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Abstract: It is a classic result that the geometry of the total space of a princi-

pal bundle with reference to the action of the bundle’s structure group is codified

in the bundle’s operation, a collection of derivations comprising the de Rham

differential and the contraction and Lie derivatives of all vertical vector fields and

obeying the six Cartan relations. In particular, connections and gauge transfor-

mations can be defined through the way they are acted upon by the operation’s

derivations. In this paper, the first of a series of two extending the ordinary the-

ory, we construct an operational total space theory of strict principal 2–bundles

with regard to the action of the structure strict 2–group. Expressing this latter via

a crossed module pE,Gq, the operation is based on the derived Lie group er1s ¸G.

In the second paper, an original formulation of the theory of 2–connections and

1– and 2–gauge transformations based on the operational framework worked out

here will be provided.
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1 Introduction

Principal 2–bundles with strict structure 2–group are most often described through

appropriate sets of transitional data with respect to an open cover of the base

manifold, or cocycles, a framework originally put forward in the foundational

works by Schreiber [1] and Baez and Schrieber [2, 3]. This approach points

directly to Girauds non Abelian cohomology [4] which provides the associated

classifying theory. The first formulation of the total space theory of principal

2–bundles as Lie groupoids was given by Bartels [5] and Baez and Schreiber

[2,3], making systematic use of the ideas and techniques of categorification. The

total space perspective was further developed by Wockel [6], who also obtained a

classification of principal 2–bundles up to Morita equivalence by non Abelian co-

homology and provided a categorical characterization of the the gauge 2–group.

Schommer-Pries [7] extended Wockel’s theory by constructing a bicategory of

principal 2–bundles.

Special incarnations of principal 2–bundles are provided by the non Abelian

bundle gerbes of Aschieri, Cantini and Jurco [8] and the G–gerbes of Laurent–

Gengoux, Stiénon and Xu [9] and Ginot and Stiénon [10]. According to Nikolaus

and Waldorf [11], there are indeed three more distinct but equivalent ways of

presenting by principal 2–bundles with strict structure 2–group beside the one

already recalled: iq by smooth non Abelian Čech cocycles of the 2–group; iiq

by classifying maps to classifying space of the 2–group; iiiq by 2–group bundle

gerbes.

The theory of 2–connections and 1– and 2–gauge transformations on principal

2–bundles has been the object of intense inquiry because of its potential applica-

tions in higher gauge theory and string theory. It takes different forms depending

on the description of 2–bundles used. We mention in particular the work of Breen

and Messing [12], Schreiber [1,13], Baez and Schreiber [2,3] and Jurco, Saemann

and Wolf [14, 15] characterizing in various ways connections and gauge trans-

formations in terms of transition data, Aschieri, Cantini and Jurco [8] treating

connections and gauge transformations in the framework of bundle gerbes and

Laurent–Gengoux, Stiénon and Xu [9] considering connections of G–gerbes. A
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theory of 2–connections working in Wockels total space principal 2–bundle theory

[6] has been worked out only recently by Waldorf [16, 17].

1.1 The operational theory and its scope

The present endeavours puts forward a proposal for an operational total space

theory of principal 2–bundles. We begin by reviewing the operational approach

to ordinary principal bundle theory on which the higher extension is modelled.

Let P be a principal bundle P over M with structure group G. P is so a

manifold with a free fiberwise transitive right G–action. With any Lie algebra

element x P g there is then associated a vertical vector field CPx. It is a classic

result [18] that the underlying total space geometry of P is codified in its oper-

ation OpSP . This is the geometrical structure consisting of the graded algebra

Ω‚pP q of differential forms of P and the collection of graded derivations of Ω‚pP q

comprising the de Rham differential dP and the contraction and Lie derivatives

jPx, lPx of the vector fields CPx. The derivations obey the six Cartan relations,

rdP , dP s “ 0, (1.1.1)

rdP , jPxs “ lPx, (1.1.2)

rdP , lPxs “ 0, (1.1.3)

rjPx, jPys “ 0, (1.1.4)

rlPx, jPys “ jrx,ys, (1.1.5)

rlPx, lPys “ lrx,ys. (1.1.6)

The differential forms of P annihilated by all derivations jPx, lPx with x P g

are called basic and form a subalgebra Ω‚
bpP q of Ω‚pP q. Ω‚

bpP q is in one–to–

one correspondence and thus can be identified with the differential form algebra

Ω‚pMq on M .

A connections ω can be characterized as a g–valued 1–form of P acted upon in

a prescribed way by the operation’s derivations. Similarly, a gauge transformation

g can be defined as a G–valued map behaving in a certain way under the action
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of the derivations. Gauge transformations form an infinite dimensional Lie group

with a left action on the space of connections.

On any sufficiently small neighborhood U of M , on which the G–bundle P is

isomorphic to the trivial G–bundle U ˆ G, a connection ω is completely charac-

terized by a basic g–valued 1–form ωb on U . Similarly, a gauge transformation g

is characterized by a basic G–valued map gb on U . Local connection and gauge

transformation data relative to distinct overlapping trivializing neighborhoods of

M match in a prescribed way codified in a G–valued Čech 1–cocycle. All these

properties are described by the basic formulation of principal bundle geometry,

which is the one implicitly used in most physical literature.

The operational approach to principal bundle theory admits an elegant refor-

mulation in the language of graded differential geometry. For a principal G–bundle

P , the graded differential form algebra Ω‚pP q is described as the graded function

algebra FunpT r1sP q of the shifted tangent bundle T r1sP of P and the operation

derivations dP , jPx, lPx, x P g, as graded vector fields on T r1sP . Connection and

gauge transformations can then be defined as earlier as degree 1 g– and degree

0 G–valued functions on T r1sP behaving in a prescribed way under the action

of dP , jPx, lPx. Gauge transformation of connections can be implemented in the

familiar way. The basic formulation goes through essentially with no changes.

Our investigation has shown that an analogous graded geometric operational

total space formulation of principal 2–bundle theory can be worked out. The

results of our research are expounded in a series of two papers. In the first paper,

referred to as I, we set the foundations of the operational total space theory

of principal 2–bundles. In the second paper, referred to as II [19], based on

the operational setup worked out in I, we provide an original formulation of the

theory of 2–connections and 1– and 2–gauge transformations of strict principal

2–bundles.

To make the nature of our work more easily appreciable by the reader, we now

outline briefly the intuitive ideas underlying the higher extension. The ordinary

theory is the model against which the higher one is built. In a nutshell, the

higher theory can be outlined as follows. With the 2–bundle’s structure 2–group,

5



there is associated a derived graded group. The structure 2-group’s action on the

2–bundle is then shown to induce a derived group’s action on a synthetic form

of the 2–bundle. With the latter, there is associated an operation, that suitably

describes the 2–bundle’s geometry and in particular 2–connections and 1– and

2–gauge transformations.

The passage from the ordinary to the higher theory is not free of subtleties.

The graded nature of the derived group makes it necessary to further reshape the

ordinary theory before constructing the higher one by analogy. For a principal

bundle P , the ordinary graded function algebra FunpT r1sP q must be replaced by

the internal graded function algebra FunpT r1sP q. While FunpT r1sP q has a single

grading, the shifted tangent bundle grading of T r1sP , FunpT r1sP q has two, the

tangent bundle grading and a further internal grading. FunpT r1sP q can therefore

be identified with the subalgebra of FunpT r1sP q of zero internal grading.

Extending the function algebra from FunpT r1sP q to FunpT r1sP q as indicated

introduces in the original operational framework internal multiplicities. In the fa-

miliar formulation of gauge theory, this would correspond to add the ghost degree

to the form one. It endows in this way connections and gauge transformations

with ghostlike partners making the whole geometrical framework akin to that

employed in the AKSZ formulation of BV theory [20] (see also [21]). In ordinary

principal bundle geometry doing so is discretionary. In higher principal bundle

theory, as it turns out, it is unavoidable.

1.2 Main features of the operational theory of principal 2–bundles

In this paper, I of the series, we build an operation describing the fibered geometry

of a given principal 2–bundle. The attendant geometric framework will constitute

the backdrop for the 2–connection and 1– and 2–gauge transformation theory of

the companion paper, II of the series. The formulation proposed, which is non

trivial in many respects, is outlined in this subsection.

The operational framework (cf. subsect. 2.1) is the paradigm on which the

whole architecture of the present work rests. It is by design the most appropriate

approach for the study of the total space differential geometry of ordinary prin-
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cipal bundles (cf. subsect. 2.2) and, once suitably adapted, has the potential of

shedding light into that of principal 2–bundles as argued below.

A principal 2–bundle consists of a morphism manifold P̂ with an object sub-

manifold P̂0 constituting a groupoid, a base manifold M , compatible projection

maps π̂ : P̂ Ñ M and π̂0 : P̂0 Ñ M forming a functor, a morphism group K̂ with

an object subgroup K̂0 organized as a strict Lie 2-group and compatible right

actions R̂ : P̂ ˆ K̂ Ñ P̂ and R̂0 : P̂0 ˆ K̂0 Ñ P̂0 building a functor and respecting

π̂ and π̂0. The 2–bundle enjoys further the property of locally trivializability,

that is on any small enough neighborhood U of M the groupoid pP̂ |U , P̂0|Uq is

equivariantly projection preservingly equivalent to the groupoid pU ˆ K̂, U ˆ K̂0q

with the obvious projection and right action structures.

By virtue of the right K̂– and K̂0–actions on the manifolds P̂ and P̂0, there

are two operations associated with any given principal 2–bundle, which we could

include in an operational framework. However, proceeding in this naive way would

not allow us to make contact with the standard formulation of strict higher gauge

theory. To achieve this end, we have to make a further step: shifting to what

we call the synthetic formulation for its formal affinity to smooth infinitesimal

analysis of synthetic differential geometry.

In the synthetic approach (cf. subsects. 3.2–3.8), one adjoins to the given

principal 2–bundle a synthetic structure consisting of morphism and object man-

ifolds P and P0, the base manifold M , projection maps π and π0, morphism and

object groups K and K0 and right K– and K0– actions R and R0 on P and P0.

The synthetic setup is obtained from the original non synthetic one through the

following formal construction. Describe the strict Lie 2–group pK̂, K̂0q by its as-

sociated Lie group crossed module pE,Gq so that K̂ “ E ¸ G and K̂0 “ G. Then,

K “ er1s ¸ G and K0 “ G. Next, formally extend the K̂–action R̂ to a K–action.

Then, P is the K–action image of P̂0 and P0 “ P̂0, R is the restriction of R̂ to P

and R0 “ R̂. Here, K and P must be regarded as spaces of functions from Rr´1s

to E ¸ G and P , respectively. We remark that, although the synthetic structure

shares many of the properties of the underlying principal 2–bundle, it is not one

since neither pairs pK,K0q and pP, P0q have a groupoid structure.
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There are two operations OpSP and OpSP0 which codify the K– and K0–

actions R and R0 of P and P0. By their synthetic nature, as it will be shown

in II, they have the right properties for making the desired contact with strict

higher gauge theory. We describe them in greater detail next.

The Lie group DM “ er1s ¸ G and its subgroup DM0 “ G encountered above

as well as the Lie algebras Dm “ er1s ¸ g and its subalgebra Dm0 “ g are called

derived and play a fundamental role in the architecture of our construction. As

partly anticipated, DM may be thought of as the Lie group of internal functions

eᾱL a, ᾱ P Rr´1s, with a P G and L P er1s. Similarly, Dm may be thought of as

the Lie algebra of internal functions x` ᾱX , ᾱ P Rr´1s, with x P g and X P er1s.

Note however that, in the spirit of the superfield formulation of supersymmetric

field theories, here ᾱ is simply a book–keeping parameter and not an extra variable

injected in the theory and allowed to vary in its full range.

The synthetic morphism operation OpSP consists of the internal function

algebra FunpT r1sP q acted upon the de Rham vector field dP and the contraction

and Lie vector fields jPZ , lPZ , Z P Dm. In this case, it is necessary and not just

merely optional to use the internal function algebra rather than the ordinary one,

because the latter would not be preserved by the jPZ , lPZ due to the non trivial

gradation of Dm.

The synthetic object operation OpSP0 has a similar constitution. The un-

derlying function algebra is the internal algebra FunpT r1sP0q and the operation

vector fields are the de Rham vector field dP0
and the contraction and Lie vector

fields jP0Z0
, lP0Z0

, Z0 P Dm0. In this case, due to the trivial gradation of Dm0,

we could have restricted ourselves to the ordinary algebra, but we decided to opt

for the internal one to allow for a simple relation to the operation OpSP . We

remark that OpSP0 plays a subordinate role as compared to OpSP and serves

mainly the purpose of elucidating how the ordinary theory is extended by the

higher one in our operational setup.

