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Vibration-based SHM with up-scalable and low-cost
Sensor Networks

Federica Zonzini, Student Member, IEEE, Michelangelo Maria Malatesta, Student Member, IEEE,
Denis Bogomolov, Nicola Testoni, Member, IEEE, Alessandro Marzani, Luca De Marchi, Member, IEEE

Abstract—Structural Health Monitoring (SHM) is becoming
increasingly attractive for its potentialities in many application
contexts, such as civil and aeronautical engineering. In these
scenarios, modern SHM systems are typically constituted by a
multitude of sensor nodes. Such devices should be based on low–
cost and low–power solutions both to ease the deployment of
progressively denser sensor networks and to be compatible with
a permanent installation; this allows real–time monitoring, while
reducing the global maintenance costs. Among the developed
inspection methodologies, Operational Modal Analysis (OMA) is
an efficient tool to assess the integrity of vibrating structures.
The present work describes a sensor network which is based
on either MEMS accelerometers or cost–effective piezoelectric
devices to extract strictly synchronized modal parameters. The
performances of the two sensing technologies are evaluated in
two different setups, to assess the reliability in the estimation of
modal features even in presence of potential damages. Particular
attention was given to the mode shape reconstruction issue
from piezoelectric signals, primarily encompassing a purposely
developed modal coordinate tuning procedure. Moreover, the con-
sistency of the obtained results paves the way to a more compact
and affordable monitoring system exploiting piezoelectric-driven
modal analysis.

Index Terms—MEMS accelerometer, operational modal anal-
ysis, piezoelectric sensor

I. INTRODUCTION

Structural Health Monitoring (SHM) is an increasingly
attractive field whose potentialities in reducing maintenance
costs and extending life–cycles apply to many application
contexts, such as civil and aeronautical structures [1]. SHM
system implementation is constantly driven by advancements
in the fields of sensor networks, low–power circuits and
communications, signal processing, and energy harvesting.
Such improvements help in tackling the lack of scalability of
conventional sensing solutions, leading to sensor networks able
to monitor structures with very large and complex geometries,
hence addressing the “mesoscale challenge” [2].

The study of the parameters related to vibration signals ex-
tracted from the structural response is the basis of Operational
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Modal Analysis (OMA), a commonly used support tool in the
design and on–condition monitoring of large structures [3],
like buildings, bridges, etc. The main advantage of OMA over
other diagnostic methods [4] is that the presence of defects
alters the observed structural vibration characteristics with
respect to baseline healthy values [5].

A key challenge in mesoscale structures’ vibration diagnos-
tics is the need to distinguish between global (e.g. changing
load paths, loss in global stiffness) and local (e.g. crack
propagation, corrosion) fault conditions [6]. In OMA, natural
frequencies are commonly tracked to detect global damages,
while mode shapes can be used for defect localization [7], thus
providing important information on health status. To achieve
good localization capabilities, dense sensor networks must be
implemented; the high cost of SHM networks is however
a barrier to widespread implementations, calling for low–
cost and easily deployable sensing strategies. By defining the
density, type, and positioning of the sensors to be deployed,
cost-benefit optimization [8] can be achieved.

The present work describes a lightweight, heterogeneous
sensor network, consisting of strictly synchronized nodes
based on low–cost lead zirconate titanate (PZT) transducers
and triaxial MEMS accelerometers (ACC), proving that a com-
bination of these two technologies is beneficial for continuous
SHM applications in the low frequency regime. The initial
version of this study was presented in [9], where a simple
experimental setup constituted by single acquisition nodes was
considered. The current work extends the analysis to multi–
sensor networks and investigates the modal analysis results
to the case of defective structures. A numerical model built
on closed analytic formulae was developed to investigate the
adherence of experimentally extracted modal parameters to the
predicted ones. As it will be shown, the estimation is robust
in both the MEMS and PZT realizations of the network. A
dedicated processing flow comprising a PZT tuning step was
specifically implemented to recover modal shapes. Damage-
sensitive parameters were finally employed for fault detection
in presence of structurally perturbed conditions.

