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Abstract

Snail mucus is an attractive natural substance, which is increasingly used in cosmetic creams and 

syrups thanks to its emollient, moisturizing, protective and reparative properties. The aim of the 

present study was to explore the physicochemical properties of chitosan-based films added with 

snail mucus extracted from Helix Aspersa Muller. To this aim, chitosan films at different content of 

snail mucus were fabricated by simple solvent casting technique. The results of X-ray diffraction 

analyses, tensile mechanical tests, Infrared spectroscopy and thermogravimetry demonstrated that 

snail mucus addition strongly modifies the properties of chitosan films. In particular, it acted like a 

plasticizer enhancing films extensibility up to ten times and strongly improving their water barrier 

and bioadhesion properties, with a trend depending on Snail mucus content. Furthermore, it 
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provides the films with antibacterial properties and enhanced cytocompatibility, yielding materials 

with tailored properties for specific requirements.
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Chitosan films; snail mucus; adhesive properties
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1. Introduction

The environmental problems caused by the continuous increase of plastic pollution have stimulated 

many efforts addressed to find suitable substitutes obtained from natural and renewable sources 

through green processes [1]. Chitosan has been proposed as an eligible material with potential 

applications in many fields, including medicine, agriculture, food, textile, environment, and 

bioengineering, due to its excellent properties of nontoxicity, biocompatibility, biodegradability, 

chelating capability [2-5].

In particular, chitosan ability to form films has been widely exploited for food packaging [6], wound 

dressing and drug delivery applications [7-11]. Chitosan is a natural linear amino polysaccharide 

made of D-glucosamine and N-acetyl-D-glucosamine units. It is obtained by deacetylation of chitin, 

which is the structural component of the crustacean’s shell (mostly shrimps and crabs), insect 

cuticles and fungi cell walls, and represents the second most abundant natural polymer after 

cellulose [12]. Chitosan is soluble in acid solutions due to the protonation of the –NH2 groups on the 

C-2 position of the D-glucosamine repeat unit: as a consequence, the polysaccharide is converted 

to a polyelectrolyte in acidic media. DA, molecular weight and distribution of the acetyl groups along 

the main chain are determinant factors in chitosan properties [13-15]. In particular, the positive 

charge of the amino groups in acidic pH is considered responsible for the antimicrobial activity of 

chitosan, through the interaction with the negatively charged cell membranes of microorganisms 

[7].
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A number of studies have been focused to modify composition and properties of chitosan-based 

films in order to improve their performance and widen their application fields. In particular, films 

with improved light barrier and extra protective shield against oxidative processes were produced 

by incorporation of compounds of natural origin as antioxidant and/or antimicrobial agents [16-20]. 

Addition of propolis was shown to enhance mechanical strength, antibacterial activity and 

antioxidant capacity of chitosan-based materials for food packaging applications [21].

Among natural-derived active substances, snail mucus is receiving a great deal of attention, as it has 

been recently proposed as an ingredient of several cosmetic (e.g. creams) and parapharmaceutical 

products for the management of wound and for the treatment of chronic bronchitis [22-23]. In fact, 

the mucus is an adhesive, emollient, moisturizing, lubricating and protective material, containing 

bioactive substances which are responsible for its unique properties not replicable in the laboratory 

with synthetic chemical compounds [24]. Moreover, in vitro assays on fibroblast cultures showed 

that snail mucus from Helix Complex does not elicit cytotoxicity, protects cells from apoptosis, 

promotes cell proliferation and migration, and displays antimicrobial activity [24]. However, despite 

the wide use of snail mucus in commercial products, the number of studies on the characterization 

of this animal-derived extract is still limited [25-30] and the articles investigating the properties of 

snail-mucus based composite materials are even less [31].

In this study we investigated the modifications of the properties of chitosan-based films induced by 

Snail mucus extract (S) obtained by MullerOne extraction method. Recently, we patented the 

application [32] of snail mucus extract on different polymer-based films, demonstrating that tensile 

behavior and adhesive properties greatly improved by increasing the S content, thus producing 

materials able for applications in pharmaceutic, veterinary and cosmetics fields (patent application 

n. 102019000004940). To this aim, we added different amounts of Snail extract to chitosan previously 

solubilized in acetic acid or in lactic acid. Moreover, the acidic character of S allowed the preparation 
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of a further series of films obtained by solubilizing chitosan directly in S solution. Films were then 

fully characterized for their solid-state properties, cell viability and antibacterial activity. 

