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On the integration of symbolic and
sub-symbolic techniques for XAI: A survey

Roberta Calegari, Giovanni Ciatto and Andrea Omicini

Dipartimento di Informatica — Scienza e Ingegneria (DISI), ALMA MATER STUDIORUM-Uhiversita di Bologna,
Italy, E-mail: {roberta.calegari,giovanni.ciatto,andrea.omicini} @unibo.it

Abstract.

The more intelligent systems based on sub-symbolic techniques pervade our everyday lives, the less human can understand
them. This is why symbolic approaches are getting more and more attention in the general effort to make Al interpretable,
explainable, and trustable. Understanding the current state of the art of Al techniques integrating symbolic and sub-symbolic
approaches is then of paramount importance, nowadays—in particular in the XAl perspective. This is why this paper provides
an overview of the main symbolic/sub-symbolic integration techniques, focussing in particular on those targeting explainable Al

systems.

Keywords: XAI, symbolic and sub-symbolic Al, explainability, interpretability, trustable system

1. Introduction

In the era of the fourth industrial revolution, we are
witnessing a fast and widespread adoption of Al in dis-
parate domains. Nowadays, new Al applications of-
ten leverage on sub-symbolic approaches — e.g., deep
learning [1,2,3] — to provide sophisticated features that
would be hard for human developers to implement oth-
erwise.

However, despite the unprecedented performance
arising from the exploitation of sub-symbolic ap-
proaches, experts and practitioners nowadays widely
acknowledge that state-of-the-art sub-symbolic mod-
els lack key features such as inspectability, inter-
pretability, or explainability, given that they are inher-
ently designed, trained, and used as black boxes [4].
In other words, sub-symbolic techniques perform very
well in learning complex relationships and tasks from
data, but they struggle in easing humans’ understand-
ing of how a particular relationship or task could or
should be performed. This is potentially troublesome
since, especially in critical domains — such as the med-
ical, financial, or legal ones, where sub-symbolic in-
telligent systems are exploited to support or automate
decision making —, ethical and legal issues are likely to

arise. In fact, in all the cited contexts, it is not enough
for intelligent systems to support human decisions: in-
stead, they are also expected to provide motivations
and explanations giving insights about how and why
decisions are attained.

Broadly speaking, the “black box” expression is
used to refer to models where knowledge is not explic-
itly represented, but rather it is distributed among ten-
sors of real numbers—whose complexity seldom fits
our cognitive capabilities as humans. This is why hu-
man beings can rarely understand what a black box
actually knows, or how it achieved a particular deci-
sion. In turn, troubles in understanding black-box be-
haviour is what prevents people from fully trusting —
and thus accepting — them. In other words, the “black
box” expression stresses the intrinsically opaque na-
ture of most sub-symbolic techniques—which is one
of the main limitations of the current state of the art.

New research efforts towards eXplainable artificial
intelligence (XAI) [5] are aimed at mitigating the
opacity issue, and pursue the ultimate goal of building
understandable, accountable, and trustable intelligent
systems—although still with a long way to go.

In this context, it is increasingly recognised that
symbolic approaches to machine intelligence may have

1724-8035/20/$27.50 © 2020 — I0OS Press and the authors. All rights reserved
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a critical role to play in overcoming the current limita-
tions arising from the intrinsic opacity of sub-symbolic
approaches [6,7,8,9]. Symbolic and sub-symbolic ap-
proaches are somewhat complementary to each others:
while the latter ones are inherently opaque, fuzzy, and
data-eager, the former ones are human-intelligible, ex-
act, and parsimonious in terms of data. At the same
time, while symbolic approaches often require human
experts to manually encode symbolic knowledge, sub-
symbolic approaches typically support some form of
automatic learning from data.

Accordingly, it becomes fundamental to understand
whether and to what extent a combination of symbolic
and sub-symbolic approaches may contribute in mak-
ing Al more inspectable, interpretable, or explainable.
As a first step in this direction, in this paper we as-
sess the current state of the art of integration of sym-
bolic and sub-symbolic techniques under the XAl per-
spective. We provide an overview of the main models,
methods, and technologies from the literature that si-
multaneously (i) propose a combination of symbolic
and sub-symbolic Al approach (or vice versa), and (ii)
explicitly target — or have the potential to be exploited
for pursuing — XAl tasks or goals.

We categorise the surveyed works according to an
original taxonomy discriminating contributions de-
pending on how the integration of symbolic and sub-
symbolic approaches is realised. For each approach we
provide a brief description, a technological assessment
of the software tools possibly available, and we dis-
cuss how the synergic exploitation of both symbolic
and sub-symbolic techniques can bring benefits w.r.t.
the aforementioned properties, as well as the kind of
explanation the approach can provide.

Our assessment aims at (i) providing a way to com-
pare, analyse, and evaluate the different capabilities of
existing models and techniques w.r.t. XAl (ii) identi-
fying possible directions to advance the state of the art
of Al as far as the integration of symbolic and sub-
symbolic approaches to automatic reasoning and ma-
chine learning is concerned; (iii) providing designers
and developers with methods, techniques, and tools for
knowledge extraction towards transfer learning; (iv)
identifying a road map for principles and applications
of explainable Al.

Accordingly, the paper is organised as follow. Sec-
tion 2 provides some context information along with
some definitions upon which the classification of the
works is based. Section 3 presents and organises the
main symbolic and sub-symbolic techniques for XAl
devised out according our taxonomy. Section 4 collects

and displays information from the selected approaches
in form of tables, graphs, and word clouds. Finally,
Section 5 provides for an overall view on symbolic and
sub-symbolic techniques for XAl, offering some inter-
pretation criteria on their current state of the art and
perspectives; conclusive remarks are reported as well.

2. Context and definition

Explainable Al is an emerging field, focussing on
the design and development of intelligent systems that
allow humans to understand the reasons behind their
recommendations or decisions, making it possible to
know the data, the rationale, and the arguments lead-
ing to a particular outcome, other than to question or
correct them!.

The XAl research area has gained momentum in re-
cent years, probably due to the occurrence of a number
of related phenomena, including, but not limited to: (i)
the pervasive adoption of data-driven Al which char-
acterised the last decade, with associated growing ex-
pectations; (ii) the consequently-increased sensitivity
of the world’s public opinion w.r.t. data-management
issues; (iii) the appearance of data-related regulations
in most developed countries—as the European Union’s
GDPR?. However, many contributions in the XAI field
are rooted on works published in the early 90s, as
witnessed by some of the contributions surveyed in
this paper. It is indeed well recognised that not all ap-
proaches to machine intelligence are equally under-
standable and interpretable in the eyes of human ob-
servers. In particular, the opacity of most techniques
exploited by modern sub-symbolic Al — like neural
networks — is a well-understood issue, in the same
way as the interpretability of other approaches laying
at the edge between the symbolic and sub-symbolic
worlds—Ilike decision trees, or rules.

In order to avoid confusion on the meaning of terms,
in this section we provide a definition for fundamental
notions — namely, interpretation, and explanation —, as
well as the classification of the kind of explanation we
can find in the surveyed techniques and the purposes
for which an explanation is sought. Notions and dis-
tinctions are useful for understanding the discussion of
models and their classification in the next section.

"https://www.aideu.eu
’https://gdpr-info.eu
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2.1. Interpretation vs explanation

Interpretability and explainability are desirable prop-
erties for intelligent systems. We may briefly and in-
formally define XAI as the corpus of literature and
methods aimed at making sub-symbolic Al either more
interpretable for humans, possibly by automating the
production of explanations. However, despite the many
definition attempts, there is still no common agreement
on a shared, unambiguous definition for the two terms.

Based on the preliminary work by Ciatto et al. [10],
and by drawing inspiration from computational logic,
we let the term interpretation indicate the subjective
relation that associates each representation with a spe-
cific meaning in the domain of the problem. In Al al-
gorithms, interpretability refers to the cognitive effort
required by human observers to assign a meaning to
the way the algorithm works, or motivate the outcomes
it produces. Indeed, in those contexts, the notion of in-
terpretability is often coupled with properties as algo-
rithmic transparency (characterising approaches which
are not opaque), decomposability, or simulatability.

As far as the term explanation is concerned, we trace
back its meaning to the Aristotelian thought, other than
the Oxford dictionary definition. In particular, the Ox-
ford dictionary defines explanation as a set of state-
ments or accounts that makes something clear, or, al-
ternatively, the reasons or justifications given for an ac-
tion or belief. Thus, an explanation is an activity aimed
at making the relevant details of an object clear or easy
to understand to some observer.

Accordingly, the concepts of explainability and in-
terpretability are basically orthogonal. However, since
they are not unrelated notions, it may happen that an
explanation could be given by exploiting the inter-
pretability feature. This is the case of explanation by
model simplification [11], where a poorly-interpretable
model is translated into another — a more interpretable
one —, having “high fidelity” [12] w.r.t. the first. The
translation process of the first model into the second
one can be considered as an explanation. For instance,
as we further discuss in the next section, there exists
a number of methods for extracting decision trees out
of sub-symbolic classifiers. In this case, the extraction
method is technically an explanation. Accordingly, we
say that a system is explainable if there is a way to
explain any of its opaque components.

2.2. Kind of explanation

According to the main impact surveys in the XAl
area [6,12], the explainability feature of a system can

be classified as either explainability by design or post-
hoc explanability.

Explainability by design. Methods in this category
aims at creating interpretable or explainable intelligent
systems by construction. This category can be further
decomposed into two sub-categories:

transparent box design containing methods support-
ing the creation of predictive models that are in-
herently interpretable, requiring no particular ma-
nipulation;

logics as constraint containing methods supporting
the creation of predictive models — possibly in-
cluding or involving some black box component
— whose behaviour is constrained by a number of
symbolic and intelligible rules, usually expressed
in terms of (some subset of) first-order logic.