The content of the manuscript is arranged as follows.
Section II introduces to the main advantages and drawbacks
of the currently available sensing technologies for OMA.
The proposed monitoring solution, coping with current SHM
requirements, is detailed in Section III. A description of the
circuitry is provided, focusing on the network architecture and
the synchronization mechanism, which is crucial to gather
highly consistent measurements. The signal processing tools
adopted for feature extraction are presented in Section IV, in
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which the main theoretical aspects behind a parametric OMA-
oriented spectral investigation are introduced. The fundamental
results pertaining to a low–frequency PZT–based OMA of
a cantilever beam are recalled in Section V, specifically
deriving the physical relationship between PZT and ACC data.
Accordingly, as described in Section VI, the reliability of
the network for SHM purposes is stressed against potential
damaged conditions induced over a simply supported steel
beam. Conclusions follow in Section VII.

II. SENSING TECHNOLOGIES FOR OMA

Among the sensing technologies suitable for vibration-based
diagnostics, Micro-Electro-Mechanical Systems (MEMS) ac-
celerometers are particularly compelling [10], [11]. Compar-
isons of different research prototypes and commercial MEMS
acceleration sensors are presented in [12], [13]. An exhaus-
tive literary survey on the most advanced sensing solutions
currently available for vibration analysis is provided by [14].

Most MEMS accelerometers are not suited for performing
wide–band spectral analysis due to frequency range limita-
tions. Conversely, the PZT piezoelectric transducer technology
[15], [16] allows for operation in the range of hundreds of kHz
and more.

The piezoelectric technology can be applied for other in-
spections tasks, such as ultrasonic inspection and acoustic
emission testing [17], besides modal analysis applications
[18]–[20]. In these cases, commercial systems characterized by
expensive, space–, weight–, and power–demanding solutions
were employed, leading to static and not versatile solutions. In
this paper, much simpler systems based on simple disc-shaped
piezoceramic patches (discs) are investigated.

Modal analysis inspection exploiting piezoceramic can be
applied in the high–frequency range, up to and in excess of
10 kHz [19]. Conversely, in the low–frequency range, down
to and lower than 10 Hz, PZT discs are scarcely employed
since in this frequency band conventional accelerometers are
classically understood to be more reliable.

An interesting byproduct of using PZT discs is the possi-
bility to simultaneously perform OMA and acoustic emission
testing [21]. This evaluation strategy is of primary importance
in the integrity assessment of metallic or composite structures,
either intended for civil and construction engineering (e.g.
bridges, towers, buildings) [22] or industrial applications (e.g.
rotating motors and hydraulic pumps [23], wind turbines [24],
[25]), where the nominal vibration behaviour co-exists with
important acoustic phenomena occurring as a consequence
of structural deterioration (delamination, soldering, etc) and
external agents (corrosion, etc).

In these contexts, there is a high demand in designing
compact, cost-effective and highly integrated sensor networks,
while the systems presented in literature [18] are based on
bulky monolithic instrumentation, incompatible with hetero-
geneous measurements. Alternatively, the network discussed
in this work is based on a compact sensor-near electronics,
capable of data merging and feature extraction thanks to the
embedded Digital Signal Processing (DSP) functionalities.

Fig. 1. A schematic representation of the developed up-scalable and hetero-
geneous sensor network architecture. Acceleration (ACC) and piezoelectric
(PZT) sensor nodes can be simultaneously exploited under the orchestration
of a gateway network interface.

III. MATERIALS

The architecture of the proposed network consists of three
elements: two compact sensor nodes – one based on PZT discs,
the other on a triaxial MEMS accelerometer – and a network
interface, also called gateway (GW), which coordinates up to
64 sensor nodes at a time. A comprehensive description of
these elements can be found in [26] and [27], whereas a sketch
of the sensor network architecture is depicted in Fig. 1.

All these devices are joined in a daisy–chain fashion by
means of a multidrop Sensor Area Network (SAN) bus,
which exploits data–over–power (DoP) communication [10]
based on the EIA RS-485 standard. A wired connection was
preferred over a wireless one in order to grant the possibility
to continuously acquire data from the structure at the highest
possible data-rate; this choice also led to the design of lighter
nodes, which did not require the presence of a battery. The
communication protocol can be used effectively over long
distances and in electrically noisy environments, which are
common in many application fields. Meaningful information is
transmitted to a PC through the gateway. A maximum effective
data-rate of 200 kbps was selected, enough to accommodate
up to twelve 16-bit data channels simultaneously acquiring
at 1 ksps. Data are transmitted sequentially, in packets, by
exploiting a proprietary lossless encoding technique. The
reception of each data packet must be acknowledged by the
receiver before the next packet is sent by the transmitter.