2. Materials and Methods

2.1 Materials

Chitosan (degree of deacetylation ≥ 93%, M.W.= 100 KDa) was purchased from Faravelli, Milan, Italy. 

Snail mucus from Helix Aspersa Muller (kindly offered by “I Poderi” farm, Montemerano, Italy) was 

extracted by MullerOne method (http://www.mullerone.com/it/en/extraction-process) and stored 

at 4°C in a sealed polyethylene bottle until use. Analysis of Snail mucus was obtained from the 

supplier and reported in table S1. Selected amounts of Snail mucus were also freeze-dried for 24 h 

to evaluate the amount of the dispersed components and stored at 4°C. 

Acetic acid and lactic acid were purchased from Sigma Aldrich (Milan, Italy).

2.2 Preparation of Chitosan films

Chitosan films (1% w/v) were prepared by dissolving the proper amount of pure chitosan in either 

acetic acid (A, 1% v/v), or lactic acid (L, 1% v/v), as reported in literature, or directly in S. The mixture 

was kept at room temperature under stirring until complete dissolution of the polymer. A volume 

corresponding to 11 mL of this solution was poured in polyethylene Petri dishes (Ø= 5 cm) and put 

under laminar hood at room temperature overnight. The obtained films were labeled C_A, C_L and 

C_S, respectively.

2.3 Preparation of Chitosan-Snail mucus films

For both C_A and C_L solutions, two chitosan-snail mucus volume ratios were selected: 70:30 and 

30:70, where the first number refers to the relative volume of chitosan acidic solution and the 
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second one to the volume of S with respect to the total volume. For example, 100mL of chitosan-S 

blend 70:30 were obtained by adding 1g of chitosan to 70mL of A (1% v/v) or L (1% v/v). The mixture 

was stirred at room temperature until complete dissolution of the polymer and then 30mL of S were 

added (30% of the final volume). After 2h of stirring, 11 mL of this solution were poured in each 

Petri dish and put under laminar hood overnight. The obtained films were labeled CA_7030 and 

CL_7030, respectively.

The films obtained with the chitosan:S volume ratio of 30:70 were labeled CA_3070 and CL_3070.

In order to obtain a chitosan-based film using the S as acidic medium, the same procedure was used: 

1g of Chitosan was dissolved in 70 or 30mL of S and then 30 or 70mL of distilled water were added 

in order to obtain the films labeled CS_7030 and CS_3070, respectively. 

Films were stored at room temperature between two sheets of plastic-coated aluminum closed 

inside PVC bags.

2.4 Films Characterization

2.4.1 Thickness

Films thickness was measured using a hand-held digital micrometer (Mitutoyo, Japan) at six 

different positions in each specimen to an accuracy of 0.001 mm.

2.4.2 Mechanical properties

Tensile tests were performed on strip-shaped samples (40 mm long and 4 mm width) using a 4465 

Instron dynamometer equipped with a 100 N load cell. Stress-strain curves were recorded at a 

crosshead speed of 5 mm/min by the software SERIE IX for Windows. Ten samples were tested for 

each composition.
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2.4.3 Infrared spectroscopy

The Fourier transform infrared spectra were recorded using a Thermo Scientific Nicolet iS10 FTIR 

spectrometer equipped with an ATR sampling device that uses a Germanium diamond as element 

for internal reflection. Spectra were acquired at room temperature in absorbance mode from 2300 

to 800 cm-1 with a resolution of 2 cm-1.

