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1. General information 
 

Reagents and solvents were purchased and used as supplied unless otherwise noted. 1,3,5-Tris(1-imidazolyl)- 
benzene, cage 1, and DHP were prepared according to modified literature procedures. For the characterization of 
1,3,5-tris(1-imidazolyl)benzene, cage 1, and DHP, 1H NMR spectra were recorded on a 300 MHz spectrometer 
(Bruker Avance III-300), a 500 MHz spectrometer (Bruker Avance III HD-500), and a 400 MHz spectrometer 
(Agilent 400), respectively. For the characterization of inclusion complexes, 1H NMR spectra were recorded 
on a 400 MHz spectrometer (Bruker Avance III-400) and 1H DOSY, 1H–1H COSY, and 1H–1H NOESY spectra 
were recorded on a 500 MHz spectrometer (Bruker Avance III HD 500). Unless stated otherwise, all NMR 
experiments were performed at a constant temperature of 298 K. 1H chemical shifts (δH) are expressed in parts-
per-million (ppm) and reported relative to residual solvent resonances (1.94 ppm for CD3CN, 2.51 ppm for 
(CD3)2SO, 4.79 ppm for D2O, and 7.26 ppm for CDCl3). 1H DOSY NMR spectra were collected using temperature 
and gradient settings that were calibrated prior to the measurements. The diffusion coefficient of the solvent was 
used as a calibration standard. High-resolution mass spectrum (HRMS) of DHP was obtained using an Agilent 
1290 Infinity LC system tandem to an Agilent 6520 Accurate Mass Q-TOF LC/MS with an APCI source in a 
positive mode. Thin-layer chromatography to monitor the reactions was performed on silica gel plates (Merck 
Kieselgel 60, F254). The spots were visible under UV light. Column chromatography was performed with silica 
gel (Merck silica 60). UV/vis absorption spectra were recorded with a Shimadzu UV-2700 UV/vis spectro-
photometer using quartz cuvettes with 1 cm pathway. Fluorescence spectra were recorded on a Cary Eclipse 
fluorescence spectrophotometer. For photoirradiation experiments, a Prizmatix Mic-LED 460 nm (~1.0 mW·cm–2 
at the sample) light-emitting diode (LED) was used as a blue light source, and a UVGL-25 Compact UV Lamp 
(~0.7 mW·cm–2 at the sample) by UVP (4-Watt) as a UV light source. 
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2. Synthesis and characterization of triimidazole ligand 
 

The triimidazole ligand was synthesised by modifying a procedure previously described in the literature.1 
Imidazole (2.72 g, 34.0 mmol), 1,3,5-tribromobenzene (1.26 g, 4.00 mmol), potassium carbonate (2.21 g, 15.99 
mmol), and copper(II) sulfate (0.025 g, 0.16 mmol) were combined. Imidazole functions both as a reagent and 
as the solvent for this reaction. The flask was purged with nitrogen and heated at 180 °C. While heating, the 
flask was left submerged up to the neck in oil to prevent the solidification of imidazole. After 20 h, the flask 
was cooled to room temperature and the reaction mixture was washed thoroughly with water. The resulting 
solid was taken up into methanol (100 mL) and the solution was filtered to remove a dark-brown residue. The 
white product was precipitated out of methanol upon the addition of water and dried in a desiccator. Yield: 
0.78 g (71%). 
1H NMR (300 MHz, DMSO-d6): δ = 8.76 (s, 3H, H1), 8.25 (s, 3H, H3), 8.18 (s, 3H, H2), 7.40 (s, 3H, H4). 

 

 

Figure S1. 1H NMR spectrum (300 MHz, DMSO-d6) of 1,3,5-tris(1-imidazolyl)benzene. 
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3. Synthesis and characterization of cage 1 
 

