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ABSTRACT: Network theory provides one of the most potent analysis tools for
the study of complex systems. In this paper, we illustrate the network-based
perspective in drug research and how it is coherent with the new paradigm of
drug discovery. We first present data sources from which networks are built, then
show some examples of how the networks can be used to investigate drug-related
systems. A section is devoted to network-based inference applications, i.e.,
prediction methods based on interactomes, that can be used to identify putative
drug−target interactions without resorting to 3D modeling. Finally, we present
some aspects of Boolean networks dynamics, anticipating that it might become a
very potent modeling framework to develop in silico screening protocols able to
simulate phenotypic screening experiments. We conclude that network
applications integrated with machine learning and 3D modeling methods will
become an indispensable tool for computational drug discovery in the next years.

1. INTRODUCTION

The first decade of the 2000s has seen a consistent
modification of the drug research landscape, due, among
other aspects, to a rethinking of the drug discovery paradigm1

and to the entrance into the era of Big Data.2 The paradigm
change in drug discovery is derived from both the need to
improve the success rate of pharmaceutical industry and the
diffusion across the drug research community of discoveries
and concepts related to systems biology.3 In fact, driven by the
initially debated and finally accepted proposal of multitarget
drugs,4 the conventional one-disease−one-target idea was
abandoned to embrace a less reductionist view. The inspired
concept of network pharmacology elaborated by Andrew L.
Hopkins5 allowed us to move toward a new system-based
paradigm.6,7 On the other hand, the availability of relevant
amounts of data, from molecular descriptors to bioassay
results, from -omic information to clinical records, provides the
starting material for the elaboration of multilevel integrated
models that take full advantage of the constantly growing
informatics technology for model building, analysis, inter-
pretation, and exploitation.
Complexity is a distinctive trait of living systems, and

recently researchers have started to investigate natural complex
systems with adequate theoretical tools.8 In particular, network
science permits catching of the behavior of a system as a whole,
especially regarding its emergent properties, that is, the features
that arise from the interaction of the systems’ parts and not as a
mere sum of them. In the field of medicine, the point of view
proposed by Albert L. Barabaśi is illuminating: if disease
phenotypes can be viewed as emergent properties deriving
from the interconnection of pathobiological processes, in turn
arising from the cross-talk of molecular, metabolic, and

regulatory networks at cellular level, a framework of “network
medicine” might help in exploring causes and finding therapies
at a global integrated level.9

Networks rely on the idea of modeling a real system as a
map of interconnected dots and lines representing the set of
elements and the set of relationships between them,
respectively. The mathematical description of a network is
addressed by the graph theory such that graph stands for
network, and often, even though inaccurately, these terms are
used as synonyms. Elements of the network are called nodes,
connections between them, links or edges. The start of graph
theory is commonly traced back to Leonhard Euler’s paper
Solutio problematis ad geometriam situs pertinentis that appeared
in 1741 on the Commentarii Academiae Scientiarum Petropoli-
tanae.10 The problem to be solved was to find a pathway going
through all seven bridges of the city of Koenigsberg without
crossing the same bridge twice. Euler demonstrated the
inexistence of such a pathway, based on an abstract
representation of the four areas of the city (nodes) linked by
the seven bridges (links). In other words, he, for the first time,
used a graph to represent and solve a mathematical problem.
From then on, graph theory and network science developed
mainly in the fields of mathematics and physics, respectively,
and today they form a sound body of science and provide
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formidable tools to deal with the architecture and properties of
complex systems.11−13

Now the question is to what extent the network-based
approach is influencing or has already influenced the way new
therapies are looked for. Actually, the ways network theory is
applied to drug discovery are numerous and aimed at different
purposes. Limiting ourselves to the medicinal chemistry/drug
design area, the main fields where network-based methods are
employed are target identification and drug repurposing, both
eventually in the context of polypharmacology. Further fields
of application are the analysis of chemical spaces and the
prediction of adverse drug reactions or toxicity. Several
examples of these applications of network theory have
appeared in the literature in the past years, and they have
been reviewed in a number of papers. It is worth mentioning
here the comprehensive review on the argument published in
2013 by Peter Csermely et al.14 that laid the foundations of a
network-based drug science. In the present Perspective article,
we recapitulate the basis of the approach and see how far we
have gone with it by illustrating some recently published
results. We also discuss some possible advancement and points
of attention in the field.

2. DATA, DATABASES, AND NETWORKS

2.1. Data and Databases. The first and most important
issue to consider when dealing with the construction of
networks to investigate pathobiological processes and drug
effects on them concerns the material that we use to build
these models, that is, what we usually call “data”. By this term
we mean a wide variety of items, expressed in numerical,
alphabetical, or digital form and collected in databases that
often are publicly available. Although in the drug discovery
community we make use of data sets at least since the early
days of QSAR, the information made available by the high-
throughput experimental technologies is growing at an
unprecedented pace. Nowadays, we can access data sources
on compounds, targets, and diseases that cover millions of
molecules and thousands of proteins and genes in almost every
therapeutic field.
2.1.1. Chemical Databases. On the chemical compounds

side, the number and variety of freely accessible databases
increase continuously, and each of these data sets contains
information for numbers of molecules that range from 103 to
107. Recently, Yang et al. attempted to classify the public
chemical databases into six categories based on their content,
namely, (1) chemical information, (2) bioactivity, (3) drugs,
(4) natural products, (5) commercial availability, and (6)
fragments.15 All types of data contained in the chemical
databases can be useful for drug design purposes in general, but