Post-hoc explanability. Methods in this category
aims at making intelligent systems interpretable or ex-
plainable ex-post, i.e., by somehow manipulating some
poorly interpretable pre-existing system. This category
can be further decomposed into the following sub-
categories:

text explanation where explainability is achieved by
generating textual explanations that help to ex-
plain the model results; methods that generate
symbols representing the model behaviour are
also included in this category, as symbols repre-
sent the logic of the algorithm through appropri-
ate semantic mapping;

visual explanation techniques that allow the visuali-
sation of the model behaviour; several techniques
existing in the literature comes along with meth-
ods for dimensionality reduction, to make visual-
isation human-interpretable;

local explanation where explainability is achieved by
first segmenting the solution space into less com-
plex solution subspaces relevant for the whole
model, then producing their explanation;

explanation by example allows for the extraction of
representative examples that capture the inter-
nal relationships and correlations found by the
model;

model simplification techniques where a completely-
new simplified system is built, trying to optimise
similarity with the previous one while reducing
complexity;

feature relevance methods focus on how a model
works internally by assigning a relevance score
to each of its features, thus revealing their impor-
tance for the model in the output.
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2.3. Goals of explanation

XAI research so far has highlighted several goals
that can be achieved by an explainable model. Once
again, there is no shared definition of what XAI goals
are, and, unfortunately, just a handful of contributions
have attempted to define those goals by adopting a con-
ceptual perspective. However, in the reminder of this
work we stick on the following XAI goals and corre-
sponding definition, also proposed in [6]:

trustworthiness as the confidence in the fact that a
model will act as expected when facing of a par-
ticular problem;

causality as inference and discovering of causal rela-
tionships from data variables;

transferability as the property of a model of being
transferable, therefore understandable and imple-
mentable; usually, in order to achieve this goal, it
must be possible to recover all the constraints to
which the model is subject;

informativeness as the ability of a model to provide
information on the problem faced as well as on
the context;

confidence as the assurance that a model is providing
the correct answer;

fairness as the ability to achieve and guarantee equity
in a model;

accessibility as the easiness to understand a model
and use it;

interactivity as the readiness of a model to be interac-
tive with the user;

privacy awareness as the possibility for the users to
be aware of the risks and of the degree of protec-
tion.

These goals can help discriminating the many diverse
purposes for which different explainability techniques
for sub-symbolic approaches are developed.

2.4. Symbolic vs Sub-Symbolic Al

As discussed above, the focus of this survey is not
on the whole spectrum of XAI methods, but rather on
the ones laying at the intersection between symbolic
and sub-symbolic Al-—sometimes referred as hybrid
in the literature. Note that not all hybrid methods are
directly targeting the needs of XAIL

More precisely, elaborating on how the hybridis-
ation of the model is performed actually allows us
to build the taxonomy for the surveyed works. Two
main hybridisation schemes are currently leading the
research in the field:

integration where symbolic and sub-symbolic ap-
proaches are blended together in an unique model
that includes features of both;

combination where symbolic and sub-symbolic ap-
proaches remain identifiable as separate blocks
which are jointly exploited in order to produce an
explainable intelligent system.

In both schemes, the adjective “symbolic” is often an
alias for “logic-based”. In fact, as it is further dis-
cussed in the next section, most symbolic approaches
actually leverage on some sort of logic—there includ-
ing simple if-then rules. This is unsurprising, as logic-
based approaches already have a well-understood role
in building intelligent declarative systems [13].

On the other side, the term “sub-symbolic” is used
to refer to numerical, statistical, and distributed repre-
sentation of machine learning models.

3. Symbolic and sub-symbolic integration: main
approaches

The integration of symbolic and sub-symbolic ap-
proaches is a research field already active in the last
decades, which has acquired even more relevance with
the recent momentum gained by explainable Al sys-
tems. In the following we assess the state of the
art according to the original taxonomy depicted in
Fig. 1, which classifies contributions based on how
the blending of symbolic and sub-symbolic approaches
is realised—integration vs combination, see Subsec-
tion 2.4.

Works are further discriminated inside the model in-
tegration category depending on the kind of logics they
leverage upon: “logic and numerical” integration vs
“numerical, statistical, and logic”. On the other side,
the model composition category is split depending on
the kind of composition: symbolic knowledge extrac-
tion vs symbolic knowledge injection. The former sub-
category includes those approaches where some sort of
symbolic knowledge is somehow extracted from sub-
symbolic models — namely, rules, and tree extractors
—, whereas the latter includes those approaches where
some sort of symbolic knowledge is injected into sub-
symbolic models.

For each selected approach we provide a brief de-
scription, as well as a technological assessment and an
analysis under the XAl perspective.
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Hybrid methods for XAI

Integration

Logic & Numeric

Composition

Extraction —| Lifted Relational Neural Networks (LRNN) [27J |

Fig. 1. Taxonomy of hybrid (symbolic + sub-symbolic) techniques for XAI.
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3.1. Model integration

In this category we review the main attempts to
integrate symbolic models (such as the logic ones)
with sub-symbolic ones (such as statistical and numer-
ical). The main research lines here are those related
to the neural-symbolic computing — the study of log-
ics and connectionism as well as statistical approaches
working on the integration of computational learning
and symbolic reasoning — and relational learning—
focused on learning expressive logic / relational rep-
resentations. Neural-symbolic integration [46] aims
at building a bridge between the symbolic and sub-
symbolic sides of the divide. Relational learning [47]
is the union of inductive logic programming, statisti-
cal relational learning, and multi-relational data min-
ing; it constitutes a general class of techniques and
methodology for learning from structured data — such
as graphs, networks, relational databases — and back-
ground knowledge.

Note that in the following we differentiate statis-
tical and numerical approaches as follows. In statis-
tical models, relevant aspects are either explicitly or
implicitly modelled via random variables or probabil-
ity distributions, and decisions are taken via Bayesian
inference—e.g., graphical models, hidden Markov
models, Markov networks. Conversely, in numerical
models, relevant aspects are represented through one
or more functions over real numbers that approximate
the phenomena of interest, and decisions are taken by
either minimising error or maximising the likelihood
w.r.t. data—e.g., support vector machines, decision
trees, random forests, or (deep) neural networks.

Accordingly, in this category we can further distin-
guish among approaches that integrate logic and nu-
merical models (e.g., Logic Tensor Networks), and ap-
proaches that integrate numeric, statistical and logic
models (e.g., DeepProbLog, Markov Logic Networks).

Generally speaking, the key advantage of these ap-
proaches lies in the blended integration of different
models, thus allowing efficiency, on the one hand, and
possibilities for interpretability and explainability, on
the other.

3.1.1. Logic and numerical models integration

Here we present a number of works integrating logic
and symbolic knowledge with numeric predictors such
as (deep) neural network.

Integration exploits logic rules expressed via first-
order logic (FOL) — or some subset of it — which are
used to constrain the behaviour of one or more nu-

meric predictors. In these cases, constraining is per-
formed by extending the loss function used by most
numeric learning algorithms — there including the
back-propagation algorithm used for neural networks —
with an additive, regularisation term constructed from
the logic constraints. The numeric predictor is then
trained “as usual”, via optimisation—i.e. minimising
the loss function. However, thanks to the regularisa-
tion term, the training process is more likely to select a
set of parameters for the numeric predictor, which are
consistent with the logic rules.

Accordingly, works in this sub-category are interest-
ing from the XAI perspective as they support the cre-
ation of trustworthy hybrid systems, which provide an
higher confidence to their users as they will behave as
expected in all possible scenarios.

Knowledge-Based Artificial Neural Networks, (KBANN)
1990. KBANN [14] is one of the earliest attempts of
exploiting symbolic Al to govern the structure and the
behaviour of neural networks.

Differently from the other approaches described in
this category, the main idea behind KBANN is not
to alter the loss function used to train a neural net-
work. Rather, KBANN is capable of devising the struc-
ture of a neural network from a symbolic knowl-
edge base containing the user-defined, symbolic back-
ground knowledge. More precisely, KBANN assumes
a stratified, Prolog-like, logic theory is available, en-
coding the background knowledge. Under this assump-
tion, the KBANN algorithm aims at creating a neural
network semantically reflecting the symbolic knowl-
edge from which it was created. This step essentially
sets the network structure and weights in order to re-
flect the rules contained into the logic theory. The re-
sulting neural network can then be trained over data
via back-propagation, in order to refine or generalise
its functioning over (possibly novel) data.

According to the authors, the KBANN algorithm

has proven to be useful in the area of molecular
biology. In particular, neural networks attained via
KBANN has been used to detect promoters in strings
of nucleotides, with superior performance w.r.t. ran-
domly initialised neural networks or other sorts of nu-
meric predictors.
XAI perspective.  KBANN is essentially a technique
aimed at exploiting symbolic background knowledge
to bootstrap a neural network. For this reason, we ar-
gue that KBANN provides explainability by design by
exploiting logic as a constraint.
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As far as XAI goals are concerned, KBANN im-
proves the trustworthiness, confidence, and fairness of
neural networks, thanks to its strong reliance on prior
symbolic knowledge. However, transferability is not
guaranteed in this case, as the KANN algorithm oper-
ates in a one-way fashion: apparently, there is no way
to add further symbolic rules to some network built via
KBANN after it has been trained on data.

Technological perspective. The KBANN algorithm is presented
only in [14]: even though the authors present some experimental
results, no link is provided to any sort of software implementa-
tion.

Deep Neural Networks (DNN) with Logic Rules, 2016.
The recent work by [15] (no concise name is given)
introduces another method for constraining a (deep)
neural network behaviour via FOL rules. The proposed
framework enables neural networks to be simultane-
ously trained on labelled data or logic rules, via an it-
erative distillation procedure aimed at transferring the
symbolic knowledge encoded in the logic rules into the
network parameters.

