimedean dependence
case. Cherubini and Mulinacci (2017) prove that the answer to this question is
generally negative. The only exception is the case of a specific kind of Archimedean
dependence, that is the Gumbel copula.

There remains an open issue that is the object of the current paper. The issue
is that the Archimedean dependence assumed among the hidden shock times is
exchangeable. All the hidden components are assumed to have the same dependence
with each one of the others, both idiosyncratic and common. So, an increase of
fragility of one component has the same effect on the whole system, no matter what
the relevance and the role of the component. In systemic risk applications, this would
imply for example that the default of any bank would have the same impact on the
rest of the system, no matter what the dimension and degree of interconnectedness of
the bank. This is far from consistent with reality, where banks of different dimensions
clearly represent different risks for the system as a whole.
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A possible solution to this problem could be to assume a hierarchical Archimedean
structure among the hidden variables. Possibly, the best solution would be to as-
sume a fully-nested hierarchical structure, so that each element of the system could
be associated to a different level of dependence with the others. The task is in-
volved, because a well known fact is that the hierarchical Archimedean structures
require that the variables should be placed in descending order of dependence. To
put it in other terms, the dependence structure among elements in the same set
(or closer elements) must be higher than that among elements of different sets (or
distant elements). The fact that in the common shock models these variables are
not observed make the issue particularly complex. The aim of this paper is to give
a set of directions to address this problem, on a theoretical level.

The plan of the paper is as follows. In Section 2 we review the case of a set
underlying shocks whose dependence structure is given by an Archimedean copula
function. As a particular specification of the model we consider the case in which
the distortions are of linear type and the generator belongs to the Gumbel family: in
this case we recover lifetimes marginally exponentially distributed as in the original
Marshall-Olkin model. In Section 3 we discuss the theoretical features of the ex-
tension to non-exchangeable dependence of the underlying observable shocks arrival
times: in order to compare the results with the exchangeable case we consider, as
an example, the case of linear distortions and of Gumbel generator.

2 The exchangeable dependence case model

In this section we briefly review the case of unobservable shocks linked by an
Archimedean copula. The model presented is a particular case of that studied in
Mulinacci (2015) and Mulinacci (2018) where the possibility of more than one shock
affecting different subsets of the considered lifetimes is allowed. We summarize here
the model, restricted to one common shock, for the sake of completeness and easy-
ness of the reader. Moreover, the simple structure of the exchangeable model will
allow to better understand the degree of complexity that may be induced by an
Archimedean structure.

Let (Ω,F ,P) be a probability space with a d+ 1-vector, (X0, X1, . . . , Xd) whose
components have [0,+∞) as support. X0 denotes the arrival time of the systemic
shock and (X1, . . . , Xd) are those of the idiosyncratic ones. We assume that the
joint survival dependence structure is represented by a strict Archimedean copula,
that is

F̄ (x0, x1, . . . , xd) = ψ
(
ψ−1(F̄0(x0)) + · · ·+ ψ−1(F̄d)

)
for (x0, . . . , xd) ∈ [0,+∞)d+1, where F̄i (that is assumed to be continuous and
strictly decreasing) is the marginal survival function of Xi, i = 1, . . . , d, and ψ
is the generator of a strict d+ 1-dimensional Archimedean copula.
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We recall that ψ is the generator of a d + 1-Archimedean copula if and only if
ψ : [0,+∞)→ [0, 1] is d+ 1-monotone on [0,+∞) that is

• it is differentiable on (0,+∞) up to order d − 1 and the derivatives satisfy
(−1)kψ(k)(x) ≥ 0 for k = 0, 1, . . . , d− 1 and x ∈ (0,+∞)

• (−1)d−1ψ(d−1) is non-increasing and convex in (0,+∞).

(see McNeil and Nešlehová, 2009, for more details on multidimensional Archimedean
copulas).

Since we restrict ourselves to the strict case, we assume ψ(x) > 0 for all x ∈
[0,+∞).

Let us define
τk = min{X0, Xk}, k = 1, . . . , d.

The observed default times τk represent the first arrival time between a common
(systemic) shock affecting all the system and the idiosyncratic shocks. We then add
an Archimedean type of dependence among the arrival times of the shocks, in order
to represent contagion.

The joint survival function of the random vector τ = (τ1, . . . , τd) can be easily
recovered

F̄τ (t1, . . . , td) = ψ

(
ψ−1(F̄0( max

1≤k≤d
{tk})) +

d∑
k=1

ψ−1(F̄k(tk))

)
(1)

for t1, . . . , td ∈ [0,+∞)d, while the marginal survival distribution functions are

F̄τk(t) = ψ
(
ψ−1(F̄0(t)) + ψ−1(F̄k(t))

)
= ψ (H0,k(t)) , t ∈ [0,+∞) (2)

where H0,k(x) = ψ−1(F̄0(x)) + ψ−1(F̄k(x)).

Applying Sklar’s theorem it is also easy to extract the copula function of the
observed default times.