for what concerns network applications, data on bioactivity,
drugs, and natural products are most interesting. With this
respect, the most popular databases are CHEMBL16 and
PubChem,17 which provide knowledge on bioactive com-
pounds, particularly data from activity assays and target
information. DrugBank18 contains data on approved and
experimental drugs and can be an important source of
information in target identification and drug repurposing
studies. On the purely chemical side, ChemSpider19 is a very
rich source of physicochemical and spectral data, as well as of
names, synonyms, and identifiers. In Table 1, the main features
of the mentioned databases are summarized.
The most important issue to consider when using a chemical

data set is the need of preprocessing its content, a crucial
operation that may take a long time but indispensable to lower
the probability of obtaining misleading results and/or building
erroneous models. Tropsha and co-workers have addressed
this argument in the context of QSAR modeling,20 but their
conclusions and suggestions fit perfectly here. In particular, the
curation of a data set should consider chemical, biological, and
item identification aspects, as, for example, representation of
chemical structure and presence in the data set of non-
standardized structures (salts, ions, etc.), variability of
biological data for the same compound, reproducibility of
results through different laboratories, presence of activity cliffs,
misspelled, or mislabeled compounds, and incorrect identifiers.
The same authors provided thoughtful guidelines for chemical
and biological data curation to avoid errors and to ensure the
stability and reliability of the models.21

2.1.2. Biological Databases. When dealing with target
identification or drug repurposing studies in a system-wide
perspective, it is mandatory to include in the network the
knowledge that is increasingly generated by the huge array of
biological techniques. Fortunately, the availability of free access
biological databases is even bigger than that of chemical
substances. The journal Nucleic Acid Research (NAR) in 2019
published the 26th annual issue of the Molecular Biology
Database Collection,22 presenting an impressive list of 1613
databases, shortly describing the new entries, and eventually
updating old ones. Also in this case, databases are grouped,
reflecting the categorization of the databases in the NAR
online database collection, that is, (1) nucleic acid sequence
and structure and transcriptional regulation; (2) protein
sequence and structure; (3) metabolic and signaling pathways,
enzymes, and networks; (4) genomics of viruses, bacteria,
protozoa, and fungi; (5) genomics of human and model
organisms plus comparative genomics; (6) human genomic
variation, diseases, and drugs; (7) plants; (8) other topics. It is
worth noting that the above-mentioned data sources are

Table 1. Chemical Databases

database
name description url ref.

ChemBL Collection of bioactive drug-like small molecules with 2D structures, calculated chemical properties
and bioactivities.

https://www.ebi.ac.uk/chembl/ 16

PubChem Open chemistry database of mostly small molecules that collects information on chemical structures,
chemical and physical properties, and biological activities. It is structured into three linked
databases: substance, compound, and bioassay.

https://pubchem.ncbi.nlm.nih.gov/ 17

DrugBank Freely accessible data on small molecules and biotechnological drugs (with chemical,
pharmaceutical, and pharmacological profiles), and drug targets (sequence and functions of target/
enzyme/transporter/carrier) intended as drugs encyclopedia.

https://www.drugbank.ca/ 18

ChemSpider Free chemical structures database collecting structures and related information, such as
physicochemical properties and interactive spectra, made accessible through a fast search engine
allowing search by name, structure, or advanced options.

http://www.chemspider.com/ 19
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mostly genotype-based, leveraging the fast development of the
-omic technologies. Among the conspicuous number of
available databases, some can be of particular interest for the
drug design field, like those containing information regarding
proteins, as either general sequence (e.g., SMART,23

UniProt24) or sequence of individual protein families (e.g.,
GPCRdb,25 Kinomer26), protein structure or protein−protein
interactions (e.g., PDB,27 STRING28), metabolic and signaling
pathways (e.g., Reactome29), human genes and diseases (e.g.,
DisGeNET30). A special mention is deserved here of two
important resources that provide drug researchers with
invaluable information on targets and mechanisms of action
of small molecules: the ConnectivityMap31 and LINCS32

platforms that give access to gene transcriptional profiles in
response to perturbation by drugs or other chemical
compounds. In Table 2, the main features of these databases
are summarized.
2.1.3. Phenotypic Data. Moving to the field of human

phenotypic data, we leave the territory of drug discovery to
enter into the precision medicine arena. In this context, the
pervasive digitalization of healthcare is providing quantitatively
very important sources of phenotypic data, like primarily those
contained in the electronic health records (EHRs) but also
those generated by wearable devices or apps.33 Limiting to
EHRs, the information embedded in these documents includes
the description of the health/disease status of individuals,
clinical test results, drug prescriptions, and eventual adverse
effects.34 Of course, privacy issues limit the availability of this
kind of data, and we cannot find publicly accessible databases
yet. Nevertheless, several initiatives already exist to collect
EHRs and related data and make them available for the
biomedical research, as, for example, the “All of Us” initiative.35