With our principal 2–bundle operational setup in place, the ground is set

for the operational theory of 2–connections and 1– and 2–gauge transformations

presented in II.
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2 Operations and principal bundles

The operational framework is the paradigm on which the whole architecture of

the present endeavour rests. It is indeed a most adequate approach for the study

of the total space differential geometry of ordinary principal bundles and for this

reason, once suitably adapted, holds the potential for providing new insights into

that of principal 2–bundles. In this section, we review it and its application to

ordinary principal bundle theory to set notation and terminology and to make

the more technically involved applications of it to principal 2–bundle theory more

easily accessible.

In what follows, all algebras considered will be tacitly assumed to be graded

commutative, unital, associative and real unless otherwise stated.

2.1 Operations and Lie group spaces: our geometric paradigm

In this subsection, we review the main definitions and results of operation and

Lie group space theory. For a comprehensive treatment, we refer the reader to

[18]. We begin by introducing operations.

Definition 2.1. An operation O consists of a graded commutative algebra A and a

Lie algebra g together with a derivation d of A of degree 1 and for each element

X P g two derivations jX , lX of A of degree ´1, 0, respectively, satisfying the six

Cartan relations

rd, ds “ 0, (2.1.1)

rd, jXs “ lX , (2.1.2)

rd, lXs “ 0, (2.1.3)

rjX , jY s “ 0, (2.1.4)

rlX , jY s “ jrX,Y s, (2.1.5)

rlX , lY s “ lrX,Y s (2.1.6)

for X, Y P g, where all commutators are graded.
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We shall denote the operation O by the list pA, g, d, j, lq of its constituent data,

or simply pA, gq when no confusion is possible, and say that O is an operation of

g on A.

Definition 2.2. A morphism χ : O Ñ O1 of operations consists of a graded com-

mutative algebra morphism φ : A Ñ A1 and a Lie algebra morphism h : g1 Ñ g

such that the relations

d1φ “ φ d, (2.1.7)

j 1
Xφ “ φ jhpXq, (2.1.8)

l1
Xφ “ φ lhpXq (2.1.9)

are obeyed for all X P g1.

We shall denote an operation morphisms χ : O Ñ O1 by the list pφ : A Ñ A1,

h : g1 Ñ gq of its constituent data and shall omit the specification of sources and

targets if no confusion can arise.

Operations and operation morphisms thereof constitute a category Op.

Assume that an operation morphism χ : O Ñ O1 given by the pair pφ : A Ñ

A1, h : g1 Ñ gq is such that A “ A1 and φ “ idA. We then have

d1 “ d, (2.1.10)

j 1
X “ jhpXq, (2.1.11)

l1
X “ lhpXq (2.1.12)

for X P g1 by (2.1.7)–(2.1.9). In this case, the morphism χ is fully specified by

the underlying Lie algebra morphism h. We then denote O1 by h˚O and call it

the pull-back of O by h.

Let O “ pA, g, d, j, lq be an operation. Since by (2.1.1) d2 “ 0, pA, dq is a

cochain complex.

Definition 2.3. The cohomology of O is cohomology of pA, dq.

pA, dq contains a distinguished subcomplex pAbasic, dq, where Abasic, the basic sub-
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algebra of A, consists of all horizontal and invariant elements a P A,

jXa “ 0, (2.1.13)

lXa “ 0 (2.1.14)

for X P g.

Definition 2.4. The basic cohomology of O is the cohomology of pAbasic, dq.

Next, we introduce Lie group spaces.

Definition 2.5. A Lie group space S is a graded manifold P carrying a right action

R : P ˆ G Ñ P of a Lie group G.

We shall denote the space S through the list pP,G, Rq of its defining data.

Definition 2.6. A morphism T : S 1 Ñ S of Lie group spaces consists of a map

F : P 1 Ñ P of graded manifolds and a Lie group morphism η : G1 Ñ G such that

for a P G1 one has

Rηpaq ˝ F “ F ˝ R1
a. (2.1.15)

We shall denote a Lie group space morphism T : S 1 Ñ S employing the list

pF : P 1 Ñ P, η : G1 Ñ Gq of its constituent data and shall omit the specification

of sources and targets if no confusion is possible.

Lie group spaces and their morphisms form a category Lsp.

Consider a Lie group space S. For each X P g, the Lie algebra of G, the

vertical vector field VX of the action R associated with X is defined. The internal

function algebra FunpT r1sP q (cf. app. A) of the shifted tangent bundle T r1sP

of P is acted upon by the de Rham derivation dP of degree 1 and for X P g by

the contraction and Lie derivations jPX , lPX of VX of degree ´1, 0, all realized

as graded vector fields on T r1sP .

Proposition 2.1. With any Lie group space S “ pP,G, Rq there is associated the

operation OpS “ pFunpT r1sP q, g, dP , jP , lP q.

The reason why the internal function algebra FunpT r1sP q is used instead than
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the ordinary algebra FunpT r1sP q is that for the Lie groups spaces considered

in this paper FunpT r1sP q is not closed under all operation derivations jPX , lPX

while FunpT r1sP q is. For the standard Lie group spaces encountered in geometry,

FunpT r1sP q is closed and thus it is possible and indeed customary to use it to

construct the operation OpS “ pFunpT r1sP q, g, dP , jP , lP q. In what follows, we

shall consider mostly the operation OpS.

Similarly, morphisms of Lie group spaces induce morphisms of the associated

operations by the equivariance condition (2.1.15).

Proposition 2.2. Let T : S 1 Ñ S be a morphism of Lie group spaces specified by

the pair pF : P 1 Ñ P, η : G1 Ñ Gq. Then, T induces a morphism OpT : OpS Ñ

OpS 1 of operations specified by the pair pF ˚ : FunpT r1sP q Ñ FunpT r1sP 1q,

h : g1 Ñ gq, where F ˚ is the pull-back of function spaces by F and h is the Lie

algebra morphism associated with η by Lie differentiation.

The map Op that associates to each space its operation and to each morphism

of spaces its morphism of operations is a functor from the space category Lspop

into the operation category Op.

Consider the special case of a morphism T : S 1 Ñ S of Lie group spaces

specified by a pair pF : P 1 Ñ P, η : G1 Ñ Gq, where P “ P 1 as graded manifolds

and F “ idP as a graded manifold map. Then, by (2.1.15)

R1
a “ Rηpaq (2.1.16)

with a P G1. We then denote S 1 as η˚S and call it the pull-back of S by η. Fur-

thermore, as the graded algebra morphism F ˚ “ idFunpT r1sP q, the operation OpS 1

is just the pull–back h˚ OpS of the operation OpS by the Lie algebra morphism

h : g1 Ñ g associated with the Lie group morphism η by Lie differentiation. Note

that by construction

Opη˚S “ h˚
OpS. (2.1.17)

For a Lie group space S “ pP,G, Rq, the cochain complex pFunpT r1sP q, dPq

is as well–known isomorphic to the de Rham complex pΩ‚pP q, ddRP q. When
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the action R is free, and so the quotient P {G is a manifold, the basic complex

pFunpT r1sP qbasic, dP q is isomorphic to the de Rham complex pΩ‚pP {Gq, ddRP {Gq.

Note however that pFunpT r1sP qbasic, dP q is defined even when R is not free and

this identification strictly speaking fails to hold making it possible by way of

generalization to meaningfully interpret it in a weaker sense as the complex

pΩ‚pP {Gq, ddRP {Gq.

2.2 Total space operation of a principal bundle

The total space theory of principal bundles, surveyed in this subsection, is con-

cerned with the more geometrically intuitive features of principal bundles, in par-

ticular its fibered structure and structure group action. Our expositioin, which

follows mainly [18], is organized in such a way to render the naturalness of the

operational formulation apparent.

Let G be a Lie group.

Definition 2.7. A principal G–bundle P consists of a manifold P , a further mani-

fold M , a surjective submersion π : P Ñ M and a right G–action R on P acting

freely and transitively on the fibers of π.

P , G, M and π are called the total space, the structure group, the base and the

projection of the bundle, respectively.

In a principal G–bundle P , each fiber of P is diffeomorphic to G, the orbits of

the action R are the fibers themselves and the orbit space P {G is diffeomorphic

to the base manifold M . Further, the vertical subbundle VP “ ker Tπ of the

tangent bundle TP of P , where Tπ : TP Ñ TM is the tangent map of the

bundle’s projection π, is trivial.

A connection of P is a G–invariant distribution H Ă TP that is pointwise

transverse to VP . The connection is said to be flat, if the distribution H is

integrable. Connections of P form an affine space AP .

A gauge transformation of P is a G–equivariant fiber preserving diffeomor-

phism Φ of P . Gauge transformations form a group AutGπ pP q under composi-

tion, called the gauge group. AutGπ pP q turns out to be isomorphic to the group
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FunGpP,GAdq of G–equivariant maps of P into GAd, where GAd is G with the

conjugation right action.

If H is a connection and Φ a gauge transformation of P , then Φ´1
˚H is

also a connection of P since the equivariance of Φ renders Φ´1
˚H a G–invariant

distribution in TP . In this way, a left action pΦ,Hq Ñ ΦH “ Φ´1
˚H of the gauge

group AutGπ pP q on the connection space AP is defined.

With a principal G–bundle P there is associated a Lie group space SP “

pP,G, Rq and through this an operation OpSP “ pFunpT r1sP q, g, dP , jP , lP q.

OpSP furnishes a very elegant and natural differential geometric framework for

the study of connections and gauge transformations of P , since these are essen-

tial defined by the way they behave under the G–action of P . We shall review

the resulting theory in greater detail in sect. 2 of II. Here, in I, we shall use

the operational theory of principal bundles just outlined as a prototype for the

corresponding theory of strict principal 2–bundles introduced and studied in next

section.
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3 Operational total space theory of strict principal 2–bundles

In this section, using as a model the operational total space theory of ordinary

principal bundles reviewed in sect. 2, we present an operation based formula-

tion of the total space theory of strict principal 2–bundles. The construction

expounded below relies in an essential way on the description of the bundle’s

structure 2–group as a Lie group crossed module and involves a synthetic recast-

ing of the categorical formulation of the theory that leads one into the realm of

graded differential geometry. The end result is a compact, elegant formulation

closely related to the superfield formalism employed in many areas of quantum

field theory.

3.1 Total space theory of principal 2–bundles

Since the goal we set ourselves is generalizing the operation based theory of

ordinary principal bundles to strict principal 2–bundles, a suitable total space

theory of such 2–bundles is required. This has been worked out by Bartels [5]

and Wockel [6] (see also [11]) systematically categorifying the standard notion of

principal bundle. In this subsection, we preset a review of this topic based mainly

on [6]. Here, we claim neither originality nor completeness and mathematical

rigour and shall restrict ourselves to provide those basic notions which are required

to justify the constructions presented in this paper.

Definition 3.1. A strict Lie 2–group K̂ is a group object in the category DiffCat

of smooth categories. K̂ consists thus of the following data.

1. A Lie groupoid K̂.

2. A smooth multiplication functor κ̂ : K̂ ˆ K̂ Ñ K̂.

3. A smooth inversion functor ι̂ : K̂ Ñ K̂.

4. A distinguished object 1̂.

κ̂, ι̂ and 1̂ obey further the usual axioms of group theory at the functor level.

15



Under mild assumptions, a strict Lie 2–group K̂ can be described equivalently

by the following set of data.

1. A Lie group K̂.

2. A Lie subgroup K̂0 of K̂.

3. A Lie groupoid structure K̂ //

// K̂0 all of whose structure maps are Lie group

morphisms with the identity assigning map K̂0
// K̂ being the inclusion

map K̂0 Ă K̂.

Here, we describe the groupoid K̂ underlying K̂ through its morphism and object

manifolds K̂ and K̂0. With a convenient and harmless abuse of notation, we denote

in the same way both the groupoid and its morphism manifold, since this latter

obviously by itself supports the whole 2–group structure. For this reason, we

shall often identify K̂ through the group K̂ or more explicitly the group pair K̂,

K̂0. Whenever necessary, we shall mention the relevant structure maps.

Definition 3.2. A strict principal K̂ –2–bundle P is a principal bundle object in

the category DiffCat of smooth categories. P consists thus of the following data.

1. A Lie groupoid P̂ .

2. A discrete smooth category M .

3. A surjective submersion smooth projection functor π̂ : P̂ Ñ M .

4. A strict Lie 2–group K̂.

5. A smooth right K̂–action functor R̂ : P̂ ˆ K̂ Ñ P̂ such that

π̂ ˝ R̂ “ π̂ ˝ pr1 (3.1.1)

strictly on the nose.

