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Abstract

High-dimensional always-changing environments consti-

tute a hard challenge for current reinforcement learning

techniques. Artificial agents, nowadays, are often trained

off-line in very static and controlled conditions in simulation

such that training observations can be thought as sampled

i.i.d. from the entire observations space. However, in real

world settings, the environment is often non-stationary and

subject to unpredictable, frequent changes. In this paper

we propose and openly release CRLMaze, a new bench-

mark for learning continually through reinforcement in a

complex 3D non-stationary task based on ViZDoom and sub-

ject to several environmental changes. Then, we introduce

an end-to-end model-free continual reinforcement learning

strategy showing competitive results with respect to four dif-

ferent baselines and not requiring any access to additional

supervised signals, previously encountered environmental

conditions or observations.

1. Introduction

In the last decade we have witnessed a renewed interest

and major progresses in reinforcement learning (RL) espe-

cially due to recent deep learning developments [3]. State-

of-the-art RL agents are now able to tackle fairly complex

problems involving high-dimensional perceptual data, which

were even unthinkable to solve without explicit supervision

before [34, 45].

However, much of these progresses have been made in

very narrow and isolated tasks, often in simulation with

thousands of trials and with the common assumption of a

stationary, fully-explorable environment from which to sam-

ple observations i.i.d. or approximately so. Even in the case

of more complex tasks and large environments, a common

Figure 1. The 3D maze environment developed with ZDoom and

Slade3. On the left, an example image from the point of view of

the agent is reported. On the right, the planar view of the maze

structure is shown. White points on the map represent random

spawning points used by the agent during both training and test

episodes. Better viewed in colors.

technique known as memory replay [34, 16, 23] is adopted,

consisting in storing old observations in an external memory

buffer to simulate an i.i.d. sampling. Roughly the same

result can be also achieved through multiple replicas of the

agent randomly spawned in the environment and collecting

several different observations at the same time, hence ap-

proximating the coverage of the entire observations space

[33].

Nevertheless, dealing with single agents in the real-world

and subject to computational and memory constraints these

solutions suddenly appear less practical. This is especially

true with always-changing environments and multi-task set-

tings where re-sampling is impossible and storing old ob-

servations is no longer an option since it would require a

constant grow in terms of memory consumption and com-

putational power needed to re-process these observations.

On the other hand, if the memory replay buffer is limited in

size, the agent suddenly incurs in the phenomenon known

in literature as catastrophic forgetting, being unable to re-



tain past knowledge and skills in previously encountered

environmental conditions or tasks [31, 41, 13, 24].

Learning continually from data is a topic of steadily grow-

ing interest for the machine learning community and con-

cerns itself with the idea of improving adaptation and gen-

eralization capabilities of current machine learning models

by providing efficient updating strategies when new obser-

vations become available without storing, re-sampling or

re-processing the previous ones (or as little as possible).

While much of the focus and research efforts in continual

learning have been devoted to multi-task settings (where a

single model is exposed to a sequence of distinct and well-

defined tasks over time) [36, 6], several practical scenarios

would also benefit artificial agents that learn continually in

complex non-stationary reinforcement environments.

In this paper, we focus on the more complex problem of

a single task, constantly changing over time. As it has been

shown in some supervised contexts, the clear separation in

tasks (i.i.d. by parts), along with the presence of a super-

vised “task label’ t [11], greatly helps taming the problem

of forgetting [30, 2]. We argue that learning without any

notion of task or distributional shift (both during training

and inference), at least from an external oracle, is a more nat-

ural approach worth pursuing for improving the autonomy

of every artificial learning agent.

The original contributions of this paper can be summa-

rized as follows:

• We design and openly release a new benchmark, CRL-

Maze based on VizDoom [20], for assessing continual

reinforcement learning (CRL) techniques in an always-

changing object-picking task. CRLMaze is composed

of 4 scenarios (Light, Texture, Object, All) of incre-

mental difficulty and a total of 12 maps. To the best

of our knowledge, this is one of the first attempts to

scale continual reinforcement learning to complex 3D

non-stationary environments.

• We provide 4 continual reinforcement learning base-

lines for each scenario.