2.4.4 Water Vapor Permeability (WVP)

WVP is the water vapor transmission rate through a flat film area induced by a vapor pressure 

between two surfaces under specific conditions of moisture and temperature and was measured 

using the ASTME96-93 method [33], slightly modified [34]. Films disks (Ø=2 cm) were glued using 

silicon on the opening of glass vials containing 2g of anhydrous CaCl2. Weighted vials were placed in 

a glass desiccator containing saturated Mg(NO3)2∙6H20 solution (75% RH at 25°C). The vials were 

weighted every day until constant weights were achieved (4 days). WVP was calculated as follows:

WVP (gs-1m-1Pa-1) =    (1)
ΔW χ

Δt A ΔP

where / t is the amount of water gained per unit time of transfer, A is the exposed area of the ΔW Δ

samples (0.00020 m2),  is water vapor pressure difference between both sides of the film (1670 ΔP

Pa at 25°C, table value) and  is the film thickness. Samples were tested in triplicate.χ

2.4.5 X-Ray diffraction

X-ray diffraction patterns were carried out by means of a Philips X’Celerator diffractometer 

equipped with a graphite monochromator in the diffracted beam (2θ range from 4° to 50°, step size 

= 0,06680, 40s/step). CuKα radiation (40 mA, 40 kV, 1.54 Å) was used.

2.4.6 Thermogravimetric analysis (TGA)
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TGA was carried out using a Perkin-Elmer TGA-7. Heating was performed in a platinum crucible in 

air flow (20 mL/min) at a rate of 10°C/min up to 800°C. Samples weights were in the range of 5–10 

mg.

2.4.7 Adhesive strength 

The in vitro evaluation of the bioadhesive properties of the films was performed using an Anton 

Paar modular compact rheometer MCR102, adapting the method reported in the literature [35]. Pig 

rind bought in a local butcher's shop was used as support for the adhesion tests. Pig rind disks (Ø=2.5 

cm) were gently washed with detergent in order to remove fat and rinsed with Phosphate Buffer 

(PB, pH=7.4) and water repeatedly. Rind disks were glued on the disposable aluminum inferior 

support of the instrument. The film was allowed to adhere on the skin by wetting the pig rind with 

a fixed volume (40 μL) of PB and applying a gentle finger pressure for 1 minute. Subsequently, the 

upper plunger of the instrument, covered with double-sided tape (3M), was lowered until a force of 

10 N was applied to the film for 30 seconds. After that, the plunger was raised up at a speed of 1 

mm/s and data were collected by using the RheoCompass Software. Work of adhesion and peak 

detachment force were used to evaluate the bioadhesive strength of the films. Each formulation 

was analyzed in triplicate and the mean ± SD was reported.

2.4.8 Statistical analysis

Statistical analysis was performed with Graph Pad Prism 4. One-way analysis of variance (ANOVA) 

followed by Tukey's Multiple Comparison Test was employed to assess statistical significance of 

the experimental conditions for Water Vapor Permeability and Adhesive strength; statistically 

significant differences were determined at p < 0.05.

2.5 Cell viability bioassay
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The effect of chitosan films on nonmalignant epithelial cells metabolism was assessed in vitro after 

incubation of disks (Ø= 6 mm) in 1 mL of Eagle’s Minimal Essential Medium (MEM) at 37°C for 24h. 

Then, the media were used for the analysis on African green monkey kidney cells (Vero ATCC CCL-

81). Briefly, cells were cultured in MEM supplemented with 10% fetal bovine serum (Carlo Erba 

Reagents, Milan, Italy), 100 U/mL penicillin and 100 µg/mL streptomycin at 37°C with 5% CO2. For 

experiments, cells were seeded into 96-well plates at 104 cells/well, and incubated at 37 °C for 24 

h; subsequently, cell monolayer was washed with PBS and incubated with 100 µL of the different 

solutions, previously diluted twenty times in cell culture medium. The cell viability was assessed by 

a WST8-based assay according to the manufacturer’s instructions (CCK-8, Cell Counting Kit-8, 

Dojindo Molecular Technologies, Rockville, MD, USA). After 72 h of incubation, cell monolayer was 

washed with PBS, and 100 µL of fresh medium containing 10 µL of CCK-8 solution were added. After 

2h at 37°C, the absorbance was measured at 450/630 nm; results were expressed as the percentage 

of absorbance relative to the untreated controls. Experiment was carried out in triplicate.