6. For each small enough open neighborhood U Ă M , two reciprocally weakly

inverse K̂–equivariant trivializing smooth functors Φ̂U : π̂´1pUq Ñ U ˆ K̂

and
˜̂
ΦU : U ˆ K̂ Ñ π̂´1pUq such that
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prU ˝ Φ̂U “ π̂
ˇ

ˇ

π̂´1pUq
, (3.1.2)

π̂ ˝
˜̂
ΦU “ prU (3.1.3)

strictly on the nose, where U ˆK̂ is endowed with the right K̂–action functor

given by right K̂–multiplication on the factor K̂.

The adjective ’semistrict’ is used instead of ’strict’ in [6].

We can unpack the above definition and analyze a strict principal K̂ –2–

bundle P̂ in more explicit terms under mild assumptions. Though this is a

straightforward task, we decided to review it in some detail to make the reading

of the rest of the paper easier.

The groupoid structure of P̂ is described by the following elements.

1. A smooth manifold P̂ .

2. A submanifold P̂0 of P̂ .

3. A Lie groupoid structure P̂ //

// P̂0 whose identity assigning map P̂0
// P̂

is the inclusion map P̂0 Ă P̂ .

Here, analogously to the way we did for 2–groups, we characterize the groupoid P̂

underlying P̂ through its morphism and object manifolds P̂ and P̂0, identifying

further the groupoid the former. The base structure of P̂ is given by an ordinary

manifold, adding a further element.

4. A manifold M .

We reduce so the discrete smooth category M underlying P̂, which has only

identity morphisms, to its object manifold, which we also denote as M . The

projection structure of P̂ is consequently given by an ordinary map.

5. A smooth surjective submersion projection map π̂ : P̂ Ñ M .

In line with the conventions we are outlining, here we describe the projection

functor π̂ of P̂ through its action on the morphism manifold P̂ also denoted as

π̂. π̂ restricts to a smooth surjective submersion projection map π̂0 : P̂0 Ñ M
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giving the functor’s action on the object manifold P̂0. By functoriality, π̂ and π̂0

satisfy certain relations. We mention only that

π̂ “ π̂0 ˝ ŝ “ π̂0 ˝ t̂, (3.1.4)

where ŝ, t̂ are the source and target map of the groupoid P̂ . The structure

2–group of P̂ is analyzed next as follows.

6. A Lie group K̂.

7. A Lie subgroup K̂0 of K̂.

8. A Lie 2–group structure K̂ //

// K̂0

whose identity assigning map K̂0
// K̂ is the inclusion map K̂0 Ă K̂.

We explained the reason for this earlier. The right K̂–action structure of P̂ is

given in terms of a further element.

9. A smooth right K̂–action map R̂ : P̂ ˆ K̂ Ñ P̂ such that

π̂ ˝ R̂ “ π̂ ˝ pr1 (3.1.5)

(cf. eq. (3.1.1)). Again, we describe the K̂–action functor R̂ of P̂ through its

action on the morphism manifold P̂ , which we also denote as R̂. R̂ restricts to a

smooth right K̂0–action map R̂0 : P̂0 ˆ K̂0 Ñ P̂0 giving the functor’s action on the

object manifold P̂0. R̂ and R̂0 obey certain relations by virtue of functoriality.

Finally, by the property of local trivializability, a full collection of local trivializing

maps is available.

10. For any small open neighborhood U of M , two trivializing K̂–equivariant

smooth maps Φ̂U : π̂´1pUq Ñ U ˆ K̂ and
˜̂
ΦU : U ˆ K̂ Ñ π̂´1pUq such that

prU ˝ Φ̂U “ π̂
ˇ

ˇ

π̂´1pUq
, (3.1.6)

π̂ ˝
˜̂
ΦU “ prU (3.1.7)

(cf. eqs. (3.1.2), (3.1.3)). Analogously to before, we describe the trivializing

functors Φ̂U and
˜̂
ΦU of P̂ on U through their actions on the morphism manifold
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P̂ denoted as Φ̂U and
˜̂
ΦU too. Φ̂U and

˜̂
ΦU restrict to trivializing K̂0–equivariant

smooth maps Φ̂U0 : π̂0
´1pUq Ñ U ˆ K̂0 and

˜̂
ΦU0 : U ˆ K̂0 Ñ π̂0

´1pUq giving the

functors’ actions on the object manifolds π̂0
´1pUq and UˆK̂0. Φ̂U and

˜̂
ΦU and Φ̂U0

and
˜̂
ΦU0 obey a large set of relations stemming from functoriality and reciprocal

weak invertibility. Further, there are a K̂–equivariant map T̂U : π̂´1pUq Ñ K̂,

where K̂ is endowed with the right multiplication action, such that

Φ̂UpXq “ pπ̂pXq, T̂UpXqq (3.1.8)

for X P π̂´1pUq and for each m P U a K̂–equivariant map X̂Um : K̂ Ñ π̂´1pUq

with the property that

˜̂
ΦUpm,Aq “ X̂UmpAq (3.1.9)

for A P K̂ obeying many further relations deriving from Φ̂U and
˜̂
ΦU being weakly

inverse functors. The associated K̂0–equivariant maps T̂U0 : π̂0
´1pUq Ñ K̂0 and

X̂U0m : K̂0 Ñ π̂0
´1pUq are again restrictions.

The fact that the local trivializing functors Φ̂U and
˜̂
ΦU of a strict principal

2–bundle P̂ are only reciprocally weakly inverse makes P̂ unlike an ordinary

principal bundle. In general, Φ̂U is not injective and one can use it to coordinatize

π̂´1pUq only in a weaker sense than in the ordinary theory. Likewise,
˜̂
ΦU is

generally non surjective and one can use it to parametrize π̂´1pUq only up to

suitable isomorphism.

Because of the above properties, the K̂–action R̂ on P̂ is fiberwise free but

fiberwise transitive only up to appropriate isomorphism. Furthermore, a K̂–

invariant map f : P̂ Ñ R cannot be identified with a map f̄ : M Ñ R in

general. However, as locally on a neighborhood U π̂´1pUq is K̂–equivariantly

equivalent to U ˆ K̂, which is an ordinary principal K̂–bundle, a K̂–invariant map

f : π̂´1pUq Ñ R can be described as a map f̄U : U Ñ R. However, for fixed U ,

f̄U is built through and generally depends on the underlying trivializing functor
˜̂
ΦU and is not therefore uniquely associated to f . With the appropriate notion of

horizontality, similar statements hold also for differential forms.

To the best of our knowledge, there does not exist at the moment any defini-
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tion of connection on a strict principal 2–bundle akin to that of ordinary principal

bundle theory formulated in terms of a horizontal invariant distribution in the

tangent bundle of the bundle. There exits however a definition of gauge transfor-

mation analogous to that of the ordinary theory as an equivariant fiber preserving

bundle automorphism.

A weak 2–group W is a group object in the category Cat of categories, that

is a groupoid W endowed with a multiplication functor κ : W ˆ W Ñ W, an

inversion functor ι : W Ñ W and a distinguished object 1 obeying the usual

axioms of group theory at the functor level up to natural isomorphisms satisfying

suitable coherence conditions. Strict 2–groups are those weak 2–groups for which

all these natural isomorphisms are identities. Replacing the category Cat with

DiffCat, one defines similarly the notion of weak Lie 2–group and strict Lie

2–group, the latter of which was introduced earlier.

A given category C is characterized by the weak 2–group AutpCq whose ob-

jects are the weakly invertible functors F : C Ñ C, whose morphisms are the

natural isomorphisms β : F ñ G and whose 2–group structure is as follows. The

group structure of AutpCq0 is given by functor composition and weak inversion,

the group structure of AutpCq1 is given by the so called Godement composition

and inversion of natural isomorphisms, the groupoid structure of AutpCq1 consists

in the usual composition and inversion of natural isomorphisms.

There is a notion of gauge 2–group of a principal 2–bundle extending the

familiar notion of gauge group of the ordinary theory. The objects and morphisms

of the gauge 2–group are closely related to the 1– and 2–gauge transformations

in higher gauge theory and therefore are of considerable interest for us. There

are a few categorical equivalent ways of presenting the gauge 2–group, which we

review next. Below, we let P̂ be a strict principal K̂ –2–bundle with base M .

The gauge 2–group of P̂ can be characterized as its automorphism 2–group.

Definition 3.3. The automorphism 2–group of P̂, AutK̂π̂pP̂ q, consists in the weak

sub–2–group of AutpP̂ q of K̂–equivariant weakly invertible functors F : P̂ Ñ P̂

preserving the bundle projection π̂,

π̂ ˝ F “ π̂ (3.1.10)
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strictly, and K̂–equivariant natural isomorphisms β : F ñ G.

The gauge 2–group of P̂ can be characterized also as its equivariant structure

2–group valued morphism 2–group.

Definition 3.4. The equivariant structure 2–group valued morphism 2–group of P̂,

FunK̂pP̂, K̂Adq, is the strict 2–group whose objects and morphisms are respectively

the K̂–equivariant functors F : P̂ Ñ K̂ and K̂–equivariant natural isomorphisms

β : F ñ G and whose 2–group operations are those induced pointwise by those of

K̂, where K̂Ad denotes K̂ with the conjugation right action.

The following theorem, shown in ref. [6], extends a basic property of the gauge

groups of ordinary principal bundles to principal 2–bundles.

Theorem 3.1. The automorphism 2–group AutK̂π̂pP̂ q and the equivariant structure

2–group valued morphism 2–group FunK̂pP̂, K̂Adq are equivalent as weak 2-groups.

In this way, in the appropriate categorical sense, we can identify AutK̂π̂pP̂ q and

FunK̂pP̂, K̂Adq. This second realization of the gauge 2–group of P̂ is more conve-

nient and we shall refer to it in the following. Under the assumptions that M is

compact, K̂ is locally exponentiable and the K̂–action is principal on P̂ and P̂0,

one can prove that FunK̂pP̂, K̂Adq is a strict Lie 2–group. Moreover, FunK̂pP̂, K̂Adq

enjoys a simple concrete description.

1. The objects of FunK̂pP̂, K̂Adq are K̂–equivariant functors F : P̂ Ñ K̂Ad.

2. The morphisms of FunK̂pP̂, K̂Adq from an object F to another G are the

K̂0–equivariant maps β : P̂0 Ñ K̂Ad such that βpxq : F0pxq Ñ G0pxq for

x P P̂0.

The K̂0–equivariant map F0 : P̂0 Ñ K̂0Ad associated with the object F is again a

restriction.

A useful local description of the gauge 2–group of P̂ is also available. On a

trivializing neighborhood U Ă M , where π̂´1pUq is K̂–equivariantly equivalent to

U ˆ K̂, the 2–groups FunK̂pπ̂´1pUq, K̂Adq and FunK̂pU ˆ K̂, K̂Adq are equivalent as

weak 2–groups. The latter 2–group has in turn the following description.
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Definition 3.5. For a neighborhood U Ă M , we let FunpU, K̂qhop be the strict 2–

group whose objects are functors V : U Ñ K̂, whose morphisms are natural iso-

morphisms σ : V ñ W and whose 2–group operations are those induced pointwise

by those of K̂hop, the 2 group K̂ with the opposite multiplication functor.

Proposition 3.1. The 2–group FunK̂pU ˆ K̂, K̂Adq is isomorphic as a strict 2–group

to the 2–group FunpU, K̂qhop

The 2–group FunpU, K̂qhop has a very simple structure strongly reminiscent that

of the gauge group of ordinary principal bundles.

1. An object V of FunpU, K̂q is specified by a map V : U Ñ K̂0.

2. A morphism σ : V ñ W of FunpU, K̂q is similarly specified by a map

σ : M Ñ K̂ such that σpmq : V pmq Ñ W pmq for m P U .

Under the strict 2–group isomorphism FunpU, K̂qhop » FunK̂pU ˆ K̂, K̂Adq, the

object HV of FunK̂pU ˆ K̂, K̂Adq corresponding to an object V of FunpU, K̂q is

given by the expression

HV pm,Aq “ A´1V pmqA (3.1.11)

with m P U and A P K̂. The morphism θσ : HV Ñ HW of FunK̂pU ˆ K̂, K̂Adq

corresponding to a morphism σ : V ñ W of FunpU, K̂q is similarly specified by

θσpm, aq “ a´1σpmqa (3.1.12)

with m P U and a P K̂0.

