
23 April 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Using off-the-shelf data-human interface platforms: traps and tricks / Angeli A.; Marfia G.; Riedel N.. - In:
MULTIMEDIA TOOLS AND APPLICATIONS. - ISSN 1380-7501. - ELETTRONICO. - 80:9(2021), pp. 12907-
12929. [10.1007/s11042-020-08929-z]

Published Version:

Using off-the-shelf data-human interface platforms: traps and tricks

Published:
DOI: http://doi.org/10.1007/s11042-020-08929-z

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/772645 since: 2020-09-24

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1007/s11042-020-08929-z
https://hdl.handle.net/11585/772645

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/)

When citing, please refer to the published version.

This is the final peer-reviewed accepted manuscript of:

Angeli, A., Marfia, G., & Riedel, N. (2020). Using off-the-shelf data-human interface
platforms: Traps and tricks. Multimedia Tools and Applications

The final published version is available online at: http://dx.doi.org/10.1007/s11042-
020-08929-z

Rights / License:

The terms and conditions for the reuse of this version of the manuscript are specified in the
publishing policy. For all terms of use and more information see the publisher's website.

https://cris.unibo.it/
http://dx.doi.org/10.1007/s11042-020-08929-z
http://dx.doi.org/10.1007/s11042-020-08929-z

Noname manuscript No.
(will be inserted by the editor)

Using off-the-shelf data-human interface platforms:
traps and tricks

Alessia Angeli · Gustavo Marfia ·
Norman Riedel

Received: date / Accepted: date

Abstract With the development of learning algorithms, the constantly in-
creasing computing power and the available amount of multimedia data, the
adoption rate of data science techniques is steadily growing. Machine and
deep learning algorithms are already used in a wide variety of ways to solve
domain-specific problems. However, the potential of such methodologies will
be fulfilled when also non specialized data scientists will be empowered with
their use. Focusing on such perspective, this work does not deal with a clas-
sical data science problem, but instead exploits existing and available easy
to use data-human interfaces. To this aim, we picked an exemplar scenario,
amounting to an existing qualitative activity recognition data set that was in
the past analyzed utilizing feature selection techniques and custom machine
learning paradigms. We here verify how it is today possible, without changing
the default settings and/or performing any type of feature selection, to em-
ploy the machine and deep learning algorithms provided by different publicly
accessible tools (namely, Weka, Orange, Ludwig and KNIME) to address the
same problem. Nevertheless, not all of the utilized platforms and algorithms
provided satisfactorily results: we here finally discuss the possible issues and
opportunities posed by such approach.

Alessia Angeli
Department of Computer Science and Engineering, University of Bologna,
Bologna, Italy
E-mail: alessia.angeli2@unibo.it

Gustavo Marfia
Department for Life Quality Studies, University of Bologna,
Bologna, Italy
E-mail: gustavo.marfia@unibo.it

Norman Riedel
University of Bielefeld,
Bielefeld, Germany
E-mail: norman.riedel@uni-bielefeld.de

2 Alessia Angeli et al.

Keywords Data-human-interface, machine learning, deep learning

1 Introduction

Today, machine and deep learning algorithms are used in many daily life
applications, often without end users understanding or even noticing them
[35, 46, 23, 27, 17, 16]. Data science experts are usually hired to apply the
most appropriate of such algorithms to the specific context of use [69, 8]. This
clearly limits the use of such techniques, as well as the study and assessment of
the benefits these may provide to a plethora of application domains. For this
reason, for several years, researchers have tried to lower their adoption barrier
[56, 37, 36, 9]. Now, recent developments are making such algorithms accessible
to non-experts through simplified data-human interfaces [29, 72, 52, 30].

For instance, one of the fields that could greatly benefit from such devel-
opments is the field of qualitative activity recognition. Qualitative activity
recognition studies aim at determining the quality of execution of a given
movement, rather than recognizing the movement itself (which may have been
implemented at an earlier stage of the process or simply be known a priori).
With this knowledge it is possible, for example, to give (real-time) feedback
concerning the quality of an executed movement, an essential information in
physical rehabilitation, in sports and in many industrial domains, among oth-
ers [44, 49, 40, 18, 67].

For this reason, for this study, we resorted to a publicly available qualitative
activity recognition data set, containing raw data and calculated parameters
obtained from inertial measurement units (IMUs) [68]. The IMUs were at-
tached to athletes while performing a weightlifting exercise with dumbbells.
The aim of the researchers that created and first studied such data set was
to devise a machine learning model capable of identifying the correct way of
lifting dumbbells, as well as four typical mistakes. To this end, they exploited
a feature selection approach and a custom model for the classification of the
weightlifting movements.

In this paper, hence, we analyzed the data set created by the authors of
[68], adopting an approach based on the use of a few of the most prominent
simplified data-human interface platforms, namely:

– Weka, “Waikato Environment for Knowledge Analysis”, developed at the
University of Waikato in New Zealand since 1993 [1];

– Orange, developed at the University of Ljubljana since 1996 [2];
– Ludwig, a deep learning software released in early 2019 by Uber [7];
– KNIME, initially developed at the University of Konstanz, which special-

izes in pharmaceutical applications [3].

In particular, this work extends [60] providing a holistic approach to study
and analyze the different possibilities available to a non-expert user to apply
machine and deep learning algorithms, through learning platforms and tools,
in relation to a specific task. In addition, this work includes a taxonomy of

Using off-the-shelf data-human interface platforms: traps and tricks 3

the considered learning platforms with the aim of aiding the non-expert user
with a map of the strengths and weaknesses of such tools.

Our contribution amounts to the verification of the ease-of-use of such plat-
forms, as well as the performance of the machine and deep learning algorithms
they provide. This is simply done by putting such interfaces to good use, with-
out changing the default model settings and/or performing any type of feature
selection. As a final term of comparison, we also exploited the use of the deep
learning libraries provided by an interpreted programming language, namely,
Python [4]. In summary, this work provides:

– An assessment and comparison of the results obtainable by non-data sci-
entists when resorting to easy-to-use, off-the-shelf, visual and non-visual
based data science platforms applied to a specific and well investigated
problem;

– A verification of the possible pitfalls a non-data scientist could fall on with
the use of the considered platforms;

– A final analysis of the chosen data set, which serves as a further term
of comparison, based on the use of mainstream Python-based learning li-
braries.

This work is organized as follows. In Section 2 we review the most relevant
literature for this work, including data-human interfaces (Subsection 2.1) and
activity recognition (Subsection 2.2). Section 3 introduces the platforms and
the programming language that have been here employed as user-data inter-
faces and presents the results obtained with the different approaches. Finally,
in Section 4 and in Section 5 we summarize the findings and draw conclusions.

2 Related Work

In this Section we review a sample of the most relevant scientific works con-
cerned with the importance of easy-to-use data-human interfaces (Section 2.1),
as well as a few of those related to the domain of human activity recognition
(Section 2.2).

2.1 Data-human interfaces

The ever increasing amount of multimedia data is leading many non-experts in
data science to face the problem of diagnosing and solving problems with the
use of machine and deep learning [26, 20, 33, 65, 12, 15, 70, 31]. To support such
needs, the research community has studied and developed platforms which
aim at easing the use of the existing models and algorithms by non-experts.
In the following, we present three different contributions, alternative to those
exploited in this work, where the problem of empowering non-data scientist
with adequate data analysis tools has been considered.

4 Alessia Angeli et al.

In particular, Patel et al. (2010) discussed the difficulties of applying ma-
chine learning algorithms for non-data scientists, pointing out the need for
tools that could let a wider community of developers effectively use them [55].
To pursue such direction of research, the author created Gestalt, a prototype
integrated development environment. Gestalt provides an explicit support for
connecting the principal steps in a pipeline of a machine learning algorithm
and an interactive graphical interface through which developers can quickly
sort and filter examples to drill down into the data they need.

Yang et al. (2018) investigated how non-experts build machine learning
solutions depending on the problem they encounter [71]. The authors con-
cluded that a machine learning tool for non-experts should be both easy to
use and robust, even though it is challenging. To advance on this insight, the
authors discussed design implications and created a concept to demonstrate
how designers might guide non-experts to easily build robust solutions.