2.6 Antibacterial activity

The in vitro antibacterial activity of the chitosan films was evaluated against Staphylococcus aureus 

(ATCC 25923) and Escherichia coli (ATCC25922) selected as controls and representative strains for 

Gram-positive and Gram-negative bacteria. The effectiveness of samples to inhibits bacterial growth 

was assessed by a standardized Kirby-Bauer (KB) diffusion test on Mueller-Hinton agar plate and by 

measuring the bacterial-free zone around the disk-shaped samples (Ø = 6mm) after 24h of 

incubation at 37°C [36]. All experiments were performed on duplicate in different days.

3. Results and discussion
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Films-forming solutions of chitosan in lactic or acetic acid are extensively reported in literature 

[37,38]. However, to the best of our knowledge, this is the first paper which reports the peculiar 

properties provided to chitosan films by the addition of Snail mucus obtained by MullerOne 

extraction. This method of extraction provides an acidic solution suitable for solubilization of 

chitosan, which needs pH values below 6 to dissolve. It follows that the use of S allows direct 

solubilization of chitosan through a ‘green’ procedure and provides materials where the good 

characteristics of chitosan are enriched by the peculiar properties of Snail mucus extract. 

All the chitosan-based films appeared transparent, with color gradually turning to yellow on 

increasing the amount of Solution (Fig. 1). The SEM images of some chitosan films containing or not 

Snail mucus extract are reported as example in Fig.1: all the films revealed a smooth surface without 

uneven areas. 

As a general consideration, the flexibility of the films and their adhesiveness increase with S volume, 

making difficult their detachment from Petri dishes.  

As reported in Table 1, films thickness is significantly affected by the acid used for chitosan 

dissolution: the thickness increases from acetic to lactic acid films can be ascribed to the increasing 

dimensions of the counterion [39]. A significantly greater augmentation of the values of thickness 

occurs on increasing the S content, most likely as a consequence of the increasing amount of dry 

matter (dry matter content of S after lyophilization: 5% m/V). The influence of the nature and 

composition of the film forming solution on thickness is clearly shown by the results obtained for 

the C_S samples, where water addition does not significantly affect the values of thickness [40].
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Table 1. Effect of S incorporation on chitosan-based films on thicknesses and mechanical properties.

SAMPLES Thickness (mm) σb (MPa)a εb (%)a E (MPa)a

C_L 0.076 ± 0.009 32 ± 4 4.0 ± 0.8 1200 ± 100
CL_7030 0.100 ± 0.006 7 ± 2 23 ± 8 170 ± 20
CL_3070 0.156 ± 0.007 1.4 ± 0.2 50 ± 10 46 ± 12
C_A 0.052 ± 0.020 40 ± 3 10 ± 3 1760 ± 300
CA_7030 0.096 ± 0.019 15 ± 4 13 ± 6 270 ± 100
CA_3070 0.118 ± 0.007 0.9 ± 0.1 138 ± 10 0.8 ± 0.1
C_S 0.199 ± 0.005 0,43 ± 0.2 163 ± 30 0,38 ±0,05
CS_7030 0.168 ± 0.021 1.1 ± 0.19 88 ± 7 1.4 ± 0.22
CS_3070 0.158 ± 0.010 8.6 ± 1.5 12 ± 4 301 ± 44

a
Each value is the mean of ten determinations and is reported with its standard deviation.

The results of mechanical characterization are summarized in Table 1. Both C_L and C_A films are 

rigid and brittle with high values of elastic modulus (E) and stress at break (σb), whereas C_S films 

exhibit a relatively high extensibility (εb) and low values of E and σb. In agreement, S addition to C_L 

and C_A compositions greatly influences the mechanical properties of the films, as clearly shown in 

Fig.2: εb increases with S content while σb and E decrease. The same trend is observed on going from 

CS_3070 to CS, in agreement with the increase of S content. The effect produced by S addition is 

similar to that obtained by the introduction of plasticizers into the composition of chitosan films 

[41-43]. The increased extensibility of the films at higher S concentration can be attributed to 

Solution–polymer interactions, which reduce the intermolecular interactions between polymer 

chains, facilitating their sliding and mobility and improving the overall extensibility.