Unlike the main approaches described in the same
category, this work is not only based on the use of
logic constraints as regularisation terms. Rather, the
authors propose the exploitation of two networks: a
teacher and a student one. The teacher network is rule-
regularised via an ad-hoc term added to the loss func-
tion, meaning that it is trained by keeping into account
the user-provided logic rules. In particular, logic con-
straints are encoded into the loss function via soft logic
[48]. Conversely, the student network is trained to bal-
ance between emulating the teacher network output
and predicting the expected outcomes of the dataset.

In other words, this method leverages on a metaphor
rooted in human education, where teachers possess the
background knowledge for a given topic, and instruct
students by providing them with informed suggestions
helping them answer to a number of questions, until
the students success rate is high enough.

According to the authors, the proposed technique
has been successfully exploited in some tasks related
to text analysis—namely, sentiment classification and
named entity recognition. The former task consists of
identifying whether a particular sentence (free text) is
characterised by an underlying positive sentiment or
a negative one. Conversely, the latter task consists of
identifying (i.e. locating and tagging) well-know enti-
ties (characterised by a name) possibly mentioned in
some portion of text, taking into account the unavoid-
able subtleties or ambiguities of the natural language.

XAl perspective. Similarly to other approaches in the
same category, this work targets the construction of ex-
plainable intelligent systems by exploiting logic as a
constraint. In particular, DNN with Logic Rules sup-
port XAI by providing trustworthiness, confidence,
and fairness. Here, the distillation of logic rules in-
creases the expectation that the student network will
behave as intended, and rules may be exploited as a
countermeasure biases possibly buried in the training
dataset. It is worth to mention that this method repre-
sents a notable example of fransferability. In fact, the
teacher network is essentially in charge of transferring
its background knowledge to the student network.

Technological perspective. ~ An implementation based on
Theano? is mentioned in [15], even if we were not able to find
any software technology related to this work.

Logic Tensor Networks (LTN), 2017. LTN[18,19]in-
tegrate learning based on tensor networks [49] with
reasoning based first-order many-valued logic [50].
The work enables a range of knowledge-based tasks
using rich knowledge representation in FOL to be
combined with efficient data-driven machine learning
based on the manipulation of real-valued vectors.

Given data available in the form of real-valued vec-
tors, logic soft and hard constraints, and relations that
apply to certain subsets of the vectors can be speci-
fied in a compact way using FOL. Reasoning about
the constraints can help improve learning, and, vicev-
ersa, learning from new data can revise the constraints
thus affecting the reasoning task. The model integrates
symbolic and sub-symbolic approaches and it is de-
fined upon the Real Logic [19].

Intuitively, the logic formule are used to build a loss
function that aims at training a network capable of ap-
proximating the truth value (in the [0,1] interval) of
the formula given as input. This is done by searching
for the best possible representation for symbolic con-
structs in a vector space (grounding of atoms, func-
tions, predicates), so that the satisfiability of the net-
work is as close as possible to 1 on the test dataset. The
resulting network is able to learning from the rightly-
labelled real examples, but keeps the logic imprint
given in the training phase. For the sake of simplicity,
the approach can be seen as placing a logic network
on top of a deep neural network in order to learn the
relations between abstractions, so to enable the system
to self-explain.

3http://deeplearning.net/software/theano
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In addition to the interesting contribution at the

foundational level of Al, one of the main application
of LTN has been their evaluation in a challenging yet
unsolved Al task: the Semantic Image Interpretation
[51]. In particular, LTN have been exploited to infer
part-of relations between the portions of an image, to
improve the effectiveness of object recognition tasks
on graphical data.
XAI perspective. LTN enable the representation of
relational knowledge to be infused into neural net-
works, in addition to the completion and distillation of
knowledge through network queries. More precisely,
LTN learn from numerical data and logic constraints,
enabling approximate reasoning on unseen data to pre-
dict new facts which are consistent with the logic
knowledge used to constrain the learning process. The
predicted facts can then be used to provide inferences
and reasoning mechanisms over data.

LTN are of course an example of explainability by
design, where logic is exploited to constrain the sub-
symbolic model. Accordingly, we argue that LTN sup-
ports XAI by providing trustworthiness, transferabil-
ity, confidence, and, potentially, fairness. In fact, the
symbolic knowledge (exploited as a constraint and
as background knowledge) strongly reduces the risk
of neural networks learning unexpected or undesired
behaviours from data, thus increasing both the trust-
worthiness and the confidence of the system. Further-
more, by supporting the prediction of novel facts from
data, LTN support transferability of knowledge. Fi-
nally, LTN may provide fairness by letting developers
express constrains aimed at preventing the learning of
biased or unfair behaviours from data, assuming that
constraints can be expressed via FOL fourmlz.

Technological perspective. LTN come with a technological
framework based on Python 3 and TensorFlow [16], available on
GitHub*. It consists of a full fledged library for experimenting
with the LTN model. The software is actively maintained and
well documented. Furthermore, it includes examples and tests.

Semantic Loss Function (SLF), 2018. Semantic Loss
[20] is another attempt of bridging neural networks
and symbolic constraints via loss-function manipula-
tion, similarly to what already described for LTN. In
other words, the main idea behind Semantic Loss is to
constrain the training process of a neural network via
some propositional logic formule which are then en-
coded as part the loss function exploited by the train-

ing algorithm. Such formul@ consist of boolean vari-
ables representing input and output neurons of the net-
works to be constrained, possibly combined via classi-
cal logic connectors.

Many differences exists, however, both at the the-
oretical and the technological level, between Seman-
tic Loss and LTN (or Lyrics). In fact, Semantic Loss
mostly focuses on propositional logic and, therefore,
it does not support quantifiers or predicates within the
logic formul® used as constraints. This trait greatly
simplifies both the model and its implementation. In
particular the embedding schema adopted by Seman-
tic Loss — which maps the propositional constraints in
the loss functions — simply interprets neurons activa-
tion values as probabilities and accordingly computes
the semantic loss via simple algebraic operations.

According to the authors, the main goals of Seman-

tic Loss are (i) to improve the predictive performance
of neural networks — by allowing the training process
to take background knowledge into account —, and (ii)
to support semi-supervised learning.
XAI perspective. Similarly to LTN (and Lyrics), the
Semantic Loss approach targets the construction of ex-
plainable intelligent systems by exploiting a very sim-
ple logic (the propositional one) as a constraint. In
particular, Semantic Loss supports XAl by providing
trustworthiness, transferability, confidence, and possi-
bly fairness. Motivations are analogous to the ones dis-
cusses above. However, we expect Semantic Loss to be
less effective than the previously-discussed solutions
in supporting XAl goals such as fairness, given the re-
duced expressibility of the logicon which it is based.

Technological perspective. The Semantic Loss technology is
available on GitHub> and contains the code exploited by the au-
thors for the experiments proposed in [20]. Source code consists
of a few scripts targetting Python 3, coming with no documenta-
tion except for a brief description of the project. The code has not
been updated since 2019. Thus, we argue that the available code
is not a full fledged technology ready for general purpose usage,
but rather a successful — yet concise — experiment shared with the
research community.

Lyrics, 2019. At the conceptual level, the Lyrics
framework is an extension of LTN, improving the way
symbolic knowledge is declaratively enforced while
training the sub-symbolic part of an intelligent system.
Like LTN, Lyrics transforms FOL clauses into a set
of constraints that are jointly optimised during learn-
ing. However, Lyrics focuses on a more declarative ap-

“https://github.com/logictensornetworks/
logictensornetworks

Shttps://github.com/UCLA-StarAI/
Semantic-Loss
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proach where users can model and implement their hy-
brid system via an handy interface that fruitfully mixes
Python and FOL.

Thanks to its declarativeness, Lyrics can combine
one or more neural networks into a single compu-
tational graph. Each neural network is mapped onto
a logic predicate, when necessary, while (possibly
global) constrains over the outcomes of the networks
are mapped into logic formul®. The resulting compu-
tational graph is then optimised against the available
data via TensorFlow.

Similarly to LTN, the Lyrics framework leverages
on fuzzy logic to create a differentiable way of measur-
ing how much the output of a sub-symbolic predictor
violates the enforced logic constraints. This measure
is then added as an additional loss component in the
loss function to be minimised during training, there-
fore acting as a regulariser. In other words, Lyrics lets
the background knowledge to be enforced via regular-
isation in sub-symbolic black-box systems.

According to the authors, the major applications
of Lyrics are related to predictive model verification,
semi-supervised learning with background knowledge,
collective classification [52], and text chunking. While
model-checking-related applications concerns XAlI,
and are therefore discussed in the next paragraph,
semi-supervised learning can be briefly defined as the
task of learning from examples where only a subset
of the examples have been labelled. Collective classi-
fication, in turn, is the task of classifying data based
not only on their features but also on contextual data—
such as correlations or functional relations among
classes. Finally, text chunking is the task of semanti-
cally recognising sentences in textual data by tagging
each word with its logic role in the sentence (noun,
verb, adjective, etc). In all the discussed tasks, the per-
formance achieved by the Lyrics technology deserve to
be highlighted, as they are related to the fruitful com-
bination of symbolic and sub-symbolic techniques.
XAI perspective. Similarly to LTN, the Lyrics ap-
proach is another means to build explainable intelli-
gent systems by construction. In particular, it falls un-
der the “logic as constraint” sub-category. Arguably,
Lyrics supports XAI by providing trustworthiness,
transferability, confidence, fairness, and accessibility.
Motivations are analogous to the LTN framework, ex-
cept for accessibility which is a peculiarity of Lyrics
due to its declarativeness.