More precisely, the survival copula Ĉ of the vector of default times τ is, for
u ∈ [0, 1]d,

Ĉ(u) =
d∑
j=1

ψ

(
ψ−1(uj) +

d∑
k=1,k 6=j

Dk ◦ ψ−1(uk)

)
1Aj(u) (3)

where Dk(x) = ψ−1 ◦ F̄k ◦H−1
0,k(x) and

Aj =

{
u ∈ [0, 1]d : max

1≤i≤d
{H−1

0,i ◦ ψ−1(ui)} = H−1
0,j ◦ ψ−1(uj)

}
with the convention that if u satisfies the required condition for more than one index
j, it is assumed to belong to the Aj with the smallest index j.
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The main feature of our model, right from the most general setting, is to increase
the degree of dependence among the default times, both with respect to the standard
Archimedean copula without any systemic risk factor and the Marshall-Olkin copula
in which the systemic risk factor is independent of the others. In fact, the copula
in (3) can be seen as a distorted Archimedean copula: in fact, in the case in which
the distortions Dk satisfy Dk(x) = x for all k (that corresponds to the case of
absence of the common shock), we recover the Archimedean copula with generator
ψ. On the other hand, if we consider the generator ψ(x) = e−x (that corresponds
to independence), we recover the Lin and Li (2014) case in the particular situation
in which only one common shock is assumed.

The dependence structure of the model encompasses both the sensitivity of the
default times to the systemic shock, and the dependence among the shocks, rep-
resented by Archimedean copulas. Both these elements interact to determine the
dependence among default times.

In the general setting, the Kendall’s tau τj,k measuring the dependence of the
pair of default times (τj, τk) can be written as

τj,k = τψ + 4

∫ ∞
0

(ψ′(x))2 · T (x)dx

where τψ denotes the Archimedean Kendall’s tau corresponding to the generator ψ
and

T (x) = ψ−1 ◦ F̄0 ◦
(
ψ−1 ◦ F̄0 + ψ−1 ◦ F̄j + ψ−1 ◦ F̄k

)−1
(x)

where we refer the reader to Mulinacci (2018) for the derivation.
Notice that if we are interested in representing the dependence structure between
the systemic shock and default times, we have that the Kendall’s tau τj,0 of the pair
(τj, X0) is

τj,0 = τψ + 4

∫ ∞
0

(ψ′(x))2 ·
(
ψ−1 ◦ F̄0 ◦

(
ψ−1 ◦ F̄0 + ψ−1 ◦ F̄j

)−1
(x)
)
dx

The first term is simply the Kendall’s tau of the Archimedean copula used in the
analysis, while the other term, that is more complex, involves both the generator
of the Archimedean copula and the relative relevance of systemic and idiosyncratic
shocks.

Example 2.1. Linear distortions
A possible assumption about the functions ψ−1(F̄i(x)), in the spirit of the paper

by Muliere and Scarsini (1987), is that they are all proportional to the same function
K(x): that is, ψ−1(F̄i(x)) = λiK(x) for λi > 0, for i = 0, 1, . . . , d. This is equivalent
to

F̄i(x) = ψ (λiK(x))

and distortions of type

Di(x) = (1− αi)x where αi =
λ0

λi + λ0

∈ [0, 1)
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that imply that the resulting copula (see (3)) is independent of K.

In the more specific case in which ψ is completely monotone (that is ψ is the
Laplace transform of some positive random variable), we recover the Scale-Mixture
of Marshall-Olkin distributions and copulas models (SMMO) studied in Li(2009).
The exchangeable case of SMMO model is studied in Mai and Scherer (2013) and
in Bernhart et al. (2013) where it is applied to the pricing of CDOs.

The Gumbel generator case: As an example, we consider the case in which ψ is

the Gumbel generator, that is ψ(x) = e−x
1
θ , θ ≥ 1. Now, equations (1), (2) and (3)

take the form

F̄τ (t1, . . . , td) = exp

−
(
λ0K

(
max
1≤i≤d

{ti}
)

+
d∑

k=1

λkK(tk)

) 1
θ


F̄τk(t) = exp

(
−(λ0 + λk)

1
θK

1
θ (t)
)

Ĉ(u) =
d∑
j=1

exp

−
[

(− lnuj)
θ +

d∑
k=1,k 6=j

(1− αk)(− lnuk)
θ

] 1
θ

1Aj(u).

This case represents a particular specification of the model considered in Cherubini
and Mulinacci (2017) where more than one systemic shock is allowed affecting dif-
ferent subsets of the components. As proved in that paper, if K(x) = xθ, this setting
implies that the observed lifetimes τk are exponentially distributed with intensities

µk = (λ0 + λk)
1
θ .

Moreover in this case (since this family of copulas at a bivariate level represents a
particular specification of the Archimax copulas, see also Capéraà et al. (2000)) the
pairwise Kendall’s taus are known to be

τj,k =
θ − 1

θ
+
τMO
j,k

θ
(4)

where
τ j,kMO =

αjαk
αj + αk − αjαk

is the Kendall’s tau of the Marshall-Olkin copula.
Now, the dependence between each default time and the time of a systemic shock

is linear

τ0,j =
θ − 1

θ
+
αj
θ
. (5)
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3 The hierarchical Archimedean risk factors model

In this Section we will consider a possible extension of the model with exchangeable
dependence structure presented above. Clearly, any d+1-dimensional copula can be
considered in place of the Archimedean one and the same construction implemented.
Among the possible reasonable choices, vine- Archimedean copulas and hierarchical
Archimedean copulas (HAC) could be considered as natural non-exchangeable ex-
tensions.
In this paper we will consider d + 1-dimensional HAC copulas. These are obtained
through the composition of simple Archimedean copulas: such composition is re-
cursively applied using different segmentations of the random variables involved.
Starting from the initial variables u1, . . . , ud+1, these are grouped in l1 copulas
C1,1, . . . , C1,l1 . Then, these copulas are grouped in l2 copulas C2,1, . . . , C2,l2 , and
up to the last level where we have just one copula. In order to ensure that the so
obtained HAC copula is indeed a copula, the generators ψi,j of the copulas involved
have to be completely monotone and the same must hold for their compositions
ψ−1
i+1,j ◦ ψi,k whenever Ci,k is an argument of Ci+1,j. When the generators ψi,j are

in the same parametrized family, the described procedure yields a copula if inner
copulas have a parameter higher than the outer ones: in this paper we will consider
generators belonging to the same family (see Savu and Trede 2008 and McNeil 2008
amog the others as references on this topic).