• We propose an end-to-end, model-free continual re-

inforcement learning strategy, CRL-Unsup, which is

agnostic to the changes in the environment and does

not exploit a memory replay buffer or any distribution-

specific over-parametrization, showing competitive re-

sults with respect to the supervised baselines (see sec-

tion 4). The core insight of our strategy is to consolidate

past memories through regularization as in [21], but

proportionally to the difference between the expected

reward and the actual reward (hence encoding a novel

environmental condition in which the agent is unable

to operate).

All the environments and the code to reproduce and ex-

pand the experiments discussed in this paper are available at:

https://github.com/vlomonaco/crlmaze.

The rest of the paper is organized as follows: in Section

2, the CRLMaze benchmark is described; In Section 3, the

CRL strategies used for the experiments reported in Section

4 are outlined. Finally, in Section 5, key questions and future

work in this area are discussed.

2. CRLMaze: a 3D Non-stationary Environ-

ment

Continual Learning (CL) in reinforcement learning en-

vironments is still in its infancy. Despite the the obvious

interest in applying CL to less supervised settings and the

early, promising results in this context [40, 48], reinforce-

ment learning tasks constitute a much more complex chal-

lenge where it is generally more difficult to disentangle the

complexity introduced by distributional shifts from those

introduced by the lack of a strong supervision.

It is also worth noting that state-of-the-art reinforcement

learning algorithms and current hardware computational ca-

pabilities does not make experimentations and prototyping

easily accomplished on complex environments where physi-

cal simulation constitute an heavy computational task per se.

In a continual learning context, the problem becomes even

harder since an exposition of the same model to sequential

streams of observations is needed (and cannot be parallelized

by definition). This is why recent reinforcement learning

algorithms for continual learning have been tested only on

arguably simple tasks of low/medium input space dimension

and complexity [21, 1, 35].

Nevertheless, at the same time, state-of-the-art reinforce-

ment learning algorithms have started tackling more complex

problems in 3D static environments. VizDoom [20], followed

soon after by other research platforms like DeepMind Labs

[4] and Malmo [17], allowed researchers to start exploring

new interesting research directions with the aim of scaling

up current reinforcement learning algorithms.

VizDoom is a reinforcement learning API build around the

famous ZDoom game engine and providing all the necessary

utilities to train a RL agent in arbitrary complex environ-

ments. This framework is particularly interesting since it has

been open-sourced to both Windows and Unix systems and

it was already built on the idea of flexibility and customiz-

ability, allowing users to create custom maps and modify

behaviorial responses of the environment through the simple

Action Code Script (ACS) language.

In this paper, we propose an original 3D ViZDoom envi-

ronment for continual reinforcement learning and an object-

picking task named CRLMaze1 (see Fig. 1). The task con-

sists of learning how to navigate in a complex maze and

1In particular, we used Slade3 as the environment editor.



Figure 2. On the left, the environmental changes for each of scenario (Light, Texture, Object) in the 3D CRLMaze. For the All scenario,

each map is the composition of all the environment variations introduced in the respective maps of all the other scenarios. In all the cases,

changes are not gradual but occur abruptly at three (equidistant) points in time. On the right, textures and objects used for the CRLMaze

scenarios. Better viewed in colors.

pick up “column bricks” while avoiding “flaming lanterns”

(see Fig. 2). However, the environment in this case is non-

stationary meaning that is subject to several environmental

changes leading to major difficulties for standard reinforce-

ment learning algorithms.

For properly assessing novel continual reinforcement

learning strategies in the aforementioned 3D complex envi-

ronment we split the benchmark in four different scenarios of

incremental difficulty with respect to different environmental

changes (see Fig. 2):

• Light: In this scenario the illumination of the environ-

ment is altered over time. While intuitively this scenario

may appear as one of the easiest, as we will see in the

experimental section 4, it constitutes one of the most

difficult since visual features from the environment do

not change only in terms of RGB pixel magnitudes by

a scalar factor, but also in terms of agent visibility (i.e.

the radius in the 3D space up to which the RGB colors

saturates to complete black), as shown in Fig. 2 (top

row).

