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Abstract: Canned tuna is one of the most widely traded seafood products internationally and is
of growing demand. There is an increasing concern over the vulnerability of canned tuna supply
chains to species mislabelling and fraud. Extensive processing conditions in canning operations
can lead to the degradation and fragmentation of DNA, complicating product traceability. We here
employed a forensically validated DNA barcoding tool (cytochrome b partial sequences) to assess the
effects of canning processes on DNA degradation and the identification of four tropical tuna species
(yellowfin, bigeye, skipjack and longtail tuna) collected on a global scale, along their commercial
chains. Each species was studied under five different canning processes i.e., freezing, defrosting,
cooking, and canning in oil and brine, in order to investigate how these affect DNA-based species
identification and traceability. The highest percentage of nucleotide substitutions were observed
after brine-canning operations and were greatest for yellowfin and skipjack tuna. Overall, we found
that DNA degradation significantly increased along the tuna canning process for most specimens.
Consequently, most of the specimens canned in oil or brine were misidentified due to the high rate of
nucleotide substitution in diagnostic sequences.

Keywords: tropical tunas; DNA barcoding; seafood mislabelling; traceability; species substitution

1. Introduction

The demand for seafood continues to increase worldwide [1]. Some of the most widely traded seafood
products are tunas (Perciformes, Scombridae, Thunnini), accounting for ~10% of the international seafood
market [2,3]. Tunas are mostly caught by industrial pelagic fisheries, and in 2014 their global landings
peaked at 7.7 million metric tons [4]. Catches have since stabilized at around 7.5 million metric tons [1,4].
Four species of tropical tunas dominate global tuna landings: skipjack tuna (Katsuwonus pelamis, L. 1758;
SKJ), yellowfin tuna (Thunnus albacares, Bonnaterre, 1788; YFT), bigeye tuna (Thunnus obesus, Lowe, 1839;
BET) and longtail tuna (Thunnus tonggol, Bleeker, 1851; LOT). Among these, SKJ supports the largest
fishery and has the lowest relative market price, while YFT is the second most caught and has the
highest market price [5,6]. All four species are used in canning operations, increasing their marketability
and transportability.

Tuna canning consists of several processes that transform fish into preserved products, such as
filleting, freezing, defrosting, cooking, and canning in oil or brine. The morphological identification of
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species becomes impossible after fish filleting. This provides opportunity for the deliberate species
substitutions in the commercial tuna market, as reported by several studies [7–9]. Seafood mislabelling
is a growing and widespread problem with potentially serious economic, environmental and human
health impacts [10]. Seafood mislabelling can occur unintentionally or deliberately [11]. Closely related
species misidentified at capture and confusion over common names of species used along the supply
chain are examples of unintentional substitutions. However, deliberate mislabelling involves the
active substitution of species, often for financial gain. This occurs with the substitution of higher value
species (e.g., YFT and BET) for lower value species (e.g., SKJ), or when fish from unsustainable or
illegal fisheries are used [11]. Due to their high value and great demand, tunas are likely candidates
for seafood fraud. Globally, rates of tuna mislabelling vary with different studies reporting a range
of values [8,9,12]. However, these studies are difficult to compare because of varying factors such
as fishing areas, type of retailer, sampling target and year. Moreover, some species are sold with the
generic name “tuna”, further complicating comparisons of mislabelling rates between studies [13].

In the last few years, seafood mislabelling is reported to have decreased in the European Union
(EU) commercial area due to the existence of specific labelling regulations (e.g., EU 1379/2013) and
the use of appropriate species identification methods [7,14]. The main goal of EU regulations is to
provide information to consumers such as commercial and scientific names, thus assuring traceability
and identification throughout the value chain [14]. The recent decrease in EU seafood mislabelling
rate may be also linked to improvements in traceability testing [9,14]. Among the different species
identification for seafood products, DNA barcoding has shown a high reliability at different processing
levels [15–20]. DNA barcoding represents a powerful tool for rapid species identification based on the
amplification and sequencing of short DNA fragments [21]. For studies on animals, the mitochondrial
DNA (mtDNA) is generally preferred as genetic detection target over the nuclear DNA because it is
inherited without recombination, has a greater abundance (higher copy number) in genomic extracts,
and a higher rate of base substitution [22]. A number of studies have shown the applicability of DNA
barcoding for accurate species identification of a wide range of tuna products, e.g., canned products,
sushi and tuna steaks [23–25]. Indeed, DNA is usually more resistant to industrial processes than
other molecular markers (e.g., proteins) and can be successfully detected even in small traces [26].
However, canning processes cause the chemical and physical alteration, degradation (as base pair
substitutions), and fragmentation of DNA molecules [27]. Due to this, the applicability of molecular
methods on canned tuna is still surrounded by uncertainties related mainly to the quantity and quality
of extractable DNA [17,19,28–30].