The fully nested HAC is given by the particurar configuration

C(u) = Cd (Cd−1 (. . . C3 (C2 (C1(u1, u2), u3) , u4) , . . . , ud) , ud+1) .

If the probability distribution of the systemic shock X0 corresponds to u1, then,
the idiosyncratic risks Xi, i ≥ 1, can be decreasingly ordered with respect to the
dependence to X0 being

CX0,Xi(u, v) = Ci−1(u, v).

If, instead, the probability of X0 corresponds to ud+1, then

CX0,Xi(u, v) = Cd(u, v)

and the dependence structure between each idiosyncratic risk and the systemic one
is the same for all the idiosyncratic triggers.
In the intermediate case in which the probability of X0 corresponds to uj for some
j = 2, . . . , d, we have that

CXi,X0(u, v) = Cj−1(u, v)

for those Xi that correspond to those ui with i < j, and

CX0,Xi(u, v) = Ci−1(u, v)

for those Xi that correspond to ui with i > j.
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Of course, under other hierarchical configurations, completely different relation-
ships among the systemic and the idiosyncratic risks can be modeled. For example
if

C(u) = C (Ch,1 (u1, . . . , uj−1) , Ch,2 (uj, uj+1, . . . , ud+1))

where Ch,1 e Ch,2 are again HAC copulas, and X0 corresponds to uj, we have that

CXi,X0(u, v) = C(u, v)

for those Xi so that i < j and

CX0,Xi(u, v) = Ch,2(u, v)

for those Xi so that i > j. Hence, in the first case, the dependence structure between
Xi and X0 is constant and weaker than that in the second case where however it
varies according to the structure of Ch,2.

Notice that, however, whatever is the case, the dependence structure between
X0 and Xi is always Archimedean, exactly as in the exchangeable case investigated
in Section 2. As a consequence, the formulas there presented for the Kendall’s tau
between the systemic shock and every default time continue to hold.

Notice, then, between the fully exchangeable system, and the fully non-exchangeable
one, we can identify an intermediate case in which the exchangeability concept is only
applied to the bivariate relationships between the systemic shock arrival times and
the idiosyncratic shocks, whatever the dependence among the idiosyncratic shocks
could be.

In next subsection we will study the dependence structure induced on the pairs
of the observed lifetimes by the HAC model: this will be done through the analysis
of the pairwise Kendall’s function and Kendall’s tau.

We just recall that the Kendall’s function of a copula C, is the cumulative dis-
tribution function K of the random variable C(U, V ) with respect to the measure
induced by C itself and that the Kendall’s tau τ of a copula C can be computed as
(see, Nelsen 2007)

τ = 3− 4

∫ 1

0

K(t)dt.

3.1 Dependence structure of observed default times

Clearly, the shocks involved are the systemic one and the two idiosyncratic ones that
correspond to the default times we are considering. Formally, let Xi, Xj, Xk be the
three shocks arrival times we are considering. Whatever the hierarchical structure
is, their joint survival distribution is of type

F̄ (xi, xj, xk) = Cψφ
(
Cψθ

(
F̄i(xi), F̄j(xj)

)
, F̄k(xk)

)
8



where Cψφ and Cψθ are bivariate Archimedean copula functions with generators ψφ
and ψθ.

Here below we will analyze the two relevant cases in which the systemic shock is
represented byXi and the case in which it is represented byXk. In both cases, we will
compute the survival distribution of the resulting pair of observable lifetimes and in
order to identify their dependence structure, we show the associated copula function
and we compute their Kendall’s function and Kendall’s tau. As an example, the
particular case of linear distortions is considered and explicit formulas are provided
in the specific case of the Gumbel generators family, that, as in the classical Marshall-
Olkin case, generates exponentially distributed lifetimes.

For the sake of simplicity, we will assume that all marginal survival distributions
are differentiable when needed.

3.1.1 Xi is the arrival time of the systemic shock

Assume Xi be the systemic shock’s arrival time and

τj = min(Xi, Xj), τk = min(Xi, Xk)

be the considered default times. Then the joint survival distribution function of
(τj, τk) is

F̄τj ,τk(tj, tk) = ψφ
(
ψ−1
φ ◦ ψθ

(
ψ−1
θ ◦ F̄i(max(tj, tk)) + ψ−1

θ ◦ F̄j(tj)
)

+ ψ−1
φ ◦ F̄k(tk)

)
,

while the marginal survival distribution functions are

F̄τj(t) = ψθ
(
ψ−1
θ ◦ F̄i(t) + ψ−1

θ ◦ F̄j(t)
)

= ψθ ◦H0,j(t)

and
F̄τk(t) = ψφ

(
ψ−1
φ ◦ F̄i(t) + ψ−1

φ ◦ F̄k(t)
)

= ψφ ◦H0,k(t)

where H0,j(t) = ψ−1
θ ◦ F̄i(t) + ψ−1

θ ◦ F̄j(t) and H0,k(t) = ψ−1
φ ◦ F̄i(t) + ψ−1

φ ◦ F̄k(t).
Hence, thanks to Sklar’s Theorem, from

tj = H−1
0,j ◦ ψ−1

θ (uj) and tk = H−1
0,k ◦ ψ

−1
φ (uk)

we get that the associated survival copula is

Ĉτj ,τk(uj, uk) =

= ψφ
(
ψ−1
φ ◦ ψθ

(
ψ−1
θ ◦ F̄i(max(H−1

0,j ◦ ψ−1
θ (uj), H

−1
0,k ◦ ψ

−1
φ (uk)))+

+ψ−1
θ ◦ F̄j ◦H

−1
0,j ◦ ψ−1

θ (uj)
)

+ ψ−1
φ ◦ F̄k ◦H

−1
0,k ◦ ψ

−1
φ (uk)

)
.