As regards the contribution of this kind of information to the
drug research, we observe that integration of phenotypic and
genotypic data might be a necessary step toward a deeper
understanding of the biological processes at the base of the
onset and progression of diseases.36 Even though it is not yet
clear how this integration will be translated to the discovery of
new drugs, this approach is being applied for drug repurposing,
as shown by the recent work by Khosravi et al.,37 who
proposed a list of repurposed drug candidates for melanoma
treatment after the analysis of genome- and phenome-wide
association studies.
2.2. Building the Network. Given the wide availability of

data on molecules, genes, proteins, cells, tissues, and diseases
and the assumption that these entities are connected and
representative of a more or less complex system, one needs to
build and visualize the network (actually, the graph
representing the network) in view of the subsequent analysis.
The computational tools available for network visualization
and analysis are countless and range in complexity depending
on the dimensions of the data set and of the task to be
executed. There are several popular and efficient software that
can work on personal computer/workstation and allow one to
perform all the basic operations on the network, from
visualization to analysis of the basic parameters. Cytoscape38

is the most popular tool, but also Gephi,39 Pajek,40 and
NetworkX41 are rather widespread in the biological community
(see Table 3 for details on the main features of the softwares).
A recent review by Pavlopoulos et al.42 analyzes and compares
the performance of different software tools for the visualization
of even large networks up to the order of magnitude of 106

nodes and edges. However, when the amount of data increases, T
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the memory requirements to load large matrices become
prohibitive even for powerful workstations, and higher
performance computing is needed to analyze the network. A
solution can be to distribute data and processes on high
numbers of cores by means of frameworks, like Hadoop43 or
Apache Spark44 (see Table 3). In this way, computations are
partitioned across clusters of machines that work in parallel
and carry out the jobs in reasonable time and with high
efficiency.

3. NETWORKS TO STUDY SYSTEMS OF
PHARMACEUTICAL INTEREST

As a first step to illustrate the use of networks in drug research,
we can consider studies aimed at visualizing and analyzing
systems of biomedical/pharmacological interest. A short
explanation of basic concepts of network theory and of the
terminology used in this field is provided in the Supporting
Information.

3.1. Networks for the Analysis of Molecules Data
Sets. A relevant example of the use of network analysis in the

Table 3. Network Building and Visualization Systems

database name description url ref

Cytoscape Cytoscape is a platform for visualization, analysis, and integration of networks via basic
functionalities or through apps; conceived mainly for biological research.

https://cytoscape.org/ 38

Gephi Gephi allows the visualization and exploration of all types of large graphs in real-time through a 3D
render engine.

https://gephi.org/ 39

Pajek Pajek enables analysis and visualization of large networks having some thousands or millions of
vertices.

http://mrvar.fdv.uni-lj.si/pajek/ 40

NetworkX NetworkX is a Phyton package designed for the creation and analysis of structure, dynamics, and
functions of networks.

https://networkx.github.io/ 41

Apache Hadoop Open source framework for storing and processing large data sets across clusters of computers in a
distributed environment through simple programming models.

https://hadoop.apache.org/ 43

Apache Spark A fast cluster computing system for large-scale data processing powering different libraries (SQL,
MLlib, GraphX), and easy to use interactively from the Scala, Python, R, and SQL shells.

https://spark.apache.org/ 44

Figure 1. Exemplary CSN of PARP inhibitors. PARPs 1, 2, and 3 family inhibitors with a measured EC50 were retrieved from CHEMBL.16 The
pairwise chemical similarities between compounds were assessed by means of Tanimoto coefficient (Tc) values calculated for the ECFP4
fingerprints49 of the molecules generated by Canvas50 (Schrödinger, LLC, New York, NY, 2019). Pairs of inhibitors were connected only if their
calculated Tc value exceeded the threshold value of 0.55. The chemical structures of the inhibitors are shown inside the nodes that are colored
according to pEC50 values ranging from red (lowest potency) to green (highest potency) and sized based on node degree from small (low degree)
to large (high degree). Edges are weighted by Tc values from thin (Tc = 0.55) to thick (Tc = 1) width. The network was generated by means of
Cytoscape38 version 3.7.2.
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small organic molecules context is that of chemical space
networks (CSN), a framework proposed and developed by G.
Maggiora and J. Bajorath.45,46 In their first review on the
argument, these authors stated that “‘molecular networks’ are
thought to provide an alternative way to represent and navigate
chemical space” and that “chemical space exploration [...] is
often motivated by the need to better understand structure−
property relationships of small organic compounds”.45 In the
initial applications of the CSN formalism, the aim was simply
to obtain a new coordinate-free representation of the chemical
space, based upon pairwise compound similarities, instead of
the more commonly used coordinate-based representations
referring to the descriptor space. In subsequent papers,
Bajorath and co-workers showed how well network represen-
tations allowed highlighting of the properties of a chemical
space viewed as a complex system to whom emergent
properties like biological activity could be associated.46

Different similarity metrics were introduced and validated,47

and together with the analysis of the network topology
parameters, they were shown to be a powerful tool to visualize
and analyze the structure−activity relationships (SARs) of
moderately sized compound sets.46,48 In this context, the
analysis of the CSN through adequate metrics and algorithms
can reveal the presence of communities (clusters) of
compounds sharing latent characteristics not immediately
evident from the common table format.
To illustrate a simple CSN application, in Figure 1 a network

of 62 poly(ADP-ribose)polymerase (PARP) inhibitors is
shown. The network accounts for relationships between the
compounds, and the links among them were derived from
pairwise similarity values calculated based on fingerprints. The
inhibitors are represented by nodes (62) that are connected by
edges (188) if their structure similarity exceeds a threshold
(see the legend to Figure 1). The nodes are colored according
to potency. This visualization of the chemical space based on
similarity calculation facilitates the identification of the
different structural families of PARP inhibitors (the main
connected components of the network), and the color-coding
allows one to grasp immediately the SAR of the set of
compounds.
The usefulness of the CSN framework was also recently

shown in the field of natural product extraction and
characterization, as reported in a paper by Nothias-Esposito
et al.51 Here, the authors analyzed the extracts from two
species of Euphorbia plants by means of tandem mass
spectrometry and generated the network representing the
isolated compounds using the mass spectra as nodes linked by
similarity. In particular, to give rise to the network, the spectra
were converted into vectors that were used to calculate a
similarity score between each pair of spectra.52 The network
then allowed visualization of structurally related molecules
(based on their spectra, irrespective of their structure) that
were subsequently identified by performing a search against a
public reference spectral library.
The above examples deal with relatively small data sets, but

the versatility of network analysis can be exploited even when
the amount of data becomes much greater. This is the case of a
work recently published by Miho et al., who performed a large-
scale analysis on networks built from antibody repertoires.53