Among the different mtDNA markers, the cytochrome b (Cyt b) coding gene shows a relatively
high mutation rate. For this reason, Cyt b is powerful for discriminating among closely related tuna
species [31]. Botti and Giuffra [32] developed a cocktail of primers that successfully amplifies a Cyt
b fragment that allows the discrimination among 17 fish species of the Scombridae family, even in
highly degraded samples (i.e., canned tuna and tuna salads). Therefore, in this study we employed this
forensically validated DNA barcoding method [32] to assess the impact of DNA degradation on the
identification of four target tunas (YFT, BET, SKJ and LOT) along the commercial canned tuna processing
chain. This study aimed to: (i) assess the level of DNA degradation, i.e., nucleotide substitution
at different processing stages (Figure 1), and (ii) investigate molecular species misidentifications at
different processing stages.



Foods 2020, 9, 1372 3 of 15
Foods 2020, 9, x FOR PEER REVIEW 3 of 14 

Foods 2020, 9, x; doi: FOR PEER REVIEW www.mdpi.com/journal/foods 

 
Figure 1. A schematic of the sampling design for the four target tuna species at four processing levels 
along the tuna canning chain. Each specimen was morphologically identified at the tuna canneries 
and then genetically identified after having been subjected to each processing level (L1–L4). 

2. Materials and Methods 

2.1. Sample Collection 

A specific sampling was designed to evaluate the degree of DNA degradation and fragmentation 
in the different processing steps of tuna canning. Commercial samples of four species: yellowfin tuna 
(Thunnus albacares; YFT), bigeye tuna (T. obesus; BET), skipjack tuna (Katsuwonus pelamis; SKJ) and 
longtail tuna (T. tonggol, LOT) were obtained from the same tuna canning company on a global scale 
along with the canning processes (Supplementary Text S1). Tissue samples were collected from the 
same individuals at each of the processing levels: L1) frozen; L2) defrosted; L3) cooked; L4O) canned 
in oil and L4B) canned in brine (Figure 1, Supplementary Text S1). This sampling design enabled 
attempts to genetically identify individuals of each species at each processing level. At least three 
individuals of each species were sampled from each of the FAO Major Fishing Areas where they are 
caught (http://www.fao.org/fishery/area/search/en) (Table 1).   

Figure 1. A schematic of the sampling design for the four target tuna species at four processing levels
along the tuna canning chain. Each specimen was morphologically identified at the tuna canneries and
then genetically identified after having been subjected to each processing level (L1–L4).

2. Materials and Methods

2.1. Sample Collection

A specific sampling was designed to evaluate the degree of DNA degradation and fragmentation
in the different processing steps of tuna canning. Commercial samples of four species: yellowfin
tuna (Thunnus albacares; YFT), bigeye tuna (T. obesus; BET), skipjack tuna (Katsuwonus pelamis; SKJ)
and longtail tuna (T. tonggol, LOT) were obtained from the same tuna canning company on a global
scale along with the canning processes (Supplementary Text S1). Tissue samples were collected from
the same individuals at each of the processing levels: (L1) frozen; (L2) defrosted; (L3) cooked; (L4O)
canned in oil and (L4B) canned in brine (Figure 1, Supplementary Text S1). This sampling design
enabled attempts to genetically identify individuals of each species at each processing level. At least
three individuals of each species were sampled from each of the FAO Major Fishing Areas where they
are caught (http://www.fao.org/fishery/area/search/en) (Table 1).

http://www.fao.org/fishery/area/search/en
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Table 1. Sampling and sequencing information for each specimen of the four species studied herein
(Yellowfin tuna: YFT; Bigeye tuna: BET; Longtail tuna; LOT, Skipjack tuna: SKJ). The four processing
levels: L1-L4. Amplified fragment of the mitochondrial gene Cyt b that were sequenced: AB (236 bp),
A (117 bp), B (109 bp). Amplification failures: “na“. FAO Major Fishing Areas are detailed online:
http://www.fao.org/fishery/area/search/en.