The increased mobility of the polymer chains usually promotes also water vapor permeability (WVP) 

[43], that is the ease of moisture for penetrating and passing through the hydrophilic portion of film 

[44]. However, in our samples we found a peculiar trend as a function of composition (Fig. 3) since 

CA_7030 and CL_7030 exhibit WVP values significantly smaller than the other films of the series. 
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Interestingly, C_S films exhibit lower permeability than C_L and C_A films (*p<0.05). Moreover, the 

WVP values of C_S films are not significantly affected by water addition. 

As stated previously, the films become sticky after addition of S: the adhesive properties, expressed 

in terms of force needed for film detachment (F) and work of adhesion (W), are reported in Fig. 4. 

C_A films do not exhibit any adhesive performance. However, the addition of S induces a certain 

adhesiveness, requiring a force up to about 10 N (CA_3070) to detach the films. A similar trend is 

observed for films prepared in lactic acid: C_L exhibits an appreciable adhesive behavior, which is 

further enhanced by S addition. As expected, the highest adhesive properties are recorded for films 

prepared by direct solubilization of chitosan into S Solution. The increased flexibility and adhesion 

of S-containing films should improve the contact with skin, thus allowing a better penetration of 

film components into the tissue. Besides, the presence of polar groups into Solution, most probably 

belongings to glycolic acid, allantoin and proteins (see Table S1) could increase the interactions.

Structural characterization

According to the literature, a number of crystalline polymorphs are known for chitosan; the most 

represented ones are an anhydrous form indicated as “annealed polymorph” and two different 

hydrated forms named “tendon” and “Type II” [45,46].

The variety of polymorphs is due to the presence of water molecules, which play an important role 

in the packing, conformation and mechanical properties of chitosan-based films. In hydrated forms, 

the chitosan structure can be stabilized by several hydrogen bonds between -N-H groups and water 

molecules. In addition, the crystalline structure of chitosan is strongly dependent on its processing 

treatment, as well as on its origin and molecular composition, such as degree of deacetylation and 

molecular weight [47].
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The X-ray diffraction patterns collected from chitosan films are reported in Fig.5: films obtained in 

acetic acid (C_A) show two prominent reflections at about 9.2° and 12°/2, together with a sharp 

peak at 19°/2attributed to type II hydrated polymorph of chitosan acetate [48]. Snail mucus is a 

complex mixture of active ingredients and it is not easy to discriminate the effectiveness and the 

interaction of each component with the chitosan functionalities. However, the comparison of the 

patterns collected from Solution-containing samples puts into evidence that the material becomes 

less crystalline on increasing the S content. In fact, CA_7030 films show only two broad halos, 

centered at about 8° and 20° of 2, while only a broad halo centered at 20° of 2 can be detected 

when the samples contain a greater amount of solution (CA_3070). The X-ray pattern of the chitosan 

films obtained in lactic acid (C_L), reported in Fig. 5, evidences a poorly crystalline structure, with 

two broad reflections at about 6° and at about 20°/2. 

S addition provokes an overall decrease of the intensity of the diffraction patterns. It can be 

hypothesized that, on S addition, chitosan-Solution interactions outweigh chitosan-chitosan 

interactions, leading to loss of structural order and, consequently, to the observed significant 

reduction in crystallinity. In agreement, the XRD patterns of all the samples of the C_S series display 

just a very broad halo centered at about 20° of 2.

In agreement with the X-rays patterns, the infrared absorption spectrum of C_A films displays a 

number of bands which can be ascribed to the hydrated polymorph of chitosan [49]. In particular, 

the absorption band at about 1640 cm-1 can be assigned to the C=O stretching (amide I), whereas 

those centered at about 1540 and 1390 cm-1can be attributed to N-H bending (amide II) and C-N 

stretching, respectively [10]. Addition of S solution provokes a general broadening of the spectra, 

which assume characteristic features of the spectrum of S powder (see Fig.5), where an intense 

absorption peak, probably due to the high content of allantoin and glycolic acid in the solution (see 

Table S1), appears at around 1712 cm-1. This absorption band also appears in the spectra of 
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composite films and its intensity increases on increasing S content. The resolution of the absorption 

bands centered at about 1072 cm-1, associated to C-O stretching, decreases on increasing S content, 

suggesting interactions between the hydroxyl groups of chitosan and polar groups of S through 

hydrogen bonds [10]. By comparing IR spectrum of S with that reported in literature [24] it is clear 

that Snail extract obtained by MullerOne contains a minor amount of proteins (see also table S1) 

with respect to that obtained by a different method of extraction. We hypothesize that the use of 

ozone during snail stimulation should induce a partial protein degradation, thus lowering the proteic 

component of the final exctract.