To appreciate the dimension of the problem, it is enough to
note that to build the network of a repertoire of, for example,
106 clones (the nodes), one needs a similarity matrix of 1012

elements to define the edges. This is a relevant computational

task that the authors tackled by leveraging the power of parallel
distributed computing through the Apache Spark framework.44

The analysis of the network of complete antibody repertoires
allowed overcoming of the limitations of using only portions of
the network that are not a priori statistically representative of
the properties (parameters) of the whole system and led the
authors to derive some general principles on immune
repertoire architecture.53

3.2. Protein Structure Networks. If we consider that a
protein, like any other molecule, is an ensemble of interacting
elements (the amino acid residues, in this case), it is
immediately derived that it represents a complex system in
which structure, dynamics, and eventually function can be
viewed as emergent properties stemming from the relation-
ships among the residues. In this context, protein structure
networks (PSN) are widely studied, as the network approach is
considered quite suitable to deal with the structure−function
relationships, also in the light of the fast growth of analytical/
biophysical technologies applicable to protein structure
determination. PSNs are built by considering the amino
acids (usually the Cα atoms) as nodes that are connected by a
link if the distance between them falls within a cutoff value.
The analysis of the parameters describing the properties of the
PSNs lends itself to the study of the protein’s 3D architecture
and its implications in issues like allosteric communication,
folding, and model validation.54 In a recent review, Di Paola et
al. discussed several applications of graph theory to the
description of protein properties in terms of network
parameters and advanced the hypothesis that the protein
contact graph (representing the PSN) might in the future be
considered as the structural formula of proteins.55 It is
interesting to note that the PSN analysis can be carried out
also in combination with other computational techniques to
investigate the protein structural/conformational behavior. In
particular, molecular dynamics simulations and eventually
binding free energy calculations can be synergistically applied
to studies of pharmaceutical interest. For example, Verkhivker
showed the usefulness of this combined approach to interpret
how allosteric effects act on the modulation of protein
functions in the presence of inhibitors56 or cancer driver
mutations.57 Recently, Amusengeri et al.58 applied a computa-
tional protocol including a residue network analysis to identify
allosteric inhibitors of Plasmodium falciparum 70 kDa heat
shock proteins as new antimalarial drug candidates.

3.3. Human Disease Network and Drug Discovery.
Considering drug research from a system-wide, broad
perspective, we cannot help but face the studies on the
human disease network carried out by Barabaśi and his co-
workers. In 2007, this author proposed the term “diseasome”59

to indicate the network of all genetic disorders systematically
linked to all disease genes: it is an example of a bipartite
network (see Supporting Information), where diseases are
connected to the genes known to cause or effect them.60 This
approach provides a wider view on diseases with respect to the
usual classification, revealing possible connections between
some of them, and eventually allowing for new possibilities of
treatment. The same authors further elaborated on the
diseasome concept by taking into consideration molecular
interaction networks, i.e., the “interactomes”. The latter can be
gene regulatory networks (GRNs), protein−protein interaction
(PPI) networks, or metabolic networks and are indispensable
further elements to consider to build a system view of the
cellular mechanisms underlying the phenotype−genotype
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relationships in human diseases.61 It is evident here the effort
to hold together different layers of a complex system, by
leveraging the systems biology approach,62 in order to escape
the simplifications of reductionism.
Focusing more specifically on the relevance of the above

considerations in drug research, first of all, we must recall that,
however, as far as drug action is concerned, the drug−target
interaction remains a key event that maintains its centrality
across paradigms, from the old “magic bullet” idea to the
present polypharmacology, systems-based approach. Having
said that, it appears clear how crucial can be the modeling of
the drug−target interactomes. This goal has been pursued for a
decade or more, from the early representations due to the work
of Hopkins5,63 to the important contributions from the
Barabaśi group.64−66 In essence, from the data sets of
experimental information (as, for example, DrugBank, Table
1), a bipartite drug−target network (DTN) is built from which
projections on the drug or the target component are obtained.
This provides both the drug network (DN), and the target
network (TN), each made by nodes of the same type (drugs or
targets, respectively) connected to each other if they share at
least one target (the DN) or one drug (the TN). Analysis of
the topology of DTNs, DNs, and TNs can reveal interesting
and sometimes unexpected details on how and why drugs act
on certain targets or target communities within the diseasome.
It can also provide useful information for the design of drug

combinations, the drug repurposing, or the interpretation of
toxic effects. Applications of this kind of analysis are
increasingly appearing in the literature and are reviewed in
recent articles (e.g., see refs 67 and 68).
As an example of a complex interactome, in Figure 2, a DTN

generated from DrugBank data sets is shown. The network
displays the interactions between 1636 approved small
molecule drugs and 1991 human protein targets; the edges
represent 7521 unique interactions. Drugs (circles) and targets
(diamonds) are connected if an interaction between them is
reported in the database. As it is evident from the picture, the
network includes a large connected component constituted by
3368 nodes, 1510 of which are drugs. It may be noted that a
relevant number of them cluster in a tightly interconnected
community comprising mostly neurological (light pink),
cardiovascular (brown), and respiratory system (aquamarine)
drugs. The analysis of this kind of network provides a global
picture of the molecular pharmacological space and might help
to identify trends or possible areas of future development in
drug research. An example thereof can be found in the paper
by Yildirim et al.64 Clearly, these models cannot be definitive,
and they evolve as new knowledge adds to the database.
Starting from this consideration, in the next section, a further
step into the use of networks in drug discovery will be
illustrated.