Cage 1 was synthesized by modifying a procedure previously described in the literature.2 N,N,N′,N′-tetramethyl-
ethylenediamine (TMEDA) (50 mg, 0.43 mmol) was dissolved in DMSO (6 mL) and Pd(NO3)2·xH2O (100 mg, 
0.43 mmol) was added to the solution. The mixture was heated at 80 °C until Pd(NO3)2 dissolved (~10 min). 
Next, 1,3,5-tris(1-imidazolyl)benzene (74.2 mg, 0.27 mmol) was added, and the mixture was heated for an 
additional 2 hours. The solution was then filtered through cotton wool to remove a dark suspension, and ethyl 
acetate (25 mL) was added to the filtrate. The resulting precipitate was centrifuged, washed 4–5 times with 
anhydrous acetone, and dried under vacuum. Cage 1 was obtained as a white powder in a near-quantitative yield. 
1H NMR (500 MHz, D2O): δ = 9.11 (s, 8H, H6), 8.81 (s, 4H, H1), 7.75 (s, 4H, H5), 7.71 (s, 4H, H3), 7.69 (s, 8H, 
H4), 7.64 (s, 8H, H7), 7.54 (s, 12H, H2/H8), 3.15 (s, 24H, TMEDA-CH2), 2.77-2.70 (m, 72H, TMEDA-CH3). 

 

 

Figure S2. 1H NMR spectrum (500 MHz, D2O) of cage 1. 
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4. Synthesis and characterization of DHP 
 

General methods and materials for synthesis: The reactions were monitored by thin-layer chromatography 
performed on silica gel plates (Merck Kieselgel 60, F254). The spots were visible under UV light. Column 
chromatography was performed with silica gel (Merck silica 60). For characterization methods, see Section 1.  
 
Synthesis of trans-15,16-dimethyldihydropyrene (DHP):  

 

Scheme 1. Synthetic procedures (reagents and conditions): (a) Coupling reaction (NaOH, EtOH, C6H6, 80 °C, 
argon); (b) Wittig rearrangement of thiacyclophane isomers (n-BuLi/THF, CH3I, 0 °C); (c) Methylation of the 
Wittig isomers (Borch reagent, (CH3O)2CH–BF4, DCM, –30 °C to 20 °C); (d) Hofmann elimination to DHP 
(t-BuOK, THF, rt, argon). 

DHP was synthesized based on previously reported literature procedures3,4 and it was purified by flash column 
chromatography. 

The 1H NMR (and 13C; not shown) data of 2,6-bis(bromomethyl)toluene,5 2,6-bis(mercaptomethyl)toluene,3 syn-
thiacyclophane,3 anti-thiacyclophane,3 and DHP6 are consistent with those previously reported in the literature. 

2,6-Bis(bromomethyl)toluene 

 
1H NMR (400 MHz, CDCl3): d = 7.31 (d, J = 7.6 Hz, 2H, ArH), 7.15 (t, J = 7.6 Hz, 1H, ArH), 4.54 (s, 4H, CH2), 
2.44 (s, 3H, CH3). 

2,6-Bis(mercaptomethyl)toluene 

 
1H NMR (400 MHz, CDCl3): d = 7.17–7.08 (m, 3H, ArH), 3.77 (d, J = 7.2 Hz, 4H, CH2SH), 2.42 (s, 3H, CH3), 
1.67 (t, J = 7.2 Hz, 2H, CH2SH). 

syn-Thiacyclophane 

  
1H NMR (400 MHz, CDCl3): d = 6.68-6.57 (m, 6H, ArH), 4.05-4.01 (d, J = 15.2 Hz, 4H, CH2), 3.90-3.86 (d, J 
= 15.2 Hz, 4H, CH2), 2.54 (s, 6H, CH3). 
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anti-Thiacyclophane 

  
1H NMR (400 MHz, CDCl3): d = 7.28 (d, J = 7.6, 4H, ArH), 7.09 (d, J = 7.6, 2H, ArH), 3.69 (s, 8H, CH2), 1.29 
(s, 6H, CH3). 
 

DHP 

 
1H NMR (400 MHz, CDCl3): d = 8.65 (s, 4H, ArH), 8.61 (d, J = 7.2 Hz, 4H, ArH), 8.14 (t, J = 7.6 Hz, 2H, 
ArH), –4.23 (s, 6H, CH3). 

HRMS (Q-TOF, ESI+, m/z): found [M + H]+ = 233.1332; calcd for [M + H]+ (C18H16) = 233.1325. 
 