If we set

Dij = ψ−1
θ ◦F̄i◦H

−1
0,j , Dik = ψ−1

θ ◦F̄i◦H
−1
0,k , Dji = ψ−1

θ ◦F̄j ◦H
−1
0,j , Dki = ψ−1

φ ◦F̄k◦H
−1
0,k ,

9



then the associated copula can be rewritten as

Ĉτj ,τk(uj, uk) =

= ψφ
(
ψ−1
φ ◦ ψθ

(
max(Dij ◦ ψ−1

θ (uj), Dik ◦ ψ−1
φ (uk)) +Dji ◦ ψ−1

θ (uj)
)

+Dki ◦ ψ−1
φ (uk)

)
=

=

{
ψφ
(
ψ−1
φ (uj) +Dki ◦ ψ−1

φ (uk)
)
, uk ≥ h(uj)

ψφ
(
ψ−1
φ ◦ ψθ

(
Dik ◦ ψ−1

φ (uk) +Dji ◦ ψ−1
θ (uj)

)
+Dki ◦ ψ−1

φ (uk)
)
, uk < h(uj)

(6)
where

h(x) = ψφ ◦D−1
ik ◦Dij ◦ ψ−1

θ (x).

As for the Kendall’s function and the Kendall’s tau, we have the following results:

Theorem 3.1. If ρ = ψ−1
φ ◦ ψθ, let (see (6))

C(u, v) =

{
ψφ
(
ψ−1
φ (u) +Dki ◦ ψ−1

φ (v)
)
, v ≥ h(u)

ψφ
(
ρ
(
Dik ◦ ψ−1

φ (v) +Dji ◦ ψ−1
θ (u)

)
+Dki ◦ ψ−1

φ (v)
)
, v < h(u)

where
h(x) = ψφ ◦D−1

ik ◦Dij ◦ ψ−1
θ (x).

We have that the corresponding Kendall’s function K(t) = P(C(U, V ) ≤ t) and
Kendall’s tau are, respectively,

K(t) = t−ψ′φ◦ψ−1
φ (t)·

[
Dki ◦ ψ−1

φ (t)−
∫ Dik◦G−1◦ψ−1

φ (t)

Dik◦ψ−1
φ (t)

ρ′ ◦ ρ−1(ψ−1
φ (t)−Dki ◦D−1

ik (z))dz

]
(7)

and

τ = 1 + 4

∫ 1

0

ψ′φ ◦ ψ−1
φ (t) ·Dki ◦ ψ−1

φ (t)dt−

− 4

∫ 1

0

ψ′φ ◦ ψ−1
φ (t)

∫ Dik◦G−1◦ψ−1
φ (t)

Dik◦ψ−1
φ (t)

ρ′ ◦ ρ−1(ψ−1
φ (t)−Dki ◦D−1

ik (z))dzdt

where
G(x) = ψ−1

φ ◦ ψθ ◦D
−1
ij ◦Dik(x) +Dki(x).

Proof. See Appendix 5.

Example 3.1. The linear distortion case

Assume that there exist two functions K and K̂ such that

F̄i(t) = ψθ

(
λ̂iK̂(t)

)
, F̄j(t) = ψθ

(
λjK̂(t)

)
and

F̄i(t) = ψφ (λiK(t)) , F̄k(t) = ψφ (λkK(t))

10



which implies that

K̂(t) =
1

λ̂i
ψ−1
θ ◦ ψφ (λiK(t)) . (8)

Now, setting µij = λ̂i + λj and µik = λi + λk,

H0,j(t) = µ̂ijK̂(t) and H0,k(t) = µikK(t)

and

Dij(x) =
λ̂i
µij

x, Dik(x) =
λ̂i
µik

x, Dji(x) =
λj
µij

x, Dki(x) =
λk
µik

x,

from which

F̄τj(t) = ψθ

(
µijK̂(t)

)
and F̄τk(t) = ψφ (µikK(t))

and

Ĉτj ,τk(uj, uk) =

= ψφ

(
ψ−1
φ ◦ ψθ

(
max

(
λ̂i
µij

ψ−1
θ (uj),

λ̂i
µik

ψ−1
φ (uk)

)
+
λj
µij

ψ−1
θ (uj)

)
+
λk
µik

ψ−1
φ (uk)

)
.

(9)

The Gumbel generators case: Assume ψθ(x) = e−x
1
θ and ψφ(x) = e−x

1
φ

, with

θ ≥ φ ≥ 1. Then ψ−1
φ ◦ ψθ(x) = x

φ
θ and (9) writes

Ĉτj ,τk(uj, uk) =

= exp

−
(max

(
λ̂i
µij

(− log(uj))
θ,
λ̂i
µik

(− log(uk))
φ

)
+
λj
µij

(− log(uj))
θ

)φ
θ

+

+
λk
µik

(− log(uk))
φ

) 1
φ

}
.

Necessarily, by (8), λ̂iK̂ = λ
θ
φ

i K
θ
φ and an admissible choice is

λ̂i = λ
θ
φ

i and K̂ = K
θ
φ .