Technological perspective. The Lyrics framework is imple-
mented in TensorFlow. In practice, it consists of a few Python
scripts targetting Python 2—which is no longer supported by the
Python Software Foundation since January 2020. The code is sta-
ble and it is available on GitHub®. It comes with a number of us-
age examples, but no actual documentation is provided apart from
some brief description of the project. Furthermore, it seems that
the code has not been updated since 2018. For all these reasons,
we classify Lyrics as legacy software.

3.1.2. Logic and numerical & statistical models
integration

Here we present a number of works integrating logic
and symbolic knowledge with sub-symbolic black
boxes, via statistic- or probability-based approaches.

Integrating logics and probability has a long story
in Al and machine learning: the integration allows
to express complexity and uncertainty of complex
systems—thanks to the probability component. More-
over, complex models can be learned efficiently from
examples and powerful inference algorithms can be
used to answer queries about the world, or verify and
improve the pre-existing symbolic knowledge. Follow-
ing this purpose, most methods presented in this cat-
egory exploits some form of inductive logic program-
ming or (statistical) relational learning playgrounds,
fruitfully integrated with some sub-symbolic compo-
nent. The way this integration is performed, however,
is what characterises each surveyed technique.

Markov Logic Networks (MLN), 2006. MLN [22]
is an approach for blending FOL and probabilistic
graphical models (a.k.a. Markov networks) in a sin-
gle model. MLN is a first-order knowledge base with a
weight attached to each formula (or clause). Together
with a set of constants representing objects in the do-
main, it specifies a ground Markov network containing
one feature for each possible grounding of each clause
in the knowledge base, and the corresponding weight.
Weights are efficiently learned from (pre-existing) re-
lational databases by iteratively optimising a pseudo-
likelihood measure via the L-BFGS algorithm.

A MLN can be queried by users, and answers are
provided via probabilistic inference. In particular, in-
ference in MLN is performed via the Markov chain
Monte Carlo (MCMC) algorithm over the minimal
subset of the ground network required for answering
the query.

Shttps://github.com/GiuseppeMarra/lyrics
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It is worth to be mentioned that, despite being a
foundational framework, MLN are at the base of many
approaches adopted towards explainable Al [5,53,54].
XAI perspective. The weighted rules — representing
the underlying model of this category — are exploited
by a meta-interpreter to generate an explanation in the
form of a proof for a why-question. Indeed, Markov
Logic supports a special type of deductive inference
for MLN, known as maximum a-posteriori inference,
which can be exploited to find the most probable world
given some evidence. Thanks to the logic formule ex-
ploited to describe dependencies and risk in the net-
work the most probable explanation can be provided
following the step of the inference process. Moreover,
extension to abductive reasoning can be exploited, as
in [55,56,57], to find an explanation for a given ob-
servation in the light of some background knowledge:
the explanation refers to the root cause for a given be-
haviour, and the background knowledge refers to the
dependency graph of the network.

For all these reasons, we classify MLN as a tech-
nique explainable by design—since there is no black-
box component. It is particularly suitable to design
transparent boxes out of interpretable blocks such as
relational databases and graphical models. Accord-
ingly, we argue that intelligent systems based on MLN
may be exploited to pursue XAl goals such as causal-
ity, informativeness, and interactivity as they help
users in understating the causes of contextual situa-
tions via interactive why and what-if queries.

Technological perspective. The authors proposes a quantita-
tive assessment of MLN based on the Alchemy framework’.
Alchemy is a software package providing a series of algorithms
for statistical relational learning and probabilistic logic inference,
based on Markov theory. The Alchemy homepage and software
distribution are not updated since 2013, and we were not able
to access the code, thus we are not able to provide any further
technological assessment.

CILP++, 2014. CILP++ [23] is a model aimed at
performing inductive logic programming (ILP) via
bottom clause propositionalisation and neural net-
works.

Similarly to relational learning, ILP aims at in-
ducing novel rules out of example data. However, in
ILP, example data consist of logic clauses, describing
(i) both positive and negative examples of the to-be-
learned rule, and (ii) the background knowledge, con-

7http://alchemy.cs.washington.edu

taining a number of rules the to-be-inducted ones may
exploit in their bodies.

CILP++ leverages on (i) neural networks to make
ILP faster, and on (ii) propositionalisation to make the
construction of neural networks out of arbitrary logic
theories possible. More precisely, propositionalisation
is a preliminary step, which is necessary to convert the
example clauses into real vectors and the background
knowledge into a multi-layered neural network to be
fed with those vectors. Of course, the structure of this
network reflects the rules contained in the background
knowledge, and the input layer contains a neuron for
each possible atom used in the background knowledge.

The resulting network is then trained against the

positive and negative examples. In this way, the
weights of the network are optimised to select the
atoms of the to-be-induced rule—which are thus en-
coded in the structure of the trained network, in a sub-
symbolic form. The extraction rule proposed in [58] is
finally used to extract the induced rule from the neural
network, bringing it back in symbolic form.
XAl perspective. CILP++, like other works focussing
on logic induction or relational learning, can be con-
ceived as explainable by construction exploiting log-
ics as a constraint technique—despite it also exploits
rule-extraction techniques similar to the ones used for
“model simplification”, which we describe later in this
section. We argue that CILP++ can be exploited to pur-
sue XAl goals such as transferability, informativeness,
fairness, and accessibility. Transferability derives from
the possibility of transferring both the source and the
induced logic clauses from one two different instantia-
tions of CILP++, possibly targetting similar problems.
Informativeness and fairness derive from the exploita-
tion of the induced information as a means to revel
hidden information of biases, possibly buried in data.
Accessibility derives from the declarativeness of NTP,
where the potential of sub-symbolic Al is encapsulated
behind a logic-based front end.

Technological perspective. The CILP++ technology consist of
a C++ project hosted by SourceForge®, and, more recently, by
GitHub®. We only analysed the GitHub-hosted one, as it is the
most recent one. The project consists on bare, undocumented
C++ sources, coming with no release, instruction, or build au-
tomation support. The codebase has not been updates since 2017.

Neural Theorem Prover (NTP), 2017. NTP [25] are
neural networks acting as logic reasoners (a.k.a. theo-
rem provers). They are built by taking inspiration from
backward-chaining-based reasoning algorithms, as in
Prolog. In particular, the neural network is recursively
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constructed to encapsulate the knowledge encoded in
some logic theory, and trained to correctly answer to
all possible queries on such theory. Of course, the
structure of the resulting network reflects the structure
of the clauses contained into the source logic theory.
However, differently from the other techniques pre-
sented in this sub-category, both theories and queries
supported by NTP can contain logic variables, as NTP
is able to calculate, at the neural network level —i.e.,
in the sub-symbolic model —, the logic unification.
In other words, NTP perform symbolic reasoning on
top of sub-symbolic and distributed representations of
knowledge.

Thanks to their peculiarities, NTP overcome a num-
ber of limitation characterising similar approaches
such as LTN and CILP++. For instance, logic theories
require no preliminary grounding of clauses to be com-
patible with NTP. Furthermore, NTP support multi-
hop reasoning.

Moreover, by exploiting the distributed representa-
tion of knowledge, the NTP tend to place the vector
representations of similar symbols in the close prox-
imity of their corresponding vectorial space. For this
reason, NTP can induce novel rules to be added to the
symbolic theory, given prior assumptions about the ad-
missible structures of the logic relationships to be in-
duced. Thus, NTP can also be considered as a tool for
performing inductive logic programming (and related
relational learning).

According to the authors, NTP can be exploited to

perform link prediction in knowledge bases. Big hand-
crafted logic theories may contain some holes, in terms
of missing facts or rules, and NTP may help in filling
them by inducing the missing information.
XAI perspective. From the XAI point of view, we
classify NTP as a means to reach explainability by con-
struction, by using logics as a constraint. Similarly to
CILP++, NTP can be exploited to pursue XAl goals
such as transferability, informativeness, fairness, and
accessibility, for similar reasons.

Technological perspective. Despite some experiments on NTP
(and their results) are mentioned in [25], no link is provided to
any sort of software artefact, and we were not able to find any
software resource on this topic.

Differentiable Inductive Logic Programming (OILP),
2017. OILP [24] is another means for ILP leveraging
on neural networks. As an hybrid ILP system, it aims
to combine the advantages classical symbolic induc-
tion (e.g., data-efficiency, comprehensibility, transfer-
ability, and generalisation capabilities) with the advan-

tages of the sub-symbolic systems (e.g., robustness to
noisy or ambiguous data in training).

The main idea behind JILP is to mimic logic deduc-
tion on definite clauses via a neural network. However,
differently from NTP, OILP perform deduction using
forward chaining, instead of backward chaining.

Briefly speaking, the authors re-interpret ILP as a
binary-classification problem. As for other similar ap-
proaches discussed in this category, a neural network
is constructed in such a way that its structure reflects
a grounded version of the background knowledge. The
resulting network is then trained to minimise the cross-
entropy with respect to positive and negative examples.

OILP is essentially a foundational work. However, a

number of experiments are discussed in [24] showing
how OILP outperforms previous ILP system in term of
the number of tasks it can induce.
XAl perspective. The classification of OILP under the
XAI perspective is quite straightforward. Similarly to
other hybrid approaches to ILP or relational learn-
ing, we classify JILP as explainable by construction,
exploiting logics as a constraint technique. Similarly
to CILP++, and NTP, JILP can be exploited to pur-
sue XAl goals such as transferability, informativeness,
fairness, and accessibility, for similar reasons.

Technological perspective. Even though some experiments on
OILP (and their results) are mentioned in [24], no link is provided
to any sort of software artefact, and we were not able to find any
software resource on this topic.

DeepProbLog, 2018. DeepProbLog [26] is another
attempt of blending neural networks with logic pro-
gramming, and in particular probabilistic logic pro-
gramming.