In agreement with XRD results, the infrared absorption spectrum of C_L films is quite different and 

resembles those reported in literature for chitosan films prepared in lactic acid [50]. Addition of S 

to C_L films has a similar effect to that observed on C_A films, and the spectra are similar to those 

recorded for the C_S series. 

The thermal stability of chitosan films was assessed by TGA analysis in air. Results obtained for the 

different films are reported in Figure 6 together with the thermal behavior of lyophilized S. C_A films 

display three steps of thermo-oxidative degradation [51]. The first one, in the temperature range 

35–160°C, is attributed to the loss of absorbed water. The second one, between 160°C and 460°C 

and centered around 310°C, corresponds to the chemical degradation and deacetylation of chitosan 

[52], while the third step, in the temperature range 460–700°C, can be associated with the oxidative 

degradation of the carbonaceous residue formed during the second step. The thermogravimetric 

plot of C_L differs from that of C_A in the first region, which shows two distinct weight losses in the 

range 37-240°C, in agreement with the different structures evidenced by XRD and FT-IR data. The 

derivative plot of TGA (DTG) of freeze-dried S (Fig. 6) displays a weight loss centered at 190°C, which 

accounts for about 70% wt of weight loss, and further degradation steps between 300 and 800°C, 

probably due to the degradation of residues. A very similar thermogravimetric plot is shown by C_S, 

768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826



15

with just some shift of the degradation steps to higher temperatures. Water addition (CS_7030 and 

CS_3070) causes just a reduction of the relative amount of the first weight loss. When S is added to 

the composition of C_A and C_L, all the films display similar thermogravimetric plots to that of C_S 

series: in particular, the thermal degradation starts at a temperature lower than that of pure 

chitosan films and the first mass loss, determined between 37°C and 300°C, accounts for about 35% 

wt and 48% wt for the 7030 and 3070 compositions, respectively. Moreover, no water loss was 

observed between 35°C and 160°C. 

Biological properties

In our experimental conditions C_L and C_A films did not interfere with Vero cells metabolism after 

72h of incubation (93.7% and 103.3 %, respectively, and relative to untreated control cells) (Fig. 7). 

Addition of snail mucus components to these films induced an improvement in cell viability, 

especially for the samples of CA series. These samples exhibit a dose dependent increase in Vero 

viability as function of S content. The lowest cell viability was detected for C_S films (72.7%); 

nevertheless, as a material is considered cytotoxic when its viability is less than 70% in comparison 

to untreated controls [53], all samples displayed a promising safety profile.

The antibacterial properties of the different chitosan films were evaluated in vitro by means of a 

disk agar diffusion method where inhibition of bacterial growth is demonstrated by the clear 

bacterial-free zone around sample disks following a 24 h-incubation. Results are reported in Table 2. 

There was no difference between the antibacterial effects on the different microbial species.

Although it is generally recognized that chitosan solutions have strong antibacterial activities [54], 

chitosan films did not inhibit bacterial growth in agar diffusion tests because chitosan in a film form 

is unable to diffuse through the surrounding agar media [55]. the present results confirm this feature 

since both C_A and C_L samples did not inhibit bacterial growth. As a consequence, the bacterial-
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free zones observed for S-containing films could be definitely ascribed to snail mucus addition. 

Chitosan films prepared in acetic acid and directly in S showed antibacterial activity at the highest S 

content (CA_3070, C_S and CS_7030) confirming the inhibitory role of snail mucus. On the contrary, 

films prepared in lactic acid did not display antibacterial properties irrespective to S content.