S

S

Me

Me
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1H NMR spectra: 

 

Figure S3. 1H NMR spectrum (400 MHz, CDCl3) of 2,6-bis(bromomethyl)toluene. 
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Figure S4. 1H NMR spectrum (400 MHz, CDCl3) of 2,6-bis(mercaptomethyl)toluene. 
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Figure S5. 1H NMR spectrum (400 MHz, CDCl3) of a mixture of anti- and syn-thiacyclophane (anti/syn = 12:1).  
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Figure S6. 1H NMR spectrum (400 MHz, CDCl3) of trans-15,16-dimethyldihydropyrene (DHP). 
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5. Formation and characterization of DHP⊂1 
 

Solid DHP (4.64 mg; 0.02 mmol) was added to an aqueous solution of cage 1 (6.36 mg; 0.002 mmol in 1.0 mL 
of H2O or D2O). The mixture was stirred for 24 h at room temperature. The resulting dark green suspension was 
filtered through glass wool, then centrifuged at 5,000 rpm to remove solid DHP and give a transparent green 
solution. Encapsulation of DHP was achieved in quantitative yields, as determined by 1H NMR. 

1H NMR (400 MHz, D2O): δ = 9.43 (s, 4H, H1), 8.43 (s, 8H, H6), 7.93 (s, 4H, H3), 7.88 (s, 8H, H4), 7.78 (s, 8H, 
H7), 7.70 (s, 4H, H2), 7.55 (s, 8H, H8), 7.52 (d, 4H, H10) 7.44 (s, 4H, H11), 6.90 (t, 2H, H9), 6.25 (s, 4H, H7), 
3.61-2.24 (m, 96H, TMEDA), –6.44 (s, 6H, H12). 
 

 

Figure S7. 1H NMR spectrum (400 MHz, D2O) of DHP⊂1.  
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Figure S8. Comparison of 1H NMR spectra of free and encapsulated DHP (replotted from Figures S6 and S7, 
respectively). 

 

 

Figure S9. 1H DOSY NMR spectrum (500 MHz, D2O) of DHP⊂1.  
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Figure S10. Long-range 1H–1H COSY NMR spectrum (500 MHz, D2O) of DHP⊂1.  
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Figure S11. 1H–1H NOESY NMR spectrum (500 MHz, D2O) of DHP⊂1.  
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6. UV/vis titration of cage 1 with DHP 
 

To verify that the stoichiometry of the DHP–1 inclusion complex is 1:1, we followed changes in the absorption 
spectra of cage 1 in water (0.62 mM, 2.0 mL) during titration with a 6.94 mM solution of DHP in MeCN. Pure 1 
shows negligible absorption in the visible region (Figure S12a, bottom spectrum). Titration with DHP results 
in a gradual increase of the band centered at 481 nm, which is due to solubilized DHP. Solubilization of DHP 
cannot be explained by the presence of MeCN; in fact, we verified that DHP is insoluble even in the solvent 
mixture corresponding the titration end point (H2O/MeCN ≈ 9:1 v/v); instead, the appearance and increase of 
the 481 nm band is due to encapsulation of DHP inside the cavity of 1. Indeed, the band stopped increasing 
after more than 1 equiv of DHP has been added (Figure S12b). The titration can also be conveniently followed by 
monitoring the absorbance in the near-infrared region (e.g., at 800 nm), which is indicative of the presence of 
light-scattering aggregates in solution. The absorbance at 800 nm remained low until ca. 1 equiv of DHP was 
added. Beyond that, all the cages have been filled and the addition of subsequent aliquots of DHP results in 
precipitation, drastically increasing the baseline (Figure S12a and c). These results confirm that one molecule of 
cage 1 is capable of binding (and solubilizing in water) only one molecule of DHP. 
 

 

Figure S12. a) Absorption spectra observed upon addition of small aliquots of DHP solution (6.94 mM, MeCN) 
to a solution of cage 1 (0.625 mM, H2O). b) Titration curve obtained by plotting the values of absorption due to 
solubilized DHP (λmax = 481 nm) as a function of the amount of DHP added. c) Titration curve obtained by 
plotting the values of absorption at 800 nm (due to aggregated DHP) as a function of the amount of DHP added. 
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7. X-ray data collection and structure refinement of DHP⊂1 
 

Yellow-green prism single crystals of DHP⊂1 were obtained by slow water evaporation from an aqueous solution 
of the inclusion complex. A crystal of the size 0.117 × 0.048 × 0.032 mm3 was immersed in perfluorinated ether 
and mounted on a Mitogen LithoLoop. The crystal was flash-cooled to 100 K. Data were collected on Rigaku 
Xtalab PRO dual source equipped with microfocus and Dectris 200K detector. 