Probabilistic logic programming is an extension of
logic programming where facts and rules are enriched
with probabilities, and queries are solved by not only
stating if they are satisfied or not, but also to what
extent—i.e., solution include probability values. As
Prolog is the main language used in logic program-
ming, ProbLog!? is the main language used in proba-
bilistic logic programming.

DeepProbLog is an extension of ProbLog exploit-
ing neural networks for (i) computing the probabili-
ties of facts, and (ii) letting neural classifiers be used
as logic predicates—defined as “neural predicates” by
the authors. In particular, each DeepProbLog program
is translated into a tensorial computational graph —
possibly including one ore more neural classifiers as

Ohttps://dtai.cs.kuleuven.be/problog
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sub-graphs — to be optimised via gradient descend.
The structure of the computational graph reflects the
structure of the rules contained into the DeepProbLog
program. The optimisation step is aimed at simulta-
neously setting all the possible parameters regulating
the behaviour of the computational graph, including
the probabilities of facts and the internal weights of
neural predicates. The resulting sub-symbolic system
is then exploited to draw probabilistic inferences. In
other words, hybrid systems based on DeepProbLog
fruitfully combine probabilistic reasoning and sub-
symbolic classification in a single, unified, coherent
framework.

It is worth to mention that, unlike NTP, Deep-
ProbLog requires the source logic theories to be
grounded before any network can be constructed. This
is why we consider DeepProbLog as a less-general ap-
proach than NTP.

According to the authors, DeepProbLog can also be
used to induce new rules for a given probabilistic logic
theory, exploiting its sub-symbolic representation.
XAI perspective. From the XAl point of view, Deep-
ProbLog can be conceived as a means to reach explain-
ability by construction by using the (probabilistic) log-
ics as a constraint. Arguably, DeepProbLog can be ex-
ploited to pursue XAI goals such as transferability, in-
formativeness, fairness, and accessibility. Motivations
are analogous to the NTP, and CILP++ cases.

Technological perspective. DeepProbLog is available on Bit-
Bucket along with some open-source software!!. It consists of
a well-organised library targetting Python 3, ProbLog, and Py-
Torch!2, coming with some basic documentation. The code based
was lastly update in 2019.

Lifted Relational Neural Networks (LRNN), 2018.
LRNN [27] aim at performing relational learning from
data via neural networks.

Similarly to DeepProbLog, LRNN exploit sets of
weighted first-order formul® as structural templates
for building a neural network to be trained over the
available data. The resulting network is exploited to
infer latent rules buried in data and to estimate the
weights of the existing clauses. Like DeepProbLog,
and unlike NTP, LRNN requires the logic knowledge
base to be grounded before the network construction.

According to the authors, LRNN has been success-
fully exploited in the context of molecular biology.
XAl perspective. From the XAl point of view, LRNN,
too, can be conceived as a means to reach explainabil-
ity by construction by using the (probabilistic) logics
as a constraint. Again, similarly to NTP and Deep-

ProbLog, LRNN can be exploited to pursue XAl goals
such as transferability, informativeness, fairness, and
accessibility, for similar reasons.

Technological perspective. Even though some experiments on
LRNN (and their results) are mentioned in [27], no link is pro-
vided to any sort of software artefact, and we were not able to
find any available software resource.

3.2. Model composition

In this category we review the main attempts to
combine symbolic models — such as rule sets, deci-
sion threes, or ontologies — with sub-symbolic ones.
Among the surveyed works, we identify two major re-
search lines. Thus, we split our categorisation and our
discussion in as many sub-categories.

The first sub-category deals with the translation in
symbolic terms of the sub-symbolic knowledge that
most numeric predictors attain from data. A number of
works from the past three decades converge in this line
of research. Consequently, a plethora of names have
been proposed during the years for this sub-category.
To avoid any confusion or bias, we stick to the name
“symbolic knowledge extraction”.

The second sub-category includes works and meth-
ods from the literature enabling sub-symbolic predic-
tors to accept symbolic information as input. In fact,
while most symbolic approaches can represents data
structure of variable size, most sub-symbolic predic-
tors can only work with vectorial and fixed-sized data.
However, as all works in the second category focus on
how to inject ontologies (a.k.a. knowledge graphs) into
sub-symbolic predictors, we refer to this sub-category
as “knowledge graph injection”.

3.2.1. Symbolic knowledge extraction

Here we discuss the main approaches for extracting
symbolic knowledge out of sub-symbolic predictors.

The main underlying assumption behind most works
in this category is that, once a sub-symbolic system
has been trained over large amounts of data reach-
ing some good predictive performance, then it must
have attained a distributed representation of the knowl-
edge contained in the data. Even though unintelligible
to human beings, the distributed representation is still
somehow buried in the internals of that sub-symbolic
systems. Assuming this is the case, then a knowledge
extraction technique is a means for making the dis-
tributed representation explicit and intelligible.

It is worth to mention that the idea of extracting de-
cision rules or trees from sub-symbolic predictors is
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not new: it has been introduced several times, in many
forms, and with different names and methods, since
the late 80s. In fact, generally speaking, systems sup-
porting symbolic knowledge extraction have a number
of appealing features. In particular, they support a full
exploitation of sub-symbolic techniques, which are the
best choice when information must be mined from
large amounts of data, and are usually better suited in
terms of precision, robustness, and predictive perfor-
mance. However, thanks to the knowledge extracted,
those systems retain desirable XAl-related properties
which would otherwise be lost.

Knowledge extraction techniques can be described
and discriminated according to a number of orthogonal
dimensions, including:

1. the structure of the symbolic knowledge they ex-
tract (e.g., decision rules, decision trees, etc)

2. the type of constraints they exploit for decision-
making (e.g., linear constraints, M-of-N rules,
etc)

3. the sort of sub-symbolic predictor(s) they can
deal with (e.g., neural networks, support vector
machines, etc)

In the reminder of this section we partition the sur-
veyed works according to dimensions 1, and 3, then
for each approach we discuss the sort of the con-
straints exploited. In particular, in the same way as
other impactful surveys on the topic [12,59], we dis-
tinguish between techniques extracting rule lists and
techniques extracting decision trees. Then, we further
distinguish between pedagogical and decompositional
approaches. In doing so we borrow the terminology
from [59], where pedagogical techniques are those ca-
pable of extracting symbolic knowledge from any sort
of sub-symbolic predictor — as they do not exploit any
internal detail of the predictor under study to perform
the extraction —, whereas decompositional techniques
are those only capable of extracting symbolic knowl-
edge from some particular sort of sub-symbolic pre-
dictor (e.g., neural networks, in most cases)—as they
perform the extraction by looking at the internals of
the predictor at hand.

Rules extraction. Here we focus on methods for ex-
tracting flat list of rules in the form

if condition; then outcome;
else if conditions then outcomes

else outcome,,

out of sub-symbolic predictors, where each condition
is can be a conjunction or disjunction of (i) boolean
predicates, (ii) linear constraints, or (iii) M-of-N rules
over the attributes of the data used to train the sub-
symbolic predictor.

We categorise the surveyed techniques for rule ex-
traction depending on whether they are decomposi-
tional or pedagogical; then we provide some details for
each technique; finally, we analyse them from the XAl
perspective in an aggregate manner, given the huge
similarity characterising the surveyed techniques from
the XAI perspective.

Pedagogical approaches. We identified three main
pedagogical approaches for rule extraction:

— the method from Saito et al. (1988) [28]
— RxREN (2012) [29]
— ALPA (2015) [30]

In particular, [28] extracts M-of-N rules out of any
black-box classifier, regardless of whether it is a neu-
ral network or not. Apparently, however, this method
does not support regression, and it only supports cat-
egorical attributes as conditions in the extracted rules.
In spite of its limitations, this work has been proven to
be effective in expert systems for diagnosis support.

On the contrary, [29] an [30] extract if-then-else
rules out of arbitrary classifiers. In particular, RXREN
supports datasets with mixed mode attributes (i.e., ei-
ther categorical or numerical). The algorithm is based
on a reverse-engineering algorithm that essentially dis-
cards insignificant attributes and discovers the varia-
tion range of input attribute for each possible outcome
of the classification. For this reason, the rules extracted
by RxREN are composed by linear constraints. Con-
versely, the ALPA rule extraction technique is the first
that is applicable to any black-box model with no lim-
itations on the nature of constraints.

It is worth remarking that pedagogical approaches
are not based on the structure of the network, therefore
they also work with other sub-symbolic models—even
though oldest papers tend to mention neural networks
more than other sorts of predictors.

Finally, it is worth to be mentioned that pedagogi-
cal extraction algorithms can essentially be described
as oracle-based algorithms. In fact, in most cases the
extraction algorithm works by querying the black box
(which is therefore considered as an oracle), and by us-
ing the corresponding responses to build the rule list.
This behaviour is repeated until the set of rules given
by the white-box model converges to that of the black
box. In other words, the extraction procedure termi-
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nates when the rule set as whole reaches an high fi-
delity w.r.t. the original black box.

Decompositional approaches. We identify some main
decompositional approaches for rule extraction:

RuleNet (1992) [31]

MofN (1992) [32]

the method from Giles et al. (1993) [33]
KT (1994) [34]

VI-Analysis (1995) [35]

RX (1997) [36]

the method from Nuiez et al. (2008) [37]

Generally speaking, most approaches here explic-
itly target a particular sort of sub-symbolic predictor.
In particular, all approaches except [37] target neural
networks, whereas [37] target support vector machines
(SVM).