Species FAO Major
Fishing Area

Specimen Fork Length
(cm)

Total Weight
(kg)

Amplified fragment (AB, A, B)

L1 L2 L3 L4O L4B

YFT

Atlantic Ocean
-FAO 34

1 104–140 51 AB AB AB B B
2 101–168 44 AB AB AB B B
3 107–138 52 AB AB na B B

Indian Ocean
-FAO 51

1 54.5 3.06 AB AB AB B B
2 57 3.6 AB AB AB B B
3 61.5 4.28 AB AB AB B B

Eastern Pacific
Ocean

-FAO 87

1 55.88 3.37 AB AB AB B B
2 54.61 3.16 AB AB AB B B
3 55.88 3.69 AB AB AB B B

Western-Central
Pacific Ocean

-FAO 71

1 45 1.7 AB AB AB B B
2 48.5 2.3 AB AB AB B B
3 41 1.2 AB AB AB B B

BET

Indian Ocean
-FAO 51

1 41 1.6 AB AB A B B
2 45 1.7 AB AB A B B
3 42 1.7 AB AB A B B

Eastern Pacific
Ocean

-FAO 87

1 71.12 7.47 AB AB A B B
2 74.93 8.35 AB AB A B B
3 68.58 6.37 AB AB A B B

LOT Indian Ocean
-FAO 51

1 42 1 AB AB A B B
2 48 1.6 AB AB AB B B
3 44 1.2 AB AB AB B B

SKJ

Atlantic Ocean
-FAO 34

1 41–60 4.95 AB AB AB A B
2 42–63.5 5.45 AB AB AB B B
3 42–62 5.3 AB AB na B B

Indian Ocean
-FAO 51

1 48 3.54 AB AB AB B B
2 47 3.48 AB AB AB B na
3 52 4.26 AB AB AB B B

Eastern Pacific
Ocean

-FAO 87

1 64.77 5.22 AB AB AB B B
2 59.69 4.97 AB AB AB B B
3 58.42 4.11 AB AB AB B B

Western-Central
Pacific Ocean

-FAO 71

1 48 2.1 AB AB AB B B
2 46 1.8 AB AB AB B B
3 45 1.9 AB AB AB B B

2.2. DNA Analysis

DNA was extracted from each sample using the General Rapid Easy Extraction System (GREES)
DNA Kit for Food (InCura Srl, Italy), following the manufacturer′s instructions. GREES is a spin
column method optimized for DNA extraction from food for forensic purposes. Extractions were
quality-assessed using 0.8% agarose gel electrophoresis and then stored at −20 ◦C until further
processing. Fragments of the mitochondrial gene Cyt b were amplified via polymerase chain reaction
(PCR) following Botti and Giuffra [32]. Three fragments of different lengths (AB: 236 bp, A: 117 bp,
and B: 109 bp; Table 1) were amplified due to the expected degradation of DNA in our samples.
PCR reactions contained 5 µL of DNA, 375 nM of each primer (forward and reverse), 0.2 mM dNTPs
and 0.5 U of HotstartTaq DNA Polymerase (Qiagen S.r.l, Milano, Italy) for a total volume of 25 µL.
PCR conditions consisted of 95 ◦C for 5 min, followed by 40 cycles of: 95 ◦C for 30 s, 60 ◦C for
30s and 72 ◦C for 30 s, followed by a final elongation step at 72 ◦C for 5 min. PCR products were
first evaluated on a 2% agarose gel, and then purified using the ExoSAP-IT™ Express PCR Product

http://www.fao.org/fishery/area/search/en
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Cleanup Reagent (ThermoFisher Scientific Inc., Monza, Italy) following the manufacturer’s instructions.
Purified amplicons were sequenced by the Sanger method in an external facility (Macrogen Europe,
Amsterdam, The Netherlands). Electropherograms from all successfully amplified samples were
retrieved and inspected visually.

2.3. DNA Traceability

The DNA sequences obtained were analysed using the software MEGA v7 [33]. Sequences were
aligned using the Clustal W algorithm implemented in MEGA v7 and searched against the appropriate
nucleotide sequence database in GenBank (www.ncbi.nlm.nih.gov; [34]) using the BLASTn search tool
and a full sequence coverage. A sequence similarity of >98% was used as criterion to assess species
identifications [35].