• Texture: In this scenario walls textures are changed

over time. The ability to pass over invariant features

of the background is often taken for granted in many

supervised tasks with state-of-the-art deep architectures

[38]. However, as shown in the past, reinforcement

learning agents are quite fragile also with respect to

minor environmental changes [18].

• Object: In this scenario the shapes and colors of the

objects are changed over time. Invariance with respect

to object shapes and colors is another important prop-

erty every learning system should possess when fac-

ing real-world conditions where surrounding objects

appearances are subject to constant changes due to de-

terioration and substitutions.

• All: In this environment lights, textures as well as ob-

jects are subject to change over time. This scenario

is also proposed with the idea of providing a compre-

hensive scenario for 3D environments in complex non-

stationary settings, combining all the environmental

condition variations proposed in the previous ones.

For all the scenarios, changes are not gradual but happen-

ing at three specific points equidistant in time (the total num-

ber of training episodes is fixed and considered a property of

the environment) and practically implemented as different

ZDoom maps faced sequentially (M1 → M2 → M3, see

Fig. 2). The agent is randomly spawned at fixed positions

depicted as white points in Fig. 1 with a random visual angle.

The environment starts with 75 randomly spawned column

objects and 50 lantern objects. Catching a column increases

the reward of 100 once collected while touching a lantern

decreases the reward of 200. Even if in our exploratory ex-

periments we noted that a shaping reward is not necessary to

train the agents up to convergence, a weak shaping reward

of 0.7 has been added when the go-forward action is chosen

to improve environment exploration and ultimately speed-up

learning convergence. A new object for each category is also

randomly spawned every 3 ticks for roughly maintaining

the amount of objects in the environment stable as when the

objects are collected by the agent they disappear.



Table 1. Some common environments used for continual or meta reinforcement learning. The proposed benchmark, CRLMaze (bottom),

shows significant advancements in terms of task complexity and non-stationary elements.

Environment Name Input Dim. 3D Non-Stationary Elements

Locomotion Environment [1] 14 yes 2 over 16 joints torques are scaled down by a constant factor.

MiniGrid [7] 6×6×3 no “Competencies” introduced in a curriculum.

Catcher [39] 256×256×3 no Vertical velocity of pellet increased of 0.03 from default 0.608.

Flappy Bird [39] 288×512×3 no Pipe gap decreased 5 from default 100.

Krazy World [46] 10×10×3 no Randomly generated worlds from the same distribution.

Mazes [46] 20×20 no Randomly generated mazes from the same distribution.

Arcade Learning Environment [29] 210×160×3 no 60 different games available in the plaform.

CoinRun [10] 64×64×3 no Randomly generated maps with 3 levels of difficulty.

CoinRun Platform [10] 64×64×3 no Randomly generated maps from the same distribution.

RandomMazes [10] [3×3 - 25×25] no Randomly generated mazes of different sizes.

CRLMaze 320×240×3 yes Light/visibility, walls textures, object shape and colors are

changed within the same object picking task.

In Tab. 1, we report some of the common environments

and platforms used in the context of continual and meta-

reinforcement learning and compare them with the proposed

CRLMaze.

While still acknowledging the limited number of environ-

mental variations introduced in the benchmark, we believe

CRLMaze shows a significant advancement in terms of task

complexity and non-stationary elements introduced with

respect to recent environments made available by the com-

munity, being them usually of low input dimensionality, not

often running on a complex 3D engine and with very limited

non-stationary dynamics. For example, in [39], the Catcher

environment is based on simple 2D physics and the only

non-stationary element introduced is a change in the vertical

velocity of the pallet which is only slightly increased of 5%

from its default value.

3. Continual Reinforcement Learning Strate-

gies

Learning over complex and large non-stationary environ-

ments is a hard challenge for current reinforcement learn-

ing systems. Recent works in this research area include

meta-learning [12, 35, 1], hierarchical learning [50, 49] and

continual learning approaches [21, 43, 37]. While both meta-

learning and hierarchical learning work around the idea of

imposing some structural dependencies among the learned

concepts, continual learning is generally agnostic with this

regard, being more focused on addressing the non-stationary

nature of the underlying distributions [36].