Some approaches [31,32,33] exploit some strict as-
sumptions that limit the kind of neural networks they
can manage, thus reducing their generality. For in-
stance, the RuleNet technique described in [31] can
only handle neural networks aimed at computing en-
domorphisms on n-sized strings of characters, and it
aims at making explicit the condition-action rules ex-
ploited by such sorts of networks. At the same time, the
MofN technique [32] can only handle neural networks
attained via the KBANN algorithm described above.
As suggested by its name, this method extracts M-of-
N-like rules. Finally, the method proposed in [33] fo-
cuses on neural networks trained to act as recognisers
for regular languages, and it is capable of extracting
rules in the form of finite state automata for parsing
these languages.

Other approaches — e.g., [34,35,36] — target general
purpose neural networks. Briefly speaking, they com-
pile networks into sets of rules with equivalent struc-
ture. There, each processing unit (neuron) is mapped
into a separate rule — or a small set of rules —, and
the in-going connections are interpreted as precondi-
tions to that rule. The particular shape of precondi-
tions — e.g., linear constraints, M-of-N constraints, etc.
—, is then inferred by taking into account the weights
of a neuron in-going connections, and its activation
function. For instance, the KT algorithm [34] is capa-
ble of learning if-then-else rules with linear constraints
out of general neural-network classifier. Similarly, the
VI-Analysis [35] and RX [36] algorithms perform the
same task via different procedures.

Finally, a different and noteworthy approach is de-
scribed in [37]. There, the authors propose a method

for extracting if-then-else rules with linear constraints
out of SVM classifiers.

XAI perspective. Generally speaking, rule extraction
techniques provide post-hoc explainability via model
simplification. In fact, all the surveyed extraction pro-
cedures aims at creating a list of rule having an high-
fidelity w.r.t. the source black-box predictor. This rule
list can then be considered a symbolic, intelligible ex-
planation of the source predictor. Accordingly, we ar-
gue that all these techniques may contribute to the
pursuit of XAI goals as: trustworthiness, causality,
transferability, informativeness, confidence, and pos-
sibly fairness. In fact, by making the inner function
a black-box predictor explicit and intelligible, these
techniques may increase the trustworthiness and con-
fidence of intelligent systems. Furthermore, by provid-
ing an overview of the all the possible context-decision
situation an intelligent system may face, and by mak-
ing it possible to inspect which particular rule lead to
a particular decision, rule extraction techniques may
provide informativeness and causality. Moreover, the
symbolic knowledge extracted can be translated into
several forms, possibly making it compliant with sym-
bolic intelligent systems. This of course provides for
transferability. Finally, rule extraction techniques may
help with fairness as well, by highlighting the biases
possibly learned by sub-symbolic predictors.

It is worth to mention, however, that rule extraction
technique are not the silver bullet of XAI. Issues re-
lated to accuracy, fidelity, and consistency, may eas-
ily arise in this kind of approaches, because the ex-
tracted rule list may not perfectly reflect insights of the
original one. We argue that this is essentially unavoid-
able: the extracted rule lists are essentially approxi-
mated models, which are attained by removing (i.e.
loosing) information from the source black-box. More-
over, interpretability of the extracted rule list may eas-
ily deteriorate as the amount of rules (or the amount of
predicates per rule) increases—a situation which may
easily arise as the complexity or the dimensionality of
the black-box become non-trivial. Finally, it is worth
to be noted that virtually all rule extraction techniques
only focus on black-box predictors acting as classi-
fiers. Not so much attention has been devoted by the
academic community to the extraction of rules out of
sub-symbolic regressors, as well as black boxes aimed
at performing unsupervised learning tasks.

As a side note concerning SVM-based rule extrac-
tion techniques, it is worth to be mentioned that, al-
though they have been known to produce classifiers
that are easily comprehensible, they often approximate
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secondary models of worse accuracy [60]. Moreover,
even though these models may be reasonably under-
standable from an expert perspective, they still lack the
simplicity and familiarity to an individual user that of-
ten intelligent systems have to provide, as in the case
of recommendation.

Technological perspective. In spite of the many surveyed papers
for rule extraction algorithm, only one of them comes with some
actual implementation: ALPA. The implementation of ALPA is
available for download on the web page of the Applied Data Min-
ing Research Group at the University of Antwerp!3. It consists of
a plugin for the Weka data-mining framework'#. Thus, it is JVM-
based software coming with a detailed manual. Apparently, the
ALPA source and binary code was published in 2013 and never
been updated since then.

Decision trees extraction. Here we focus on meth-
ods for extracting hierarchical decision tree out of sub-
symbolic predictors.

Generally speaking, extracted decision trees are or-
dinary decision trees whose nodes are represented by
rules consisting of a conjunction or disjunction of (i)
boolean predicates, (ii) linear constraints, or (iii) M-
of-N rules over the attributes of the data used to train
the sub-symbolic predictor, similarly to the aforemen-
tioned decision rules. In other words, the main differ-
ence with decision rules lays in the hierarchical nature
of decision choices.

Given the small amount of techniques for decision
tree extraction surveyed in this section, we do not split
our discussion any further to distinguish between ped-
agogical or decompositional approaches. Rather we
provide this information as part of the details descrip-
tion of each method, provided below. We provide a
joint discussion of decision tree extraction methods
from the XAl perspective, at the end of the paragraph.
Surveyed methods. We identify three main approaches
for decision tree extraction:

— TREPAN (1996, pedagogical) [38]

— the method by Krishnan et al. (1999, pedagogical)
[39]

— the method by Schetinin et al. (2007, decomposi-
tional: random-forest-specific) [40]

TREPAN is a pedagogical tree extraction algorithm
that extracts decision trees from sub-symbolic models.
TREPAN grows a tree through recursive partitioning,
using a best-first expansion strategy, towards M-of-N-
like, tree-structured rules. The black box model — be
it a neural network, a support vector machine, or any
other model that can be used for classification — is used
as an oracle to answer questions of class belongingness

on artificially-generated data points. It also exploits the
active learning process to additionally generate data
points according to network constraints.

Along the same line, [39] proposes decision tree ex-
traction from neural networks. Unlike TREPAN, how-
ever, the internal structure of the neural network is
taken into consideration in the process of decision tree
construction. Furthermore, while TREPAN leverages
on a restricted form of active learning, the method pro-
posed by [39] leverages on a genetic algorithm. Fi-
nally, it is worth mentioning that the latter algorithm
supports the extraction of trees of a given size. In other
words, the size of extracted tree can be tuned.

Finally, [40] proposes an approach for the proba-

bilistic interpretation of Bayesian decision trees en-
sembles (a.k.a. random forests) as a single decision
tree. Classification confidence for each tree in the for-
est is calculated by exploiting training data: the de-
cision tree covering the maximum number of correct
training examples is selected, keeping the amount of
classification errors in the remaining examples mini-
mal. Unlike the previous ones, this method of explana-
tion does not extend the input data set with random ad-
ditional data and cannot be generalised to other types
of sub-symbolic black boxes.
XAI perspective. From the point of view of XAlI, de-
cision tree extraction methods are quite similar to rule
extraction ones, thus similar concerns fit their case.
Accordingly, we argue that decision tree extraction
techniques provide post-hoc explainability via model
simplification, and help in pursuing XAl goals such as
trustworthiness, causality, transferability, informative-
ness, confidence, and fairness.

In spite of the many similarities with rule extrac-
tion techniques, a remarkable peculiarity of decision
trees extractors is worth to be mentioned: as hierarchi-
cal models, they are less prone to interpretability issues
when the complexity or dimensionality of the source
predictor grows.

Other critical aspects remain however unresolved
w.r.t. rule extraction techniques. These include issues
arising from the potential lack of fidelity, as well as
the concentration of practically all the decision tree ex-
traction techniques on the sole case of classification
tasks—Ileaving others kinds of tasks in machine learn-
ing essentially uncovered.
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Technological perspective. As far as implementations of deci-
sion tree extraction facilities are concerned, we were only able to
find an ancient C-based implementation of TREPAN on the au-
thor’s homepage. The archive only contains the C source code of
TREPAN plus some basic instruction and a Makefile for build
automation. We classify this technology as a legacy experimental
project.

3.2.2. Knowledge graph injection

Inspired by the benefits of logic background knowl-
edge that can lead to (more) interpretable system,
knowledge injection is a field of research in some
way specular to knowledge extraction. It deals with
the injection of symbolic knowledge into sub-symbolic
models.

Even though knowledge injection is in some sense
already provided by many works described in Subsec-
tion 3.1, where symbolic and sub-symbolic techniques
are integrated in an unique model — for instance, by
using logics a constraint to inject background knowl-
edge into neural systems [51] —, in this category we
focus on works performing a particular sort of knowl-
edge injection—namely, knowledge graph embedding.
The key idea is to embed components of an ontology
(a.k.a. knowledge graph, or simply KG) — including
entities and relations — into continuous vector spaces,
to allow neural networks to accept such a type of struc-
tured information as input and take advantage of its
background knowledge to perform ordinary machine
learning tasks.

Most of the currently-available techniques perform
the embedding task only on the basis of observed facts.
Given a KG, knowledge graph injection techniques
first represent entities and relations in a continuous
vector space, and then measure facts plausibility ex-
ploiting some scoring function. Entity and relation em-
beddings can be obtained by maximising the total plau-
sibility of observed facts.

During this whole procedure, the learned embed-
dings are only required to be compatible within each
individual fact, and hence might not be predictive
enough for downstream tasks [41,42]. As a result,
more and more researchers have started to add other
types of information, including logic rules [41,43,44],
in order to learn more predictive embeddings.