In order to evaluate all the diagnostic positions among the four target tuna species, homologous
sequences deposited in GenBank were retrieved to build up a sequence reference dataset. A total of
372 sequences (64 of T. albacares, 46 of T. obesus, 25 of T. tonggol and 237 of K. pelamis; Supplementary
Table S1) were retrieved and aligned to the sequence of the mitochondrial genome of Thunnus thynnus L.
1758 (NCBI: NC_004901, positions 14665–14901; see Supplementary Table S1). Sequences obtained
from the first processing level (L1, frozen samples) were aligned to the retrieved public sequences and
added to the reference dataset.

Automatic Barcode Gap Discovery analysis (ABGD; [36]) was used to estimate the level of intra-
and inter-specific variability in the reference dataset. We used the ABGD web-interface available at
https://bioinfo.mnhn.fr/abi/public/abgd/abgdweb.html using the default values of relative gap width
(X = 1.5) and p-distance.

We estimated the percentage of nucleotide substitutions (NS) of the Cyt b for each species at each
processing level (L2–L4) by aligning the obtained sequences to the reference dataset. NS was calculated
for each individual sequence as the percentage of the variable positions with respect to the reference
level (L1) of the same specimen. The arithmetic average NS was calculated for each level and ocean.

For each level, the genetic species identification of each individual was compared to the morphological
identification performed at the tuna canneries. This enabled the inference of how DNA-based traceability
is altered along the processing levels of the canned tuna chain for each individual.

2.4. Statistical Analysis

All analyses were conducted in R v4.0.0 (R Core Team, 2019). The lme4 package (v1.1-23; [37]) was
used to fit Generalized Linear Mixed Models (GLMMs). In order to facilitate reproducible research,
we provided the R code used for the models and plots in Supplementary Text S1. The overdisp_fun
function, described in Bolker et al. [38], was used to calculate the point estimate of overdispersion in
GLMMs with the corresponding significance values. A likelihood ratio test was performed using the
anova() function.

As the Cyt b sequence is species specific, we modelled NS as a function of consequential canning
processes. The following model was fitted, assuming a Poisson distribution:

glmer(nNS ~ Level*Species + (1 | Individual/Species)

where “nNS” = the count of nucleotide substitutions, “Level” = the consequential canning process,
“Individual” = the 33 different individuals sampled and “Species” = the morphological identification
of each individual/sample.

www.ncbi.nlm.nih.gov
https://bioinfo.mnhn.fr/abi/public/abgd/abgdweb.html
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3. Results

3.1. DNA Analysis

In total, 165 biological samples of four species were collected on a global scale from October 2016 to
February 2017. We obtained 60 samples each of YFT and SKJ from the Atlantic, Indian, Western-Central
Pacific and Eastern Pacific Oceans. A total of 30 samples of BET were obtained from the Indian and
Eastern Pacific Oceans, and 15 samples of LOT from the Indian Ocean (Table 1). Sampling of each
species was restricted to the ocean basins where capture and processing takes place.

At the processing levels 1, 2 and 3, the longest fragment (AB) was successfully amplified except
for a few level 3 samples in which only the amplification of the fragment A was obtained due to DNA
degradation. At the level 4O, only the short B fragments successfully amplified due to a high level of
DNA degradation (Table 1). Two SKJ specimens for the levels 3 and 4B and one YFT level L3 sample
failed to amplify

3.2. DNA Traceability

Ninety DNA samples from the levels 1, 2 and 3 were successfully amplified and sequenced
using the longest fragment (AB) with a final alignment length of 236 bp (Supplementary Table S2).
Molecular identifications using BLASTn matched morphological identifications for 86 out of 90 (95.55%)
AB fragments, the exceptions being four samples at levels 2 and 3. Eight sequences could only be
amplified and sequenced using the fragment A, with a final alignment length of 117 bp (Supplementary
Table S2). Of these, seven samples were from level 3 and one sample was from level 4O (Table 1).
A further 64 samples could only be amplified and sequenced using fragment B, with a final alignment
length of 109 bp. Molecular identifications matched morphological identifications for only 34 out of 64
(53.12%) B fragments, with varying success between species (Supplementary Table S3).