Consolidating and preserving past memories while being

able to generalize and learn new concepts and skills is a well

known challenge for both artificial and biological learning

systems, generally acknowledged as the plasticity-stability

dilemma [32]. Since gradient-based architectures are gen-

erally skewed towards plasticity and prone to catastrophic

forgetting, much of the research in continual learning with

deep architectures has been devoted to the integration of

consolidation processes in order to improve stability [6, 14].

However, the general focus of continual reinforcement

learning research has been devoted to multi-task scenarios

[21, 43] where consolidation can be achieved more easily

and only when there is a change of task. CRLMaze con-

stitutes a step forward in the evaluation of new continual

reinforcement learning strategies that have to deal with sub-

stantial, unpredictable changes in the environment within

the same task and without any additional supervised signal

indicating (virtual or real) shifts in the underlying input-

output distribution. We regard at this situation as the most

realistic (and difficult) setting every agent should be able to

deal within real-world conditions, where learning is mostly

unsupervised and autonomous.

In recent literature, this problem has been tackled by

using external generative models of the environment in order

to detect big changes in input space [21]. However, recent

evidences in behavioral experiments on rats suggests, more

generally, behavioral correlates of synaptic consolidation

especially when the subject is exposed to novel or strong

external stimuli (e.g. a foot shock) [8, 9]. Following this

inspiration, in this paper we propose a new strategy CRL-

Unsup, where the central idea is to consolidate memory only

when a substantial difference between the expected reward

and the actual one is detected, i.e. when the agent encounters

an unexpected situation.

Hence, distributional shifts can be detected just by look-

ing at the ability of the agent to actually perform the task:

this can be approximated and practically implemented as

the difference between a short-term (rsmavg) and a long-term

(rlmavg) reward moving average that, when goes under a

particular threshold (η), triggers the memory consolidation

procedure2. The long-term moving average encodes the ex-

2It is interesting to note that a similar technique is also the basis of the

MACD indicator [44] widely used in automated trading systems to detect



Figure 3. Short and long-term moving average (computed over 6 and 50 episodes, respectively) of the average cumulative reward during

training in a single run of the light scenario. Dotted lines indicate when the environment is changed. In this example, the difference between

the short-term and long-term moving average goes under η = −70 when the environment changes.

pected reward over a longer timespan, while the shorter one,

an average of the currently received rewards where noise has

been partially averaged out. This approach may not only sig-

nal changes in the environment affecting the performance of

the agent but also possible changes in the reward function or

instabilities of the learning process which may be mitigated

through consolidation (similar to the regularization loss in-

troduced in PPO [42]). Moreover, we do not use neither any

distribution-specific over-parametrization nor any kind of

memory replay as deemed necessary in [21, 43].

For consolidation in CRL-Unsup we employ the end-to-

end regularization approach firstly introduced in [21] and

known as Elastic Weight Consolidation (EWC): the basic

idea is to preserve the parameters proportionally to their

importance in the approximation of a specific distribution

(i.e. the Fisher information). More efficient consolidation

techniques through regularization derived from EWC have

been recently proposed [43, 51, 30, 27]. However, for sim-

plicity, we used its basic implementation. In eq. 1 and eq. 2

the loss function L of the CRL-Unsup strategy for a single

consolidation step is reported3 where LA2C is the standard

changing market conditions and issue buy/sell signals.
3Please note that in the basic EWC implementation a regularization term

A2C loss function composed of the value and policy loss

as defined in [33]; λ is an hyper-parameter encoding the

strength of the consolidation (i.e. reducing plasticity); Fk is

the Fisher information for the weight θk while θ∗k indicates

the optimal weight to consolidate. However, since the Fisher

information can not be computed on the new data distribu-

tion, F is computed at fixed steps in times and only the latest

one is used in the regularization term when the threshold is

exceeded.