The noteworthy approaches that we deem signifi-
cant for the purpose of this survey — as they combine
symbolic and sub-symbolic models — are:

— RESCAL + TRESCAL (2015) [41]
— INs (2015) [42]
— Low-rank Logic Embeddings, LLE (2015) [43]

— KALE (2016) [44]
— OSCAR (2019) [45]

In particular, [41,42] exploit rules to refine embedding
models aimed at KG completion. KG completion is
formulated as an integer linear programming problem,
where the objective function is generated from embed-
ding models and constraints are generated from rules.
Facts inferred in this way are the most preferred by the
embedding models and comply with all the rules. By
incorporating rules, these approaches can greatly re-
duce the solution space and significantly improve the
inference accuracy of embedding models. TRESCAL
[41] is an extension of RESCAL, requiring the argu-
ments of a relation to be entities of certain specified
types.

Along this line, other works — e.g., [43,44] — pro-
pose approaches that embed KG facts and logic rules
simultaneously in a unified framework. In particular,
in INS, formula are injected into the embeddings of
relations and entity-pairs, i.e., the embeddings are es-
timated such that predictions based on them conform
to given logic formul®. KALE, on the other side, rep-
resents rules as complex formula modelled by t-norm
fuzzy logics. Embedding then amounts to minimising
a global loss over both atomic and complex formulae.
Thus embeddings are learnt as compatible with rules.

In [45] the authors propose a method, OSCAR, for
injecting task-agnostic knowledge from a KG into a
neural network during the training. OSCAR is a pre-
training regularisation technique capable of injecting
world knowledge and ontological relationships into
a deep neural network: the expert knowledge is ex-
ploited as a regulariser for the network.

It is worth noting that in all these approaches rules
are modelled separately from embedding models, serv-
ing as post-processing steps: this is why we classify
these work as combination and not integration. Fur-
thermore, all these works share a common drawback,
in that they have to instantiate universally-quantified
rules into ground rules before learning their models.
This is called grounding procedure, and can be time-
and space-inefficient—especially when dealing with
big data scenarios or in case of rules complexity.

XAI perspective. From the point of view of XAI,
knowledge graph embedding methods are aimed at
providing explainability by design using logics as a
constraint. Arguably, they help in pursuing XAI goals
such as trustworthiness, informativeness, confidence,
and fairness. In fact, the background knowledge in-
jected by embedding knowledge graphs may increase



R. Calegari et al. / Integration of symbolic and sub-symbolic techniques for XAl 23

the confidence and the trustworthiness of users by re-
ducing the risks related to sub-symbolic systems ac-
quiring undesired or biased information from data.
Furthermore, the same background knowledge may be
used to contextualise decisions and suggestions pro-
vided by sub-symbolic part of an intelligent system,
thus improving informativeness. Finally, background
knowledge may be used to prevent or compensate bi-
ased data, thus potentially improving fairness.

Technological perspective. Among the five surveyed methods for
KG injection, only two works include with some public software
resource. These are INS and Low-rank Logic Embeddings. In par-
ticular, the source code of the experiments proposed in [42] by
the authors of INS is available on GitHub!>—as bare and undoc-
umented Java code. Similarly, the source of Low-rank Logic Em-
beddings is available on GitHub as well'®—as Scala sources, in-
cluding instructions and build automation support. In both cases,
the source code is not updated since 2015.

4. Statistics, Data Collections & Discussion

In this section we collect and discuss information
from the sources and the selected approaches, and dis-
play it in form of tables and word clouds.

4.1. Word cloud

Fig. 2 shows the word cloud generated from all the
papers this survey is based on. In order to give some
meaning to this limited yet synthetic view of the liter-
ature, the ten most evident words in the cloud could be
divided into three subcategories:

— explanation, systems, model
— learning, neural, network, training, value,
— logic, rule.

In short, the picture could be interpreted as suggesting
that integrated symbolic and sub-symbolic techniques
for XAl are mostly exploited to give an explanation of
sub-symbolic systems exploiting the expressive power
of logics in modelling knowledge into rules, formula
and states. Neural networks are chosen as typical rep-
resentatives of sub-symbolic models, while logic rules
are chosen to represent the symbolic approaches.

The cloud also highlights the relatively-high fre-
quency of other words, related to the logic one (repre-
sentative of the symbolic approaches), such as: knowl-
edge, formula, variable, clauses, interpretation, ontol-
0gy, fuzzy—all of them basically reinforcing the (quite
obvious) idea that the knowledge to be discovered

should be represented exploiting some kind of logic
rules to formalise the systems and its properties. On
the other side, the cloud shows some high-frequency
words related to the machine learning domain (which
includes most of the sub-symbolic approaches), such
as: function, output, input, classification, space, fea-
tures—somehow hinting at the main features of sub-
symbolic approaches, such as the efficiency in finding
solutions and learning in a very large data space.

Further scrutiny reveals that terms understanding,
black, hidden, information, and trust also appear quite
often. This hints at the main XAI goals these hybrid
approaches aspire to achieve.

Other interesting words emerging from the cloud are
prediction, reasoning, inference, and decision, possi-
bly reflecting one of the main purposes of the sym-
bolic / sub-symbolic integrated approaches for XAI—
namely, predicting and reasoning over the system
knowledge in order to take autonomous decision, and
supporting the design and development of intelligent
systems as human-centred Al technologies and appli-
cations. Finally, words like social, human, and interac-
tions spotlight the social component of the intelligent
systems target for the surveyed hybrid approaches.

4.2. Timeline Analysis

Fig. 3 presents the papers in this survey on a time-
line. At first glance, it can be seen that forerunners
works — which characterised the decades between the
1990s and 2010s — are those related to knowledge
extraction—in the form of both rules and trees, pre-
cisely in this order, to underline the influence of the
former on the latter.

In 2015, research works on model integration de-
buted on the XAI playground, and soon gained mo-
mentum, reaching the high concentration of works that
we see today—although a couple of (theoretical) pre-
cursors can be found from the early 90s (e.g., [14]).
This underlines two basic concepts — perhaps obvious,
but worth remembering — of today’s Al scenario: i) the
large amount of environmental data and the availabil-
ity of increasingly-advanced technologies have made it
possible to exploit integrated symbolic / sub-symbolic
approaches in real applications of intelligent systems;
ii) the need for these systems to be explainable is today
more fundamental than ever.

It is also worth noting how the progress of tech-
nology and techniques has led to the exploration of
approaches for the injection of knowledge, however
dominated — in the same years — by approaches always
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Fig. 2. The cloud of words obtained by the main keywords extracted from the papers subject of the survey.

linked to “logics as constraints”, yet based on model
integration. Model integration has several advantages,
discussed in the next sub-section: first of all, that of
being explainable by design.

4.3. XAI Analysis

Table 1 and Table 2 summarise the XAl perspective
analysis provided in Section 3 for each approach.

Kind of explanation. At a glance, Table 1 shows
symbolic/sub-symbolic integrated/combined techniques
for XAI are actually concentrated in just two cate-
gories w.r.t. the type of explanation—namely, “logics
as constraint” and “explanation by simplification”.
About the techniques that integrate symbolic and
sub-symbolic approaches, there is actually one item la-
belled as transparent box design — the Markov Logic
networks — since they are the only ones without com-
ponents classifiable as black boxes. Apart from this ex-
ception, other techniques that integrate symbolic and
sub-symbolic approaches exploit the use of “logics as
constraints”: the integration is indeed implemented by
binding the network (via logic constraints) during the
training phase in order to produce a model that comply
with the background knowledge (logic constraints).

The use of knowledge in the form of logic declara-
tions or constraints in the knowledge base has shown
not only to improve explainability, but, in some ap-
proaches, also to improve performance compared to
approaches based exclusively on data [19,51]. The
main positive effect of these approaches is that hybrid
and integrated approaches provide robustness to the
learning system when errors occur in the training data
labels.

Furthermore, many of these approaches have proven
to be able to learn and reason jointly with both sym-
bolic and sub-symbolic representations and inferences,
sometimes enabling a probabilistic expressive logic
reasoning [26].

A different perspective on XAI hybrid models is to
enrich the knowledge of the black box models with
symbolic knowledge, as proposed by the techniques
categorised as model composition. In particular, this
can be done by binding the neural network thanks to
semantic KB and the like.

This is the case of composition of symbolic and sub-
symbolic techniques that can be “explained by design”
through the “logics as a constraint” technique. Unlike
the integrated models, in this case the logic constraints
(i.e. the knowledge graphs) are injected into the sym-
bolic sub-model as input (once appropriately translated
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Fig. 3. Surveyed works timeline.

into numerical vectors). In this case the output of the
sub-symbolic model is bounded by the constraints im-
posed as input.

Another hybrid approach is to map a system of black
boxes onto a white box, or, a more interpretable twin.
Along this line, any technique that reduces the com-
plexity of the model or simplifies the results should be
considered as a XAI approach. The size of this trans-
lation, in terms of complexity or simplicity, should
correspond to how explainable the resulting model is.
An underlying problem that remains unsolved is that
the gain of interpretability provided by such XAI ap-
proaches may not be easy to quantify. The definition of
general and shared metrics allowing XAI approaches
to be evaluated remains an open challenge.

About the sort of explanation, all the approaches cat-
egorised as composition of techniques via knowledge
extraction are included in the model simplification cat-
egory. The approaches are those related to the extrac-
tion of rules or trees from the sub-symbolic model.

Decision trees have always been one of the most
used categories of transparent models. Also based on

the number of approaches collected in this survey, the
literature on simplification and generation of the deci-
sion tree is very broad. The fact that a large majority
of the application of these models does not fall within
the field of Al (and not even in information technolo-
gies) mostly means that experts from other sectors usu-
ally feel comfortable when interpreting the results of
these models. In fact, decision trees are models that
perfectly achieve the goal of trustworthiness. How-
ever, they have poor scalability properties when com-
pared to other models: therefore, they are difficult to
apply in scenarios where predictive performance is of
paramount importance.