During acquisition, signals are collected simultaneously by
each sensor node. A unique time-stamp is provided by means
of an internal 32 bit high–speed hardware counter, clocked at
64 MHz; once every hour a 32 bit low–speed software counter
is updated. According to the core microcontroller manufacturer
[28], the cycle–to–cycle jitter of the internal high speed clock
system is 300 ps whereas its accuracy for soldered parts
working in the −10 ◦C to 85 ◦C temperature range is −1.9 %
to 2.3 % with respect to the nominal value. Measurements
taken on the implemented sensor network showed cycle–to–
cycle jitter [29] of 239.5 ps, a minimum deviation of -0.069%
and a maximum deviation of 0.026% over a time period of
2400 s. These results are compatible with the figure of merit
reported by the manufacturer.

Synchronization among the different nodes of the network
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is an essential requirement in order to perform data merging,
data comparison and mixed signal processing during the
post processing phase [30]. The synchronisation algorithm
exploited in this work is based on a software implementation
of the classical three-way handshake adopted by the RFC 793
Transmission Control Protocol [31]. First the gateway sends
a synchronization command addressed to a single node; the
receiving node responds with a similar command, addressed
to the gateway; finally the gateway sends an acknowledge
message to the sensor node. The first two steps allow the gate-
way to compute the Round Trip Time (RTT), whereas the last
two steps allow the sensor node to compute the RTT. Several
factors contribute to the RTT: the messages encoding/decoding
time, the messages transmission time, the delays between the
messages transmission and reception at the electrical level,
and the messages processing time. The messages transmission
time is already known to the gateway and the sensor nodes,
since messages length and data-rate are known a-priori, and
do not change over time; the sum of remaining terms, called
residual RTT, conversely can change over time and must be
estimated. The mean of the residual RTT of the proposed
network, estimated from 1000 observations, is 33 µs with a
standard deviation of 160 ns and is dominated by large by
the messages encoding/decoding time: as such, RTT/2 is
considered a good approximation of the propagation delay at
software level.

Once each node in the network knows its own Round Trip
Time (RTTi), the gateway issues a broadcast synchronization
command containing its local time T0: following this last
command, each sensor node in the network sets its internal
counters to T0 + RTTi/2. Due to clocks’ drift, in absence
of a periodic transmission of the broadcast synchronization
command, the maximum divergence between the sensor nodes’
clocks in the proposed network over 2400 s of observations
was 2.254 s. This value was reduced to 4.7 ms by issuing the
synchronization command once per acquisition (i.e. 5 s), which
is acceptable for vibration-based structural inspection [32].

The scalability and high flexibility of the network permit
the user to independently handle the configuration of the
parameters related to each sensor node. This is crucial for
the optimization of the system according to each experimental
case–study, while maintaining the same hardware architecture.
Similarly, it is also possible to completely reconfigure the
monitoring system during the life-cycle of the structure, by
changing the network cardinality or the acquisition parameters.

IV. MODAL PARAMETER EXTRACTION

The extraction of the so-called modal parameters, which
comprise natural frequencies of vibration and modal shapes,
is often termed dynamic identification; these parameters are
usually estimated from vibration signals and change in time
according to structural evolution [33]. The Power Spectral
Density (PSD) of such signals is useful for describing the sta-
tus of structural integrity. PSD estimators can be divided into
two main groups: the first one includes the widely–adopted
non parametric procedures (such as periodogram and Welch’s
evaluation), whereas the second one collects methods based

on Autoregressive (AR) models which extract the frequency
content by means of a parametrized approach [34]. Despite
the higher computational effort, the advantages of the latter
solution consist in the capability to effectively extract narrow-
band spectral peaks, a condition which mirrors the typical
spectral signature of vibrating structures [33].