Crystal data: Formula: C114H160N48O36Pd6; Crystal color and shape: yellow-green prism; Crystal system: Triclinic 
P-1; Dimensions of the unit volume: a = 17.7895(3) Å, b = 20.2962(3) Å, c = 22.3737(2) Å; a = 98.7680(10)°, 
b = 92.1890(10)°, g = 90.7530(10)°; Unit cell volume = 7976.53(19) Å3; Temperature = 100(2) K; Z = 2; Fw 
= 3417.29; Calculated density = 1.423 g⋅cm–3; µ = 6.038 mm–1; Wavelength: CuKa (l = 1.54184 Å); –22 ≤ h 
≤ 22, –25 ≤ k ≤ 25, –27 ≤ l ≤ 27; 244232 reflections collected; 32384 independent reflections (R-int = 0.0656); 
Data completeness = 0.993.  

The data were processed with CrysAlisPRO Structure was solved with SHELXT.7 Full-matrix least-squares 
refinement was based on F2 with SHELXL8 and OLEX2.9 Hydrogens were treated as isotropic in a riding 
mode. The water solvent molecules were removed and PLATON / SQUEEZE10 was performed. Finally, further 
refinement based on F2 with SHELXL on 2010 parameters with 257 restraints gave final R1 = 0.0670 (based 
on F2) with wR2 = 0.1679 for data with I > 2s(I) and R1 = 0.0898 with wR2 = 0.1928 for all data on 32384 
reflections, goodness-of-fit on F2 = 1.085, largest electron density peak 1.934 e⋅Å–3, and largest hole –1.902 
e⋅Å–3. Crystallographic data for the structure has been deposited with the Cambridge Crystallographic Data 
Centre (CCDC 1995149). 

 
 

Guest 
 

CCDC 
 

d1 (Å) 
 

Distortion from empty 1 (%) 
 

Reference 

None (empty 1) 1551434 16.865 0 11 

1-Pyrenecarboxaldehyde 867176 17.669 4.8 2 

1-Pyrenecarboxaldehyde 867176 18.147 7.6 2 

Sulfonated merocyanine 1551437 18.292 8.5 11 

Phenylazotrimethylpyrazole 1939530 18.374 8.9 12 

Azobenzene 1551435 18.792 11.4 13 

Tetra-o-fluoroazobenzene 1551438 18.923 12.2 13 

p-Allyloxyazobenzene 1569281 19.109 13.3 13 

DHP 1995149 19.552 15.9 This work 

DHP 1995149 19.910 18.0 This work 
 

Table S1. The distances between the axial palladium atoms, d1, in free 1 and the inclusion complexes of 1 reported 
to date. 
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8. Comparison of the crystal structures of DHP⊂1 and MC⊂1 
 

 

Figure S13. Front views of the crystal structures of DHP (left)14 and MC encapsulated within cage 1 (MC⊂1; 
right; the (CH2)3SO3

– chain of MC (which protrudes out of the cage) was omitted for clarity).11 Note that both 
DHP and MC are flat, except for two methyl groups protruding perpendicular to the aromatic system. 
 

 

Figure S14. Top: Overlay of the crystal structures of MC⊂1 (orange)11 and the major conformer of DHP⊂1 
(pink). Bottom: Overlay of the crystal structures of MC⊂1 (orange)11 and the minor conformer of DHP⊂1 
(gray). We first overlaid the structures of the cages, without taking the guests into consideration. Then, the 
cages were removed and the resulting orientations of the guests are shown in the insets (“Guests only”). 
The (CH2)3SO3

– chain of MC (which protrudes out of the cage) was omitted for clarity. Hydrogens shown 
only in the insets for clarity. 
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9. Guest exchange experiments 
 

First, DHP⊂1 and MC⊂1 inclusion complexes were prepared as follows. For DHP⊂1, cage 1 (1.00 mg, 0.31 
µmol) in 1 mL of water was stirred overnight with solid DHP (0.400 mg, 1.72 µmol; >5 equiv) and excess of 
undissolved DHP was removed by centrifugation. 50 μL of the resulting green solution of DHP⊂1 was diluted 
with 800 μL of water (c = 20 μM) and absorption and fluorescence spectra (excitation wavelength = 550 nm) 
were recorded.  