L = LA2C +
λ

2
·
∑

k

Fk(θk − θ∗k)
2 (1)

λ =

{

α if rsmavg − rlmavg ≤ η

0 otherwise
(2)

In Figure 3, an example in the light scenario of the short

and long-term moving average (computed over 6 and 50

episodes, respectively) of the training average cumulative

reward is reported. In order to better compare and understand

the performance of the aforementioned strategy, on each of

the considered environmental changes (i.e. light, texture,

for each consolidation step needs to be added to the loss with a different

Fk and θ∗
k

for each weight θk (see interesting discussion in [43]).



object, all) four different baselines are here introduced and

assessed:

1. Multienv: This approach can be considered as a refer-

ence baseline and not properly a CRL strategy since it

consists in training the agent over all the possible envi-

ronmental conditions (i.e. maps M1, M2 and M3) of

each scenario at the same time. Having access to all the

maps at the same time makes the distribution stationary

and eliminates the catastrophic forgetting problem. It

will be considered as an upper bound for the other strate-

gies as generally acknowledged in continual learning

[36, 26, 28].

2. CRL-Naive: This approach, like the homonym strategy

in the supervised context [26, 30], consists in just con-

tinuing the learning process without variations and in-

differently w.r.t. the changes in the environment. Learn-

ing through reinforcement in complex non-stationary

environments without any memory replay is known to

suffer from catastrophic forgetting, instability and con-

vergence difficulties while learning. This strategy is

usually considered as a lower bound.

3. CRL-Sup: This approach can be considered as a second

baseline in which the distributional shift supervised

signal (i.e. when the map changes) is actually provided

to the model for memory consolidation purposes. In

this case the standard application of EWC with the

loss described in eq. 1 is performed but is perfectly

synchronized with the end of the training on each map.

4. CRL-Static: In this strategy, the memory is consoli-

dated (i.e. the regularization term added) at fixed steps

in time, independently of the changes in the environ-

ment. As we will see in the experiments results, this

may be very difficult to tune and rather inefficient, de-

pending on the memory consolidation technique used.

In fact, when learning from scratch an early and “blind”

consolidation of memory may also hurt performance

and actually hamper the ability of learning in the future.

4. Experiments and Results

For all the experiments we use a simple batched-A2C with

synchronous updates [47], but only within the same map (the

actual environment with fixed static settings), so that when

the map changes the model cannot access in any way previ-

ous environmental conditions. The architecture of the agent

used for these experiments is a plain 3-layers ConvNet (3×3

kernels with 32 feature maps each) with ReLU activations,

followed by a fully connected layer encodings the three pos-

sible actions A = {turn-left, turn-right and move-forward}4.

4Input frames with an original resolution of 320×240 are downscaled

to 160×120.

Each training and test episode has a fixed runtime of 1000

ticks. However, the agent is allowed to make an action ev-

ery 4 frames, maintaining the action chosen based on the

first frame fixed for the other three. This allows a smoother

interaction with the environment and allows to the agent to

not stall in ambiguous situations even if completely stateless

(e.g. in front of a wall).

For the batched-A2C implementation, the synchronous

gradient update takes place every 20 frames (covering 80

ticks of the total 1000 ticks of the full episode length) and

20 different agents are spawned in parallel in 20 ViZDoom

instances of the same environment. The discount factor is

fixed to γ = 0.99 for all the environments. More details

about the experimental procedure, implementation details

and all the hyper-parameters used are available in the section

4.1.

In order to evaluate and compare the performance of

each strategy we use the A metric, defined in [11] as an

extension of [28]. Performance are evaluated at the end

of the training on each map Mi on 300 testing episodes,

100 for each different map Mj , even the ones not already

encountered. Given the test cumulative reward matrix R ∈
R

3×3, which contains in each entry Ri,j the test episodes

average cumulative reward of the model on map Mj after

observing the last training episode from map Mi; A can be

defined as follows:

A =

∑N
i≥j Ri,j

N(N+1)
2

(3)

where N = 3 and A is essentially the average of the

lower triangular matrix of R, which roughly encodes how

the model is performing on the current environmental change

and the already encountered ones, on average. In Table 2 the

average cumulative reward and the A metric results for the

Light, Texture, Object, All scenarios and the 4 different CRL

strategies is reported. It is worth noting that, the scenarios

difficulty can vary substantially from a cumulative reward

average of ∼200 for the agents trained in the light scenario

to ∼600 for the Object one, which turns out to be the easiest

one in our experiments.