The ABGD analysis (Supplementary Figure S1) revealed an intra-specific nucleotide sequence
variation for all species with a pairwise p-distance values range from 0 to 0.05. This variation was
markedly different from inter-specific variation values (range: 0.09–0.14), presenting a clear barcode
gap in the reference Cyt b sequence dataset. This allowed the use of the Cyt b sequence marker to
correctly assess specific assignment regardless of geographical/individual intra-specific variability.

Nucleotide substitutions increased through levels 1 to 4 with the highest value at level 4B (Figure 2).
There was a significant model effect when processing level was considered in interaction with species
(χ2 (12) = 60.549, p < 0.00001). Our results show a greater number of NS for SKJ and YFT compared to
the other species, especially at the levels 4O and 4B (Figure 3). We did not observe a significant effect
of the sampling area on NS for any of the species or levels (see Supplementary Text S1).
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Figure 3. Box plots of nucleotide substitution counts at the four processing levels (L1–L4) and for
the four target species: bigeye tuna (BET), longtail tuna (LOT), skipjack tuna (SKJ) and yellowfin
tuna (YFT).
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3.2.1. YFT

We observed a high percentage of NS for YFT at level 4O in Atlantic and Indian Ocean samples,
with averages of 3.06% and 2.14%, respectively, and at level 4B which ranged from 2.75% to 6.42%
(Figure 3). At levels 4O and 4B, NS occurred at seven diagnostic nucleotide positions that hindered
the discrimination between our four target species. A greater percentage of NS was observed in YFT
samples from the Atlantic Ocean at level 4O (3.06%) and 4B (6.42%). On the contrary, no NS occurred
in the 4O samples from the Eastern Pacific Ocean and were rarely observed in the Western-Central
Pacific Ocean (only one sample, 0.31%). A lower percentage of NS at level 4B was observed for Indian
Ocean samples (2.75%). Comparative analysis between the different geographic areas identified a
mutation (C substituted for T) at position 144 in all Eastern Pacific Ocean samples. Most YFT samples
at levels 4O and 4B that presented a substitution in one of the seven diagnostic nucleotide positions
were genetically misidentified as SKJ, and one Atlantic Ocean sample (level 4O) was misidentified as
BET (Table 2). Four sequences at level 4B displayed similarity scores of <98% when compared with
public sequences, thus preventing robust molecular identification. Only one sample at level 2 and
one at level 3, both from the Atlantic Ocean, displayed very low percentages of NS (0.28% and 0.21%,
respectively), without affecting the correct molecular identification of the samples.

3.2.2. BET

BET samples were obtained only from the Indian and Eastern Pacific Oceans. We observed a
clear geographic pattern in the degree of NS in BET (Figure 3). A greater percentage of NS was
observed at level 4O (0.31%) and 4B (2.14%) in the Eastern Pacific Ocean than in the Indian Ocean (0%).
Samples from both areas displayed NS for the level 3 (EPO: 1.99%; IO: 1.14%), but the effects of the
sampling area on the percentage of NS was not significant (p > 0.05). Despite our observations of NS,
only one BET individual was misidentified as SKJ, at level 4B (Table 2).

3.2.3. SKJ

Nucleotide substitutions for SKJ significantly increased between levels 2 and 4, with variations
among areas. The greatest percentages of NS were observed in samples from the Eastern Pacific
Ocean, at level 3 (1.84%). Indian Ocean samples displayed a high percentage of NS at level 4O (4.89%)
greater than in any other area. High percentages were also observed at the level 4B (4.89%) and in
the Western-Central Pacific (4.28%), Eastern Pacific (3.98%), and Indian Oceans (1.83%). At levels
4O and 4B, NS occurred mainly in diagnostic positions (from position 63 to 213 in the alignment),
which discriminate between SKJ and the three tuna species studied herein. For this reason, most SKJ at
these levels were misidentified as BET or for two specimens similarity scores were too low for robust
identifications (<98%; Table 2). All SKJ from levels 2 and 3 matched morphological identifications,
except one individual from the Eastern Pacific Ocean at level 3 which shared <98% of sequence
similarity with public sequences.