Parametric strategies usually assume that the acquired data
s(t) (i.e. the structural response) can be modeled as the output
of an equivalent all–pole Infinite Impulse Response (IIR) filter.
According to the algebraic formulation in Eq. (1), each sample
gathered at time step T results from a linear combination of
n previous values of the observed process, summed to a zero–
mean white noise signal ε(t) as driving source.

s(t) =

n∑
i=1

θis(t− iT ) + ε(t) (1)

Consequently, given n the order of the AR model, the
problem is entirely solved whenever the set of parameters
θ = [θ1...θn] associated to the filter bank and the noise
variance σ2

ε are determined. Hence, in frequency domain, the
power spectrum Sx(f) can be directly derived from the square
of the input–output filter transfer function as

Sx(f) =
σ2
ε

|1−
∑N
i=1 θie

−i2πfi |2
(2)

In this work, a variant of the conventional AR parametric
method was adopted: the AR+Noise approach [35]. This
method tackles the inherent noise levels in real data, which is
relevant in some application contexts. This can be considered
as an errors–in–variables identification problem, meaning that
the locus of allowable solutions should be strictly compat-
ible with the second–order characteristics of the acquired
signals. Furthermore, it outperforms similar AR strategies by
exploiting a combined feedback–feedforward prediction model
which ensures the congruence of the obtained solution with
the second–order statistics of the noisy data and a negligible
increase in the algorithmic complexity [36].

In terms of computational complexity, the most demanding
steps are the eigendecomposition of the predicted signal’s
autocorrelation matrix and the subsequent solution of a convex
optimization problem whose output provides the optimal set
of model parameters compatible with the second order char-
acteristics of the noisy input signal [37].

The spectrum of a vibrating structure is characterized by
components whose energy decreases with the frequency. As
such, the precise detection of high-order modes is unavoidably
affected by low signal–to–noise (SNR) ratios and requires ad–
hoc processing solutions. Among the available modal shape
extraction methods, the Frequency Domain Decomposition
(FDD) technique [10] can be employed due to its established
effectiveness in presence of noisy vibration data [38].

V. MULTI-TYPE OMA OF A CANTILEVER BEAM

As a first case study, a lightweight aluminum beam pinned at
one end was employed in an experimental campaign compris-
ing one PZT sensor cluster with three closely–located active
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areas and one triaxial MEMS accelerometer (ACC), vertically
aligned on the opposite faces of the structure. The mechanical
and geometrical properties of the beam, along with a detailed
description of the experimental setup, have been discussed
in [9]. A first–order numerical model of the beam was built
to predict the theoretical modes of vibration. Limiting the
analysis to the first four modal components, the numerical fre-
quencies were estimated to be coincident with f1 = 3.85 Hz,
f2 = 36.50 Hz, f3 = 107.75 Hz, f4 = 204.93 Hz.

Since the beam was constrained to vibrate in a cantilever
configuration, the most significant acceleration measured by
the sensor was the vertical component az , thereby the other
coordinates were discarded during the analysis. On the other
end, the piezoelectric channels exhibited in–phase and tightly
consistent sinusoidal patterns (see upper panel of Fig. 2) and
consequently their response was identical from a frequency
point of view. More interestingly, a comparative study of
the normalized time signals shown in the upper panel of
Fig. 2 revealed a derivative relationship between ACC and
PZT data. In fact, since the strain along the beam axis is
proportional to the second order derivative w.r.t space of
the orthogonal displacement, i.e. the deflection, and accel-
erations are the second order derivatives w.r.t. time of the
displacements, the strain and the acceleration measured by the
PZT and ACC nodes are linearly dependent. Moreover, the
macroscopic radial deformations of the transducer caused by
the deformations of the beam induce a charge redistribution in
the PZT device which is linearly related to the strain perceived
by the transducer and to the piezoelectric potential. In the
low–frequency range, this voltage does not directly correspond
to the actual quantity measured by the PTZ disc because
of the derivative effect of the input–output voltage transfer
function modeling the electrical response of a generic PZT
sensor [9]. Accordingly, the signal measured by the PZT nodes
is proportional to the first derivative of the strain, hence to
the first derivative of the signal measured by the ACC nodes.
This theoretical expectations is validated by the experimental
waveforms presented in the bottom plot of Fig. 2, which
superimposes all the three channel response measured by the
PZT device and the derivative of the vertical acceleration
az: the good agreement of the signals generated by the two
different sources enforces the empirical evidence that these
devices register different physical quantities relative to the
same vibrating behavior.