In [19], Chen et al. (2016) studied how visualization could support users
to utilize machine learning. To this aim, they developed a visual interface to
engage a group of users in a design exercise, exhibiting the need for visualiza-
tions allowing machine learning practitioners to engage in iterative cycles of
exploratory observation, hypothesis formation and testing.

Unlike the works discussed in this Section, the present contribution consid-
ers different visual and non-visual programming approaches, aiming at showing
where critical issues may emerge in the process of approaching data science
with off-the-shelf solutions. Considering a real-world scenario, hence, we ex-
hibit the potential and the possible problems that may arise when employing
a specific set of algorithms with the individuated platforms.

2.2 Human Activity Recognition

Human Activity Recognition (HAR) is an emerging field of research in perva-
sive computing and human-computer interaction, due to the enormous im-
provement of sensor technologies and the constantly increasing computing
power. It aims at recognizing human activity based on the data obtained from
different sensor sources, such as video cameras, wearable sensors (e.g., ac-
celerometer, magnetometer, gyroscope) or ambient sensors (e.g., radar, sound
sensors, pressure sensors, temperature sensors) [22]. Many works have so far
explored this approach, utilizing both supervised and unsupervised learning
methodologies [68, 60, 70, 61, 54, 21, 43, 10, 57, 32]. HAR has already be-
come part of our everyday life when we think, for instance, of smartphones or
smartwatches that are capable of detecting basic activity states with the help
of a simple built-in accelerometer [61, 14, 41]. The application areas of HAR
are manifold, including the recognition of daily life activities [13, 59, 47], the
assessment of skill and performance in sports [68, 66, 39, 42], the monitoring
of long-term health conditions for disease diagnostics [45, 64, 26, 20, 58] and
training of personnel in industrial and maintenance processes [50, 63, 49].

Using off-the-shelf data-human interface platforms: traps and tricks 5

A number of researches has focused on a qualitative assessment of human
activities. The works in this area are more concerned with how an activity is
performed, rather than with which activity was performed.

For instance, Ladha et al. (2013) developed the skill assessment platform
ClimbAX for climbing using tri-axial accelerometers [42]: analyzing the accel-
eration patterns of competitive climbers, they were able to find a correlation
between the sensor-data predicted scores, based on performance attributes
derived from the raw acceleration data, and the competition scores.

Khan et al. (2015) proposed a generalised skill assessment framework using
a hierarchical and stochastic rule induction method [38]. The framework was
tested in the context of surgical skill assessment of medicine students.

In [68], instead, Velloso et al. (2013) investigated the feasibility of auto-
matically assessing the quality of the execution of weightlifting exercises. Four
Inertial Measurement Units (IMUs) were used to track the motion of a uni-
lateral dumbbell biceps curl (see Figure 1). The participants were asked to
perform one set of 10 repetitions of the biceps curl in five different ways:
correctly (A) and incorrectly, according to four different but ways common
mistakes (B, C, D, E). The gathered data were used as a training data set
for the machine learning algorithm (in this case a 10-fold Random Forest).
The authors processed the raw data (sampled at 45 Hz) provided by the 4
sensors, calculating 8 features per each, in correspondence to each curl move-
ment: mean, variance, standard deviation, max, min, amplitude, kurtosis and
skewness, generating in total 96 derived features. In a second step, utilizing
a correlation-based feature selection algorithm, they determined the 17 most
relevant features necessary to describe each curl repetition.

Fig. 1 IMUs setup by Velloso et al. [68].

6 Alessia Angeli et al.

Building on the raw data set published in [68], a different approach has been
adopted compared to the works discussed in this Section. Taking a non-expert
data scientist perspective, only raw data is used. In fact, unlike the previously
discussed approach, no further analysis of the data set and no feature selection
algorithm has been implemented. The sensor data has been considered as
provided. The next Section describes in detail how the data set has been put
to good use without requiring specific data science expertise.

3 Experimenting with user-data interfaces and models

The data set provided in [68] contains the raw data of the Inertial Measurement
Units (IMUs) of its six monitored participants, the extracted features and
other additional information such as the participants’ names (for a total of
158 features) and the specification related to the feature “classe” (values: A,
B, C, D, E). The CSV formatted file consists of 39,243 rows, with the variable
description in the first row and the raw data in the remaining rows, and 159
columns.

Unlike Velloso et al. (2013) [68], who used a sliding window approach to
extract their features [53], the method described in this work handles the raw
data without using a feature selection algorithm. The only step taken, when
processing the original data set, was to ignore all extracted features and infor-
mation that did not directly originate from the sensors, such as information
about the participants.

Consequently, only the raw Euler angles (roll, pitch, yaw), the raw data
provided by the accelerometer, gyroscope and magnetometer and the total
acceleration were used as inputs. This results in a total of 52 input features:

4IMUs ∗ (3EulerAngles + (3Sensors ∗ 3Axis) + Acctotal) = 52.

In a second run the same procedure was repeated using only the Euler
angles and the total acceleration as input features, resulting in a total of 16
input features:

4IMUs ∗ (3EulerAngles + Acctotal) = 16.

For both settings, the target feature is the feature “classe”. The label “A”
corresponds to the correctly executed movements, while the other labels “B”,
“C”, “D”, “E” correspond to different incorrectly executed movements.

In order clearly portray the results a classifier achieves, we here report a
few of the most common quantities which are used in literature for such aim. In
particular, considering the different rates of True Positive (TP), False Positive
(FP), True Negative (TN) and False Negative (FN), the following different
quantities can be computed:

Using off-the-shelf data-human interface platforms: traps and tricks 7

– Precision: is the proportion of positive identifications that was actually
correct;

Precision =
TP

TP + FP

– Recall : is the proportion of actual positives that was identified correctly;

Recall =
TP

TP + FN

– Accuracy : is the ratio of number of correct identification to the total num-
ber of input samples;

Accuracy =
TP + TN

TP + FP + TN + FN

– F1 score: is a function of Precision and Recall, in particular

F1 = 2 ∗ Precision ∗Recall

Precision + Recall

F1 score might be a better measure to use than Accuracy if we need to
seek a balance between Precision and Recall and there is an uneven class
distribution.

– ROC curve and AUC : an ROC curve, Receiver Operating Characteristic
curve, is a graph showing the performance of a classification model at all
classification thresholds. This curve plots two parameters: True Positive
Rate (TPR) and False Positive Rate (FPR), where

TPR =
TP

TP + FN
FPR =

FP

FP + TN

AUC measures the entire two-dimensional area underneath the entire ROC
curve from (0,0) to (1,1) and ranges in value from 0 to 1. A possible
interpretation of AUC is as the probability that the model ranks a random
positive sample more highly than a random negative sample.

The aforementioned metrics are effectively used in data science environ-
ments, however require a mathematical background which exceeds the one
simply necessary to distinguish a TP from a TN (as well as FP and FN).
Therefore, we decided to compute an other important and widely used quan-
tity that has also an interesting visual impact, as it is not summarized by a
scalar numeric figure, but instead amounts to a bi-dimensional matrix: the
Confusion Matrix.

The Confusion Matrix (or error matrix) is a matrix where each row repre-
sents the actual values while each column represents the predicted ones. The
element on row i and on column j returns the number of cases in which class
i has been classified as a class j. In this work, in particular, after having com-
puted the Confusion Matrix, the element (i, j) of the matrix has been divided
by the total number of actual elements of the class related to the row i and
multiplied by 100 in order to obtain percentage values and results that may be

8 Alessia Angeli et al.

simpler to interpret. Next to the rows and columns of each Confusion Matrix
we then reported the number of respectively actual and predicted elements be-
longing to the different classes. Later we will refer to this matrix as Confusion
Matrix - proportion of actual.