In the next subsection, we shall introduce the synthetic description of principal

2–bundles, which brings the categorical formulation expounded above closer to

higher gauge theory.

3.2 Synthetic formulation of principal 2–bundle theory

The total space theory of principal 2–bundles expounded in subsect. 3.1 is elegant

and geometrically intuitive, but it has certain shortcomings. In such framework,
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no viable definition of 2–connection and 1–gauge transformation is available that

is satisfactorily close to the corresponding notions of higher gauge theory, which

is our main concern. (See however refs. [16,17] for an interesting attempt in this

direction.) As we shall show in II, these problems can be solved by switching from

the categorical framework to a distinct but related description, which we shall

call synthetic, for lack of a better term and with an abuse of language, because

the notions it is based on are akin in spirit to those of synthetic differential

geometry. The synthetic approach turns out to be closely related to the standard

formulation of strict higher gauge theory, as we require.

It is difficult to justify the change of perspective we are espousing in simple

intuitive terms. The synthetic formulation is essentially validated a posteriori by

the viability of the results it leads to.

A fundamental property of strict 2–groups is their equivalence to group crossed

modules described in greater detail in subsect. 3.3.

Theorem 3.2. For a strict Lie 2–group K̂ with source and target maps ŝ, t̂, there

exists a Lie group isomorphism

K̂ » ker ŝ ¸λ̂ K̂0, (3.2.1)

where the semidirect product group structure is defined with respect to the left

action λ̂ : K̂0 ˆ ker ŝ Ñ ker ŝ given by

λ̂pa, Zq “ aZa´1 (3.2.2)

with a P K̂0, Z P ker ŝ. Furthermore, under the isomorphism (3.2.1), the Lie

groupoid structure of K̂ can be expressed completely in terms of the group struc-

tures of K̂0 and ker ŝ, the action map λ̂ and the target map

ǫ̂ “ t̂
ˇ

ˇ

ker ŝ
. (3.2.3)

Viewing the structure 2–group K̂ of the relevant principal 2–bundle P̂ as

a Lie group crossed module pK̂0, ker ŝq leads to a geometric framework of the

higher theory closer in form and in spirit to that of the ordinary one. It is also a

23



necessary starting point for the synthetic formulation, which essentially amounts

to trading ker ŝ with Lie kerŝr1s.

Definition 3.6. The synthetic form K of the morphism group K̂ is the graded Lie

group of the internal functions Q P MappRr´1s, K̂q of the form

Qpᾱq “ eᾱL a, ᾱ P Rr´1s (3.2.4)

with a P K̂0, L P Lie kerŝr1s. The synthetic form K0 of the object group K̂0 is the

graded Lie subgroup of K constituted by the elements of the special form qpᾱq “ a.

The group operations are pointwise multiplication and inversion. K0 can be iden-

tified canonically with K̂0.

The synthetic groups K, K0 stem from the morphism and object groups K̂, K̂0

of the strict Lie 2–group K̂ . Furthermore, K0 is a subgroup of K. However, K,

K0 are not the morphism and object groups of any synthetic strict Lie 2–group

K , as not all the groupoid structure maps of K̂ can be directly extended to K.

A graded Lie group morphism s : K Ñ K0 extending the source morphism ŝ of K̂

does in fact exist.

Definition 3.7. The synthetic form of ŝ is the element s P HompK,K0q given by

spQq “ ŝ ˝ Q (3.2.5)

with Q P K.

s is well–defined, since, writing Q as in (3.2.4), s is given by spQqpᾱq “ ŝpQpᾱqq “

a and so has a range lying in K0 as required. A partner morphism t P HompK,K0q

extending the target morphism t̂ of K̂ instead does not. The would–be target

map t would read as tpQqpᾱq “ t̂pQpᾱqq “ eᾱ
9̂tpLq a, where 9̂t is the Lie differential

of t̂, and thus have a range generally lying outside K0. Consequently, composition

also cannot be defined in K and K has no groupoid structure.

Definition 3.8. The synthetic form P of the morphism manifold P̂ is the graded

manifold of the internal functions V P MappRr´1s, P̂ q of the form

V pᾱq “ R̂px,Qpᾱqq, ᾱ P Rr´1s (3.2.6)
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with x P P̂0 Ă P̂ , Q P K. The synthetic form P0 of the object manifold P̂0 is the

graded submanifold of P constituted by of the points of the special form vpᾱq “ x.

Since MappRr´1s, P̂ q » T r1sP̂ , the shifted tangent bundle of P̂ , P is a vector

subbundle of T r1sP̂ . Indeed, by the way it is defined and in analogy to the

ordinary notion, P can be described as V r1sP̂ |P̂0
, the shifted vertical subbundle

of P̂ restricted to P̂0. P0 can be identified canonically with P̂0, which in turn can

be regarded as the zero section of V r1sP̂ |P̂0
.

The synthetic manifolds P , P0 answer to the morphism and object manifolds

P̂ , P̂0 of the 2–bundle P̂. P0 is further a submanifold of P . However, P , P0 are not

the morphism and object manifolds of any synthetic principal K –2–bundle P. To

begin with, the synthetic groups K, K0 cannot constitute the 2–bundle’s structure

2–group K for reasons explained earlier. Moreover, not all the groupoid structure

maps of P̂ can be consistently extended to P . A map s : P Ñ P0 extending the

source map ŝ of P̂ is in fact available.

Definition 3.9. The synthetic form of ŝ is the map s P MappP, P0q given by

spV q “ ŝ ˝ V (3.2.7)

with V P P .

s is well–defined, as, for V P P of the form (3.2.6) with Q P K as in (3.2.4), s reads

as spV qpᾱq “ ŝpV pᾱqq “ ŝpR̂px,Qpᾱqqq “ R̂0pŝpxq, ŝpQpᾱqqq “ R̂0px, aq and so

has a range lying in P0 as wished. A mate target map t P MappP, P0q extending

the target map t̂ of P̂ instead is not. The supposedly target map t would be given

by tpV qpᾱq “ t̂pV pᾱqq “ t̂pR̂px,Qpᾱqqq “ R̂0pt̂pxq, t̂pQpᾱqqq “ R̂0px, eᾱ
9̂tpLq aq and

thus have a range lying outside P0. As a consequence, composition also cannot be

defined in P and P has no groupoid structure. In spite of this findings, many of

the properties of P̂ and P̂0 as part of the 2–bundle P̂ do extend in an appropriate

form to P and P0. We study these in some detail next.

Projection maps π and π0 of P induced by π̂ and π̂0 respectively exist and

enjoy the expected properties.
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Definition 3.10. The synthetic form of π̂ is the map π P MappP,Mq given by

πpV q “ π̂ ˝ V, (3.2.8)

with V P P . The synthetic form of π̂0 is the map π0 P MappP0,Mq resulting from

restricting π to P0.

π extends π̂ because, writing V P P in the form (3.2.6) above, π is given by

πpV qpᾱq “ π̂pV pᾱqq “ π̂pR̂px,Qpᾱqqq “ π̂0pxq and thus has a range lying in M .

Proposition 3.2. π and π0 are surjective submersions. Further, π “ π0 ˝ s.

Compare the above relation with (3.1.4).

Proof. Letting ρ : P Ñ P̂0 be the projection map of P » V r1sP̂ |P̂0
, one has

π “ π̂ ˝ ρ. As π̂, ρ are both surjective submersions, so is π. Likewise, letting

ρ0 : P0 Ñ P̂0 be the canonical identification of P0 and P̂0, one has π0 “ π̂0 ˝ ρ0.

Since π̂0, ρ0 are both surjective submersions, so is π0. The relation π0 ˝ s “ π

follows from the identity π̂0 ˝ ŝ “ π̂, (3.2.5) and (3.2.7).

The right actions R̂ and R̂0 of K̂ and K̂0 on P̂ and P̂0 similarly give rise to

right actions R and R0 of K and K0 on P and P0 with the expected properties.

Definition 3.11. The synthetic form of R̂ is the map R P MappP ˆK, P q given by

RpV,Aq “ R̂ ˝ pV ˆ Aq (3.2.9)

for V P P , A P K. The synthetic form of R̂0 is the map R0 P MappP0 ˆ K0, P0q

yielded by restriction of R to P0 ˆ K0.

R extends R̂ because, writing V P P in the form (3.2.6) above, R is given by

RpV,Aqpᾱq “ R̂pR̂px,Qpᾱqq, Apᾱqq “ R̂px,QpᾱqApᾱqq and thus has a range lying

in P . This calculation also shows that R0, as the restriction of R to P0 ˆK0, has

a range lying in P0.

Proposition 3.3. R and R0 are right actions of K on P and K0 on P0, respectively.

Further, π ˝ R “ π ˝ pr1 and π0 ˝ R0 “ π0 ˝ pr1.
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The above relations answer to (3.1.5).

Proof. These properties follow trivially from the corresponding properties of R̂

and R̂0 and π̂ and π̂0.

For any trivializing neighborhood U Ă M and trivializing functor Φ̂U , there

exist trivializing maps ΦU and ΦU0 of P and P0 induced by Φ̂U and Φ̂U0.

Definition 3.12. The synthetic form of Φ̂U is the map ΦU P Mappπ´1pUq, U ˆ Kq

given for V P π´1pUq Ă P by

ΦUpV q “ Φ̂U ˝ V. (3.2.10)

The synthetic form of Φ̂U0 is the map ΦU0 P Mappπ0
´1pUq, U ˆ K0q yielded by

restricting ΦU to π0
´1pUq.

ΦU and ΦU0 having the ranges indicated follows from the following proposition.

Proposition 3.4. There is a K–equivariant map TU P Mappπ´1pUq,Kq such that

ΦUpV q “ pπpV q, TUpV qq, TUpV q “ T̂U ˝ V, (3.2.11)

where the map T̂U is defined through relation (3.1.8). Further, TU restricts to a

K0–equivariant map TU0 P Mappπ0
´1pUq,K0q.

(3.2.11) extends (3.1.8) and shows that ΦU , as Φ̂U , is projection preserving.

Proof. TU has range in K, as, writing V P π´1pUq in the form (3.2.6), TU is given

by TU pV qpᾱq “ T̂UpV pᾱqq “ T̂UpR̂px,Qpᾱqqq “ T̂U0pxqQpᾱq with T̂U0pxq P K̂0.

(3.2.11) follows immediately from (3.1.8) and (3.2.8). The K–equivariance of TU

follows from the K̂–equivariance of T̂U . The calculation above shows also that,

for v P π0
´1pUq, TU0 is given by TU0pvqpᾱq “ T̂U0pxq so that TU0 has range in K0.

The K0–equivariance of TU0 follows from the K̂0–equivariance of T̂U0.

It is possible to define the synthetic analog Φ̃U of a weak inverse
˜̂
ΦU of Φ̂U and

its object restriction. We shall not consider them here, since we shall not need

them in the following.
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In the rest of this section, of a mostly technical nature, we shall work out

a graded differential geometric framework for strict principal 2–bundle theory

based on the operational apparatus of subsect. 2.1 and the synthetic description

expounded above. The operational synthetic formulation allows for an original

theory of 2–connections and 1– and 2–gauge transformations, developed in depth

in the companion paper II, very close in form and spirit to the principal bundle

theoretic framework reviewed in subsect. 1.1.

3.3 Lie group and algebra crossed modules

In subsect. 3.2, we have seen that thanks to the isomorphism (3.2.1) a strict

Lie 2–group is fully encoded in a pair of Lie groups equipped with two structure

maps with certain properties. These data constitute a Lie group crossed module,

a notion which we review in this subsection mainly to set our notation and termi-

nology. We refer the reader to the papers [22,23] for a comprehensive treatment

of this subject.

Definition 3.13. A Lie group crossed module M consists of two Lie groups E and

G together with a Lie group morphism τ : E Ñ G and an action µ : G ˆ E Ñ E

with the following properties.

1. For a P G, µpa, ¨q P AutpEq.

2. The map a P G Ñ µpa, ¨q P AutpEq is a Lie group morphism.

3. Equivariance: for a P G, A P E

τpµpa, Aqq “ aτpAqa´1. (3.3.1)

4. Peiffer identity: for A,B P E

µpτpAq, Bq “ ABA´1. (3.3.2)

In what follows, we shall often denote a Lie group crossed module M by the list

of its constituent data pE,G, τ, µq, or simply pE,Gq when no confusion can occur.
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Definition 3.14. A morphism β : M1 Ñ M of Lie group crossed modules consists of

two Lie group morphisms φ : G1 Ñ G and Φ : E1 Ñ E with the following properties.