Figure 2. Drug−target network. The DTN was built from DrugBank18 version 5.1.5 retrieving the drug−target interactions between approved
small molecule drugs and human protein targets. Drugs are represented as circle-shaped nodes, and protein targets are represented as diamond-
shaped nodes. As shown in the inset, drugs are color-coded according to the first level anatomical therapeutic chemical (ATC) codes as reported in
DrugBank. The nodes size accounts for the node degree from small (low degree) to large (high degree). Edges connect only drugs and targets
nodes. The network was generated by means of Cytoscape38 version 3.7.2.
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4. NETWORK-BASED INFERENCES
Going back to the idea that networks are simplified
representations of complex systems, it is plausible to recognize
that they are not definitive models, but they can evolve as new
information becomes available. In other words, when dealing
with networks, one has to do with the problem of missing
information, a common situation in the study of biological
systems, where the difficulty of obtaining experimental
evidence of interactions makes the network inherently
incomplete but where, on the other hand, new knowledge is
continuously added. This issue is quite basic in network theory
and pertains to the network reconstruction scope69 in the
general context of the network statistical physics.11,70 In a
tighter perspective, however, the possibility of inferring missing
links in a network, which is the prediction of a new link
between two yet unconnected nodes, is of more practical and
immediate interest. Actually, a number of methods of link
prediction are available that find wide application, e.g., in social
or information networks, where predicting the possible
association between individuals or documents, respectively,
can be very useful.71

4.1. Link Prediction Methods. Focusing on drugs, one of
the hottest issues in medicine today is the identification of
disease-related genes, so much so that considerable exper-
imental efforts are carried out to pursue this goal. Applying
network modeling in this field has produced a relevant amount
of knowledge so far, and many examples thereof regard the
network-based identification of targets (see, for example, ref 72
in the framework of precision medicine) for the elucidation of
mechanisms of action, for drug repurposing, or for the
discovery of new drugs. In practice, one attempts to predict
potential drug−target interactions (DTIs) using one of the
numerous available prediction methods, often borrowed from
such distant fields as social sciences, communication
networking, economy and finance, and so on. The goal is to
produce a list of potential DTIs and rank them based on some
predefined metrics. The starting point is the construction of a
heterogeneous network on which to run a link prediction
algorithm. Generally, in these cases, the heterogeneous
network integrates available information on drugs, targets,

and drug−target interactions obtained from different data-
bases. Given the availability of the data, the key steps in these
methods are (1) the calculation of the drug−drug and target−
target similarities and (2) the application of a drug−target
association inference method. As regards the former, after the
initial simple use of fingerprints and primary sequences to
compare drug molecules and proteins, respectively, more
complex and information rich similarity metrics73 have been
devised in order to take into account also the information
coming from known drug−target interactions,74 as well as
protein and network topological information,75 eventually
elaborated through ML.76 On the methods side, network-based
prediction approaches for DTIs vary broadly, often depending
on the user’s preference or expertise, but the most popular
ones are derived from either recommendation77 or network
propagation78 algorithms, both belonging to the class of the so-
called similarity-based algorithms.71 The methods based on
recommendation algorithms aim at predicting a node’s
preferences for unconnected nodes based on previously
calculated similarity scores (a technique also called collabo-
rative filtering). This approach was applied by Cheng et al.,74

who developed the network-based inference (NBI) method for
the prediction of novel DTIs based on a bipartite drug−target
graph built from an adjacency matrix obtained from known
drug−target interactions. Alaimo et al.79 enhanced this method
by integrating into the model further domain-dependent
biological knowledge, which is drug−drug and target−target
similarity measures. On the other hand, under the framework
of network propagation algorithms several methods are
included that work by simulating the spread of information
across the network starting from seed nodes. The most famous
one is the Google page rank algorithm80 that uses the random
walk through Web pages to calculate their importance. In DTI
prediction, the random walk with restart (RWR) variant has
been developed and successfully applied to drug−target
heterogeneous networks.81,82 The output of these calculations
is a ranked list of probabilities of drug−target association.
Further methods based on network propagation have recently
been proposed, among which those developed by Sharan and

Figure 3. Hetionet version 1.0. (a) Metagraph showing the types of nodes used to build the network and the types of links defined to connect the
nodes. A detailed description of the meaning of each link type as well as the sources of information used to collect the nodes and to draw the edges
is reported in ref 85. (b) Visualization of the whole heterogeneous network. Nodes of the same type are grouped within circles, and links are
colored by type. This Figure 3 is reproduced from Figure 1 of Himmelstein, D. S.; Lizee, A.; Hessler, C.; Brueggeman, L.; Chen, S. L.; Hadley, D.;
Green, A.; Khankhanian, P.; Baranzini, S. E.; 2017; eLife (ref 85), published under the Creative Commons Attribution 4.0 International Public
License (CC BY 4.0; https://creativecommons.org/licenses/by/4.0/).
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co-workers deserve mention, as they are particularly versatile
and applicable also in the personalized medicine setting.83,84