As far as natural frequency extraction is concerned, the
PSD was estimated through different processing techniques,
yielding to the spectra drawn in Fig. 3. It is worth noticing how
spectral peaks estimated from the PZT and ACC acquisitions
(dash-dotted vertical lines) are consistently aligned nearby
the same values. From one side, this fundamental outcome
demonstrates the effectiveness of piezoelectric devices in cap-
turing the dynamic properties of vibrating phenomena, even
at frequencies below a few tens of Hertz. At the same time,
it can be argued that the performance of PZT devices is
even superior, their spectral content being significant at higher
frequencies beyond 100 Hz. The third and fourth frequencies
indeed are visible in all the PZT spectral signatures obtained
with the selected processing procedures. Conversely, only the
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Fig. 2. Comparison between PZT and ACC acquisitions: original signals (top)
and normalized acceleration time-derivative superimposed to normalized PZT
signals (bottom).
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Fig. 3. Comparison between spectral trend of az acceleration signal (top)
and ch1 PZT sensor (bottom) computed with different processing techniques.

AR+Noise method is capable to identify two faint peaks
corresponding to these frequencies in the ACC curves: the
other two methods are inadequate of such feat due to the poor
SNR which is globally associated to the two sinusoids in the
ACC spectrum.

The Peak–to–Noise Ratio (PNR), i.e. the difference between
the peak amplitude level and the noise floor, related to each
identified peak has been considered as the main metric to
qualify the spectral insight extracted with the two sensing
technologies. The most important outcome concerns the higher
PNR characterizing the PZT-driven response around the two
highest natural frequencies, independently from the adopted
PSD evaluation method. In detail, the PNR value around the
third and forth modes nearly drops from 15 dB and 10 dB to
0 dB while moving from the PZT to the ACC spectral trends.
Conversely, a negligible deviation can be observed for the
first and second modal component, since their correspondent
magnitudes are almost equally resolved with respect to the
noise floor (i.e. PNR = 25 dB). Therefore, these evidences
immediately support the idea to develop hybrid solutions,
preferably consisting of heterogeneous but complementary
technologies, which can efficiently complement each other.
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The spectral analysis reveals that the dominant modes are
centered at the following frequencies: f1 = 2.93 Hz, f2 =
37.11 Hz, f3 = 104.49 Hz, f4 = 208.98 Hz. Those values
express the mean average among all experimentally calculated
peaks by means of AR+Noise estimator in correspondence of
each modal component.

VI. DAMAGE DETECTION OF A SIMPLY SUPPORTED BEAM

The reliability of piezoelectric–driven modal analysis for
damage detection goals was subsequently tested in a different
setup. Both a frequency and modal shape–based approach was
adopted, thence quantifying damage as a relative variation in
modal parameters with respect to a nominal healthy status.

A simply supported steel beam with effective length
L = 2052 mm, cross–section base b = 60 mm and 10 mm
height, was sensorized with a double chain of five PZT
transducers and as many accelerometers. The devices were
almost equally spaced, for a total amount of ten passive
sensing elements installed at a time. Maintaining a scheme
similar to that adopted for the cantilever beam, the sensors
were fixed in correspondence of the same vertical position but
on opposite surfaces. Each piezoelectric disc, which weights
less than 190 mg, presents an external and internal diameter
respectively equal to 6 mm and 4 mm. The total weight of the
network so far deployed amounts to 53.1 g, which corresponds
to less than 0.54% of the beam mass (9.70 kg), also comprising
the extra load due to the purposely designed lodging case. Such
a modest weight increment is uniformly distributed over the
whole beam span, then it can be argued that its effects on the
dynamic response of the structure are negligible. It’s worthy
to notice that only two PZT sensor nodes were necessary to
acquire five transducers’ signals, thanks to the featured multi-
channel acquisition capability.

Faulty conditions were simulated by laterally hanging addi-
tional masses on the beam at four different positions. In detail,
two masses mA = 988 g and mB = 1754 g were employed
(referred to as case A and B in figures and tables, respectively),
whereas the positions of the mass were x4 = 335 mm, x3 =
820 mm, x2 = 1353 mm and x1 = 1854 mm distant from the
left edge of the beam. Hence, an asymmetric mass distribution
was induced, causing a decrease in natural frequencies depen-
dent on both the amount and placement of the weight itself.
The rationale for such an experimental approach is to mimic
the presence of cracks or local discontinuities by means of
a non-destructive solution. A schematic representation of the
final monitoring network is depicted in Fig. 4, from which
it appears how the selected sensing positions were proximal
to the nodal and antinodal values of the first two modes of
vibration.