In particular, if K(t) = tφ and K̂(t) = tθ we recover exponential marginal distribu-
tions, that is

F̄τj(t) = e−µ
1
θ
ijt and F̄τk(t) = e−µ

1
φ
ikt.

In this specific framework, the Kendall’s function and the Kendall’s tau are given
by:

K(t) = t− t
φ

(− log t)1−φ·

 λk
µik

(− log t)φ − φ

θ

∫ λ̂i
µik

G−1((− log t)φ)

λ̂i
µik

(− log t)φ

(
(− log t)φ − λk

λ̂i
z

)1− θ
φ

dz


11



and

τ = 1 +
λk
µik

1

φ
− 4

θ

∫ 1

0

t(log t)1−φ

∫ λ̂i
µik

G−1((− log t)φ)

λ̂i
µik

(− log t)φ

(
(− log t)φ − λk

λ̂i
z

)1− θ
φ

dz

 dt

where G(x) =
(
µij
µik

)φ
θ
x
φ
θ + λk

µik
x.

3.1.2 Xk is the arrival time of the systemic shock

Here we assume that Xk is the arrival time of the systemic shock and

τi = min(Xi, Xk) and τj = min(Xj, Xk)

the observable lifetimes. Then their joint survival distribution is

F̄τi,τj(ti, tj) = ψφ
[
ψ−1
φ ◦ ψθ

(
ψ−1
θ (F̄i(ti)) + ψ−1

θ (F̄j(tj))
)

+ ψ−1
φ (F̄k(max(ti, tj))

]
while the marginal survival distributions are

F̄τi(ti) = ψφ ◦H0,i(ti) and F̄τj(tj) = ψφ ◦H0,j(tj)

where
H0,i = ψ−1

φ ◦ F̄i + ψ−1
φ ◦ F̄k and H0,j = ψ−1

φ ◦ F̄j + ψ−1
φ ◦ F̄k.

If ρ = ψ−1
φ ◦ ψθ, the joint survival distribution can be rewritten as

F̄τi,τj(ti, tj) = ψφ
[
ρ
(
ρ−1 ◦ ψ−1

φ ◦ F̄i(ti) + ρ−1 ◦ ψ−1
φ ◦ F̄j(tj)

)
+ ψ−1

φ ◦ F̄k(max(ti, tj))
]

and, applying Sklar’s Theorem, we recover the associated survival copula

Ĉτi,τj(ui, uj) = ψφ
[
ρ
(
ρ−1 ◦ ψ−1

φ ◦ F̄i ◦H
−1
0,i ◦ ψ−1

φ (ui) + ρ−1 ◦ ψ−1
φ ◦ F̄j ◦H

−1
0,j ◦ ψ−1

φ (uj)
)

+

+ψ−1
φ ◦ F̄k(max(H−1

0,i ◦ ψ−1
φ (ui), H

−1
0,j ◦ ψ−1

φ (uj)))
]
.

If we set

Dik = ψ−1
φ ◦F̄i◦H

−1
0,i , Djk = ψ−1

φ ◦F̄j◦H
−1
0,j , Dki = ψ−1

φ ◦F̄k◦H
−1
0,i and Dkj = ψ−1

φ ◦F̄k◦H
−1
0,j ,

the copula can be rewritten as

Ĉτi,τj(ui, uj) =

ψφ
[
ρ
(
ρ−1 ◦Dik ◦ ψ−1

φ (ui) + ρ−1 ◦Djk ◦ ψ−1
φ (uj)

)
+ max(Dki ◦ ψ−1

φ (ui), Dkj ◦ ψ−1
φ (uj))

]
=

=

{
ψφ
[
ρ
(
ρ−1 ◦Dik ◦ ψ−1

φ (ui) + ρ−1 ◦Djk ◦ ψ−1
φ (uj)

)
+Dki ◦ ψ−1

φ (ui)
]
, uj ≥ h(ui)

ψφ
[
ρ
(
ρ−1 ◦Dik ◦ ψ−1

φ (ui) + ρ−1 ◦Djk ◦ ψ−1
φ (uj)

)
+Dkj ◦ ψ−1

φ (uj)
]
, uj < h(ui)

(10)
where

h(x) = ψφ ◦D−1
kj ◦Dki ◦ ψ−1

φ (x).

In our present framework the Kendall’s function and the Kendall’s tau are given
by the following result:

12



Theorem 3.2. Let (see (10))

C(u, v) =

=

{
ψφ
[
ρ
(
ρ−1 ◦Dik ◦ ψ−1

φ (u) + ρ−1 ◦Djk ◦ ψ−1
φ (v)

)
+Dki ◦ ψ−1

φ (u)
]
, v ≥ h(u)

ψφ
[
ρ
(
ρ−1 ◦Dik ◦ ψ−1

φ (u) + ρ−1 ◦Djk ◦ ψ−1
φ (v)

)
+Dkj ◦ ψ−1

φ (v)
]
, v < h(u)

where
h(x) = ψφ ◦D−1

kj ◦Dki ◦ ψ−1
φ (x).