For MC⊂1, cage 1 (1.00 mg, 0.31 µmol) in 1 mL of water was mixed with solid MCH (0.363 mg, 0.94 µmol; 3.0 
equiv) for 10 min. Note that free MCH is partially water-soluble (concentration of the saturated solution,15 c ≈ 
0.1 mM), therefore it was not separated from MC⊂1 before the guest exchange experiments.  

Exchange of DHP with MC: DHP⊂1 (1.0 equiv) in water was added to a mixture of solid DHP (0.146 mg, 
0.63 µmol; 2.0 equiv) and MCH (0.363 mg, 0.94 µmol, 3.0 equiv) and the mixture stirred vigorously. After 30 
min, the mixture was centrifuged at a high speed, 50 µL of the clear supernatant was collected, diluted with 800 
μL of water, and absorption and fluorescence spectra were collected. The procedure was repeated every 30 
min.  

Exchange of MC with DHP: MC⊂1 (1.0 equiv) in water with 2.0 equiv of MCH was added to solid DHP 
(0.219 mg, 0.94 µmol; 3.0 equiv) and the mixture was stirred vigorously. After 30 min, the mixture was 
centrifuged at a high speed, 50 µL of the clear supernatant was collected, diluted with 800 μL of water, and 
absorption and fluorescence spectra were collected. The procedure was repeated every 30 min. 

Representative UV/vis absorption spectra for both guest exchange experiments are shown in Figure 3b, c in the 
main text. Representative fluorescence spectra are shown in Figure S15.  
 

 

Figure S15. a) Evolution of fluorescence spectra upon mixing DHP⊂1 with an equimolar amount of free 
MCH. b) Evolution of fluorescence spectra upon mixing MC⊂1 with an equimolar amount of free DHP. 
Excitation wavelength, λexc = 550 nm. 
 

We note that although MCH is known to undergo hydrolysis in aqueous solutions,11,16 the reaction is slow, with 
less than 5% decomposition within the time scale of the experiment (3 h). 
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10. Formation and characterization of CPD⊂1 
 

Figure S16 shows UV/vis absorption spectra of DHP⊂1 before (black) and after (red) exposure to 460 nm light 
for 10 min (after which a photostationary state (PSS) was reached), and after subsequent exposure to 254 nm 
light for 4 min (blue; enough to reach a PSS). The PSS under 254 nm light comprises 96% DHP⊂1 + 4% CPD⊂1. 
 

 

Figure S16. UV/vis absorption spectra of DHP⊂1 and of the 460 nm- and 254 nm-adapted photostationary states. 
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To generate CPD⊂1 at a higher concentration (here, 2 mM), a solution of DHP⊂1 in D2O was irradiated with 
blue light at 460 nm for 40 min.  
1H NMR (500 MHz, D2O): δ = 9.10 (s, 4H, H1), 9.00 (s, 8H, H6), 7.76 (s, 4H, H3), 7.73 (s, 8H, H4), 7.71 (s, 8H, 
H7), 7.66 (s, 4H, H8), 7.57 (s, 8H, H2), 7.40 (d, 4H, H5) 5.59 (t, 2H, H13), 5.34 (d, 4H, H14), 5.05 (s, 4H, H15) 
3.13-2.61 (m, 96H, TMEDA), –0.60 (s, 6H, H16). 
 

 

Figure S17. 1H NMR spectrum (500 MHz, D2O) of CPD⊂1. 
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Figure S18. 1H DOSY NMR spectrum (500 MHz, D2O) of CPD⊂1.  
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Figure S19. 1H–1H COSY NMR spectrum (500 MHz, D2O) of CPD⊂1.  
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Figure S20. 1H–1H NOESY NMR spectrum (500 MHz, D2O) of CPD⊂1.  
 