4.2. Applications to Drug Repurposing. As an
illustrative example of the impact a network-based approach
can have on drug repurposing, here we briefly describe a study
called Project Repethio (https://think-lab.github.io/p/
rephetio/) recently published as a research article on eLife.85

In this work, the authors report the construction of a
heterogeneous network to capture the connections among
drugs and diseases (Hetionet version 1.0, https://neo4j.het.io/
browser/) and its use to predict new drug/disease associations
as probabilities of treatment for the repositioning of known
drugs. Hetionet integrates data from public sources and is
composed of ∼50 000 nodes of 11 types linked by ∼2.25
million of edges of 24 types. In Figure 3a, the conceptual
scheme of the network is shown (a metagraph, i.e., a graph in
which the nodes are sets of objects, and the edges connect the
sets86), indicating types of nodes and links, and in Figure 3b,
the whole network is visualized with the nodes grouped by
type within circles, and the links are color-coded by type.
In order to extract disease treatment predictions from the

drug−disease connections in the network, the authors
implemented a ML procedure (logistic regression) trained
on a previously compiled gold standard of 755 disease-
modifying indications. These known treatments were the
positive data, while ∼30 000 nontreatments were used as

negatives. In short, the algorithm learns which types of
compound-disease paths (metapaths) discriminate between
treatments and nontreatments, and on this basis, it predicts
new drug−disease associations. For 1538 compounds and 136
diseases, 209 168 associations were prioritized, and the authors
provided illustrative validation through literature data and
output analysis for two of them regarding nicotine dependence
and epilepsy. In our opinion, the Repethio project gives a clear
idea of how network-based data analysis can impact drug
research, also considering the suitability of this kind of
approaches to be interfaced with the powerful ML methods for
features selection and prediction. Moreover, it is an example of
the use of publicly available data integrated into an online
platform that in turn is open to users who can access it and
take advantage for their local purposes of a time- and resource-
intensive assembly and integration work. We envisage that the
more research data become available for the public domain, the
more frequent initiatives of this kind develop, leveraging in full
the combined potential of big data and network science.
Noteworthy, the variety of network-based DTI prediction

methods is growing constantly in these years, and the
integration with ML-based tools is frequent, as shown also
by the case illustrated above. Interested readers can refer to the
numerous recent reviews on the argument, e.g., like ref 87 (see
also Discussion). Another direction of development is the
consideration of a further source of information in the

Figure 4. Boolean network dynamics. (a) Nodes are colored red or gray based on their “on” or “off” state, respectively. The stepwise evolution of
the interactions between nodes determines some sequential steps that are calculated based on a set of rules. The stable state of the network at time
step t = S represents an attractor. (b) Attractor landscape. Gray circles represent network states, colored circles represent attractor states. The
landscape contains all the possible network states. The sets of states that converge toward an attractor form the basin of that attractor (colored
areas). (c) The basins of attractors can be associated with cell phenotypes, and the gene states of the attractors determine the nature of the
phenotype.
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construction of the heterogeneous network, namely, diseases.
This results in the building of tripartite networks, wherein
drug−disease and target (gene)−disease associations are
included, thus adding a further layer to the knowledge base
on which predictions are calculated.88−90 For instance, Zong et
al.89 proposed a DTIs prediction method based on the use of a
tripartite network called linked tripartite network (LTN),
where drugs, targets, and diseases are nodes connected by
drug−target, drug−disease, and target−disease associations. In
practice, they merged a bipartite network built from the drug−
target associations from DrugBank (Table 1) with the drug−
disease and gene−disease associations from the diseasome
published by Goh et al.60 to obtain the LTN containing 1452
diseases, 8201 drug−disease associations, and 1684 target−
disease associations. The method showed high efficiency in the
prediction of the associations between drugs and targets within
the network, but it was not able to extend the predictivity to
new drugs or targets not included in the model.

5. NETWORK DYNAMICS
A step forward in the application of network science in drug
research can be taken if we consider the possibility of modeling
the time evolution of networks, that is, network dynamics. To
appreciate the prospective importance of this field for future
drug discovery, it is necessary to briefly introduce Boolean
networks that were proposed in 1969 by S. Kauffman in the
context of a general hypothesis aimed at accounting for the
regulatory circuits controlling homeostasis and differentiation
in cells.91,92 Interested readers might refer to the thoughtful
review by B. Drossel.93

5.1. Boolean Networks. Boolean networks are directed
networks, built in such a way where nodes are genes and links
represent the functional connections between them; each gene
can be “on” or “off”, and a set of rules or update functions are
associated with each node to define the state of the gene at
subsequent time steps. The dynamics of the system is
calculated starting from input gene(s) by updating simulta-
neously at each discrete time step all gene states based on the
predefined rules. Given the way in which it was built, a Boolean
system is deterministic and has a finite number of initial
network states (2N, where N is the number of genes, and 2
refers to the two states on and off). After a number of
iterations (time steps), it will reach a stable situation that can
be a fixed point or a self-looping circle: such a network state
can be accessed following different network state sequences
(trajectories), and it seems to attract the system to it, being
therefore defined an attractor (Figure 4a). Several attractors
may exist for a single Boolean network, and the ensemble of
them together with the trajectories from the initial to the
attractor states gives rise to the attractor landscape (Figure 4b).
It may be noted that a Boolean network can simulate the
dynamical state of a system in normal conditions, but it might
also be perturbed by modifying the update rules, i.e., setting on
or off some nodes. It has been shown that the attractor states
correspond to the cellular phenotypes in response to external
stimuli (see below), and consequently, exploring the attractor
landscape leads to the definition of the phenotype landscape
(Figure 4c), where a phenotype includes all the network states
that lead the system to the same attractor(s).
As a final observation on this kind of models, we point out a