In the following Subsections we discuss the results obtained choosing a Ran-
dom Forest, an other ensemble model and a neural network with Weka, Orange,
KNIME and Python. With Ludwig, we employ its default Encoder-Decoder
neural network. In addition, for the specific case of neural networks, we also
provide a succinct analysis with respect to the parameter values adopted within
the learning platforms and the Python libraries. All the models developed for
the purpose of this paper are available at the following reference [11].

3.1 Weka

The Weka platform, “Waikato Environment for Knowledge Analysis”, repre-
sents a graphical interface to open source machine learning software, as shown
in Figure 2. In particular, Weka supports several standard data mining tasks
such as data pre-processing, clustering, classification, regression, visualization,
and feature selection. Containing a plethora of built-in tools for standard ma-
chine learning tasks, it is widely used for teaching, research, and industrial
applications.

Within the scope of this contribution, Weka was employed to use models
which fall under the neural network and ensemble model classes. In particu-
lar, the default Multi Layer Perceptron (MLP), Random Forest and Bagging
models were built to analyze the aforementioned data set [34, 31]. Using this
platform, only the configuration related to the size of the training set was
changed with respect to the default values and, in particular, was set to the
66% of the entire data set (the default value was cross validation).

The training of the models in Weka was performed with a laptop with
following characteristics:

– RAM: 12GB
– Processor: Intel(R) Core(TM) i7-7500U CPU 2.70GHz-2.90GHz
– System: Windows 10 Home (64-Bit)

When 52 input features were considered, 457 s were required to train the
models, with 16 input features this step took 97 s. The Confusion Matrices -
proportion of actual for MLP, Random Forest and Bagging in both settings
are shown in Table 1.

With Random Forest and Bagging it is possible to observe excellent results
both considering 52 and 16 input features. With MLP excellent results can be
observed considering 52 input features, whereas a substantial increase in the
error rate is observed if 16 input features are considered.

Using off-the-shelf data-human interface platforms: traps and tricks 9

Fig. 2 Model in Weka.

3.2 Orange

Orange is an open source data visualization, machine learning and data min-
ing toolkit. To analyze data, workflows are created by combining different
components, called widgets. Using the Orange interactive graphical user in-
terface, complex data analytics pipelines can be built focusing on the data
analysis part rather than the coding part. These characteristics, together with
the large library of available widgets, make Orange a useful tool for users with
little or no coding experience and knowledge in data science in general.

The data analysis has been performed resorting to default Neural Network,
Random Forest and AdaBoost models [24, 25]. The visual representation of
the final data analysis pipeline constructed with Orange is shown in Figure 3.

The training of the models in Orange was performed with a laptop with
following characteristics:

– RAM: 16GB
– Processor: Intel(R) Core(TM) i7-8550U CPU @ 1.80GHz, 1992 Mhz, 4

Core(s), 8 Logical Processor(s)
– System: Microsoft Windows 10 Home

The first run with 52 input features took 244 s to train the models us-
ing 66% of the data set and 10 repetitions of train/test. In the second run
with 16 input features and the same settings 220 s were required. The Confu-
sion Matrices - proportion of actual for Neural Network, Random Forest and
AdaBoost in both settings are shown in Table 2.

Neural Network and Random Forest both showed an optimal reliability
when the 52 input features were used. Also AdaBoost performed very well,
thus showing a higher error rate. Interestingly, the Confusion Matrix - propor-
tion of actual of the Random Forest remained almost unchanged as 16 input

10 Alessia Angeli et al.

Multi Layer Perceptron - 52 features

Predicted

A
ct
u
al

A B C D E Σ

A 98.70% 0.50% 0.11% 0.48% 0.21% 3776

B 1.94% 95.61% 1.75% 0.39% 0.31% 2572

C 0.39% 3.93% 93.30% 1.73% 0.65% 2314

D 0.27% 0.18% 3.52% 95.56% 0.46% 2185

E 0.12% 0.44% 0.64% 0.40% 98.40% 2495

Σ 3795 2584 2301 2166 2496 13342

Multi Layer Perceptron - 16 features

Predicted

A
ct
u
al

A B C D E Σ

A 89.96% 2.67% 2.99% 3.97% 0.40% 3776

B 12.33% 61.39% 13.41% 7.70% 5.17% 2572

C 2.77% 10.20% 75.50% 9.29% 2.25% 2314

D 1.42% 3.43% 9.61% 84.53% 1.01% 2185

E 2.40% 5.17% 7.78% 4.85% 79.80% 2495

Σ 3869 2120 2609 2531 2213 13342

Random Forest - 52 features

Predicted

A
ct
u
al

A B C D E Σ

A 99.97% 0.03% 0.00% 0.00% 0.00% 3776

B 0.12% 99.88% 0.00% 0.00% 0.00% 2572

C 0.00% 0.00% 99.96% 0.04% 0.00% 2314

D 0.00% 0.00% 0.37% 99.59% 0.05% 2185

E 0.00% 0.00% 0.00% 0.04% 99.96% 2495

Σ 3788 2570 2321 2178 2495 13342

Random Forest - 16 features

Predicted

A
ct
u
al

A B C D E Σ

A 99.95% 0.03% 0.00% 0.00% 0.03% 3776

B 0.08% 99.57% 0.31% 0.04% 0.00% 2572

C 0.00% 0.26% 99.35% 0.39% 0.00% 2314

D 0.05% 0.00% 0.09% 99.82% 0.05% 2185

E 0.00% 0.04% 0.08% 0.00% 99.88% 2495

Σ 3777 2569 2311 2191 2494 13342

Bagging - 52 features

Predicted

A
ct
u
al

A B C D E Σ

A 99.71% 0.08% 0.16% 0.00% 0.05% 3776

B 0.70% 98.41% 0.51% 0.27% 0.12% 2572

C 0.13% 0.13% 99.22% 0.52% 0.00% 2314

D 0.09% 0.41% 1.37% 99.08% 0.05% 2185

E 0.00% 0.20% 0.24% 0.24% 99.32% 2495

Σ 3788 2551 2351 2168 2484 13342

Bagging - 16 features

Predicted

A
ct
u
al

A B C D E Σ

A 99.07% 0.69% 0.00% 0.21% 0.03% 3776

B 1.09% 99.97% 1.40% 0.31% 0.23% 2572

C 0.17% 1.08% 98.23% 0.43% 0.09% 2314

D 0.14% 0.37% 0.96% 98.44% 0.09% 2185

E 0.16% 0.92% 0.48% 0.24% 98.20% 2495

Σ 3780 2576 2342 2183 2461 13342

Table 1 From top to bottom: Confusion Matrices - proportion of actual of Multi Layer
Perceptron, Random Forest and Bagging with Weka using 66% of the data set as training
data.

Using off-the-shelf data-human interface platforms: traps and tricks 11

Fig. 3 Model in Orange.

features were used, while the Neural Network error rate increased of almost ten
percentage points. This means that Random Forest proved to be the robust
algorithm when handling the considered raw data. These results prove that,
for this exemplar case, it is possible to construct a reliable activity detection
model with minimal effort and without any specific knowledge.

3.3 Ludwig

Ludwig is an open source deep learning toolbox whose models are character-
ized by a versatile and flexible Encoder-Decoder architecture. Many standard
models are provided. However, these models can be customized by changing
the standard parameter values. To train the model only a tabular file is needed
(a CSV formatted file) with the data and a configuration file (a yaml formatted
file) which defines which columns of the tabular file are input features and
which are target features. The configuration file also defines the type of fea-
tures to be used in the model. The following type of features are currently
supported by the Encoder-Decoder architecture implemented in Ludwig: text,
numerical, binary, category, set, sequence, image, timeseries, bag. With the
help of the described characteristics, Ludwig can help users who do not have
specific knowledge in coding or in data sciences in general to apply deep learn-
ing algorithms. However, unlike Orange, there is no graphical user interface.