 

Figure S21. Partial 1H–1H NOESY NMR spectrum (500 MHz, D2O) of CPD⊂1.  
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Figure S22. Full-range 1H NMR spectra (500 MHz, D2O) of DHP⊂1 before (bottom; t = 0) and after different 
irradiation times with blue light, followed by UV light. Compositions of photostationary states derived from 
NMR: 6% DHP⊂1 + 94% CPD⊂1 under 460 nm light; 98% DHP⊂1 + 2% CPD⊂1 under 254 nm light. 
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Figure S23. Two cycles of photoisomerization of DHP⊂1 followed by 1H NMR spectroscopy (400 MHz, D2O). 
From the bottom: i) initial spectrum before irradiation, ii) after 40 min of 460 nm, iii) after 30 min of 254 nm, iv) 
after 45 min of 460 nm, v) after 28 min of 254 nm.  
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11. Molecular dynamics simulations 
 

Parametrization of the atomistic models 

The atomistic model of cage 1 was taken from our recent work.17 In particular, the cage model is parametrized 
according to the Generalized Amber Force Field.17–19 DHP and CPD were parametrized consistently to 1, via 
geometrical optimization and RESP calculation of the partial charges20 performed using B3LYP functional21 
and the Pople 6-31G* basis set. These calculations were performed using Gaussian-16,22 while the atomistic 
parametrization was carried out using the ANTECHAMBER software.23 

Molecular dynamics simulations 

All atomistic simulations in this work have been conducted using the GROMACS-2018.6 software24 patched 
with PLUMED-2.25 All systems were simulated for 1 μs of MD at the temperature of 297 K and pressure of 1 
atm in explicit TIP3P water molecules26 and in periodic boundary NPT conditions (constant N, number of 
particles, P, pressure, and T, temperature), employing the v-rescale thermostat27 and the Berendsen barostat.28 A 
timestep of 2 fs was used in the MD simulations. The electrostatic interactions were treated using particle mesh 
Ewald (PME).29 The cutoff lengths of the real summation and of the VdW were set to 1.0 nm. The dynamics 
of the hydrogens was constrained using the LINCS algorithm.30 

As recently done to model the encapsulation of azo compounds within cage 1,17 the starting conformations of 
DHP⊂1 and CPD⊂1 were obtained after a short MD run where the guests were encapsulated into the empty 1, 
which was taken from the crystal structure of 1 containing two encapsulated azobenzene molecules13 (CSD entry: 
TEZLAO20). The host–guest model systems were then equilibrated via MD simulations under the conditions 
described above. From the MD trajectories we then calculated the ensembles of configurations within 0.5 kcal/mol 
from the minimum energy configurations of the systems, which were then plotted (points and isolines in Figure 
5a) on the FES of a native cage 1 taken from our previous work.17 Representative snapshots of the minimum-
free-energy configurations of DHP⊂1 and CPD⊂1 are shown in Figure S24 (corresponding to the cyan and 
green dots in the FES in Figure 5a).28 

 

 

Figure S24. Representative d1/d2-minimum-free-energy configurations of DHP⊂1 (a) and CPD⊂1 (b).  
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12. Photoisomerization of free DHP in acetonitrile 
 

 

Figure S25. One cycle of photoisomerization of free DHP followed by 1H NMR spectroscopy (400 MHz, CD3CN). 
From the bottom: i) initial spectrum before irradiation, ii) after 90 min of 460 nm, iii) after 90 min of 254 nm. 
The conversion is quantitative in both directions. Note, however, the appearance of decomposition products at 
~1.5 ppm.  