Table 2. Ranges of the inhibition zone diameters (mm) measured for the chitosan films

Sample S. aureus (ATCC 25923) E. coli (ATCC 25922)
C_L NA* NA
CL_7030 NA NA
CL_3070 NA NA
C_A NA NA
CA_7030 NA NA
CA_3070 12-13 11-12
C_S 15-22 11-14
CS_7030 15-16 12-13
CS_3070 NA NA
GMN 10 g 18-19 18-19

*NA; not appearing

4. Conclusion

New and highly versatile materials containing different amounts of snail mucus, obtained by 

MullerOne exctraction method, and chitosan have been obtained by simple solvent casting.  The 

results of this work show that snail mucus can be added to chitosan previously solubilized in acetic 

or lactic acid, or it can also be used directly to dissolve chitosan trough a greener route. Tensile tests 

revealed that composite films can be stretched up more than ten times with respect to chitosan 

films, demonstrating that S addition displays a plasticizing effect on the films. Moreover, snail mucus 

also enhances water barrier properties and bioadhesion. Structural characterizations indicate that 

the interactions between snail mucus and chitosan chains involve hydrogen bonds between the 

hydroxyl groups of chitosan and polar groups of S, even if the complexity of the extract composition 

requires more detailed analysis.   Thanks to the presence of S, composite films display enhanced 

cytocompatibility and significant antibacterial activity towards both Gram-positive and Gram-
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negative bacteria. These results demonstrate that variations in composition can be utilized to 

modulate the properties of these materials for possible applications including those for the 

biomedical field or as edible coating for food packaging. However, due to the influence of the 

extraction methods on the snail extract properties, composite films made with different snail extract 

should be useful to get more information about the interactions between the components and to 

highlight the peculiar extract effect. 

This research did not receive any specific grant from funding agencies in the public, commercial, or 

not-for-profit sectors.
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Figure captions:

Fig. 1. Appearance of the prepared films. On the right some selected scanning electron 
micrographs are reported. Bar = 100 micron.

Fig. 2. Stress-strain curves recorded on chitosan films prepared in: a) lactic acid; b) acetic acid; c) S.

Fig. 3. Water Vapor Permeability (***p<0.001, **p<0.01, *p<0.05)

Fig. 4. Adhesive properties of chitosan-based films(***p<0.001, **p<0.01, *p<0.05)

Fig. 5. X-rays diffraction patterns (left) and corresponding IR spectra (right) of chitosan films and 
lyophilized solution.

Fig. 6. DTG plots recorded on (from top to bottom): films in L, films in A, films in S and lyophilized 
S.

Fig. 7. Vero cell viability after 48h of incubation with the media containing film components 
following disks dissolution. Data (mean values ± SD) are relative to the untreated control (set to 
100%).
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Table S1: Characterization of snail mucus obtained from Helix Aspersa Muller by means of MullerOne 
technology. Analyses were obtained by the supplier. The chemical and microbiological parameters 
evaluated are among those suggested for snail mucus characterization, as reported in 
http://www.mullerone.com/it/en/our-slime-helix.

Specification Values Measure Units Method

Aspect Clear

smell Odorless

Color Pale yellow

pH 2.9

Density 1.0-1.04 g/ml

Dry residual 5 % M/V M.I.M 180305/L Rev. 0:2005

Minerals (K, Ca, Na) 538 mg/L M.I.M 110315/C Rev. 0:2005

Heavy metals absent

Proteins 80 - 120 mg/L Bradford proteins assay method

Glycolic acid 60-80 mg/L J. Chrom. A. 1322, pp 49-53, 2013

Allantoin 100-130 mg/L J. Chrom. A. 1322, pp 49-53, 2013

Iron 3 mg/L M.I.M 111010/C Rev. 0:2010

Citric acid <0.1 mg/L M.I.M 150212/A Rev. 0:2012

Ascorbic acid <0.1 mg/L M.I.M 150212/A Rev. 0:2012

Antiprotease 1.3 mg/L M.I.M 0112016/A Rev. 0:2016

D-lactic Acid <10 mg/L M.I.M 0112016/A Rev. 0

L-lactic Acid <10 mg/L M.I.M 0112016/A Rev. 0

Sodium benzoate <0.002% m/m M.I.M 150212/A Rev 0:2012

Collagen 2-60 mg/L M.I.M 0112016/H Rev. 0:2016

Gram + <10 UFC/g UNI-EN ISO6888-1:2004

Gram - <10 UFC/g ISO 16649-2:2001

Fungi <10 UFC/g NFV08-059:2002