In Ludwig the standard Encoder-Decoder model was used without chang-
ing any of the default parameters values [51], Figure 4. For data analysis the

12 Alessia Angeli et al.

Neural Network - 52 features

Predicted

A
ct
u
al

A B C D E Σ

A 99.83% 0.14% 0.01% 0.01% 0.01% 37940

B 0.18% 99.59% 0.16% 0.02% 0.06% 25820

C 0.01% 0.25% 99.27% 0.44% 0.02% 23270

D 0.03% 0.00% 0.51% 99.22% 0.23% 21870

E 0.00% 0.05% 0.05% 0.17% 99.72% 24530

Σ 37931 25839 23269 21855 24536 133430

Neural Network - 16 features

Predicted

A
ct
u
al

A B C D E Σ

A 98.04% 0.96% 0.46% 0.39% 0.15% 37940

B 2.65% 91.20% 3.90% 1.03% 1.21% 25820

C 0.58% 3.87% 90.41% 4.20% 0.94% 23270

D 0.54% 0.81% 4.78% 92.63% 1.23% 21870

E 0.25% 1.03% 1.87% 2.52% 94.33% 24530

Σ 38195 25243 23725 22271 23996 133430

Random Forest - 52 features

Predicted

A
ct
u
al

A B C D E Σ

A 99.94% 0.04% 0.01% 0.01% 0.01% 37940

B 0.41% 99.38% 0.17% 0.01% 0.02% 25820

C 0.01% 0.50% 99.30% 0.19% 0.00% 23270

D 0.01% 0.01% 0.81% 99.09% 0.08% 21870

E 0.00% 0.04% 0.04% 0.20% 99.73% 24530

Σ 38028 25802 23343 21768 24489 133430

Random Forest - 16 features

Predicted

A
ct
u
al

A B C D E Σ

A 99.78% 0.12% 0.05% 0.02% 0.03% 37940

B 0.62% 98.30% 0.93% 0.09% 0.07% 25820

C 0.06% 0.57% 98.76% 0.59% 0.02% 23270

D 0.02% 0.06% 0.50% 99.32% 0.09% 21870

E 0.05% 0.13% 0.24% 0.19% 99.39% 24530

Σ 38044 25607 23408 21938 24433 133430

AdaBoost - 52 features

Predicted

A
ct
u
al

A B C D E Σ

A 98.61% 0.81% 0.20% 0.24% 0.14% 37940

B 1.32% 96.17% 1.36% 0.57% 0.59% 25820

C 0.35% 1.26% 96.71% 1.24% 0.43% 23270

D 0.43% 0.54% 1.34% 97.17% 0.51% 21870

E 0.13% 0.74% 0.62% 0.60% 97.91% 24530

Σ 37965 25729 23378 21923 24435 133430

AdaBoost - 16 features

Predicted

A
ct
u
al

A B C D E Σ

A 98.64% 0.81% 0.17% 0.18% 0.20% 37940

B 1.18% 95.91% 1.53% 0.72% 0.66% 25820

C 0.24% 1.54% 96.84% 0.98% 0.40% 23270

D 0.36% 0.77% 0.98% 97.45% 0.44% 21870

E 0.18% 0.92% 0.44% 0.61% 97.85% 24530

Σ 37905 25823 23316 21947 24439 133430

Table 2 From top to bottom: Confusion Matrices - proportion of actual of Neural Network,
Random Forest and AdaBoost with Orange using 66% of the data set as training data and
10 repetitions of train/test.

Using off-the-shelf data-human interface platforms: traps and tricks 13

original CSV formatted data file was used. According to this file the yaml

formatted configuration file with the information related to the features was
created. Considering the feature types supported by Ludwig, all input features
are numerical features, while the target feature is categorical.

Fig. 4 Model in Ludwig.

The training of the models in Ludwig was performed with a laptop with
following characteristics:

– RAM: 12GB
– Processor: Intel(R) Core(TM) i7-7500U CPU 2.70GHz-2.90GHz
– System: Windows 10 Home (64-Bit)

The data set containing 39,242 rows of raw data was divided as follows in
training set, validation set and test set: 27,588 rows for training set, 3,857 rows
for validation set and the 7,797 remaining rows for the test set. Considering
the aim of this work, it should be noted that the data split was carried out by
default without actively needing any indication of how to divide the data set.

14 Alessia Angeli et al.

For the first run with 52 input features it took 172 s to train the model
with 70% of the data set and with 55 epochs. The default values for the epochs
number is 100 but after 5 epochs since last validation accuracy improvement
an early stopping occurs, as happened in this case. The best value of accuracy
on validation set is at epoch 50. For the second run with 16 input features it
took 228 s to train the model with 70% of the data set and with 100 epochs. In
Table 3 the Confusion Matrices - proportion of actual obtained with Ludwig
are shown.

Encoder-Decoder - 52 features

Predicted

A
ct
u
al

A B C D E Σ

A 86.11% 2.01% 7.68% 3.22% 0.98% 2239

B 12.83% 59.72% 13.56% 2.05% 11.84% 1512

C 6.54% 6.99% 78.66% 0.90% 6.91% 1331

D 7.54% 4.20% 23.31% 50.04% 14.92% 1287

E 5.39% 12.54% 8.82% 3.71% 69.54% 1428

Σ 2383 1274 1478 1850 812 7797

Encoder-Decoder - 16 features

Predicted

A
ct
u
al

A B C D E Σ

A 72.58% 8.04% 6.07% 9.02% 4.29% 2239

B 22.35% 36.24% 15.34% 10.05% 16.01% 1512

C 27.72% 7.74% 50.04% 7.44% 7.06% 1331

D 14.30% 13.52% 18.73% 44.44% 9.01% 1287

E 13.17% 29.06% 19.26% 14.57% 23.95% 1428

Σ 2704 1420 890 1550 1233 7797

Table 3 Confusion Matrices - proportion of actual of Ludwig Encoder-Decoder model
with default parameters using approximately 70% of the data set as training data, 10% as
validation data and 20% as test data.

Interesting results have also been obtained with Ludwig. Although percent-
age values are lower than those obtained with Weka and Orange, the results
reveal to be promising, when focusing the attention on the class of correct
movements (i.e., A). In fact, the results obtained utilizing 52 input features
are significant, considering that in many applications it is sufficient to correctly
distinguish between “correct” from “incorrect” movements. The percentage of
times a correct movement is detected (i.e., A) obviously decrease when using
16 instead of 52 input features, as shown in Figure 3.

3.4 KNIME

KNIME and in particular the KNIME Analytics Platform is an open source
software for creating data science models. KNIME attempts to make under-
standing data and designing data science workflows and reusable components
accessible to everyone users open, and continuously integrating new develop-
ments. In fact, with this platform it is possible to create visual data science
workflows with an intuitive, drag and drop style graphical interface, without

Using off-the-shelf data-human interface platforms: traps and tricks 15

the need for coding. To build a data science workflow over 2000 nodes are avail-
able and there is the possibility to model each step of the analysis in order to
control the flow of data. Therefore, like Orange, KNIME is characterized by
an interactive graphical user interface.

In KNIME we adopted the same models used in Orange or, when this
was not possible, models that belonged to the same class (e.g., AdaBoost and
Boosting both belong to the ensemble models class). Therefore, the default
Multi Layer Perceptron (MLP), Random Forest and Boosting models have
been used to analyze the data set [28]. The only configuration of the KNIME
nodes that has been changed, with respect to the default values, is the size
of the training set, which was set to the 66% of the entire data set, while
the default value would have been the 10% of the entire data set. The visual
representation of the final data science workflow constructed with KNIME is
shown in Figure 5.

Fig. 5 Model in KNIME.

The training of the models in KNIME was performed with a laptop with
following attributes:

– RAM: 12GB
– Processor: Intel(R) Core(TM) i7-7500U CPU 2.70GHz-2.90GHz
– System: Windows 10 Home (64-Bit)

When using 52 input features, the training of the models took 83 s, whereas
with 16 input features the time required was 32 s. The Confusion Matrices -

16 Alessia Angeli et al.

proportion of actual for MLP, Random Forest and Boosting in both settings
are shown in Table 4.