We have that the Kendall’s function K(t) = P(C(U, V ) ≤ t) and the Kendall’s tau
respectively are

K(t) = t+ ψ′φ ◦ ψ−1
φ (t)·

·

[∫ ρ−1◦ψ−1
φ ◦F̄j◦G

−1◦ψ−1
φ (t)

ρ−1◦Djk◦ψ−1
φ (t)

ρ′ ◦ ρ−1
{
ψ−1
φ (t)− ψ−1

φ ◦ F̄k ◦ F̄
−1
j ◦ ψφ ◦ ρ(z)

}
dz+

+

∫ ρ−1◦ψ−1
φ ◦F̄i◦G

−1◦ψ−1
φ (t)

ρ−1◦Dik◦ψ−1
φ (t)

ρ′ ◦ ρ−1
{
ψ−1
φ (t)− ψ−1

φ ◦ F̄k ◦ F̄
−1
i ◦ ψφ ◦ ρ(z)

}
dz+

−(Dkj +Dki) ◦ ψ−1
φ (t) + 2ψ−1

φ ◦ F̄k ◦G
−1 ◦ ψ−1

φ (t)
]

(11)
and

τ = 1− 4

∫ 1

0

ψ′φ ◦ ψ−1
φ (t) ·

[∫ ρ−1◦ψ−1
φ ◦F̄j◦G

−1◦ψ−1
φ (t)

ρ−1◦Djk◦ψ−1
φ (t)

ρ′ ◦ ρ−1
{
ψ−1
φ (t)− ψ−1

φ ◦ F̄k ◦ F̄
−1
j ◦ ψφ ◦ ρ(z)

}
dz+

+

∫ ρ−1◦ψ−1
φ ◦F̄i◦G

−1◦ψ−1
φ (t)

ρ−1◦Dik◦ψ−1
φ (t)

ρ′ ◦ ρ−1
{
ψ−1
φ (t)− ψ−1

φ ◦ F̄k ◦ F̄
−1
i ◦ ψφ ◦ ρ(z)

}
dz

]
dt+

− 4

∫ 1

0

ψ′φ ◦ ψ−1
φ (t) · (2ψ−1

φ ◦ F̄k ◦G
−1 − (Dkj +Dki)) ◦ ψ−1

φ (t)dt

where

G(z) = ρ
{
ρ−1 ◦ ψ−1

φ ◦ F̄i(z) + ρ−1 ◦ ψ−1
φ ◦ F̄j(z)

}
+ ψ−1

φ ◦ F̄k(z). (12)

Proof. See Appendix 5.

Example 3.2. The linear distortion case

Assume there exists a function K such that

F̄v(x) = ψφ (λvK(x)) for v = i, j, k,

and set µik = λi + λk and µjk = λj + λk.
It follows that

Dik(x) =
λi
µik

x, Djk(x) =
λj
µjk

x, Dki(x) =
λk
µik

x and Dkj(x) =
λk
µjk

x

13



and the marginal survival distributions can be written as

F̄τs(t) = ψφ (µskK(t)) , s = i, j

while the associated survival copula takes the form

Ĉτi,τj(ui, uj) =

ψφ

[
ρ

(
ρ−1

(
λi
µik

ψ−1
φ (ui)

)
+ ρ−1

(
λj
µjk

ψ−1
φ (uj)

))
+ max(

λk
µik

ψ−1
φ (ui),

λk
µjk

ψ−1
φ (uj))

]
.

The Gumbel generators case: Assume ψθ(x) = e−x
1
θ and ψφ(x) = e−x

1
φ

, with θ ≥
φ ≥ 1. Then ρ(x) = x

φ
θ and

Ĉτi,τj(ui, uj) = exp

−
(( λi

µik

) θ
φ

(− log(ui))
θ +

(
λj
µjk

) θ
φ

(− log(uj))
θ

)φ
θ

+

+ max

(
λk
µik

(− log(ui))
φ,
λk
µjk

(− log(uj))
φ

)] 1
φ

}
while, if K(t) = tφ, we get exponential marginal distributions

F̄τi(t) = e−µ
1
φ
ikt and F̄τj(t) = e−µ

1
φ
jkt.

Moreover, in this framework, the Kendall’s function is given by

K(t) = t− t

φ
(− log t)1−φ ·

φ
θ

∫ λ
θ
φ
j (G−1((− log t)φ))

θ
φ

(
λj
µjk

) θ
φ

(− log t)θ

(
(− log t)φ − λk

λj
z
φ
θ

)1− θ
φ

dz+

+
φ

θ

∫ λ
θ
φ
i (G−1((− log t)φ))

θ
φ

(
λi
µik

) θ
φ (− log t)θ

(
(− log t)φ − λk

λi
z
φ
θ

)1− θ
φ

dz+

−
(
λk
µik

+
λk
µjk

)
(− log t)φ + 2λkG

−1((− log t)φ)

]
while the Kendall’s tau is

τ = 1− 4

θ

∫ 1

0

t(− log t)1−φ ·

∫ λ
θ
φ
j (G−1((− log t)φ))

θ
φ

(
λj
µjk

) θ
φ

(− log t)θ

(
(− log t)φ − λk

λj
z
φ
θ

)1− θ
φ

dz+

+

∫ λ
θ
φ
i (G−1((− log t)φ))

θ
φ

(
λi
µik

) θ
φ (− log t)θ

(
(− log t)φ − λk

λi
z
φ
θ

)1− θ
φ

dz

 dt+
− 4

φ

∫ 1

0

t(− log t)1−φ
(

2λkG
−1((− log t)φ)−

(
λk
µik

+
λk
µjk

)
(− log t)φ

)
dt
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where

G(z) =

(
λ
θ
φ

i + λ
θ
φ

j

)φ
θ

zφ + λkz.