1. For A P E1

τpΦpAqq “ φpτ 1pAqq. (3.3.3)

2. For a P G1, A P E1

Φpµ1pa, Aqq “ µpφpaq, ΦpAqq. (3.3.4)

We shall concisely denote a Lie group crossed module morphism β : M1 Ñ M

by the list pΦ : E1 Ñ E, φ : G1 Ñ Gq of its defining data and shall omit the

specification of sources and targets when no confusion is possible.

Lie group crossed modules and morphisms thereof constitute a category de-

noted by Lgcm.

Definition 3.15. A Lie algebra crossed module m consists of two Lie algebras e

and g together with a Lie algebra morphism t : e Ñ g and an action m : gˆ e Ñ e

with the following properties.

1. For u P g, mpu, ¨q P Derpeq.

2. The map u P g Ñ mpu, ¨q P Derpeq is a Lie algebra morphism.

3. Equivariance: for u P g, U P e

tpmpu, Uqq “ ru, tpUqs. (3.3.5)

4. Peifer identity: for U, V P e

mptpUq, V q “ rU, V s. (3.3.6)

As for a Lie group crossed module, we shall denote a Lie algebra crossed module

m by the list pe, g, t,mq of its defining data or simply by pe, gq when no confusion

can arise.
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Definition 3.16. A morphism p : m1 Ñ m of Lie algebra crossed modules consists

of two Lie algebra morphisms h : g1 Ñ g and H : e1 Ñ e with the following

properties.

1. For U P e1

tpHpUqq “ hpt1pUqq. (3.3.7)

2. For u P g1, U P e1

Hpm1pu, Uqq “ mphpuq, HpUqq. (3.3.8)

We shall concisely denote a Lie algebra crossed module morphism p : m1 Ñ m by

the list pH : e1 Ñ e, h : g1 Ñ gq of its defining data and shall omit the specification

of sources and targets when no confusion is possible.

Lie algebra crossed modules and morphisms thereof constitute a category

denoted by Lacm.

Proposition 3.5. With a Lie group crossed module M “ pE,G, τ, µq, there is asso-

ciated a Lie algebra crossed module m “ pe, g, t,mq, where e “ LieE, g “ LieG,

t “ 9τ, (3.3.9)

m “ 9µ9. (3.3.10)

Above, 9 denotes Lie differentiation with respect to the relevant Lie group argu-

ment. In the second relation above, Lie differentiation is carried out with respect

to both arguments. In the following, we shall often encounter the Lie differential

µ9 : Gˆe Ñ e. For a P G, µ9pa, ¨q P Autpeq and the map a P G Ñ µ9pa, ¨q P Autpeq is

a Lie group morphism. The Lie differential 9µ : gˆE Ñ e shall also be considered.

See app. B for details about the precise definition and main properties of these

objects.

Proposition 3.6. With every Lie group crossed module morphism β : M1 Ñ M

“ pΦ : E1 Ñ E, φ : G1 Ñ Gq there is associated by Lie differentiation a Lie algebra

crossed module morphism p : m1 Ñ m “ pH : e1 Ñ e, h : g1 Ñ gq, where
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h “ 9φ, (3.3.11)

H “ 9Φ. (3.3.12)

The morphism p shall be denoted by 9β in the following.

The map that associates with each Lie group crossed module M its Lie algebra

crossed module m and with each Lie group crossed module morphism β : M1 Ñ M

its Lie algebra crossed module morphism 9β : m1 Ñ m is a functor of the category

Lgcm into the category Lacm.

3.4 Derived Lie groups and algebras

The derived Lie group and algebra of a Lie group and algebra crossed module,

respectively, constitute the fundamental algebraic structures of the formulation

of 2–connection and 1– and 2–gauge transformation theory studied in depth in

part II. In this subsection, we formulate these notions and study in detail their

properties.

Let L be an ordinary Lie group with Lie algebra l. The internal function

space MappRr´1s, Lq with the Lie group structure inherited form that of L is a

graded Lie group. Every element f P MappRr´1s, Lq can be written uniquely as

fpᾱq “ eᾱx l, ᾱ P Rr´1s, with l P L and x P lr1s.

Analogous remarks hold for an ordinary Lie algebra l. The internal function

space MappRr´1s, lq with the Lie algebra structure inherited form that of l is a

graded Lie algebra. Any element z P MappRr´1s, lq can so be written uniquely

as zpᾱq “ x ` ᾱy, ᾱ P Rr´1s, with x P l and y P lr1s.

For a Lie group crossed moduleM “ pE,G, τ, µq, consider the graded Lie group

MappRr´1s,E¸µ Gq, where E¸µ G denotes the semidirect product of the groups

E and G with respect to the G–action µ. MappRr´1s,E ¸µ Gq contains among

others elements of the special form

P pᾱq “ eᾱL a, ᾱ P Rr´1s, (3.4.1)

with a P G, L P er1s forming form a distinguished subset DM.

For any P, Q P DM with P pᾱq “ eᾱL a, Qpᾱq “ eᾱN b, one has
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PQpᾱq “ eᾱpL`µ9pa,Nqq ab, (3.4.2)

P´1pᾱq “ e´ᾱµ9pa´1,Lq a´1. (3.4.3)

Therefore, DM is a graded Lie subgroup of MappRr´1s,E ¸µ Gq.

Proposition 3.7. DM is a graded Lie group. The graded Lie group isomorphism

DM » er1s ¸µ9G (3.4.4)

holds, where e is regarded as an Abelian Lie group.

Above, er1s ¸µ9 G denotes the semidirect product of the Lie groups er1s and G

with respect to the G–action µ9. The graded Lie group DM is called the derived

Lie group of M.

Proof. The statement follows immediately from (3.4.2), (3.4.3).

Proposition 3.8. With every Lie group crossed module morphism β : M1 Ñ M

“ pΦ : E1 Ñ E, φ : G1 Ñ Gq there is associated a graded Lie group morphism

Dβ : DM1 Ñ DM. With respect to the factorization (3.4.4), Dβ reads

Dβ “ 9Φ ˆ φ. (3.4.5)

Dβ is called the derived Lie group morphism of β.

Proof. The statement follows readily from (3.4.2), (3.4.3) and φ, Φ being group

morphisms with Φ satisfying (3.3.4).

The map D associating with each Lie group crossed module its derived Lie

group and with each Lie group module morphism its derived Lie group morphism

constitutes a functor from the Lie group crossed module category Lgcm into the

graded Lie group category gLg.

Next, for a Lie algebra crossed module m “ pe, g, t,mq, consider the internal

function space MappRr´1s, e¸m gq, where e¸m g denotes the semidirect product

of the Lie algebras e and g with respect to the g–action m. MappRr´1s, e ¸m gq

contains in particular the elements of the form

Y pᾱq “ u ` ᾱU, ᾱ P Rr´1s, (3.4.6)
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with u P g, U P er1s spanning a special subspace Dm.

For any Y,W P Dm such that Y pᾱq “ u ` ᾱU , W pᾱq “ v ` ᾱV , one has

rY,W spᾱq “ ru, vs ` ᾱpmpu, V q ´ mpv, Uqq. (3.4.7)

Thus, Dm is a graded Lie subalgebra of MappRr´1s, e ¸m gq.

Proposition 3.9. Dm is a graded Lie algebra. The graded Lie algebra isomorphism

Dm » er1s ¸m g (3.4.8)

holds, where e is regarded as an Abelian Lie algebra.

Above, er1s ¸m g denotes the semidirect product of the Lie algebras er1s and g

with respect to the g–action m. The graded Lie algebra Dm is called the derived

Lie algebra of m.

Proof. The claim is an immediate consequence of (3.4.7).

Proposition 3.10. With every Lie algebra crossed module morphism p : m1 Ñ m

“ pH : e1 Ñ e, h : g1 Ñ gq there is associated a graded Lie algebra morphism

Dp : Dm1 Ñ Dm. With respect to the factorization (3.4.8), Dp reads

Dp “ H ˆ h. (3.4.9)

Dp is called the derived Lie algebra morphism of p.

Proof. The claim follows from (3.4.7) and H , h being Lie algebra morphisms with

H satisfying (3.3.8).

The map D associating with each Lie algebra crossed module its derived Lie

algebra and with each Lie algebra crossed module morphism its derived Lie alge-

bra morphism is a functor from the Lie algebra crossed module category Lacm

into the graded Lie algebra category gLa.

Let M “ pE,G, τ, µq be a Lie group crossed module and let m “ pe, g, 9τ,9µ9q be

its associated Lie algebra crossed module.

Proposition 3.11. Dm is the Lie algebra of DM.
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Proof. A curve in DM is a smooth map Γ : R Ñ DM such that Γ p0q “ 1E¸µG.

By (3.4.1), Γ is of the form

Γ ptqpᾱq “ eᾱΞptq γptq (3.4.10)

for smooth maps γ : R Ñ G with γp0q “ 1G and Ξ : R Ñ er1s with Ξp0q “ 0.

Differentiating Γ at t “ 0, one finds

Y pᾱq :“ Γ ptq´1dΓ ptq

dt
pᾱq

ˇ

ˇ

ˇ

ˇ

t“0

“ γptq´1dγptq

dt

ˇ

ˇ

ˇ

ˇ

t“0

` ᾱ
dΞptq

dt

ˇ

ˇ

ˇ

ˇ

t“0

. (3.4.11)

So, Y P Dm, as it is of the form (3.4.6). Moreover, every element Y P Dm can

be obtained in this way by a suitable choice of the maps γ and Ξ .

An explicit expression of the adjoint action of DM on Dm is available.

Proposition 3.12. For P P DM and Y P Dm respectively of the form (3.4.1) and

(3.4.6), one has

AdP pY qpᾱq “ Ad apuq ` ᾱpµ9pa, Uq ´ 9µ9pAd apuq, Lqq, (3.4.12)

AdP´1pY qpᾱq “ Ad a´1puq ` ᾱµ9pa´1, U ` 9µ9pu, Lqq. (3.4.13)

Proof. Let D P DM be given by

Dpᾱq “ eᾱU eu . (3.4.14)

Using the identities (3.4.2), (3.4.3), one finds

PDP´1pᾱq “ eᾱpµ9pa,Uq`L´µ9peAd apuq,Lqq eAd apuq, (3.4.15)

P´1DP pᾱq “ eᾱµ9pa´1, U´L`µ9peu,Lqq eAda´1puq . (3.4.16)

Linearizing these relations with respect to u, U , one obtains (3.4.12), (3.4.13)

immediately.

Let M, M1 be Lie group crossed modules and m, m1 be their associated Lie

algebra crossed modules.

Proposition 3.13. If β : M1 Ñ M is a Lie group crossed module morphism and
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9β : m1 Ñ m is its associated Lie algebra crossed module morphism, then the

Lie differential of the derived Lie group morphism Dβ is the derived Lie algebra

morphism D 9β, that is

9Dβ “ D 9β. (3.4.17)

Proof. Let β “ pΦ, φq. From (3.4.5), it follows that 9Dβ “ 9Φ ˆ 9φ. From (3.4.9)

with p “ 9β and (3.3.11), (3.3.12), we have D 9β “ 9Φ ˆ 9φ too. Identity (3.4.17) so

holds true.

For a Lie group crossed module M “ pE,G, τ, µq, it is possible to construct

appropriate Maurer–Cartan elements of the derived Lie group DM valued in the

derived Lie algebra Dm. Let M denote a DM variable.

Definition 3.17. The Maurer-Cartan forms of DM are the 1–forms dMM´1,

M´1dM P Ω1pDMq b Dm, where d is the de Rham differential of DM.

Explicit formulae of the Maurer-Cartan forms can be gotten by expressing M as

Mpᾱq “ eᾱE g, ᾱ P Rr´1s, (3.4.18)

where g and E are a G and an er1s variable, respectively, in conformity with

(3.4.1),

Proposition 3.14. The Maurer-Cartan forms of DM are given by

dMM´1pᾱq “ dgg´1 ´ ᾱpdE ´ 9µ9pdgg´1, Eqq, (3.4.19)

M´1dMpᾱq “ g´1dg ´ ᾱµ9pg´1, dEq. (3.4.20)

Proof. (3.4.19), (3.4.20) follow straightforwardly from the well–known variational

identities δ eᾱE e´ᾱE “ exppᾱ adEq´1

ᾱ adE
δpᾱEq, e´ᾱE δ eᾱE “ 1´expp´ᾱ adEq

ᾱ adE
δpᾱEq with

δ “ d upon taking the nilpotence of ᾱ into account.

3.5 Derived Lie group and algebra valued internal functions

In a graded geometric framework such as ours, 2–connections and 1–gauge trans-

formations of a given principal 2–bundle, which we shall study in part II, are

35



instances of derived Lie group and algebra valued internal functions. In this

subsection, we study in detail the spaces of such type of functions.