With the Random Forest algorithm, we observed results that are very
similar to those obtained with the Random Forest built in Weka and in Orange,
for both the 52 and the 16 input features settings. Boosting and MLP, were
not as successful instead, in fact a closer look at the default parameter values
reveals that these may not be suitable for the considered classification problem.
In fact, as shown in Table 5, the main default parameters values for the MLP
model are the following: 100 maximum number of iterations, 1 hidden layer
and 10 neurons per layer. In essence, one hidden layer number and ten neurons
may not be sufficient for this task.

3.5 Python

As a final experiment, we performed the analysis of the data employing Python,
an interpreted, high-level, general-purpose programming language that is widely
used by the machine and deep learning community [62]. Python, in fact, pro-
vides a plethora of libraries available for data science applications. Among
these, the most widely used ones for modeling are scikit-learn and Keras [5, 6].
Scikit-learn represents a general purpose library, as it includes both machine
and deep learning models. Keras, instead, is centered on the use of deep learn-
ing, hence, of neural network based algorithms. In the following we explain the
differences of using these two libraries from a non-data scientist perspective.

We hence employed scikit-learn functions to build neural network, i.e., a
Multi Layer Perceptron (MLP), AdaBoost and Random Forest models resort-
ing as much as possible to the default parameter values. Regarding the default
parameters, for all the considered models, only one value was changed: instead
of the default value of the 75% of data, we used the 66% of the entire data set
for training, to resemble as much as possible the operational settings before.

The training of the models in Python was performed with a laptop with
following attributes:

– RAM: 12GB
– Processor: Intel(R) Core(TM) i7-7500U CPU 2.70GHz-2.90GHz
– System: Windows 10 Home (64-Bit)

Training required 24 s and 16 s when considering the 52 and 16 input
features, respectively. The Confusion Matrices - proportion of actual for MLP,
Random Forest and AdaBoost for both settings are shown in Table 6.

Random Forest and MLP exhibit very good performance (close to 100%),
considering both the 52 and 16 input features, while we observe high error
rates when employing AdaBoost.

As anticipated, resorting then to Keras, we implemented a layer by layer
neural network and analyzed its behavior when using the default values for
the model parameters. It is important now to note that it is necessary to set
at least a few parameters in Keras (in fact, not all of the required parameters

Using off-the-shelf data-human interface platforms: traps and tricks 17

Multi Layer Perceptron - 52 features

Predicted

A
ct
u
al

A B C D E Σ

A 68.28% 6.97% 9.24% 10.64% 4.88% 3789

B 11.73% 37.31% 13.68% 11.38% 25.89% 2565

C 18.78% 20.51% 44.05% 12.03% 4.63% 2311

D 13.41% 8.08% 27.86% 27.45% 23.21% 2215

E 8.08% 20.71% 21.77% 15.31% 34.12% 2462

Σ 3818 2384 2872 1958 2310 13342

Multi Layer Perceptron - 16 features

Predicted

A
ct
u
al

A B C D E Σ

A 77.82% 7.46% 8.44% 3.39% 2.89% 3778

B 18.71% 45.82% 15.61% 8.55% 11.31% 2608

C 13.22% 13.61% 56.35% 10.82% 6.01% 2330

D 6.38% 16.98% 22.95% 31.69% 22.00% 2209

E 4.63% 21.10% 19.32% 9.52% 45.43% 2417

Σ 3989 2679 3013 1533 2128 13342

Random Forest - 52 features

Predicted

A
ct
u
al

A B C D E Σ

A 99.97% 0.00% 0.00% 0.00% 0.03% 3789

B 0.16% 99.81% 0.04% 0.00% 0.00% 2565

C 0.00% 0.22% 99.61% 0.17% 0.00% 2311

D 0.00% 0.00% 0.32% 99.50% 0.18% 2215

E 0.00% 0.00% 0.00% 0.20% 99.80% 2462

Σ 3792 2565 2310 2213 2462 13342

Random Forest - 16 features

Predicted

A
ct
u
al

A B C D E Σ

A 99.87% 0.13% 0.00% 0.00% 0.00% 3778

B 0.08% 99.50% 0.42% 0.00% 0.00% 2608

C 0.04% 0.17% 99.44% 0.34% 0.00% 2330

D 0.00% 0.00% 0.32% 99.64% 0.05% 2209

E 0.00% 0.04% 0.08% 0.12% 99.75% 2417

Σ 3776 2605 2337 2212 2412 13342

Boosting - 52 features

Predicted

A
ct
u
al

A B C D E Σ

A 76.56% 2.96% 13.35% 5.15% 1.98% 3789

B 15.13% 59.61% 12.94% 3.94% 8.38% 2565

C 27.65% 10.13% 50.32% 8.65% 3.25% 2311

D 21.44% 7.04% 16.03% 46.00% 9.48% 2215

E 6.13% 13.12% 6.46% 21.28% 53.01% 2462

Σ 4554 2354 2515 2039 1880 13342

Boosting - 16 features

Predicted

A
ct
u
al

A B C D E Σ

A 66.97% 9.79% 9.00% 11.04% 3.20% 3778

B 16.10% 42.06% 16.53% 13.23% 12.08% 2608

C 12.83% 21.24% 46.22% 15.06% 4.64% 2330

D 7.51% 15.84% 8.87% 55.73% 12.04% 2209

E 6.91% 25.36% 19.61% 17.19% 30.33% 2417

Σ 3582 2925 2518 2774 1543 13342

Table 4 From top to bottom: Confusion Matrices - proportion of actual of Multi Layer
Perceptron, Random Forest and Boosting with KNIME using 66% of the data set as training
data.

18 Alessia Angeli et al.

Neural Network/MLP default values

Epochs Hidden Layers Neurons per Layer Activation Function Loss Function Optimizer

Weka 500 1 (attributes + classes) / 2 Sigmoid Function / /

Orange 200 1 100 ReLu Function optimized Log Loss Function Adam

KNIME 100 1 10 clipped Logistic Function / Rprop

Python with scikit-learn 200 1 100 ReLu Function optimized Log Loss Function Adam

Python with Keras 1 no default value no default value Linear Function no default value no default value

Table 5 Default values for principal Neural Network/MLP model parameters in the differ-
ent considered learning platforms and programming language.

have a default value). In Table 5 we specify which parameters are necessary
for the MLP model, while lacking pre-set default values (i.e., hidden layers
number, neurons number in a layer, loss function, optimizer). In addition, we
observe that the default settings utilized for the number of epochs and the
activation function are ill suited to approach a real world problem, as they
amount to a single epoch and to a linear activation function.

We hence proceeded adopting the default settings, wherever there were
available, deciding to choose as values for the remaining parameters those
suggested in [48], a well known beginners’ data science blog. Hence, we finally
used the following parameter values: 1 epoch (default value), 2 hidden layers
with 32 neurons for each layer, “linear” activation function (default value),
“categorical crossentropy” loss function and “adam” optimizer. The Confusion
Matrices - proportion of actual obtained in this case for the two feature sets
(i.e., considering respectively 52 and 16 input features) are shown in Table 7.

The performance of the described MLP model appears unacceptable. This
could be due to the default parameters values: these may not be suitable for
the considered classification problem. In particular, we note that considering a
linear activation function the resulting MLP behaves as a linear model. There-
fore, when using Keras in Python, and in particular a model which requires
the tuning of different parameters, some knowledge related to how the specific
model works is necessary to obtain any significant result.

We finally decided to verify the complexity of building a MLP model in
Keras which is capable of obtaining significant results. We hence used the
same lines of code, simply changing the default values as follows: 40 epochs
and 80 epochs respectively considering 52 and 16 input features, 2 hidden
layers with 32 neurons for each layer, “relu” activation function, “softmax”
activation function for the output layer, “categorical crossentropy” loss func-
tion and “adam” optimizer. The Confusion Matrices - proportion of actual
for the MLP models in both settings (i.e., considering respectively 52 and 16
input features) are shown in Table 7. It is possible to observe that with only a
few modifications it was possible to obtain now interesting results (all diagonal
values fall above the 90% threshold).