claim made by Kauffman in a recent paper, where he revisited
his initial hypothesis: answering the question “What is a cell
type?”, he wrote “We conclude that there is good evidence that

cell types are high dimensional attractors in the dynamics of
the genetic regulatory network.”94 This means that Boolean
networks can be considered as simple cell models able to
simulate the dynamic cell behavior in response to both
physiological and external stimuli and to predict the cell fate in
terms of phenotypic output. In other words, we might predict
cellular responses to gene activation/inactivation (such as
proliferation, apoptosis, cell cycle arrest, and so on) by
calculating the attractors characterizing the attractor landscape
(Figure 4b and Figure 4c). By the way, Huang et al. in a
beautiful paper were the first to experimentally demonstrate
that an attractor state corresponds to a unique cell phenotype
that can be reached via different trajectories (gene expression
patterns) in response to different perturbations.95

5.2. Network Dynamics and Drug Discovery. The
possible contributions of this network dynamics modeling
approach to the field of drug discovery are manifold, as
illustrated in the review by Bloomingdale et al.96 First of all,
simulating transcriptional regulation networks can be useful in
view of the possibility of postulating new drug targets. For
example, De Anda-Jauregui et al.97 built a simplified Boolean
model of the estrogen receptor regulatory network and ran
dynamics simulations in both unperturbed and perturbed
mode. To simulate the perturbations of the network, the
authors systematically overexpressed (on) and knocked out
(off) all genes, both singularly and in combination. The results
of the attractor landscape analysis pointed out some known
gene expression regulators as the proteins chiefly involved in
the altered proliferative state, thus demonstrating the suitability
of the approach for the exploration of cancer-related systems in
the search for new drug targets.
Incidentally, it must be noted that to obtain the attractor

landscape, the state space of the system should in principle be
fully explored by carrying out dynamics simulations starting
from all the possible initial states (2N; see above). This is a
computationally expensive task, and some methods have been
developed to reduce the size of the network while preserving
the properties of the system.96

As a further example of the applications of network
dynamics, we cite here the work by Choi et al.,98 who studied
the attractor landscape of the p53 regulatory network and used
their analysis to identify druggable targets and putative drug
combinations. The simulations allowed them to identify critical
nodes in the p53 network able to drive normal and breast
cancer MCF7 cells toward proliferation, cell cycle arrest, or cell
death (the attractors). Then, on the basis of this information,
the authors tested different putative therapeutic interventions
(simulated as node or link deletions) aimed at pushing MCF7
cells toward apoptosis. They found and experimentally
confirmed that the combined treatment with nutlin-3
(Mdm2-p53 PPI disruptor) and Wip1 inhibitor resulted in
enhanced cell death, even in the absence of DNA damage. In a
subsequent paper, the same group extended their approach to a
panel of 83 human cancer cell lines, for which they mapped the
genomic alterations of the p53 network. This allowed them to
define 45 differently wired p53 networks that were then
submitted to the attractor landscape analysis to identify cancer-
specific therapeutic interventions.99

Despite the above-mentioned cases, network dynamics is
still an underexplored field in the context of drug research, but
its promises make it worthy of great attention, particularly if we
consider its suitability to the simulation of complex GRNs, e.g.,
like those involved in carcinogenesis.100 In this regard, it is
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worth mentioning Enrico Capobianco’s observation that “cell
state dynamics could be studied by discrete-time Markov
models”,100 a statement that foreshadows a bridge toward
some advanced computational approaches in drug design.
Actually, in the molecular simulations setting, Markov state
models (MSMs) are currently used to investigate the kinetic
aspects of protein molecular dynamics,101,102 and their
applications in GRN dynamics studies are also known.103

Indeed, the possibility to use a common mathematical
formalism to describe the dynamics of such different systems
as a protein and a GRN opens a formidable perspective in view
of the multiscale modeling of biological systems for drug
discovery.

6. DISCUSSION
Networks and network analysis tools are rather widespread in
biology/chemical biology, not so in chemistry/medicinal
chemistry. In any case, if we consider the broad field of drug
research, we see an increased use of this kind of in silico
modeling approach. In our view, medicinal chemists should be
aware of this and take every opportunity to enter this
fascinating field, the same way as when the LFER/QSAR
paradigm104 was introduced by Corwin Hansch.
In the design of a new drug, the scenario depicted by a

system-based network model can be very useful and
illuminating, for both practical and theoretical reasons. As
regards the former, in perspective, the process of identification
and selection of new drug candidates based on a network
representation of the target biosystem (“network-driven drug
discovery”105) might be viewed as a kind of “in silico integrated
screening”, in some way simulating and expanding the
experimental phenotypic screening (e.g., see Turbine, an
artificial intelligence platform for studying cancer, https://
turbine.ai). In fact, on the basis of the available knowledge, one
can build the network of interactions governing the cell
behavior (an in silico cell) and identify those interventions able
to drive the cell toward the desired fate. The network might
include several layers of description, from the molecular to the
in vivo ones and even above. Considering the already
mentioned growing production of molecular, -omic, clinical,
etc. data, it seems reasonable to foresee the possibility of
realizing the “vertical model integration” proposed by Xie et
al.7 through the construction of multipartite networks. This “in
silico pharmacology/systems biology continuum”106 might
allow researchers to take into consideration simultaneously
most of the effects determining a drug’s action process, thus
increasing the reliability of predictions and lowering the costs
of drug candidates selection.
On another side, from a theoretical point of view, taking a