3.2.4. LOT

LOT samples were obtained only from the Indian Ocean. Due to the low number of samples
obtained (n = 15), the assessment of the NS in LOT samples is limited. NS were observed at all levels,
with the greatest percentage (1.42%) at level 3, followed by level 4B (1.22%). NS at all levels occurred in
diagnostic positions, which discriminate LOT from the other species studied herein. Indeed, three LOT
specimens at levels 4O and 4B were genetically misidentified as BET, while three specimens at levels 2
and 3 were genetically misidentified as T. thynnus or YFT with the same value of sequence similarity
(Table 2).
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Table 2. Samples that were genetically misidentified at each processing level or had similarity scores <98% (*). Yellowfin tuna: YFT, Bigeye tuna: BET, Skipjack tuna:
SKJ, Longtail tuna: LOT. Atlantic Ocean: AO, Indian Ocean: IO, Western-Central Pacific Ocean: WCPO, Eastern Pacific Ocean: EPO.

Level Species Ocean Sample ID Fragment BLAST Identification Similarity (%) Accession Number

L2 LOT IO LOT-IO-L2-3 AB T. thynnus, T. albacares 98.73% MG017705.1, MG017687.1

L3 LOT IO LOT-IO-L3-2 AB T. thynnus, T. albacares 98.73% MG017705.1, MG017687.1

L3 LOT IO LOT-IO-L3-3 AB T. thynnus, T. albacares 98.73% MG017705.1, MG017687.1

L3 SKJ EPO SKJ-EPO-L3-2 AB K. pelamis 96.19% * KP669130.1

L4O LOT IO LOT-IO-L4O-1 B T. obesus 98.17% MG017696.1

L4O YFT AO YFT-AO-L4O-1 B T. obesus 98.17% MG017696.1

L4O YFT AO YFT-AO-L4O-2 B K. pelamis 100% KP669132.1

L4O YFT IO YFT-IO-L4O-1 B K. pelamis 98.17% KP669172.1

L4O SKJ AO SKJ-AO-L4O-2 B K. pelamis 97.25% * KP669132.1

L4O SKJ EPO SKJ-EPO-L4O-1 B T. obesus 98.17% MG017696.1

L4O SKJ EPO SKJ-EPO-L4O-2 B T. obesus 98.17% MG017696.1

L4O SKJ IO SKJ-IO-L4O-1 B T. obesus 98.17% MG017696.1

L4O SKJ IO SKJ-IO-L4O-2 B T. obesus 98.17% MG017696.1

L4O SKJ WCPO SKJ-WCPO-L4O-1 B T. obesus 98.17% MG017696.1

L4B BET EPO BET-EPO-L4B-3 B K. pelamis 100% AB098093.1

L4B LOT IO LOT-IO- L4B-1 B T. obesus 98.17% MG017696.1

L4B LOT IO LOT-IO- L4B-2 B T. obesus 98.17% MG017696.1
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Table 2. Cont.

Level Species Ocean Sample ID Fragment BLAST Identification Similarity (%) Accession Number

L4B YFT AO YFT-AO-L4B-1 B K. pelamis 100% KP669132.1

L4B YFT AO YFT-AO-L4B-2 B K. pelamis 100% KP669132.1

L4B YFT AO YFT-AO-L4B-3 B K. pelamis 100% KP669132.1

L4B YFT EPO YFT-EPO- L4B-1 B K. pelamis, T. albacares, T. obesus 96.33% KP669132.1, MG017683.1, KJ018958.1

L4B YFT EPO YFT-EPO-L4B-3 B T. albacares 97.25% * MG017683.1

L4B YFT EPO YFT-EPO-L4B-2 B K. pelamis 99.08% KP669132.1

L4B YFT IO YFT-IO-L4B-2 B T. albacares, T.obesus 97.25% MG017683.1, MG017696.1

L4B YFT IO YFT-IO-L4B-3 B K. pelamis 99.08% KP669172.1

L4B YFT WCPO YFT-WCPO-L4B-1 B K. pelamis 99.08% KP669132.1

L4B YFT WCPO YFT-WCPO- L4B-3 B T. albacares, T.obesus 97.25% MG017683.1, KJ018958.1