4 Conclusions

This paper presents in full generality the extension of the Marshall Olkin model
to the case in which the hidden factors are linked by an Archimedean dependence
structure. The ultimate contribution that we provide to this problem is that of a
fully nested Archimedean structure in which the dependence structure of the hid-
den factors is fully flexible, within the set of Archimedean copulas. The problem is
made complex by the fact that not every nested Archimedean structure preserves the
properties of a multivariate distribution. For this reason, in practical applications
different models should be adopted depending on the degree of dependence between
the common shock and any of the idiosyncratic ones. The contribution of this paper
is to derive the dependence structure between the observed shocks consistent with
the chosen Archimedean hierarchical structure. In many cases the theoretical depen-
dence structure of the observed components would require numerical integration or
simulation, but this is not much more involved than in the exchangeable case, when
the analytical method of moment approach can be used only in a specific case, the
Gumbel-Marshall-Olkin copula. For the rest, both in the Archimedean exchangeable
and hierarchical cases, whether to stick to the methods of moments, implemented
with numerical methods, or to resort to simulation is an empirical problem to be
left for future research. Here we help that choice giving the formulas of the link
between a hierarchical Archimedean structure and the Kendall tau matrix defining
the dependence of the observed shocks.

5 Appendix

Proof of Theorem 3.1

Proof. In the sequel we set ∂1C(u, v) = ∂
∂u
C(u, v) and ∂2C(u, v) = ∂

∂v
C(u, v).

We want to compute the C-measure of the set

St = {(u, v) ∈ [0, 1]2 : C(u, v) ≤ t}.

Notice that the level curve C(u, v) = t intersects the graph of the function v = h(u)
in a unique point that we denote with (ut, vt). Hence St can be decomposed as
St = Rt+R1,t+R2,t where Rt = [0, ut]×[0, vt], R1,t = {(u, v) : v ∈ (vt, 1], C(u, v) ≤ t}
and R2,t = {(u, v) : u ∈ (ut, 1], C(u, v) ≤ t}.
Clearly, the C-measure of Rt is t. In order to compute the C-measure of R1,t and
R2,t, we compute ut and vt. Since (ut, vt) satisfies ψφ

(
ψ−1
φ (ut) +Dki ◦ ψ−1

φ (vt)
)

= t
and vt = h(ut), we get

ψ−1
φ ◦ ψθ ◦D

−1
ij ◦Dik ◦ ψ−1

φ (vt) +Dki ◦ ψ−1
φ (vt) = ψ−1

φ (t)
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from which
vt = ψφ ◦G−1 ◦ ψ−1

φ (t)

and
ut = ψθ ◦D−1

ij ◦Dik ◦G−1 ◦ ψ−1
φ (t).

Let us start with R1,t. Notice that here, C(u, v) ≤ t is equivalent to u ≤ F1(t, v)
where F1(t, v) = ψφ

(
ψ−1
φ (t)−Dki ◦ ψ−1

φ (v)
)
. Hence

P(R1,t) =

∫ 1

vt

P(U ≤ F1(t, v)|V = v)dv =

=

∫ 1

vt

∂2C(F1(t, v), v)dv =

=

∫ 1

vt

ψ′φ ◦ ψ−1
φ (t) · d

dv
Dki ◦ ψ−1

φ (v)dv =

= −ψ′φ ◦ ψ−1
φ (t) ·Dki ◦ ψ−1

φ (vt).

Let us now consider R2,t. Notice that here, the inequality C(u, v) ≤ t, is equivalent
to u ≤ F2(t, v) where

F2(t, v) = ψθ ◦D−1
ji

(
ρ−1

(
ψ−1
φ (t)−Dki ◦ ψ−1

φ (v)
)
−Dik ◦ ψ−1

φ (v)
)
.

But

R2,t = {(u, v) : ut < u ≤ 1, t < v, C(u, v) ≤ t} ∪ {(u, v) : ut < u ≤ 1, v ≤ t}

and
P (ut < U ≤ 1, V ≤ t) = t− C(ut, t) =

= P (U ≤ ut, t < V ≤ vt) .

Hence

P(R2,t) =

∫ vt

t

P(U ≤ F2(t, v)|V = v)dv =

=

∫ vt

t

∂2C(F2(t, v), v)dv =

=

∫ vt

t

ψ′φ ◦ ψ−1
φ (t){ρ′ ◦ ρ−1

(
ψ−1
φ (t)−Dki ◦ ψ−1

φ (v)
) d
dv
Dik ◦ ψ−1

φ (v) +
d

dv
Dki ◦ ψ−1

φ (v)}dv =

= ψ′φ ◦ ψ−1
φ (t)

{∫ Dik◦ψ−1
φ (vt)

Dik◦ψ−1
φ (t)

ρ′ ◦ ρ−1(ψ−1
φ (t)−Dki ◦D−1

ik (z))dz+

+Dki ◦ ψ−1
φ (vt)−Dki ◦ ψ−1

φ (t)
}
.

From P(St) = t+ P(R1,t) + P(R2,t) we get (7).
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As a consequence, the Kendall’s tau is

τ = 3− 4

∫ 1

0

K(t)dt =

= 3− 4

∫ 1

0

{
t− ψ′φ ◦ ψ−1

φ (t)·

·

[
Dki ◦ ψ−1

φ (t)−
∫ Dik◦G−1◦ψ−1

φ (t)

Dik◦ψ−1
φ (t)

ρ′ ◦ ρ−1(ψ−1
φ (t)−Dki ◦D−1

ik (z))dz

]}
dt =

= 1 + 4

∫ 1

0

ψ′φ ◦ ψ−1
φ (t) ·Dki ◦ ψ−1

φ (t)dt−

− 4

∫ 1

0

ψ′φ ◦ ψ−1
φ (t)

∫ Dik◦G−1◦ψ−1
φ (t)

Dik◦ψ−1
φ (t)

ρ′ ◦ ρ−1(ψ−1
φ (t)−Dki ◦D−1

ik (z))dzdt.