After a preliminary characterization in nominal conditions,
eight configurations with simulated damage were tested stim-
ulating the beam in a free position by means of an impact
hammer. In all the experiments, 5000 samples were acquired
at fs = 1 kHz. In such a way, not only the effectiveness of
the sensor network to extract modal parameters was validated,
but also the possibility to detect a defective condition.

1) Frequency-based assessment: The spectral characteri-
zation of the beam was conducted through the AR+Noise
estimator (n = 60), given the necessity to efficiently handle the
higher complexity of the considered scenario. Indeed, potential
non–idealities inherent in the fixing mechanism may give rise
to undesired spurious peaks. The locally estimated PSD curves
are finally averaged, thus obtaining a cumulative evaluation.
It must be underlined that this operation is fundamental
to globally characterize the structure, especially preventing
unfavorable sensor positions proximal to nodal modal values
to affect the quality of the reconstructed modal parameters.
The suitability of this heterogeneous sensor network to track
damages meant as frequency variations in the spectral content
is evidenced in Fig. 5. The computed spectra are obtained
from ACC and PZT signals, recorded in healthy and altered
conditions from the halfway acquisition units. It is important
to underline the high accuracy in identifying the high–order
and most damage–sensitive modes. Moreover, it should be
mentioned that the performances related to high–frequency
even harmonics are coherent with the reported sensing po-
sition, representing the mid–span a nodal point for the chosen
bending conditions. More importantly, the vertical alignment
between PZT and ACC peaks is clearly evidenced, support-
ing the suitability of low–cost and customized piezoelectric
devices to cope with classical OMA–based SHM. Finally, a
good match with the numerical predictions (generated with
closed analytic formulae) additionally corroborates the quality
of the obtained results.

A quantitative evaluation is reported in Fig. 6, which
describes, for every i vibration component, the relative (per-
centage) error E(i)

r =
∣∣∣1− f (i)e /f

(i)
Model

∣∣∣ between the first

three experimentally extracted (f (i)e ) and numerical modal
frequencies (f (i)Model). A finite element model (FEM) was
purposely developed to predict the expected modal parameters
in all the inspected scenarios. The non–uniform distribution of
the error among the different acceleration components follows
the same pattern in both the adopted sensing technologies. A
noticeable fluctuation can be observed in the extraction of the
third mode, independently from the specific position or entity
of the hanged mass. Such an effect can be attributed to the
low energy content of this modal component.

From the comparative analysis, it can be concluded that
the performance of the PZT devices is competitive over
their MEMS counterparts, showing approximately equivalent
percentage values in correspondence of the lowest frequencies.
Despite some isolated peaks, concentrated around the most
deeply perturbed configurations (e.g. 6% error for the second
natural frequency when mB is in position x2), the precision
of the PZT transducers in detecting the most energetic and
low–frequency harmonics outperforms the one obtained from
acceleration data. More specifically, the efficiency of the
adopted PZT–driven solution is confirmed by the related errors,
averagely below to 3.10% and 2.66% respectively for the first
and second mode. Such percentages have to be compared
to 3.38% and 1.40%, i.e. the relative errors achieved by
processing the MEMS accelerometers (ACC) signals.

It is worth noting that the computed relative errors are
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connections, whereas the blue ones refer to the sensor–to–sensor communication cables. Four different positions x1, x2, x3, x4 were considered to simulate
the presence of crack-like faults by means of hanged masses.
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affected by the minimum spectral resolution imposed by the
sampling frequency. This resolution is equal to 0.2 Hz in the
considered setup, corresponding to a theoretical worst-case
variation associated to the first component of almost 3.70%.

2) Modal shape–based assessment: in conventional model-
driven SHM scenarios, frequency-based damage metrics alone
are recognized to be insufficient to ensure a reliable structural
integrity assessment. In fact, frequency shifts often occur as a
consequence of external factors, such as seasonal temperature
fluctuations, which may cause false alarms independently from
the real structural status [39]. To overcome this limitation, the
structural inspection process can be complemented with the
extraction of modal shapes (i.e. the point–wise relationship
between the specific pattern of vibration exhibited by a modal
component in a specific structural position [33]). In this study,
it was precisely investigated how the extraction of modal
shapes from PZT signals can be performed.