L4B SKJ AO SKJ-AO-L4B-1 B T. obesus 98.17% MG017696.1

L4B SKJ AO SKJ-AO-L4B-2 B T. obesus 98.17% MG017696.1

L4B SKJ EPO SKJ-EPO-L4B-1 B T. obesus 98.17% MG017696.1

L4B SKJ EPO SKJ-EPO-L4B-2 B T. obesus 98.17% MG017696.1

L4B SKJ IO SKJ-IO-L4B-1 B K. pelamis 97.25% * KP669132.1

L4B SKJ WCPO SKJ-WCPO-L4B-1 B T. obesus 98.17% MG017696.1

L4B SKJ WCPO SKJ-WCPO-L4B-2 B T. obesus 98.17% MG017696.1



Foods 2020, 9, 1372 11 of 15

4. Discussion and Conclusions

The use of DNA barcoding may be limited in highly processed tuna products where DNA could
be degraded into smaller fragments that are difficult to amplify [39]. However, Polymerase Chain
Reaction-Forensically Informative Sequencing (PCR-FINS) and mini-DNA barcoding methods were
successfully applied for species identification in highly processed meat foods [40] and in museum
specimens [41,42].

Our results show a significant increase in the NS percentage between defrosting (L2) to canning
(L4, in oil or brine) as processing became more intensive. This is most probably to be related to the high
temperatures and chemical/physical treatments used during the canning process, which are likely to
negatively affect the quality and quantity of DNA by fragmenting DNA molecules [43]. Interestingly,
NS were significantly higher after brine canning (level 4B) than after oiling (level 4O). This suggests that
the type of preservative employed in canning not only influences quantity of the DNA extracted [28],
but its quality and therefore its traceability.

The observed increase in NS percentage was more evident in yellowfin and skipjack tuna samples,
which had the largest sample sizes (YFT = 59 and SKJ = 58). Therefore, the sample size appears to
affect this trend due to the large degrees of variation observed. However, the other two species with
lower sample sizes presented contrasting patterns of NS: BET (n = 30) displayed 1.57% NS at level
3, a decrease at level 4O and an increase at level 4B, while LOT (n = 15) displayed unexpectedly the
greatest degree of NS at level 3.

For YFT, Cyt b barcoding of defrosted and cooked tuna confirmed the morphological species
identification of all individuals at the canneries. However, due to the NS occurring at some of the seven
diagnostic positions of the 236-bp alignment, three YFT individuals canned in oil and ten individuals
canned in brine were genetically misidentified. SKJ exhibited similar results to those obtained for YFT.
Indeed, the molecular and morphological results matched the identification of all defrosted and cooked
SKJ, except one specimen for the levels 2 and 3. Most SKJ canned in oil or brine were misidentified as
BET, due to the high rate of NS in discriminant positions. Conversely, in the canned BET, even if NS
occurred, only one sample was misidentified as SKJ. For BET samples, misidentification was rarer than
in other species because NS did not occur in diagnostic positions [44]. This contrasts with LOT samples,
in which a large number of NS at most of the diagnostic positions impacted species identification of
defrosted and cooked individuals.

Given the very high percentage of specimens correctly-identified at the species level with the
fragment AB and the relative high percentage with the A and B fragments, our results confirmed that
tropical tunas can be reliably identified with Cyt b barcodes with high BLAST sequence similarities,
even after commercial processing. It is important to note that in samples with highly degraded
DNA, as we have here from cooked and canned tuna (specimens from levels 3 and 4), sequences
should not be entered into GenBank to avoid low-quality references and thus misidentification in
future studies [45]. The Cyt b primer cocktail developed by Botti and Giuffra [32] represents an
efficient molecular tool to identify tuna products and to validate contents label information for the
four species studied herein. This set of primers allowed the PCR amplification and sequencing of
both longer (236 bp) and shorter (117 bp and 109 bp) fragments of the mitochondrial gene Cyt b,
obtaining a unique and clearly distinguishable sequence for each of the four species. Our results,
coupled with the reliability of the Cyt b gene for the identification of tropical tuna species paired and
the monitoring of traceable reference individuals along the processing chain (i.e., with no species
substitution from one level to the other) led us to consider that species mislabelling detected in canned
tunas could be related to the loss of traceability (nucleotide substitution), due to DNA degradation and
fragmentation and not to an intentional mislabelling. Although it is well established that extensive
processing conditions in canning operations can lead to the degradation and fragmentation of DNA
samples [22,46], the majority of previous studies on tunas were focused on the highly processed final
products (i.e., canned tuna, sushi and sashimi). These studies reported high levels of mislabelling in
tuna products [13] but none of them investigated how genetic traceability is affected by the canning
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treatments. Instead, here we monitored along with the canning production process, the reduction of
DNA traceability of tuna products associated to the DNA degradation and fragmentation that can
occur during the processing steps. Other studies present lower levels of mislabelling when considering
different factors [9]. For instance, Pardo et al. [12] reported that 18% of tuna products were mislabelled,
Gordoa et al. [8] observed 37% in fresh and frozen tuna in Spain at the point of sale, and 48% in
restaurants, and Sotelo et al. [9] found that 6.7% of fresh and frozen tuna were mislabelled compared
to 7.8% for canned products. Our results indicate that the DNA of our specimens was highly degraded
and fragmented, and that all canned specimens, except those of the BET, lost their diagnostic nucleotide
features resulting in taxonomic misidentification. In these cases, suggestions of mislabelling would be
erroneous as the misidentification observed was a consequence of the NS related to the degradation
and fragmentation of the DNA caused by canning operations and indeed future studies must consider
this important point.