We begin with a few basic remarks. There exist a few definitions of infinite

dimensional Lie groups and algebras and group and algebra morphisms and Lie

differentiation, e. g. Fréchet, diffeological etc. In a typical infinite dimensional

Lie theoretic setting, such notions coincide in their algebraic content but differ

in their differential geometric one (unless the dimension is actually finite). For

this reason, as long as only the algebraic structure is relevant and the smooth

structure plays no role, we are free to leave the definition adopted unspecified. In

such cases, we shall speak of virtual infinite dimensional Lie groups and algebras

and Lie group and algebra morphisms and Lie differentiation and remain safely in

the realm of pure algebra and formal analysis. Any statement of virtual infinite

dimensional Lie theory turns into a statement of a specific kind of it provided the

underlying geometric data satisfy suitable conditions.

We illustrate the above line of thought by reviewing very briefly the proto-

typical examples occurring in ordinary infinite dimensional Lie theory. Let M

be a manifold. The space of functions from M to a Lie group L, MappM, Lq,

with the multiplication and inversion induced pointwise by those of L is a virtual

infinite dimensional Lie group. Furthermore, any Lie group morphism λ : L1 Ñ L

induces by left composition a virtual infinite dimensional Lie group morphism

MappM,λq : MappM, L1q Ñ MappM, Lq. Similarly, the space of functions from

M to a Lie algebra l, MappM, lq, with the bracket induced pointwise by that of l

is a virtual infinite dimensional Lie algebra. Further, any Lie algebra morphism

l : l1 Ñ l induces by left composition a virtual infinite dimensional Lie algebra

morphism MappM, lq : MappM, l1q Ñ MappM, lq. When l is the Lie algebra of L,

moreover, MappM, lq is the virtual Lie algebra of MappM, Lq. The above virtual

assertions become actual ones once a particular infinite dimensional Lie theoretic

framework is adopted, provided M meets suitable restrictions. For instance, in

the Fréchet framework, those properties are verified if M is compact.

To the best of our knowledge, a suitable extension of the above framework to a

graded differential geometric setting such as the one studied in this subsection has
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not been worked out yet. Fortunately, we shall not need it. The purely algebraic

notions of virtual infinite dimensional graded Lie group and algebra and group

and algebra morphism, which are the obvious extensions to the graded setting of

the corresponding notions of the ungraded one described above, will suffice.

Below, we consider a fixed graded manifold N . The space of internal functions

from N to a graded Lie group P, MappN,Pq, with the multiplication and inver-

sion induced pointwise by those of P is a virtual infinite dimensional graded Lie

group. Furthermore, a virtual infinite dimensional graded Lie group morphism

MappN, κq : MappN,P1q Ñ MappN,Pq is determined by any graded Lie group

morphism κ : P1 Ñ P. Similarly, the space of internal functions from N to a

graded Lie algebra p, MappN, pq, with the bracket induced pointwise by that of

p is a virtual infinite dimensional graded Lie algebra. A virtual infinite dimen-

sional graded Lie algebra morphism MappN, kq : MappN, p1q Ñ MappN, pq is

furthermore determined by any graded Lie algebra morphisms k : p1 Ñ p. Sim-

ilar statements hold also under full degree extension of the graded Lie algebras

and algebra morphisms involved (cf. app. A). When p is the Lie algebra of P,

moreover, MappN, pq is the virtual Lie algebra of MappN,Pq.

Let M “ pE,G, τ, µq be a Lie group crossed module and let DM be its derived

Lie group (cf. subsect. 3.4). The internal function space MappN,DMq is then a

virtual infinite dimensional graded Lie group. MappN,DMq is most appropriately

described by noticing that it is isomorphic to a subgroup of the virtual Lie group

MappRr1sˆN,E¸µGq. Indeed, by (3.4.1), an element F P MappN,DMq reduces

to a pair of internal functions m P MappN,Gq, Q P MappN, er1sq defining the

internal function F P MappRr1s ˆ N,E ¸µ Gq, denoted here by the same symbol

for simplicity, given by

F pαq “ eαQm, α P Rr1s. (3.5.1)

Moreover, on account of (3.4.2), (3.4.3), for any F,G P MappN,DMq such that

F pαq “ eαQ m, Gpαq “ eαR n, we have

FGpαq “ eαpQ`µ9pm,Rqq mn, (3.5.2)
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F´1pαq “ e´αµ9pm´1,Qq m´1. (3.5.3)

The structure of the elements as well as the group multiplication and inversion

of MappN,DMq is hence formally the same as that of DM given in eqs. (3.4.1)

and (3.4.2), (3.4.3) except for an inversion of degrees.

Proposition 3.15. The virtual infinite dimensional graded Lie group isomorphism

MappN,DMq » MappN, er1sq ¸MappN,µ9q MappN,Gq (3.5.4)

holds true.

(3.5.4) is the function space analog of (3.4.4).

Proof. (3.5.4) follows from (3.4.4) by acting with the functor MappN,´q.

Proposition 3.16. With every Lie group crossed module morphism β : M1 Ñ M

“ pΦ : E1 Ñ E, φ : G1 Ñ Gq there is associated a virtual infinite dimensional graded

Lie group morphism MappN,Dβq : MappN,DM1q Ñ MappN,DMq. With re-

spect to the factorization (3.5.4), MappN,Dβq reads as

MappN,Dβq “ MappN, 9Φq ˆ MappN, φq. (3.5.5)

This is the function space analog of (3.4.5).

Proof. (3.5.5) follows immediately from (3.4.5) through the action of the functor

MappN,´q again.

Let m “ pe, g, t,mq be a Lie algebra crossed module and let Dm be its derived

Lie algebra (cf. subsect. 3.4). The internal function space MappN,Dmq is then

a virtual infinite dimensional graded Lie algebra. MappN,Dmq is best described

by observing that it is isomorphic to a subalgebra of the virtual Lie algebra

MappRr1s ˆ N, e ¸m gq. Indeed, by (3.4.6), an element S P MappN,Dmq can

be decomposed in a pair of internal functions j P MappN, gq, J P MappN, er1sq,

which together in turn define the internal function S P MappRr1s ˆ N, e ¸m gq,

denoted by the same symbol, given by
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Spαq “ j ` αJ, α P Rr1s. (3.5.6)

Further, on account of (3.4.7), for any S, T P MappN,Dmq with Spαq “ j ` αJ ,

T pαq “ k ` αK, we have

rS, T spαq “ rj, ks ` αpmpj,Kq ´ mpk, Jqq. (3.5.7)

Again, so, the structure of the elements and the Lie bracket of MappN,Dmq is

formally the same as that of Dm given in eqs. (3.4.6) and (3.4.7) except for an

inversion of degrees.

Proposition 3.17. The virtual infinite dimensional graded Lie algebra isomorphism

MappN,Dmq » MappN, er1sq ¸MappN,mq MappN, gq (3.5.8)

holds true.

(3.5.8) is the function space analog of (3.4.8).

Proof. (3.5.8) follows from (3.4.8) by acting with the functor MappN,´q.

Proposition 3.18. With every Lie algebra crossed module morphism p : m1 Ñ m

“ pH : e1 Ñ e, h : g1 Ñ gq there is associated a virtual infinite dimensional graded

Lie algebra morphism MappN,Dpq : MappN,Dm1q Ñ MappN,Dmq. With re-

spect to the factorization (3.5.8), MappN,Dpq reads explicitly as

MappN,Dpq “ MappN,Hq ˆ MappN, hq. (3.5.9)

This is the function space analog of (3.4.9).

Proof. Relation (3.5.9) follows readily from (3.4.9) through the action of the func-

tor MappN,´q again.

The derived Lie algebra Dm has a full degree prolongation

ZDm “ Zg ‘ Ze “
À8

p“´8 Dmrps, (3.5.10)

where Dmrps “ erp ` 1s ‘ grps with Dmr0s “ Dm as a graded vector space
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(cf. eq. (A.0.9)). As Dm is a graded Lie algebra, the internal function space

MappN,ZDmq is a virtual infinite dimensional graded Lie algebra containing

MappN,Dmq as a Lie subalgebra. MappN,ZDmq is moreover differential, as we

now describe. To begin with, we note that MappN,ZDmq can be identified with

a subalgebra of the virtual Lie algebra MappRr1s ˆ N,Zpe ¸m gqq. Indeed, by

(3.5.10), MappN,ZDmq decomposes as the direct sum

MappN,ZDmq “
À8

p“´8 MappN,Dmrpsq. (3.5.11)

From (3.4.6), reasoning as we did earlier, an element S P MappN,Dmrpsq com-

prises internal functions j P MappN, grpsq, J P MappN, erp ` 1sq combining in

an internal function S P MappRr1s ˆ N, pe ¸m gqrpsq given by

Spαq “ j ` p´1qpαJ, α P Rr1s. (3.5.12)

Further, on account of (3.4.7), one finds that the Lie bracket of a couple of ele-

ments S P MappN,Dmrpsq, T P MappN,Dmrqsq such that Spαq “ j ` p´1qpαJ ,

T pαq “ k ` p´1qqαK is the element rS, T s P MappN,Dmrp ` qsq given by

rS, T spαq “ rj, ks ` p´1qp`qαpmpj,Kq ´ p´1qpqmpk, Jqq. (3.5.13)

Identifying Dmr0s with Dm as usual, it is apparent here that MappN,ZDmq con-

tainsMappN,Dmq as a virtual graded Lie subalgebra. In addition to a Lie algebra

structure, MappN,ZDmq is also endowed with a cochain complex structure,

¨ ¨ ¨
dt

// MappN,Dmrp ´ 1sq
dt

// MappN,Dmrpsq (3.5.14)

dt
// MappN,Dmrp ` 1sq

dt
// ¨ ¨ ¨ ,

where the coboundary dt acts as

dtSpαq “ t

ˆ

d

dα
Spαq

˙

“ p´1qptpJq (3.5.15)

with S P MappN,Dmrpsq of the form (3.5.12).

Under prolongation, the isomorphism in eq. (3.5.8) generalizes as stated in

the next proposition.
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Proposition 3.19. There is a virtual infinite dimensional differential graded Lie

algebra isomorphism

MappN,ZDmq » MappN,Zeq ¸MappN,s´1tq,MappN,mq MappN,Zgq. (3.5.16)

Above, MappN,Zeq¸MappN,tq,MappN,mqMappN,Zgq denotes the differential semidi-

rect product of the graded Lie algebras MappN,Zeq and MappN,Zgq, that is

the ordinary Lie algebra semidirect product MappN,Zeq ¸MappN,mq MappN,Zgq

with the cochain complex structure MappN, s´1tq : MappN,Zeq Ñ MappN,Zgq,

where s´1 denotes the desuspension isomorphism lowering degree by one unit.

Proof. (3.5.16) follows by inspection of the structure of the Lie bracket r´,´s

shown in eq. (3.5.13) and the form of the coboundary dt shown in eq. (3.5.15).

and the fact that dt differentiates the Lie bracket (3.5.13) as it can be checked by

a straightforward calculation.

The dt–cohomology of the complex is MappN,ZDhq, where h is the Lie alge-

bra crossed module pker t, g{ ran tq whose target morphism vanishes and whose

g{ ran t–action is that induced by m. We shall not need this result however.

Proposition 3.20. Every Lie algebra crossed module morphism p : m1 Ñ m

“ pH : e1 Ñ e, h : g1 Ñ gq induces a virtual infinite dimensional differential

graded Lie algebra morphism MappN,ZDpq : MappN,ZDm1q Ñ MappN,ZDmq.

MappN,ZDpq reads explicitly as

MappN,ZDpq “ MappN,ZHq ˆ MappN,Zhq, (3.5.17)

where ZH , Zh are the prolongations of H , h, respectively.

Proof. This follows from the factorization (3.4.9) under full degree extension for

the semidirect product structure and and from relation (3.3.7) for the differential

structure.

If m is the Lie algebra crossed module of a Lie group crossed module M,

MappN,Dmq is the virtual Lie algebra of MappN,DMq. The adjoint action of

DM on Dm induces an adjoint action of MappN,DMq on MappN,ZDmq.
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Proposition 3.21. For F P MappN,DMq and S P MappN,Dmrpsq respectively of

the form (3.5.1) and (3.5.12), one has

AdF pSqpαq “ Admpjq ` p´1qpαpµ9pm, Jq ´ 9µ9pAdmpjq, Qqq, (3.5.18)

AdF´1pSqpαq “ Adm´1pjq ` p´1qpαµ9pm´1, J ` 9µ9pj, Qqq. (3.5.19)

Proof. Relations (3.5.18), (3.5.19) are an immediate consequence if identities

(3.4.12), (3.4.13).