Proof of Theorem 3.2

Proof. In the sequel we set ∂1C(u, v) = ∂
∂u
C(u, v) and ∂2C(u, v) = ∂

∂v
C(u, v).

The proof is similar to the one of Theorem 3.1.

Again we decompose the set St = {(u, v) ∈ [0, 1]2 : C(u, v) ≤ t} as St = Rt +
R1,t + R2,t where, if (ut, vt) is the intersection point of the curves C(u, v) = t and
v = h(u), Rt = [0, ut] × [0, vt], R1,t = {(u, v) : u ∈ (ut, 1], C(u, v) ≤ t} and R2,t =
{(u, v) : v ∈ (vt, 1], C(u, v) ≤ t}.
Clearly, the C-measure of Rt is t. In order to compute the C-measure of R1,t and
R2,t, we compute ut and vt. Since

ψφ
[
ρ
(
ρ−1 ◦Dik ◦ ψ−1

φ (ut) + ρ−1 ◦Djk ◦ ψ−1
φ (vt)

)
+Dkj ◦ ψ−1

φ (vt)
]

= t

and vt = h(ut), we get
vt = ψφ ◦H0,j ◦G−1 ◦ ψ−1

φ (t)

and
ut = ψφ ◦H0,i ◦G−1 ◦ ψ−1

φ (t)

where G is given by (12).
Let us start with R1,t. Notice that here, C(u, v) ≤ t is equivalent to u ≤ F1(t, v)
where

F1(t, v) = ψφ ◦D−1
ik ◦ ρ

(
ρ−1

(
ψ−1
φ (t)−Dkj ◦ ψ−1

φ (v)
)
− ρ−1 ◦Djk ◦ ψ−1

φ (v)
)
.

17



By similar arguments as those used in the proof of Theorem 3.1, we have

P(R1,t) =

∫ vt

t

P(U ≤ F1(t, v)|V = v)dv =

=

∫ vt

t

∂2C(F1(t, v), v)dv =

=

∫ vt

t

ψ′φ ◦ ψ−1
φ (t)

{
ρ′ ◦ ρ−1

(
ψ−1
φ (t)−Dkj ◦ ψ−1

φ (v)
) d
dv
ρ−1 ◦Djk ◦ ψ−1

φ (v)+

+
d

dv
Dkj ◦ ψ−1

φ (v)

}
dv =

= ψ′φ ◦ ψ−1
φ (t)

{∫ ρ−1◦Djk◦ψ−1
φ (vt)

ρ−1◦Djk◦ψ−1
φ (t)

ρ′ ◦ ρ−1(ψ−1
φ (t)− ψ−1

φ ◦ F̄k ◦ F̄
−1
j ◦ ψφ ◦ ρ(z))dz+

+Dkj ◦ ψ−1
φ (vt)−Dkj ◦ ψ−1

φ (t)
}
.

Substituting vt we get

P(R1,t) =

= ψ′φ ◦ ψ−1
φ (t)

{∫ ρ−1◦ψ−1
φ ◦F̄j◦G

−1ψ−1
φ (t)

ρ−1◦Djk◦ψ−1
φ (t)

ρ′ ◦ ρ−1(ψ−1
φ (t)− ψ−1

φ ◦ F̄k ◦ F̄
−1
j ◦ ψφ ◦ ρ(z))dz+

+ψ−1
φ ◦ F̄k ◦G

−1 ◦ ψ−1
φ (t)−Dkj ◦ ψ−1

φ (t)
}
.

With similar computations we get

P(R2,t) =

= ψ′φ ◦ ψ−1
φ (t)

{∫ ρ−1◦ψ−1
φ ◦F̄i◦G

−1ψ−1
φ (t)

ρ−1◦Dik◦ψ−1
φ (t)

ρ′ ◦ ρ−1(ψ−1
φ (t)− ψ−1

φ ◦ F̄k ◦ F̄
−1
i ◦ ψφ ◦ ρ(z))dz+

+ψ−1
φ ◦ F̄k ◦G

−1 ◦ ψ−1
φ (t)−Dki ◦ ψ−1

φ (t)
}
.

From P(St) = t+ P(R1,t) + P(R2,t) we get (11).

As a consequence, the Kendall’s tau is

τ = 3− 4

∫ 1

0

K(t)dt =

= 1− 4

∫ 1

0

ψ′φ ◦ ψ−1
φ (t)·

·

[∫ ρ−1◦ψ−1
φ ◦F̄j◦G

−1◦ψ−1
φ (t)

ρ−1◦Djk◦ψ−1
φ (t)

ρ′ ◦ ρ−1
{
ψ−1
φ (t)− ψ−1

φ ◦ F̄k ◦ F̄
−1
j ◦ ψφ ◦ ρ(z)

}
dz+

+

∫ ρ−1◦ψ−1
φ ◦F̄i◦G

−1◦ψ−1
φ (t)

ρ−1◦Dik◦ψ−1
φ (t)

ρ′ ◦ ρ−1
{
ψ−1
φ (t)− ψ−1

φ ◦ F̄k ◦ F̄
−1
i ◦ ψφ ◦ ρ(z)

}
dz

]
dt+

− 4

∫ 1

0

ψ′φ ◦ ψ−1
φ (t) · (2ψ−1

φ ◦ F̄k ◦G
−1 − (Dkj +Dki)) ◦ ψ−1

φ (t)dt.
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