Using off-the-shelf data-human interface platforms: traps and tricks 19

Multi Layer Perceptron - 52 features

Predicted

A
ct
u
al

A B C D E Σ

A 99.79% 0.21% 0.00% 0.00% 0.00% 3829

B 2.87% 94.10% 2.37% 0.16% 0.50% 2578

C 0.04% 1.84% 95.29% 2.74% 0.09% 2336

D 0.46% 0.28% 6.65% 90.51% 2.11% 2181

E 0.00% 0.66% 1.78% 0.70% 96.86% 2418

Σ 3906 2499 2475 2059 2403 13342

Multi Layer Perceptron - 16 features

Predicted

A
ct
u
al

A B C D E Σ

A 97.41% 1.66% 0.21% 0.37% 0.35% 3738

B 0.93% 92.05% 5.60% 0.27% 1.16% 2590

C 0.09% 2.52% 95.00% 1.37% 1.03% 2341

D 0.28% 0.41% 7.13% 91.07% 1.10% 2173

E 0.20% 0.96% 2.72% 1.92% 94.20% 2500

Σ 3678 2538 2600 2080 2446 13342

Random Forest - 52 features

Predicted

A
ct
u
al

A B C D E Σ

A 100.00% 0.00% 0.00% 0.00% 0.00% 3829

B 0.08% 99.88% 0.04% 0.00% 0.00% 2578

C 0.00% 0.00% 100.00% 0.00% 0.00% 2336

D 0.00% 0.00% 0.55% 99.40% 0.05% 2181

E 0.00% 0.00% 0.00% 0.04% 99.96% 2418

Σ 3831 2575 2349 2169 2418 13342

Random Forest - 16 features

Predicted

A
ct
u
al

A B C D E Σ

A 99.97% 0.03% 0.00% 0.00% 0.00% 3738

B 0.23% 98.80% 0.89% 0.04% 0.04% 2590

C 0.00% 0.04% 99.66% 0.30% 0.00% 2341

D 0.00% 0.00% 0.23% 99.72% 0.05% 2173

E 0.00% 0.00% 0.12% 0.16% 99.72% 2500

Σ 3743 2561 2364 2179 2495 13342

AdaBoost - 52 features

Predicted

A
ct
u
al

A B C D E Σ

A 68.06% 18.41% 8.64% 3.29% 1.59% 3829

B 13.15% 63.42% 9.27% 6.90% 7.25% 2578

C 2.05% 6.98% 80.99% 7.23% 2.74% 2336

D 3.44% 4.03% 10.13% 73.59% 8.80% 2181

E 3.18% 7.82% 4.92% 4.96% 79.11% 2418

Σ 3145 2780 2802 2198 2417 13342

AdaBoost - 16 features

Predicted

A
ct
u
al

A B C D E Σ

A 67.42% 17.26% 8.56% 4.47% 2.30% 3738

B 12.66% 62.01% 11.20% 5.52% 8.61% 2590

C 1.07% 13.46% 74.93% 8.80% 1.75% 2341

D 7.18% 3.68% 13.21% 58.77% 17.17% 3173

E 5.44% 10.68% 8.04% 6.40% 69.44% 2500

Σ 3165 2913 2852 1953 2459 13342

Table 6 Top to bottom: Confusion Matrices - proportion of actual of Multi Layer Percep-
tron, Random Forest and AdaBoost implemented with Python and scikit-learn functions
using 66% of the data set as training data.

20 Alessia Angeli et al.

MLP Keras default - 52 features

Predicted

A
ct
u
al

A B C D E Σ

A 37.85% 56.37% 0.74% 3.38% 1.66% 3786

B 22.66% 63.96% 2.63% 4.72% 6.03% 2586

C 32.30% 63.27% 2.30% 0.54% 1.59% 2393

D 21.45% 65.62% 0.19% 9.09% 3.65% 2135

E 29.85% 58.48% 1.60% 5.24% 4.83% 2442

Σ 3979 8131 194 585 453 13342

MLP Keras default - 16 features

Predicted

A
ct
u
al

A B C D E Σ

A 52.72% 9.37% 18.93% 5.02% 13.96% 3883

B 50.98% 16.76% 16.72% 3.82% 11.70% 2589

C 65.00% 1.36% 16.97% 7.08% 9.59% 2274

D 41.04% 16.96% 22.15% 7.03% 12.82% 2176

E 54.63% 13.64% 22.23% 4.92% 4.59% 2420

Σ 7060 1528 2574 727 1453 13342

MLP Keras modified - 52 features

Predicted

A
ct
u
al

A B C D E Σ

A 98.71% 0.92% 0.13% 0.21% 0.03% 3786

B 4.80% 92.81% 1.89% 0.00% 0.50% 2586

C 0.21% 1.46% 93.73% 4.22% 0.38% 2393

D 0.84% 0.28% 4.92% 93.68% 0.28% 2135

E 0.45% 0.94% 0.78% 1.80% 96.03% 2442

Σ 3895 2499 2421 2153 2374 1334

MLP Keras modified - 16 features

Predicted

A
ct
u
al

A B C D E Σ

A 94.93% 2.45% 0.82% 1.44% 0.36% 3883

B 1.43% 92.08% 3.24% 1.12% 2.12% 2589

C 0.00% 4.88% 90.46% 3.91% 0.75% 2274

D 0.14% 0.46% 4.78% 93.75% 0.87% 2176

E 0.04% 1.03% 1.12% 2.44% 95.37% 2420

Σ 3727 2625 2304 2273 2413 13342

Table 7 Confusion Matrices - proportion of actual of Multi Layer Perceptron implemented
layer by layer with Python and Keras using 66% of the data set as training data.

4 Discussion

In this work we considered the platforms a non-data scientist may invoke
to make sense of a collection of raw data related to a sports activity (i.e.,
unilateral dumbbell biceps curl in our scenario). To this aim we adopted four
different data-human interface learning platforms, which do not require any
coding skills from their users (but, obviously, the raw data) and a programming
language as Python, utilizing in Python the functions made available by two
different libraries.

The main results of our experimental campaign, from the point
of view of the choice of the employed default models, are:

1. The default Random Forest model has proven to be reliable throughout all
the adopted approaches;

Using off-the-shelf data-human interface platforms: traps and tricks 21

2. The other ensemble models, i.e., Bagging, AdaBoost and Boosting, and
Neural Networks models led to both good and bad results, depending on
the platform.

The main results, instead, from the point of view of the platforms,
are:

1. Weka shows excellent results (above the 98% threshold) with the Ran-
dom Forest and Bagging models and both possible features sets. The MLP
model, however, obtained excellent results only with the 52 features set.
This for all the considered classes of movements;

2. Orange obtained very interesting results (above the 90% threshold) with
all models and feature sets, for all the considered classes of movements;

3. Ludwig obtained acceptable results (above the 85% threshold) when con-
sidering the class of correct movements and the 52 feature set;

4. KNIME obtained very interesting results (above the 90% threshold) with
both feature sets, for all the considered classes of movements, with the
Random Forest model. The other models employed in this work (MLP and
Boosting) led to unacceptable results (below the 80% threshold);

5. The model offered by the scikit-learn library in Python led to controversial
results. The MLP and Random Forest models exhibited diagonal values
on the Confusion Matrices - proportion of actual which all exceeded the
90% threshold. The AdaBoost model, instead, fell as low as the 58.77%
correctly classified for one of the considered cases;

6. The MLP model offered by the Keras library in Python led to very poor,
unacceptable, results when utilizing the default values. Just changing the
default parameter values, but not the code structure, we showed how, in-
stead, the model could always exceed the 90% threshold, for both feature
sets.

In essence, our work indicates that the safest platform for a non-expert
user of data science techniques may be Orange, whereas the best algorithmic
choice, among the tested ones, may be the Random Forest. Clearly, further
investigations are required, considering additional and diverse data sets as well
as further machine and deep learning algorithms.