Proposition 3.22. For a Lie group crossed module morphism β : M1 Ñ M with

associated Lie algebra crossed module morphism 9β : m1 Ñ m, the virtual Lie

algebra morphism MappN,D 9βq is the virtual Lie differential of the Lie group

morphism MappN,Dβq,

9MappN,Dβq “ MappN,D 9βq. (3.5.20)

This is the function space counterpart of relation (3.4.17).

Proof. There really is no proof to be given here. In the spirit of the virtual Lie

theory, (3.5.20) is essentially the definition of 9MappN,Dβq.

Suppose that the manifold N is equipped with a degree p derivation D. Given

an internal function C P MappN,DMq, one can then construct elements DCC´1,

C´1DC P MappN,Dmrpsq by pull–back C of the Maurer–Cartan forms dMM´1,

M´1dM of DM (cf. def. 3.17) followed by contraction with D seen as a vector

field on N . Explicit formulae can be obtained by expressing C as

Cpαq “ eαO r, α P Rr1s, (3.5.21)

with r P MappN,Gq, O P MappN, er1sq, in conformity with (3.5.1),

Proposition 3.23. DCC´1, C´1DC are given explicitly by

DCCpαq´1 “ Drr´1 ` p´1qpαpDO ´ 9µ9pDrr´1, Oqq, (3.5.22)

C´1DCpαq “ r´1Dr ` p´1qpαµ9pr´1, DOq. (3.5.23)

Proof. Relations (3.5.22), (3.5.23) are obtained proceeding as indicated above
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using the expressions of dMM´1, M´1dM given in eqs. (3.4.19), (3.4.20).

The coboundary d 9τ of MappN,ZDmq as a cochain complex allows for the con-

struction of two special elements d 9τCC´1, C´1d 9τC P MappN,Dmr1sq. Explicit

formulae can be obtained by expressing again C as in (3.5.21).

Proposition 3.24. d 9τCC´1, C´1d 9τC are given by the expressions

d 9τCCpαq´1 “ 9τpOq `
1

2
αrO,Os, (3.5.24)

C´1d 9τCpαq “ Ad r´1p 9τpOqq ´
1

2
αµ9pr´1, rO,Osq. (3.5.25)

Proof. (3.5.24), (3.5.25) follow straightforwardly from the well–known variational

identities δ eαO e´αO “ exppα adOq´1

α adO
δpαOq, e´αO δ eαO “ 1´expp´α adOq

α adO
δpαOq with

δ “ d 9τ “ 9τd{dα and taking the nilpotence of α into account.

3.6 Derived Lie group and algebra cross modality

In the setup of subsect. 3.5, one may consider the degenerate finite dimensional

case where the graded manifold N is the singleton manifold ˚. It is then natural

to express everything in terms of the cross functor p´q` “ Mapp˚,´q introduced

in app. A. This allows us to obtain a “cross modality” of the derived Lie group

and algebras introduced in subsect. 3.4.

In subsect. 3.4, it has been shown that with a given Lie group crossed mod-

ule M “ pE,G, τ, µq there is associated a derived Lie group DM. Through the

cross functor p´q`, the crossed modality derived Lie group DM` can be also

constructed. DM` enjoys properties analogous to those of DM. The elements

F P DM` are of the form (3.5.1) with m P G` » G, Q P er1s` » Rr´1s b e

and the group operations read as in (3.5.2), (3.5.3), analogously to (3.4.1) and

(3.4.2), (3.4.3). By (3.5.4), we have further that DM` » er1s` ¸µ9̀ G` as graded

Lie groups, similarly to (3.4.4). Finally, by virtue of (3.5.5), for any Lie group

crossed module morphism β : M1 Ñ M “ pΦ : E1 Ñ E, φ : G1 Ñ Gq we have a

graded Lie group morphism Dβ` : DM1 ` Ñ DM` with Dβ` “ 9Φ` ˆ φ`, anal-

ogously to (3.4.5). The derived Lie group DM and its cross modality DM` are
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however related in a deeper way as now we explain.

The graded structure of DM stems from its being the subgroup of the inter-

nal function Lie group MappRr´1s,E ¸µ Gq formed by the elements of the form

(3.4.1). The degree 1 carried by the variable ᾱ P Rr´1s is excluded in the degree

counting. Upon including it instead, DM becomes a graded Lie group concen-

trated in degree 0, that can be treated as an ordinary Lie group. Completely

analogous considerations apply for the cross modality derived Lie group DM`.

In the following, we shall regard these Lie groups in the way just described.

Definition 3.18. Let zM : DM Ñ DM` be the map defined by

zMP pαq “ eα ζe,1pLq a, α P Rr1s, (3.6.1)

for P P DM of the form (3.4.1).

Above, ζe,1 : er1s
»

ÝÝÑ er1s` is the suspension isomorphism defined in app. A.

Proposition 3.25. zM is a Lie group isomorphism.

Proof. Using (3.4.2), the linearity of ζe,1 and (3.5.2), one readily checks that zM

is a Lie group morphism. The invertibility of zM follows from that of ζe,1.

In subsect. 3.4, it has been also shown that with a given Lie algebra crossed

module m “ pe, g, t,mq there is associated a derived Lie algebra Dm. Through the

cross functor p´q`, the crossed modality derived Lie algebra Dm` can be also

constructed. Dm` enjoys properties analogous to those of Dm. The elements

S P Dm` are of the form (3.5.6) with j P g` » g, J P er1s` » Rr´1s b e and

the Lie algebra operations read as in (3.5.7), similarly to (3.4.6) and (3.4.7). By

(3.5.8), we have also that Dm` » er1s`¸m`g` as graded Lie algebras, analogously

to (3.4.8). Finally, by virtue of (3.5.9), with every Lie algebra crossed module

morphism p : m1 Ñ m “ pH : e1 Ñ e, h : g1 Ñ gq there is associated a graded

Lie algebra morphism Dp` : Dm1 ` Ñ Dm` with Dp` “ H` ˆ h`, similarly

to (3.4.9) Just as in the group case, the derived Lie algebra Dm and its cross

modality Dm` are related also in another deeper way.

The graded structure of Dm stems from its being the subalgebra of the internal
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function Lie algebra MappRr´1s, e ¸m gq formed by the elements of the form

(3.4.6). Including the degree 1 of the variable ᾱ P Rr´1s in the degree counting,

Dm becomes a graded Lie algebra concentrated in degree 0 and as such can be

treated as an ordinary Lie algebra. Completely analogous considerations apply

for the cross mode derived Lie algebra Dm`. In the following, as in the group

case, we shall regard these Lie algebras in the way just described.

Definition 3.19. Let ζm : Dm Ñ Dm` be the map defined by

ζmY pαq “ u ` α ζe,1pUq, α P Rr1s, (3.6.2)

for Y P Dm of the form (3.4.6).

Proposition 3.26. ζm is a Lie algebra isomorphism.

Proof. Using (3.4.7), the linearity of ζe,1 and (3.5.7), one readily checks that ζm

is a Lie algebra morphism. The invertibility of ζm follows from that of ζe,1.

When m is the Lie algebra crossed module of a Lie group crossed module

M, Dm` is the Lie algebra of the Lie group DM`. Further, for a Lie group

crossed module morphism β : M1 Ñ M with associated Lie algebra crossed module

morphism 9β : m1 Ñ m, the Lie algebra morphism D 9β` is the Lie differential 9Dβ`

of the Lie group morphism Dβ`.

Proposition 3.27. ζm is the Lie differential of zM.

ζm “ 9zM. (3.6.3)

Proof. This is apparent from inspecting (3.6.1), (3.6.2).

3.7 Lie group crossed module spaces

The morphism and object manifolds of a principal 2–bundle are equipped with

the right action of the morphism and object groups of the structure Lie 2–group,

respectively. They are so special cases of Lie group spaces (cf. def. 2.5). In the

synthetic crossed module theoretic version of the theory, Lie group spaces of this

kind is instances of Lie group crossed module spaces, a notion we introduce next.
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Definition 3.20. A Lie group crossed module space S is a Lie group space of the

special form pP,DM, Rq for some graded manifold P , Lie group crossed module

M and right action R of DM on P .

Above, the derived Lie group DM (cf. subsect. 3.4) is regarded as an ordinary

Lie group in the sense explained in subsect. 3.6. We shall denote the space S

through the list pP,M, Rq of its defining data.

A notion of Lie group crossed module space morphism can be formulated as

a specialization of that of Lie group space morphism. (cf. def. 2.6).

Definition 3.21. A morphism T : S 1 Ñ S of Lie group crossed module spaces

consists in a morphism of the Lie group spaces pP 1,DM1, R1q, pP,DM, Rq un-

derlying S 1, S of the special form pF : P 1 Ñ P , Dβ : DM1 Ñ DMq for some

graded manifold morphism F : P 1 Ñ P and Lie group crossed module morphism

β : M1 Ñ M.

Above, Dβ is the derived Lie group morphism of β (cf. subsect. 3.4). We shall

denote the morphism T : S 1 Ñ S by the list pF : P 1 Ñ P, β : M1 Ñ Mq of its

defining data, omitting indicating sources and targets when possible.

In this way, Lie group crossed module spaces and their morphisms form a

category Lcmsp that can be identified with a subcategory of the category Lsp

of Lie group spaces defined in subsect. 2.1.

With any Lie group crossed module space there is associated an operation on

general grounds (cf. subsect. 2.1, prop. 2.1).

Definition 3.22. For any Lie group crossed module space S “ pP,M, Rq, we let

OpS be the operation pFunpT r1sP q,Dmq of the Lie group space pP,DM, Rq un-

derlying S.

Above, m is the Lie algebra crossed module associated with M (cf. subsect. 3.4).

Further, Dm is regarded as an ordinary Lie algebra in the sense explained in

subsect. 3.6. In keeping with our notational conventions, we shall denote OpS

concisely as pFunpT r1sP q,mq. We shall also denote the operation derivations by

dP , jP , lP . In similar fashion, any morphism of Lie group crossed module spaces
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determines a morphism of the associated operations again on general grounds (cf.

subsect. 2.1, prop. 2.2).

Definition 3.23. For any Lie group crossed module space morphism T : S 1 Ñ S

“ pF : P 1 Ñ P, β : M1 Ñ Mq, we denote by OpT : OpS Ñ OpS 1 the mor-

phism pF ˚ : FunpT r1sP q Ñ FunpT r1sP 1q,D 9β : Dm1 Ñ Dmq of the operations

pFunpT r1sP q,Dmq, pFunpT r1sP 1q,Dm1q underlying OpS, OpS 1.

Above, 9β is the Lie algebra crossed module morphism yielded by the Lie group

crossed module morphism β by Lie differentiation and D 9β is the derived Lie

algebra morphism of 9β (cf. subsects. 3.3, 3.4).

Consider the special case of a morphism T : S 1 Ñ S of Lie group crossed

module spaces specified by a pair pF : P 1 Ñ P, β : M1 Ñ Mq, where P “ P 1 as

graded manifolds and F “ idP as a graded manifold map. We then denote S 1

by β˚S and call it the pull-back of S by β and the operation OpS 1 by 9β˚ OpS

and call it the pull-back by 9β of OpS, so that Opβ˚S “ 9β˚
OpS. In fact, as

Lie group spaces, S 1 is just the pull–back Dβ˚S of S by the Lie group morphism

Dβ. Furthermore, as operations of Lie group spaces, OpS 1 is just the pull–back

D 9β˚ OpS of the operation OpS by the Lie algebra morphism D 9β. See again

subsect. 2.1.

In the spirit of subsect. 2.1 above, we can think of a Lie group crossed module

space S “ pP,M, Rq as a generalized principal DM–bundle over P {DM. In this

way, we can identify the complexes pFunpT r1sP q, dPq and pFunpT r1sP qbasic, dP q

of the associated operation OpS with the de Rham complexes pΩ‚pP q, ddRP q and

pΩ‚pP {DMq, ddRP {DMq, respectively.

3.8 Total space operations of a principal 2–bundle

In this final subsection, we introduce and study the morphism and object space

of a principal 2–bundle and their associated operations. In this way, we have set

the foundations for the operational total space theory of principal 2–bundles, in

particular of the 2–connection and 1– and 2– gauge transformation theory of II,

which is the goal of the present endeavour.
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Theor. 3.2 states that any strict Lie 2–group K̂ is fully described by a Lie

group crossed module.