For the sake of clarity, the adopted processing flow is
sketched in Fig. 7. The aim is to reconstruct the first three
modal shapes for each tested configuration. In performing
this task, the signal amplitude recorded by every sensing
unit plays a crucial role. This requirement does not apply
to the natural frequencies extraction process, which explores
relative differences in spectral peaks’ alignment rather than
in the mutual PSD magnitude. In particular, a proper modal

shape tuning procedure (also referred to as scaling) was
performed to counteract unavoidable differences in the trans-
ducers’ amplitude response due to intrinsic non–idealities in
the sensors’ fabrication, wiring and coupling mechanism. Such
a tuning is performed when the structure is in pristine (zero-
time) conditions (superscript N ) and, subsequently, evaluated
for on-condition damage assessment in presence of defective
configurations (superscript D).

In the zero-time testing, M acquisitions from ACC and
PZT sensor nodes were repeated under nominal dynamic
behaviour. For each ACC and PZT acquisition, the first three
raw modal shape vectors (Φ(i,mN)

ACC = [Φ
(i,mN)
1,ACC . . .Φ

(i,mN)
P,ACC ]

and Φ
(i,mN)
PZT = [Φ

(i,mN)
1,PZT . . .Φ

(i,mN)
P,PZT ], m = 1 . . .M respec-

tively) were extracted on the basis of the FDD algorithm (step
1). Then, the actual tuning procedure to determine a set of
scaling factors for the PZT sensors is performed (step 2). The
developed procedure is based on an iterative leave–one–out
strategy, according to which M−1 time series were employed
for the tuning of the PZT scaling factor and the remaining one
for the validation.

Let us denote with k the excluded data–set at each iteration;
the scaling coefficient α(i,kN)

p,PZT for the i − th PZT modal
coordinate at the individual sampling position p was computed
as

α
(i,kN)
p,PZT =

1

M − 1

M∑
m=1,m 6=k

Φ
(i,mN)
p,ACC

Φ
(i,mN)
p,PZT

(3)

The scaling factors were then used to assemble the estimated
modal shape coordinates Φ̂

(i)
PZT (step 2.a):

Φ̂
(i,kN)
p,PZT = α

(i,kN)
p,PZTΦ

(i,kN)
p,PZT (4)

In the experiments, M = 5 time series from P = 5
acceleration and piezoelectric devices were acquired on the
structure in pristine conditions. Thereby, 5 different sets of
tuning factors were derived, the cardinality of each set being
equal to the number of the extracted modes.

The validity of such a tuning procedure can be assessed
by computing the Modal Assurance Criterion (MAC) [40]
(step 2.b), which measures the level of coherence between
numerically predicted modal shapes Φ

(i,N)
Model and experimen-

tally scaled PZT modal shapes Φ(i,kN)
PZT coming from the k−th

data–set. Since MAC represents a point–by–point correlation
index, its values are always confined in the interval 0 to 100%,
the lower bound meaning zero consistency whilst the upper
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Fig. 6. Relative error between AR–driven experimental estimation and numerical prediction obtained in nominal and damaged conditions; from left to right:
first, second, and third natural frequency of vibration.

Fig. 7. Processing flow adopted for PZT–based damage detection purposes. In the left column, the zero–time validation in nominal conditions comprising
(1) the extraction of both the ACC and PZT raw modal shape curves, (2) the PZT mode shape scaling factors estimation built on a (2.a) leave–one–out
tuning procedure and a (2.b) final strctural validation of the reconstructed PZT modal shapes. In the right column, the on–condition assessment in damaged
configurations, where the previously estimated tuning factors (step 2.a) are employed to re–scale (step 4) the currently obtained raw PZT modal shapes (step
3); the comparison with reference values (step 5) is performed to notify damage alarms in case of occurrence.
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TABLE I
MEAN VALUES µ AND ASSOCIATED STANDARD DEVIATIONS σ OF MAC
VALUES OBTAINED IN NOMINAL CONDITION VALIDATION AND DAMAGE
DETECTION ASSESSMENT AFTER APPLYING THE PROPOSED PZT MODAL

SHAPES TUNING PROCEDURE.