Regarding the Neural Network/MLP models, implemented in the consid-
ered learning platforms and programming language, in relation to which an
in-depth analysis with respect to the different default settings was carried out,
an observation about the phenomenon of overfitting is necessary. In particular,
if a model has a default setting characterized by parameters values that lead it
to have a highly complexity, it is possible that the model is too faithful to the
training set and therefore not able to generalize on the test set. Nevertheless,
it is possible to observe that, in the cases that present the aforementioned
characteristics (e.g., Neural Network/MLP models a high number of neurons
per layer), excellent results are obtained on the test set and therefore we can
conclude that no overfitting occurred.

22 Alessia Angeli et al.

Finally, for the sake of completeness, we also briefly report on the data
pre-processing steps that were required with the different learning platforms.
Therefore, we implemented the following procedures:

– Locate and delete rows containing null values in the data set. In particular,
this operation was expressively needed with KNIME and Python. Such
situation is instead handled automatically in Weka, Orange and Ludwig;

– Convert the values of the target features “classe” from categorical to nu-
meric. This operation was only necessary when utilizing the Python pro-
gramming language with the Keras libraries. The other adopted learning
platforms handled this situation automatically.

Please note, the least possible steps were implemented to keep the pre-processing
phase as simple as possible. In essence, we solely aimed at removing any possi-
ble error messages. Any other possible data pre-processing, e.g., data normal-
ization, has not been applied to the initial raw data, unless already included
in the default settings of the different learning platforms.

5 Conclusion

The aim of this work was to demonstrate that there are simple ways of applying
machine and deep learning algorithms to easily create models that may still
provide significant results related to a specific problem, without necessarily
having a specialized knowledge in the field of data science. For this purpose,
a classification problem from the field of qualitative activity recognition was
considered and solved with the help of the machine and deep learning platforms
Weka, Orange, Ludwig and KNIME. A further analysis related to the same
classification problem was then carried out utilizing the Python programming
language. To pursue the aim of this work, the models were put to good use
without setting any unnecessary parameters. Our analysis exhibits how the
employed learning algorithms, in relation to the considered raw data set, can
be powerful, but parameter dependent. Therefore, data-human interfaces and
the learning algorithms they implement may certainly represent a useful tool
for non-expert data scientists, nevertheless, they should carefully be put to
good use.

6 Acknowledgement

The authors gratefully thank the University of Bologna for the Alma Attrezza-
ture 2017 grant and the Golinelli Foundation for the Data Science scholarship.

References

1. (1993) Weka. URL https://www.cs.waikato.ac.nz/ml/weka/
2. (1996) Orange. URL https://orange.biolab.si/

Using off-the-shelf data-human interface platforms: traps and tricks 23

3. (2006) KNIME Open for Innovation. URL www.knime.com
4. (2006) Python programming language. URL www.python.org
5. (2007) Scikit-learn. URL www.scikit-learn.org
6. (2015) Keras. URL www.keras.io
7. (2019) Ludwig Deep Learning. URL https://uber.github.io/ludwig/
8. Van der Aalst WM (2014) Data scientist: The engineer of the future. In:

Enterprise interoperability VI, Springer, pp 13–26
9. Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, Devin M, Ghe-

mawat S, Irving G, Isard M, et al. (2016) Tensorflow: A system for large-
scale machine learning. In: 12th {USENIX} Symposium on Operating Sys-
tems Design and Implementation ({OSDI} 16), pp 265–283

10. Alsheikh MA, Selim A, Niyato D, Doyle L, Lin S, Tan HP (2016) Deep
activity recognition models with triaxial accelerometers. In: Workshops at
the Thirtieth AAAI Conference on Artificial Intelligence

11. Angeli A, Riedel N, Marfia G (2019) Data science models. URL
http://shorturl.at/asxF0

12. Athey S (2018) The impact of machine learning on economics. In: The
economics of artificial intelligence: An agenda, University of Chicago Press

13. Bao L, Intille SS (2004) Activity recognition from user-annotated acceler-
ation data. In: International conference on pervasive computing, Springer,
pp 1–17

14. Bayat A, Pomplun M, Tran DA (2014) A study on human activity recog-
nition using accelerometer data from smartphones. Procedia Computer
Science 34:450–457

15. Bohanec M, Borštnar MK, Robnik-Šikonja M (2017) Explaining machine
learning models in sales predictions. Expert Systems with Applications
71:416–428

16. Bujari A, Licar B, Palazzi CE (2011) Road crossing recognition through
smartphone’s accelerometer. In: 2011 IFIP Wireless Days (WD), IEEE,
pp 1–3

17. Bujari A, Licar B, Palazzi CE (2012) Movement pattern recognition
through smartphone’s accelerometer. In: 2012 IEEE Consumer Commu-
nications and Networking Conference (CCNC), IEEE, pp 502–506

18. Buscher G, Dumais ST, Cutrell E (2010) The good, the bad, and the
random: an eye-tracking study of ad quality in web search. In: Proceed-
ings of the 33rd international ACM SIGIR conference on Research and
development in information retrieval, ACM, pp 42–49

19. Chen D, Bellamy RK, Malkin PK, Erickson T (2016) Diagnostic visual-
ization for non-expert machine learning practitioners: A design study. In:
2016 IEEE Symposium on Visual Languages and Human-Centric Com-
puting (VL/HCC), IEEE, pp 87–95

20. Chen M, Hao Y, Hwang K, Wang L, Wang L (2017) Disease prediction by
machine learning over big data from healthcare communities. Ieee Access
5:8869–8879

21. Chen Y, Xue Y (2015) A deep learning approach to human activity recog-
nition based on single accelerometer. In: 2015 IEEE International Confer-

24 Alessia Angeli et al.

ence on Systems, Man, and Cybernetics, IEEE, pp 1488–1492
22. Cook D, Feuz KD, Krishnan NC (2013) Transfer learning for activity

recognition: A survey. Knowledge and information systems 36(3):537–556
23. Crisci C, Ghattas B, Perera G (2012) A review of supervised machine

learning algorithms and their applications to ecological data. Ecological
Modelling 240:113–122

24. Demšar J, Zupan B, Leban G, Curk T (2004) Orange: From experimental
machine learning to interactive data mining. In: European Conference on
Principles of Data Mining and Knowledge Discovery, Springer, pp 537–539

25. Demšar J, Curk T, Erjavec A, Gorup Č, Hočevar T, Milutinovič M, Možina
M, Polajnar M, Toplak M, Starič A, et al. (2013) Orange: data mining
toolbox in python. The Journal of Machine Learning Research 14(1):2349–
2353

26. Fatima M, Pasha M (2017) Survey of machine learning algorithms for dis-
ease diagnostic. Journal of Intelligent Learning Systems and Applications
9(01):1

27. Faust O, Hagiwara Y, Hong TJ, Lih OS, Acharya UR (2018) Deep learn-
ing for healthcare applications based on physiological signals: A review.
Computer methods and programs in biomedicine 161:1–13

28. Fillbrunn A, Dietz C, Pfeuffer J, Rahn R, Landrum GA, Berthold MR
(2017) Knime for reproducible cross-domain analysis of life science data.
Journal of biotechnology 261:149–156

29. Garćıa M, Domı́nguez C, Heras J, Mata E, Pascual V (2018) An on-going
framework for easily experimenting with deep learning models for bioimag-
ing analysis. In: International Symposium on Distributed Computing and
Artificial Intelligence, Springer, pp 330–333

30. Guyon I, Chaabane I, Escalante HJ, Escalera S, Jajetic D, Lloyd JR,
Macià N, Ray B, Romaszko L, Sebag M, et al. (2016) A brief review of the
chalearn automl challenge: any-time any-dataset learning without human
intervention. In: Workshop on Automatic Machine Learning, pp 21–30

31. Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH (2009)
The weka data mining software: an update. ACM SIGKDD explorations
newsletter 11(1):10–18

32. Hammerla NY, Fisher J, Andras P, Rochester L, Walker R, Plötz T (2015)
Pd disease state assessment in naturalistic environments using deep learn-
ing. In: Twenty-Ninth AAAI Conference on Artificial Intelligence

33. Heaton J, Polson N, Witte JH (2017) Deep learning for finance: deep
portfolios. Applied Stochastic Models in Business and Industry 33(1):3–
12