 

13. Photoisomerization of free DHP⊂1 in non-deoxygenated water 
 

 

Figure S26. Reversible photoisomerization between DHP⊂1 and CPD⊂1 in non-deoxygenated water (a) and 
in deoxygenated water (b; replotted from Figure 7b in the main text) under otherwise identical conditions. In 
each cycle, the samples were exposed to 10 min of blue light (λ = 460 nm) followed by 10 min of UV light (λ 
= 254 nm). 13% and 8% decomposition over ten cycles was found over ten irradiation cycles in the presence 
and absence of oxygen, respectively.  
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14. Release of DHP from cage 1 upon addition of acetonitrile 
 

150-μL aliquots of acetonitrile were added into an aqueous solution of DHP⊂1 (1.5 mL, 1⋅10–5 M) until a total 
volume of 3 mL was reached. After each addition, the solution was stirred and a UV/vis absorption spectrum 
was recorded. The data were corrected using a dilution factor which takes into account the ratio between the 
added volume of acetonitrile and the total volume present in the cuvette after each point, effectively normalizing 
the concentration of DHP in all spectra. The resulting plot shows an increase in the absorbance of DHP as 
acetonitrile is added to the solution. Free DHP has a higher absorption coefficient in the UV region compared to 
encapsulated DHP; these results therefore suggest that DHP is released from cage 1 upon addition of acetonitrile. 
Furthermore, the absorption maximum for DHP shifts from 346 nm (characteristic of DHP⊂1) to 336 nm 
(characteristic of free DHP in acetonitrile). No precipitation was observed over the course of this experiment. 

 

Figure S27. Normalized UV/vis absorption spectra following sequential additional of acetonitrile to an aqueous 
solution of DHP⊂1. 

 

15. Supplementary references  
 

1. Fan, J.; Gan, L.; Kawaguchi, H.; Sun, W.-Y.; Yu, K.-B.; Tang, W.-X. Reversible Anion Exchanges between 
the Layered Organic–Inorganic Hybridized Architectures: Syntheses and Structures of Manganese(II) and 
Copper(II) Complexes Containing Novel Tripodal Ligands. Chem. - Eur. J. 2003, 9, 3965–3973. 

2. Samanta, D.; Mukherjee, S.; Patil, Y. P.; Mukherjee, P. S. Self-Assembled Pd6 Open Cage with Triimidazole 
Walls and the Use of Its Confined Nanospace for Catalytic Knoevenagel- and Diels–Alder Reactions in 
Aqueous Medium. Chem. - Eur. J. 2012, 18, 12322–12329. 

3. Mitchell, R. H.; Boekelheide, V. Transformation of Sulfide Linkages to Carbon–Carbon Double Bonds. 
Syntheses of cis- and trans-15,16-Dimethyldihydropyrene and trans-15,16-Dihydropyrene. J. Am. Chem. 
Soc. 1974, 96, 1547–1557. 

4. Mitchell, R. H.; Carruthers, R. J.; Mazuch, L.; Dingle T. W. Toward the Understanding of Benzannelated 
Annulenes: Synthesis and Properties of [a]-Ring Monobenzannelated Dihydropyrenes. J. Am. Chem. Soc. 
1982, 104, 2544–2551. 

5. Lindsay, W. S.; Stokes, P.; Humber, L. G.; Boekelheide, V. Syntheses of 4,12-Dimethyl[2.2]metacyclophane. 
J. Am. Chem. Soc. 1961, 83, 943–949. 

6. Williams, R. V.; Armantrout, J. R.; Twamley, B.; Mitchell, R. H.; Ward, T. R.; Bandyopadhyay, S. A. 
Theoretical and Experimental Scale of Aromaticity. The First Nucleus-Independent Chemical Shifts (NICS) 
Study of the Dimethyldihydropyrene Nucleus. J. Am. Chem. Soc. 2002, 124, 13495–13505. 

7. Sheldrick, G. M. SHELXT – Integrated space-group and crystal structure determination. Acta Crystallogr. Sect. 
A 2015, 71, 3–8. 

8. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C 2015, 71, 3–8. 



 S29 

9. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. OLEX2: a complete 
structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341. 

10. Spek, A. L. PLATON SQUEEZE: a tool for the calculation of the disordered solvent contribution to the 
calculated structure factors. Acta Crystallogr. Sect. C 2015, 71, 9–18. 

11. Samanta, D.; Galaktionova, D.; Gemen, J.; Shimon, L. J. W.; Diskin-Posner, Y.; Avram, L.; Král, P.; Klajn, 
R. Reversible chromism of spiropyran in the cavity of a flexible coordination cage. Nat. Commun. 2018, 
9, 641. 