Proposition 3.28. The Lie group crossed module codifying K̂ is M “ pE,G, τ, µq,

where E “ ker ŝ, G “ K̂0, τ “ ǫ̂ and µ “ λ̂.

Here, ŝ is the source map of K̂ and λ̂ and ǫ̂ are the action and target maps defined

in eqs. (3.2.2) and (3.2.3), respectively.

Proof. This is just a restatement of theor. 3.2 in the notation of subsect. 3.3.

Proposition 3.29. The Lie group crossed module M contains the submodule M0 “

p1E,G, τ0, µ0q, where τ0 and µ0 are the restrictions of τ and µ to 1E Ă E and

G ˆ 1E Ă G ˆ E, respectively.

Note that τ0 and µ0 are necessarily trivial.

Proof. The statement follows from τ0 and µ0 being restrictions of τ and µ.

In fact, M0 is just the discrete crossed module of the group G. M0 provides a

crossed module theoretic coding of G, which will turn out to be quite useful in

the following.

With the Lie Lie 2–group K̂ , there are associated the synthetic Lie groups K,

K0 (cf. def. 3.6). Recalling the derived construction expounded in subsect. 3.4,

it is apparent that K is nothing but the derived Lie group DM of M

K “ DM. (3.8.1)

Analogously, K0 can be described as the derived group DM0,

K0 “ DM0. (3.8.2)

In the synthetic formulation, with a principal K̂ –2–bundle P̂ there are asso-

ciated synthetic forms of the morphism and object manifolds P̂ , P̂0, viz P , P0

(cf. def. 3.8). Importantly, P , P0 are equipped with right K–, K0–actions R, R0,

respectively (cf. def. 3.11 and prop. 3.3).

By (3.8.1), the K–action R of P can be expressed as one of DM. Relying on
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framework constructed in subsect. 3.7, we can then state the following definition.

Definition 3.24. The morphism space of the principal 2–bundle P is the Lie group

crossed module space SP “ pP,M, Rq.

Similarly, by (3.8.2), the K0 –action R0 of P0 can be expressed as one of DM0. In

the same framework, we can state a further definition.

Definition 3.25. The object space of the principal 2–bundle P is the Lie group

crossed module space SP0 “ pP0,M0, R0q.

As detailed in subsect. 3.7, with the spaces SP and SP0 there are associated

operations OpSP “ pFunpT r1sP q,mq and OpSP0 “ pFunpT r1sP0q,m0q.

SP0 and OpSP0 should be compatible with SP and OpSP in the appropriate

sense, as P0 is a submanifold of P , M0 is a submodule of M and R0 is a restriction

ofR. Such congruity is codified by an appropriate crossed module space morphism

and its appended operation morphism along the lines of subsect. 3.7.

Definition 3.26. Let L : SP0 Ñ SP be the Lie group crossed module space mor-

phism L “ pI, ςq, where I : P0 Ñ P

and ς : M0 Ñ M are the inclusion maps of P0 and M0 into P and M, respec-

tively.

Associated with L there is a morphism OpL : OpSP Ñ OpSP0 of operations,

namely OpL “ pI˚, 9ςq, I˚ : FunpP q Ñ FunpP0q being the restriction pull-back

and 9ς : m0 Ñ m the Lie algebra crossed module morphism induced by the ς by

Lie differentiation.

Our operational synthetic theory so closely parallels that of the graded ge-

ometric version of the ordinary theory reviewed in subsect. 1.1 with a few im-

portant differences. To begin with, unlike the ordinary theory, it is not directly

based on the relevant principal K̂ –2–bundle P̂ but on its attached synthetic

setup. This hinges on the synthetic morphism and object groups K, K0 and man-

ifolds P , P0, which, as discussed at length in subsect. 3.2, do not constitute a

true synthetic K –2–bundle P in spite of having many properties of one. More-

over, again unlike the ordinary theory, two operations, viz OpSP , OpSP0, rather
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that just one appear and are potentially relevant. More technically, furthermore,

the internal function algebras FunpT r1sP q, FunpT r1sP0q instead of the ordinary

algebras FunpT r1sP q, FunpT r1sP0q are used here, a feature that the end is bound

to make a difference at the end.

The above dissimilarities notwithstanding, the ordinary theory provides a sim-

ple model, reference to which considerably aids intuition. In particular, it is useful

to think of the whole synthetic setup of K, K0 and P , P0 as if it were some kind

of synthetic K –2–bundle P, though, as we have recalled, strictly speaking it is

not lacking as it does a compositional structure.
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A Notation and conventions

We recall below some of the basic notions and conventions of graded algebra and

geometry we use throughout the present paper.

For a pair M , N of graded manifolds, we denote by MappM,Nq the set of

internal functions of M into N . Thus, when expressed in terms of local body and

soul coordinates ta and yr ofM , the components of one such function with respect

to local body and soul coordinates ui and zh of N are polynomials in the yr with

coefficients which are smooth functions of the ta of possibly non zero degree.

When N is a graded vector space, group, Lie algebra etc., so is MappM,Nq with

the pointwise operations induced by those of N .

In what follows, E stands for an ungraded finite dimensional real vector space.

Much of what we shall say can be formulated also for a graded vector space, but

we shall not need to do so.

For any integer p, we denote by Erps the degree p shift of E, a copy of E

placed in degree ´p. If we conventionally think of E as a graded vector space

supported in degree 0, as it is customarily done, we may identify Er0s with E

itself.

A linear coordinate of Erps is just a non zero element of Erps_ “ E_r´ps

and has hence degree p, where _ denotes duality. Given a set of vectors ei P E

constituting a basis, there exists a unique set of linear coordinates xp
i of Erps dual

to the basis, that is such that xp
ipejq “ spδij , where s

p denotes p–fold suspension

raising degree by p units.

If we equip Erps with a set of linear coordinates xp
i as above, Erps becomes a

graded manifold with singleton body. As such, Erps is concentrated in degree p

because the xp
i have degree p. For a graded manifold M , the set MappM,Erpsq

of Erps–valued internal functions of M has so a natural structure of graded vector

space supported in degree p.

The particular case where E “ R deserves a special mention for its relevance.

For each p, we have the graded vector space

FunppMq “ MappM,Rrpsq (A.0.1)
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of Rrps–valued internal functions. The spaces FunppMq for varying p span to-

gether the graded vector space

FunpMq “
À8

p“´8 FunppMq. (A.0.2)

Thanks to the existence of graded commutative products FunppMq ˆ FunqpMq

Ñ Funp`qpMq, FunpMq is a graded commutative algebra. FunpMq is just the

algebra of internal functions of M and for each p FunppMq is the subspace of

FunpMq of degree p internal functions.

There exists a canonical graded vector space isomorphism

MappM,Erpsq » FunppMq b E. (A.0.3)

Indeed, upon choosing basis vectors ei of E, a given function f P MappM,Erpsq

is fully specified by a set of degree p internal functions f i P FunppMq, the com-

ponents of f with respect to the linear coordinates xp
i dual to the ei. The f i in

turn define an element f̂ P FunppMq b E given by

f̂ “ f i b ei. (A.0.4)

f̂ is by construction independent from the choice of the basis ei. The corre-

spondence f Ñ f̂ yields the isomorphism (A.0.3). By (A.0.3), the functions of

MappM,Erpsq can be regarded as specially structured collections of functions

of FunppMq. In this way, further, any linear operation on FunpMq, e. g. a

derivation, immediately induces a corresponding operation on MappM,Erpsq.

The function space MappErps, Erpsq contains a tautological element xp,

xp “ xp
i b ei, (A.0.5)

of degree p. xp corresponds to the identity function idErps of Erps regarded as a

graded manifold.

The internal function spaces Mapp˚, Nq with ˚ the singleton manifold play

an important role in the analysis of this paper. Mapp˚,´q is a functor from the

category of graded manifolds to the category of sets. We call it the cross functor

and denote it with the simplified notation p´q`.
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When restricted to graded vector spaces regarded as graded manifolds, the

cross functor can be described rather explicitly. For R, by (A.0.1), we have

Rrps` “ Funpp˚q » Rr´ps. (A.0.6)

By (A.0.3), for the vector space E, we have similarly

Erps` » Funpp˚q b E » Rr´ps b E. (A.0.7)

Thus, by (A.0.4), chosen a basis ei of E an element v P Erps` expands as

v “ vi b ei, (A.0.8)

where vi P Rr´ps. Notice that Rrps` differs from Rrps for p ­“ 0, being in fact

Rrps` “ s2pRrps. Similarly, Erps` differs from Erps but it is related to Erps be

means of the 2p–fold suspension isomorphism ζE,p : Erps
»

ÝÝÑ Erps` defined by

the sequence Erps » R b Erps
spbsp

ÝÝÝÝÝÑ spR b spErps » Rr´ps b E » Erps`.

It is sometimes useful to assemble the degree shifts Erps of E for all p’s into

the full degree extension ZE of E, the infinite dimensional graded vector space

ZE “
À8

p“´8Erps. (A.0.9)

Similarly, we can assemble the Erps–valued internal functions for all p’s into the

graded vector space

MappM,ZEq “
À8

p“´8 MappM,Erpsq. (A.0.10)

When E is endowed with additional structures such as those of graded commu-

tative algebra, graded Lie algebra, etc, these are inherited by MappM,ZEq.

An important instance is the full degree extension ZR of R. MappM,ZRq is

a graded commutative algebra thanks to the ordinary multiplicative structure of

R. Indeed, MappM,ZRq is nothing but the internal function algebra FunpMq

described earlier.

In this paper, we are mostly concerned with internal function spaces of graded

manifolds such as MappM,Nq. The above setup can also be formulated for

ordinary function spaces MappM,Nq with similar results but also a few noticeable

exceptions. Such spaces are more restrictive than the internal ones, since the
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coefficient functions of soul coordinates polynomials are required to be degree 0

functions of the body coordinates. For the singleton manifold M “ ˚, one has for

instance Mapp˚,Rrpsq “ δp,0R and Mapp˚, Erpsq “ δp,0E.

B Basic identities

Let M “ pE,G, τ, µq be a Lie group crossed module. We collect below a number

of structure relations which are used throughout the main text of the paper.

The relevant differentiated structure maps are 9τ : e Ñ g, µ9 : G ˆ e Ñ e,

9µ : g ˆ E Ñ e and 9µ9 : g ˆ e Ñ e. They are defined as

9τpXq “
dτpCpvqq

dv

ˇ

ˇ

ˇ

v“0
, (B.0.1)

µ9pa,Xq “
d

dv
µpa, Cpvqq

ˇ

ˇ

ˇ

v“0
, (B.0.2)

9µpx,Aq “
d

du
µpcpuq, AqA´1

ˇ

ˇ

ˇ

u“0
, (B.0.3)

9µ9px,Xq “
B

Bu

´Bµpcpuq, Cpvqq

Bv

ˇ

ˇ

ˇ

v“0

¯ˇ

ˇ

ˇ

u“0
(B.0.4)

for a P G, A P E, x P g, X P e, where cpuq and Cpvq are curves in G and E with

cpuq
ˇ

ˇ

u“0
“ 1G and Cpvq

ˇ

ˇ

v“0
“ 1E and dcpuq{du

ˇ

ˇ

u“0
“ x and dCpvq{dv

ˇ

ˇ

v“0
“ X ,

respectively, whose choice is immaterial.

The following algebraic identities hold:

9τp 9µpx,Aqq “ x ´ Ad τpAqpxq, (B.0.5)

9µp 9τpXq, Aq “ X ´ AdApXq, (B.0.6)

9µprx, ys, Aq “ 9µ9px, 9µpy, Aqq ´ 9µ9py, 9µpx,Aqq ´ r 9µpx,Aq, 9µpy, Aqs, (B.0.7)

9µpx,ABq “ 9µpx,Aq ` AdAp 9µpx,Bqq, (B.0.8)

9µpAd apxq, µpa, Aqq “ µ9pa, 9µpx,Aqq, (B.0.9)

AdAp9µ9px,Xqq “ 9µ9px,AdApXqq ´ r 9µpx,Aq,AdApXqs, (B.0.10)

where a P G, A,B P E, x, y P g, X P e.

The following variational identities hold:
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δµpa, Aqµpa, Aq´1 “ µ9pa, 9µpa´1δa, Aq ` δAA´1q, (B.0.11)

δµ9pa,Xq “ µ9pa,9µ9pa´1δa,Xq ` δXq, (B.0.12)

δ 9µpx,Aq “ 9µpδx, Aq ` 9µ9px, δAA´1q ´ r 9µpx,Aq, δAA´1s, (B.0.13)

where a P G, A P E, x P g, X P e.
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