34. Holmes G, Donkin A, Witten IH (1994) Weka: A machine learning work-
bench. In: Proceedings of ANZIIS’94-Australian New Zealnd Intelligent
Information Systems Conference, IEEE, pp 357–361

35. Jordan MI, Mitchell TM (2015) Machine learning: Trends, perspectives,
and prospects. Science 349(6245):255–260

36. Ketkar N (2017) Introduction to keras. In: Deep Learning with Python,
Springer, pp 97–111

Using off-the-shelf data-human interface platforms: traps and tricks 25

37. Ketkar N (2017) Introduction to pytorch. In: Deep learning with python,
Springer, pp 195–208

38. Khan A, Mellor S, Berlin E, Thompson R, McNaney R, Olivier P, Plötz
T (2015) Beyond activity recognition: skill assessment from accelerometer
data. In: Proceedings of the 2015 ACM International Joint Conference on
Pervasive and Ubiquitous Computing, ACM, pp 1155–1166

39. Kranz M, MöLler A, Hammerla N, Diewald S, PlöTz T, Olivier P, Roalter
L (2013) The mobile fitness coach: Towards individualized skill assess-
ment using personalized mobile devices. Pervasive and Mobile Computing
9(2):203–215

40. Kroes M, Kessels AG, Kalff AC, Feron FJ, Vissers YL, Jolles J, Vles
JS (2002) Quality of movement as predictor of adhd: results from a
prospective population study in 5-and 6-year-old children. Developmen-
tal Medicine and Child Neurology 44(11):753–760

41. Kwapisz JR, Weiss GM, Moore SA (2011) Activity recognition using cell
phone accelerometers. ACM SigKDD Explorations Newsletter 12(2):74–82

42. Ladha C, Hammerla NY, Olivier P, Plötz T (2013) Climbax: skill assess-
ment for climbing enthusiasts. In: Proceedings of the 2013 ACM interna-
tional joint conference on Pervasive and ubiquitous computing, ACM, pp
235–244

43. Lane ND, Georgiev P, Qendro L (2015) Deepear: robust smartphone audio
sensing in unconstrained acoustic environments using deep learning. In:
Proceedings of the 2015 ACM International Joint Conference on Pervasive
and Ubiquitous Computing, ACM, pp 283–294

44. Lara OD, Labrador MA (2013) A survey on human activity recogni-
tion using wearable sensors. IEEE communications surveys & tutorials
15(3):1192–1209

45. Lau SL, König I, David K, Parandian B, Carius-Düssel C, Schultz M
(2010) Supporting patient monitoring using activity recognition with a
smartphone. In: 2010 7th International Symposium on Wireless Commu-
nication Systems, IEEE, pp 810–814

46. LeCun Y, Bengio Y, Hinton G (2015) Deep learning. nature 521(7553):436
47. Logan B, Healey J, Philipose M, Tapia EM, Intille S (2007) A long-term

evaluation of sensing modalities for activity recognition. In: International
conference on Ubiquitous computing, Springer, pp 483–500

48. Malik F (2019) Neural networks: a solid practical guide. URL
https://medium.com/fintechexplained/neural-networks-a-solid-practical-
guide-9f343594b02a

49. Marfia G, Roccetti M (2017) A practical computer based vision system
for posture and movement sensing in occupational medicine. Multimedia
Tools and Applications 76(6):8109–8129

50. Maurtua I, Kirisci PT, Stiefmeier T, Sbodio ML, Witt H (2007) A wear-
able computing prototype for supporting training activities in automotive
production. In: 4th International Forum on Applied Wearable Computing
2007, VDE, pp 1–12

26 Alessia Angeli et al.

51. Molino P, Dudin Y, Miryala SS (2019) Ludwig Deep Learning. URL
https://eng.uber.com/introducing-ludwig/

52. Naik A, Samant L (2016) Correlation review of classification algorithm
using data mining tool: Weka, rapidminer, tanagra, orange and knime.
Procedia Computer Science 85:662–668

53. Ortiz Laguna J, Olaya AG, Borrajo D (2011) A dynamic sliding window
approach for activity recognition. In: Konstan JA, Conejo R, Marzo JL,
Oliver N (eds) User Modeling, Adaption and Personalization, Springer
Berlin Heidelberg, Berlin, Heidelberg, pp 219–230

54. Parkka J, Ermes M, Korpipaa P, Mantyjarvi J, Peltola J, Korhonen I
(2006) Activity classification using realistic data from wearable sensors.
IEEE Transactions on information technology in biomedicine 10(1):119–
128

55. Patel K (2010) Lowering the barrier to applying machine learning. In: Ad-
junct proceedings of the 23nd annual ACM symposium on User interface
software and technology, ACM, pp 355–358

56. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O,
Blondel M, Prettenhofer P, Weiss R, Dubourg V, et al. (2011) Scikit-
learn: Machine learning in python. Journal of machine learning research
12(Oct):2825–2830

57. Plötz T, Hammerla NY, Olivier PL (2011) Feature learning for activ-
ity recognition in ubiquitous computing. In: Twenty-Second International
Joint Conference on Artificial Intelligence

58. Pourbabaee B, Roshtkhari MJ, Khorasani K (2017) Deep convolutional
neural networks and learning ecg features for screening paroxysmal atrial
fibrillation patients. IEEE Transactions on Systems, Man, and Cybernet-
ics: Systems 48(12):2095–2104

59. Ravi N, Dandekar N, Mysore P, Littman ML (2005) Activity recognition
from accelerometer data. In: Aaai, vol 5, pp 1541–1546

60. Riedel N, Angeli A, Marfia G (2019) Qualitative activity recognition using
machine and deep learning: Experimenting with data-human interfaces for
non data-scientists. In: Proceedings of the 5th EAI International Confer-
ence on Smart Objects and Technologies for Social Good, ACM, pp 7–12

61. Ronao CA, Cho SB (2016) Human activity recognition with smartphone
sensors using deep learning neural networks. Expert systems with appli-
cations 59:235–244

62. Rossum G (1995) Python reference manual
63. Stiefmeier T, Roggen D, Ogris G, Lukowicz P, Tröster G (2008) Wearable

activity tracking in car manufacturing. IEEE Pervasive Computing (2):42–
50

64. Sung M, Marci C, Pentland A (2005) Wearable feedback systems for re-
habilitation. Journal of neuroengineering and rehabilitation 2(1):17

65. Tarca AL, Carey VJ, Chen Xw, Romero R, Drăghici S (2007) Machine
learning and its applications to biology. PLoS computational biology
3(6):e116

Using off-the-shelf data-human interface platforms: traps and tricks 27

66. Tessendorf B, Gravenhorst F, Arnrich B, Tröster G (2011) An imu-based
sensor network to continuously monitor rowing technique on the water.
In: 2011 Seventh International Conference on Intelligent Sensors, Sensor
Networks and Information Processing, IEEE, pp 253–258

67. Ugulino W, Velloso E, Fuks H (2019) Human activity recognition. URL
http://groupware.les.inf.puc-rio.br/harixzz34dpS6oks

68. Velloso E, Bulling A, Gellersen H, Ugulino W, Fuks H (2013) Qualitative
activity recognition of weight lifting exercises. In: Proceedings of the 4th
Augmented Human International Conference, pp 116–123

69. Waller MA, Fawcett SE (2013) Data science, predictive analytics, and big
data: a revolution that will transform supply chain design and manage-
ment. Journal of Business Logistics 34(2):77–84

70. Wang J, Chen Y, Hao S, Peng X, Hu L (2019) Deep learning for sensor-
based activity recognition: A survey. Pattern Recognition Letters 119:3–11

71. Yang Q, Suh J, Chen NC, Ramos G (2018) Grounding interactive machine
learning tool design in how non-experts actually build models. In: Proceed-
ings of the 2018 on Designing Interactive Systems Conference 2018, ACM,
pp 573–584

72. Zorrilla M, Garćıa-Saiz D (2013) A service oriented architecture to pro-
vide data mining services for non-expert data miners. Decision Support
Systems 55(1):399–411