We conclude that while our sampling approach is difficult to replicate, this approach was much
needed to validate the impact of tuna canning processes on traceability. In previous studies, authors did
not have the possibility to compare the results obtained from different processing levels, and this stresses
the key challenges of global tuna sustainability and traceability. Firstly, tropical tuna products rely on
catches from oceanic waters, posing logistical challenges such as knowing the geographic location
where a fish was caught due to illegal, unregulated and unreported fishing. Secondly, in the monitoring
of fraud and species substitutions, it is crucially important that morphological identifications are
made at the canneries. However, it is extremely difficult to control this step. Taking these lessons
into account, closer collaborations are needed between researchers and the tuna industry, especially
in geographic areas exporting high volumes of tuna products to Europe. Our results clearly show
how DNA barcoding of highly processed products can lead to perceived species misidentifications,
which can fuel the lack of transparency that prevents the consumers from environmentally conscious
purchasing decisions. Global tropical tuna sustainability and traceability can therefore only be achieved
through robust international collaborations and coordinated governance efforts among processors,
traders, importers, transporters, marketers and researchers in order to trace tuna products from ocean
to plate.

Supplementary Materials: The following are available online at http://www.mdpi.com/2304-8158/9/10/1372/s1.
Text S1: Description of the canning processes and tissue sampling. Complete list of R code for all models and plots
used in this study. Table S1: 35 diagnostic positions of the Cyt b sequences of the four target species (YFT, yellowfin
tuna, Thunnus albacares; BET, bigeye tuna, Thunnus obesus; SKJ, skipjack tuna, Katsuwonus pelamis; LOT, longtail
tuna, Thunnus tonggol) aligned against to the sequence of the mitochondrial genome of Thunnus thynnus (NCBI:
NC_004901, positions 14665–14901, 236 bp) and to public available sequences for each of the four tuna species used
as reference. The sequences obtained from the first processing level (L1-frozen samples) were aligned to the public
sequences and they were considered as reference nucleotide substitutions = 0. Table S2: Nucleotide substitution
within the Cyt b sequences of the four target species (YFT, yellowfin tuna, Thunnus albacares; BET, bigeye tuna,
Thunnus obesus; SKJ, skipjack tuna, Katsuwonus pelamis; LOT, longtail tuna, Thunnus tonggol) aligned against to the
sequence of the mitochondrial genome of Thunnus thynnus (NCBI: NC_004901, positions 14665–14901, 236 bp).
Sequences from other levels (L2–L4) were compared with the reference level (L1). Nucleotide substitution was
calculated for each specimen as a percentage of the variable positions. Table S3: Summary information of the
samples used in this study and their molecular identification results. Morph. ID = Morphological identification for
the four species (Thunnus albacares = YFT; Thunnus obesus = BET; Katsuwonus pelamis = SKJ; Thunnus tonggol = LOT;)
achieved at the canneries; Ocean (Indian Ocean = IO; Atlantic Ocean = AO; Western-Central Pacific Ocean = WCPO;
Eastern Pacific Ocean = EPO); amplified fragment of the of the mitochondrial gene Cyt b (AB, A, B); Blast ID = species
genetically identified in GenBank (www.ncbi.nlm.nih.gov) using the BLASTn search tool;% Similarity = genetic
similarity in GenBank; Accession number of the species genetically identified in GenBank. Figure S1: Output of
the Automatic Barcode Gap Discovery (ABGD) web-interface of the Cyt b sequences reference dataset of 236 bp
calculated with p-distance. A—Histogram of distances. B—Ranked distances.
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