12. Hanopolskyi, A. I.; De, S.; Białek, M. J.; Diskin-Posner, Y.; Avram, L.; Feller, M.; Klajn, R. Reversible 
switching of arylazopyrazole within a metal–organic cage. Beilstein J. Org. Chem. 2019, 15, 2398–2407. 

13. Samanta, D.; Gemen, J.; Chu, Z.; Diskin-Posner, Y.; Shimon, L. J. W.; Klajn, R. Reversible photoswitching 
of encapsulated azobenzenes in water, Proc. Natl. Acad. Sci. USA 2018, 115, 9379–9384. 

14. Williams, R. V.; Edwards, W. D.; Vij, A.; Tolbert, R. W. Theoretical Study and X-ray Structure Determination 
of Dimethyldihydropyrene. J. Org. Chem. 1998, 63, 3125–3127. 

15. Shi, Z.; Peng, P.; Strohecker, D.; Liao, Y. Long-Lived Photoacid Based upon a Photochromic Reaction. 
J. Am. Chem. Soc. 2011, 133, 14699–14703. 

16. Stafforst, T.; Hilvert, D. Kinetic characterization of spiropyrans in aqueous media. Chem. Commun. 2009, 
287–288. 

17. Pesce, L.; Perego, C.; Grommet, A. B.; Klajn, R.; Pavan, G. M. Molecular Factors Controlling the Isomerization 
of Azobenzenes in the Cavity of a Flexible Coordination Cage. J. Am. Chem. Soc. 2020, 142, 9792–9802. 

18. Wang, J.; Wolf, R. M.; Caldwell, J. W.; Kollman, P. A.; Case, D. A. Development and Testing of a General 
Amber Force Field. J. Comput. Chem. 2004, 25, 1157–1174. 

19. Li, P.; Merz, K. M. MCPB.py: A Python Based Metal Center Parameter Builder. J. Chem. Inf. Model. 2016, 
56, 599–604. 

20. Bayly, C. I.; Cieplak, P.; Cornell, W.; Kollman, P. A. A Well-Behaved Electrostatic Potential Based 
Method Using Charge Restraints for Deriving Atomic Charges: The RESP Model. J. Phys. Chem. 1993, 
97, 10269–10280. 

21. Becke, A. D. Density-Functional Thermochemistry. III. The Role of Exact Exchange. J. Chem. Phys. 1993, 
98, 5648–5652. 

22. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery; 
Jr.; J. A.; Vreven, T.; et al. Gaussian 03; Gaussian, Inc.: Wallingford, CT, 2004. 

23. Wang, J.; Wang, W.; Kollman, P.; Case, D. Antechamber, An Accessory Software Package For Molecular 
Mechanical Calculations. Submitted to J. Chem. Inf. Comp. Sci. 2000. 

24. Hess, B.; Kutzner, C.; van der Spoel, D.; Lindahl, E. GROMACS 4: Algorithms for Highly Efficient, Load-
Balanced, and Scalable Molecular Simulation. J. Chem. Theory Comput. 2008, 4, 435–447. 

25. Tribello, G. A.; Bonomi, M.; Branduardi, D.; Camilloni, C.; Bussi, G. PLUMED 2: New feathers for an 
old bird. Comput. Phys. Commun. 2014, 185, 604–613. 

26. Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R. W.; Klein, M. L. Comparison of Simple 
Potential Functions for Simulating Liquid Water. J. Chem. Phys. 1983, 79, 926–935. 

27. Bussi, G.; Donadio, D.; Parrinello, M. Canonical Sampling through Velocity Rescaling. J. Chem. Phys. 
2007, 126, 014101. 

28. Berendsen, H. J. C.; Postma, J. P. M.; van Gunsteren, W. F.; DiNola, A.; Haak, J. R. Molecular dynamics 
with coupling to an external bath. J. Chem. Phys. 1984, 81, 3684–3690. 

29. Essmann, U.; Perera, L.; Berkowitz, M. L.; Darden, T.; Lee, H.; Pedersen, L. G. A smooth particle mesh 
Ewald method. J. Chem. Phys. 1995, 103, 8577–8593. 

30. Hess, B.; Bekker, H.; Berendsen, H.; Fraaije, J. LINCS: A linear constraint solver for molecular simulations. 
J. Comput. Chem. 1998, 18, 1463–1472. 