network approach to investigate human diseases means
considering the intrinsic complexity of living organisms,
which is nowadays accepted as a mandatory standpoint to
confront pathologies.68 Coming to drugs and limiting ourselves
to the pharmacological way of tackling the disease problem, the
holistic view of the target system might help to devise new
strategies of design. Peter Csermely gave an interesting
example of this by proposing two strategies of network-based
drug identification: the central hit strategy (CHS) and the
network influence strategy (NIS).14 In the first one (not new,
actually), the aim is to damage a cellular network by hitting a
critical node (as in antiinfectious or anticancer therapies),
while in the second one, drug(s) should hit influential nodes in
order to rewire the diseased network toward its normal state.

Of course, key points in the application of these strategies are
the analysis of the network topology, and, in the case of NIS,
also the network dynamics. Moreover, Csermely convincingly
described how such a way of tackling drug-related issues, while
taking into account the complexity of the system, might well
incorporate current operative concepts, e.g., like PPI inhibitors,
multitarget drugs, allosteric drugs, and hit/lead development.
In this sense, a network-based view allows one to expand both
the starting point and the landscape from which the drug
discovery process is considered. Not being merely a
technological improvement, it could eventually lead to devising
alternative paradigms of pharmacological intervention.
A further theme worthy of discussion is how the network

modeling approach can be integrated with the well-developed
computational techniques currently employed in drug design/
discovery, namely, molecular modeling and simulations, and
ML. Indeed, ML and deep learning methods are already widely
used in computational drug discovery,107,108 and they are
perfectly suited to integrate in both the network construction
techniques and the network-based prediction approaches.
Examples thereof can be found, for example, in the works of
Yamanishi et al.109 (application of a kernel regression method
to build a pharmacological space by integrating a chemical
space and a genomic space) or Mei et al.110 (use of a
supervised bipartite model incorporating additional training
from neighbors in order to predict DTIs for drugs and targets
not included in the network). In a recent paper, Zhou et al.111

proposed a classification for the computational models used for
DTI prediction comprising both network-based methods (i.e.,
the similarity-based algorithms outlined in section 4.1) that
employ algorithms derived from network theory, and ML-
based methods that belong to the realm of statistical
learning.112 Taking this point of view, we can depict a drug
discovery scenario where, given a complex system to be
interpreted or on which predictions have to be made, one can
rely on a rich toolbox of methods that are purely network-
based (section 4.1) or ML-based112 or a merge of both.87

Regarding the inclusion in networks of the atomic-level 3D
information obtained by molecular modeling and simulations,
this issue has to be carefully considered in order to appreciate
its potential in drug discovery. In fact, if we had to do with a
drug−target network or a PPI network, why not consider the
protein nodes as conformational ensembles? In this way, it
might become straightforward to expand each node into the
set of protein conformations. In such a case, this would lead to
the obtainment of a 3D interactome that could take into
account the possibility of a protein binding different partners
with different conformations. In an analogous way, in a
bipartite drug−target network, different conformations of the
same protein could bind different drugs, and should the
network describe this feature, it would increase substantially
the informative content of the model and its ability to predict
potential DTIs. If we imagine such a “3D network model” to
be used for the selection of drug candidates, it might constitute
a bridge between 3D agnostic network-based prediction and
classical target-based molecular design, with a great synergistic
potential in terms of efficiency. In a recent commentary,113

Mih and Palsson discussed the perspectives of a similar
scenario in systems biology. They presented several studies
where structural information on ligands and proteins were
included in genome-scale metabolic network models, thus
allowing a more detailed level of description of such systems.
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Finally, limitations and open challenges of the network-
based approach to drug discovery have to be highlighted. The
first problem has already been pointed out in the section on
data and databases and pertains to the quality of the data of
whatever type they are and whatever source they come from.
Moreover, biological data may be incomplete, biased, or sparse,
and the languages used to build the databases may be different
and/or incompatible. All this limits severely the possibility of
even building a network. The second challenge has to do with
the dimensions of the data and consequently of the network.
Depending on number of nodes and node degrees, the number
of links to calculate can increase enormously, and this again
limits the possibility of building or analyzing the network, even
though some tools allow one to deal with up to millions of
nodes and edges (see the review by Pavlopoulos et al.42).
However, as the analysis becomes more detailed or complex
(e.g., network dynamics), the computational demand becomes
prohibitive. A way to overcome the computational problems is
to distribute the workload on the cloud, a choice that seems
the best technological option presently available, while waiting
for the effective accessibility of quantum computers.

7. CONCLUSION
In his “General Systems Theory” book, in 1969, Ludwig von
Bertalanffy wrote “In one way or another, we are forced to deal
with complexities, with ‘wholes’ or ‘systems’, in all fields of
knowledge. This implies a basic re-orientation in scientific
thinking.”114 This statement fits perfectly the idea at the basis
of this paper about the way drug research should be
approached. Nowadays, we are well aware that the research
paradigm in the pharmaceutical field has changed in this sense,
and what is presented here is an in silico framework coherent
with the new way of thinking drug discovery. By no means
does this imply that the classical computational approaches to
drug design should be replaced by network theory but on the
contrary that they might be more efficiently employed if
integrated in a network context. With a careful awareness to
the open challenges outlined above, network-based discovery
methods will be key players in the next decades drug research.
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