Overall, Table 1 shows that obtaining a model as
a transparent box is almost unlikely (due to the need
of integrating the two techniques). However, the table
also highlights that there are unexplored research di-
rections that it might be worth exploring—such as tex-
tual, visual, local, by example and by feature explana-
tions. All these directions become worthy of consider-
ation and may encompass promising research perspec-
tives to be taken into account. It is worth noting that
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Symbolic/sub-symbolic techniques for XAlI: kind of explanation
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textual or visual explanations are easy to obtain, once
the model is simplified, from models such as decision
trees: some attempts in this direction have already been
made [9].

Generally speaking, methods from the “post-hoc ex-
planation” category are usually preferred, as they do
not prevent the exploitation of black-box predictors—
commonly considered as better-performing in the gen-
eral case. Conversely, the methods from the “explain-
able by design” category are best suited for critical
contexts where interpretability is a major concern, and
predictive performance can be sacrificed in its favour.

XAI goals. As already mentioned above, XAI defi-
nition brings together two concepts — namely, under-
standing and trust — that need to be addressed by the

XAI model for Al. However, other purposes motivate
the need for interpretable AI models—such as causal-
ity, transferability, informativeness, fairness, confi-
dence, accessibility, interactivity, and privacy aware-
ness. Table 2 focuses on XAI goals, based on the pa-
pers that state them explicitly as their goal. A check-
mark between brackets denotes that the analysis of
Section 3 has highlighted the XAI goal although it is
not explicitly mentioned by the authors in their works.
Trustworthiness. Several authors agree on trustwor-
thiness as the primary goal of an XAI model of Al
However, not all models addressing this goal explic-
itly talk about it in their works. According to the def-
inition given here, trustworthiness amounts to ensure
that a model will act as expected when facing a spe-
cific problem. This is why the works categorised as
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Table 2
Symbolic/sub-symbolic integrated techniques for XAI: main goals
trustworthi- causality transferability informative- confidence fairness accessibility interactivity privacy
ness -ness awareness
KBANN v’ v’ v’ ~)
DNN with Logic Rules v’ v’ v’ v’
Logic Tensor Networks v’ v’ v’ v’ )
g Semantic Loss Function v’ v’ N v’ v’
;50 Lyrics v’ v’ v’ v’ v’ v’
é Markov Logic Networks v’ v’ v’
3 CILP++ v’ v’ ~)
8 Neural Theorem Prover v’ v’ (\/ ) v’
SILP v’ v’ (\/ ) v’
DeepProbLog / \/ (\/) \/
LRNN v’ v’ ) v’
_ é rules extraction v’ v’ v’ v’ v’ )
2z v v v v v o)
. g knowledge graph injection \/ \/ \/ (\/)
Q

those pursuing this goal are the ones exploiting any
form of symbolic knowledge (exploited as a constraint,
or as background knowledge, or as knowledge ex-
tracted / injected into a model). Indeed, this feature
strongly reduces the risk of black-box model to learn
unexpected or undesired behaviours from data, thus in-
creasing both the trustworthiness and the confidence of
the system. Part of the works reviewed here explicitly
mention the concept of trust when stating their purpose
for achieving explainability. However, as one may ob-
serve in Table 2, they represent more or less half of the
contributions.

Causality. Another goal in XAl is to find the causal-
ity between the data and the variables that represent
them. Several authors argue that XAI models could
facilitate the task of finding relationships that could
be further tested for a stronger causal link between
the variables involved. A sub-symbolic model discov-
ers only the correlations between the learning data,
therefore it may not be enough to reveal the gen-
eral cause-effect relationships. However, causality im-
plies correlation, therefore a sub-symbolic model in-
tegrated with symbolic techniques could validate the
results provided with inference techniques, or, provide
a first intuition of possible causal relationships. Once
again, Table 2 shows that causality is neither among
the most important objectives nor among those mostly
addressed by hybrid models. Indeed, abduction-based
approaches in Markov Logic Networks fall into this
category. Abduction aims at finding the root cause, by
drawing a graph of the causes, thus providing an ex-
planation for a given observation.

Transferability. The model constraints that delimit
and harness the model behaviour should be easy to
transfer. Explainability may also be expressed un-
der the guise of transferability, since it can facilitate
the task of clarifying the boundaries that could influ-
ence a model, thus allowing a better understanding
and implementation. For this reason, an explainable
model should also be easily transferable—yet again,
not viceversa. According to Table 2, the number of arti-
cles that include transferability among the features that
make a model explainable is quite high—indeed trans-
ferability is the second most-mentioned goal. Gener-
ally speaking, the works that integrate ILP or relational
learning do not address this goal: in fact, those tech-
niques exploit the symbolic component to induce new
rules, yet they do not represent the global knowledge
of the system in order to make transferability possible.
Informativeness. Intelligent systems — and therefore
models that support them — are mostly used with the
intention of supporting the decision-making process
of agents—here intended both as software and human
ones. However, the problem solved by the model is
never the same as the one humans would face. There-
fore, a lot of information is always required in order
to be able to relate the decision that a user would take
to the solution provided by the model so as to avoid
misunderstandings and misleading outcomes. To this
end, explainable models should provide information
on the problem addressed. Most of the articles sur-
veyed use the expression provide information to refer
to the process of disclosing relationships between data
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and the corresponding variables. All knowledge ex-
traction techniques (regardless of whether they extract
rules or trees) essentially provide post-hoc explain-
ability via model simplification. In fact, sub-symbolic
knowledge is then expressed and presented to the users
via symbolic proxies — such as list or trees of rules —
which can be considered and explanation of the origi-
nal black box model. This is why all those techniques
have informativeness as their main goal. Even at the
level of model integration, the achievement of this goal
is mentioned almost everywhere. This is certainly the
most widely-used topic among the articles reviewed to
support what they expect to achieve from XAI models.
Confidence. Confidence is basically mandatory in
the models where reliability is expected—even more in
the XAI perspective. Only half of the surveyed works
deals with this feature, which seems reasonably to go
hand in hand with trustworthiness. In fact, as men-
tioned above, some models — such as those based on
ILP and RL, which are mainly used to learn latent
rules and relationships — do not aim at making systems
more trustworthy or confident—their (other) purposes
are detailed in Section 3.

Fairness. Explainability, from a social perspective,
can be considered as the ability to achieve and ensure
absence of biases in the models for intelligent systems.
There are strands of literature — outside the scope of
this survey — that enable for an ethical analysis of the
model in order to measure the level of equity achieved.
Accordingly, a XAl objective should be enable the de-
tection of possible distortion in the data. In fact, XAl
could actually work as a bridge to avoid the unfair or
unethical use of the model results. Among the works
accounted here, almost no one explicitly mentions fair-
ness, which instead is nowadays perceived as one of
the most relevant issues. However, in Section 3 we
have shown how, by increasing the degree of infor-
mation, therefore of confidence and trust, many tech-
niques already take a first step towards fairness.
Accessibility. A small portion of the surveyed con-
tributions also aims at improving accessibility, always
in order to promote explainability of a model. This is
quite obvious, since the ability for humans to map their
own cognitive models upon software models is surely
a fundamental step towards explainability.
Interactivity. Only one contribution include the model
ability to interact with the user—namely, Markov
Logic Networks, which help users understanding the
causes of contextual situations via interactive why and
what-if queries. Yet, interaction with users should be

one of the main XAl goals, so it seems likely that many
future research efforts will be devoted to that.

Privacy awareness.  Almost forgotten in the surveyed
works, the ability to evaluate conditions relating to pri-
vacy should be accounted for by explainable models.
In fact, the lack of understanding of what has been ac-
quired, memorised, and learned by the model can lead
to violations of privacy norms, thus leading to legal is-
sues. This is a critical problem, given the main social
contexts where XAl is going play a crucial role. As a
result, researches in the hybrid legal/IT field look both
promising and needed.

5. Conclusion

Al systems nowadays work on large amounts of
data, learning from experience and making predictions
with the goal of supporting human decisions or tak-
ing autonomous ones—applications range from clini-
cal decision support to autonomous driving and pre-
dictive policing [61]. Nevertheless, concerns about the
intentional and unintentional negative consequences of
Al systems are legitimate, as well as ethical and legal
concerns, mostly related to darkness and opaqueness
of Al decision algorithm. For that reason, recent work
on explainability and interpretability in machine learn-
ing and Al has focussed on simplified models that ap-
proximate the true criteria used to make decisions.

Bridging the gap between symbolic and sub-symbolic
representations is a key obstacle along the path from
the present state of Al achievement towards human-
level artificial intelligence—in particular in the ex-
plainable Al perspective.

Symbolic intelligence, based on the use of symbolic
rules to represent, explore, and infer knowledge, has
many advantages, such as naturalness, interpretability,
and easiness in giving explanations. However, it has
two major disadvantages: acquiring rules and learn-
ing from a huge amount of data is difficult, and scal-
ability is poor. On the other hand, sub-symbolic intel-
ligence has the great advantage of being able to ac-
quire knowledge from examples, to be highly scalable,
and to succeed in representing complex and highly-
inaccurate knowledge bases. The benefits and draw-
backs of the two approaches compensate each other:
this has lead to the emergence of techniques combining
and integrating them so as to get strengths and benefits
from both.

In this paper we focus on explainable Al, and dis-
cuss the main techniques for the integration of sym-
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bolic and sub-symbolic approaches on the general
perspective of explainability of intelligent systems.
On the one hand, we categorise the works that deal
with model integration, where the symbolic and sub-
symbolic components are no longer two separate parts
of the system. On the other hand, we instead clas-
sify techniques and systems that combine the two ap-
proaches to obtain hybridisation.

Overall, in spite of the heterogeneity of the tech-
niques and the variety of the research directions, all
works demonstrate the feasibility and the potential
benefits of the integration of symbolic techniques with
sub-symbolic ones towards explainable Al.
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