Φ(1) Φ(2) Φ(3)

µ(1) σ(1) µ(2) σ(2) µ(3) σ(3)

Nominal 96.75 1.33 96.56 2.71 94.40 1.57
A @ x1 91.23 2.06 76.07 3.60 41.38 3.24
A @ x2 90.03 2.34 67.78 4.16 73.57 3.28
A @ x3 83.32 2.60 78.44 2.60 72.24 3.17
A @ x4 88.14 2.09 66.42 4.10 38.64 11.24
B @ x1 95.24 0.93 51.32 3.79 49.44 20.72
B @ x2 75.65 1.89 49.94 1.94 13.96 6.24
B @ x3 96.49 0.21 54.64 3.08 96.09 1.01
B @ x4 71.65 2.79 52.04 2.06 90.26 1.92

one expressing a perfect modal superimposition. In detail,
according to widely accepted guidelines [41], the percentage
threshold of 90% can be used to discriminate between healthy
(MAC indexes ≥ 90%) and defective (MAC indexes ≤ 90%)
structural behavior. As reported in the first row of Table I,
averaging the MAC achieved for the five different sets of
tuning factors, the percentages are consistently above 90%
when the structure is in the pristine (nominal) conditions. The
smallest MAC value is obtained for the third mode. This is
due to the fact that higher modal components only comprise a
minimal part of the total mechanical energy of the structure,
[18]. Alongside, it is important to underline the robustness of
the scaling technique for the PZT signals, supported by the
minimal standard deviations reported.

The capability to identify damaged conditions by monitor-
ing the modal shapes extracted from PZT acquisitions was then
tested under the previously described perturbed configurations
(steps 3-5 in Fig. 7). For a specific defective status indicated
by the superscript D, the native modal coordinates estimated
from the PZT acquisitions (Φ(i,D)

PZT = [Φ
(i,D)
1,PZT . . .Φ

(i,D)
P,PZT ])

were calculated with the FDD algorithm (step 3), and tuning
factors α(i,kN)

p,PZT computed in step 2.a were successively applied
to scale the currently extracted modal curves (step 4). In Fig. 7,
it can be observed how a noticeable shift in the modal pattern
(blue dashed curve) occurs in the proximity of the simulated
defect position, with respect to the baseline curve (green one)
extracted in nominal conditions. Finally, by estimating MAC
indexes with respect to reference modal values (step 5), the
damage detection capability of the system was verified.

Table I reports the mean values µ(i) and the associated
standard deviations σ(i) of the MAC related to each set of
five modal correlation percentages for the different considered
defective conditions. For each case, it is possible to identify
at least one mode with MAC correlation degrading beneath
90%. Finally, it must be acknowledged that, notwithstanding
two isolated outliers related to the third modal shapes, the
standard deviation of MAC values is on average less than 4 %.

VII. CONCLUSION

This work investigates the suitability of a novel heteroge-
neous sensor network capable to acquire data from MEMS
accelerometer and piezoelectric transducers to perform modal

analysis in an efficient, low–cost and non–invasive manner.
Thanks to its flexibility and scalability, the network is thus
compatible with the sensorization of mesoscale structures.
A specific processing flow was proposed to counteract the
detrimental noise levels associated to weakly excited modal
components. Furthermore, the verified physical relationship
between PZT and ACC data proved the effectiveness of
piezoelectric transducers also for low–frequency vibration–
based structural inspections. The adequacy of the information
collected by the network was demonstrated through multiple
experiments in which a pristine structure was altered with
a mass to simulate the presence of defects. A numerical
model was implemented to estimate modal frequencies in
the different considered conditions in order to assess the
accuracy of the features extracted by the sensor network.
In the experiments, the natural frequencies were extracted
by adopting an AR+Noise parametric model, while modal
shapes were reconstructed according to a purposely developed
processing scheme which primarily encompassed a tuning
procedure capable to compensate for intrinsic non–idealities
in PZT transducers. Thus, the damage detection suitability of
the PZT circuitry was profitably assessed. From these results,
it can be concluded that low–cost PZT sensors might be used
either alone or alongside traditional MEMS accelerometers to
efficiently estimate modal parameters of structures undergoing
flexural vibrations with minimal invasivity. Further develop-
ments will include the application of the proposed network to
real structures in an operative environment.
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