By considering the average A metric across all the sce-

narios for each strategy (at the bottom of Table 2) or in the

last column of Fig. 4, it is possible to compare the different

strategies independently of the peculiarities of each specific

scenario. In this case we can observe how the CRL-Sup

strategy constitutes, as we would expect, the best approach

in terms of absolute A performance. However, the proposed

CRL-Unsup strategy, while not exploiting any additional su-

pervised signal, reasonably approximates its performance

with a gap of ∼50 cumulative reward points. The CRL-Static

and CRL-Naive approaches perform similarly on the A met-

ric, but while the CRL-Naive approach is almost consistently

better on the last map M3 at the end of the training, it seems



Table 2. Average cumulative reward matrix R and A metric result for each scenario and CRL strategy. Results highlighted in black and

blue represent the best and the second best performing strategies on each scenario. A gray background is used in the cells involved in the

computation of the A metric. Results are computed over 10 runs for each strategy and benchmark for a total of 160 runs.

CRL-Naive CRL-Sup CRL-Static CRL-Unsup
L

ig
h
t

M1 M2 M3 M1 M2 M3 M1 M2 M3 M1 M2 M3

M1 93 -460 144 283 -350 322 242 -613 -36 334 -298 491

M2 -987 528 -842 -236 545 642 -987 909 -551 -987 1090 -537

M3 -892 1063 938 -232 116 615 -800 832 1106 -892 426 818

A 123,96 181,97 217,4 131,65

T
ex

tu
re

M1 M2 M3 M1 M2 M3 M1 M2 M3 M1 M2 M3

M1 877 544 57 1196 1058 385 1049 822 152 1105 836 72

M2 -115 1360 504 -80 1415 867 -6 1150 479 186 1283 631

M3 -283 -263 1422 -243 -194 1352 -218 -176 1121 -215 -156 1252

A 499,81 574,39 486,63 575,87

O
b
je

ct

M1 M2 M3 M1 M2 M3 M1 M2 M3 M1 M2 M3

M1 930 -974 -1005 1365 -664 -989 1129 -953 -1006 1308 -695 -995

M2 962 1045 -988 1160 1221 -934 781 944 -937 992 1080 -959

M3 -758 -214 1013 254 -125 878 -676 -242 845 54 -131 840

A 496,67 792,59 463,7 690,8

A
ll

M1 M2 M3 M1 M2 M3 M1 M2 M3 M1 M2 M3

M1 1268 -1000 -1000 1579 -1000 -1000 1132 -1001 -1000 1518 -998 -1000

M2 -490 1346 -991 301 904 -999 -503 1044 -999 -301 1103 -1006

M3 -764 -219 815 -389 -370 758 -496 -197 680 -286 -332 695

A 325,88 464,04 276,4 399,59

Avg. A 361,57 ± 154,18 503,24 ± 219,96 361,03 ± 116,30 449,47 ± 210,78

more sensitive to forgetting than the CRL-Static approach on

previously encountered maps.

Results for each specific scenario roughly confirm this

trend with exception of the light scenario (the most diffi-

cult) where a CRL-Static approach seems to prevail even

the CRL-Sup one. We postulate that, in this case, a more

frequent consolidation in the direction of the natural gradient

as shown in [42] may help to stabilize learning in complex

environments even within the same environmental condi-

tions.

Finally, in Fig. 4, the average A metric for each strategy

is reported along with the Multienv upper bound. In this case

the upper bound is not an A metric but simply the average

test cumulative reward (on all the test maps) of a agent

trained simultaneously on the three environmental conditions

of each scenario. It is worth noting the conspicuous gap

w.r.t. the best performing continual reinforcement learning

strategy of each scenario, suggesting the need of further

research on CL approaches for RL.

4.1. Implementation Details

In this section additional details about the experiments are

reported. All the code, environments and setup scripts to re-

produce the experiments are openly released at: https:

//github.com/vlomonaco/crlmaze. In order to

properly compare the performance of the proposed CRL

strategies a total of 200 runs (10 for each CRL strategy and

Figure 4. A metric results for each CRL strategy and scenario.

Dotted lines indicate the average cumulative reward on 300 test

episodes for the multienv upper-bound. Better viewed in colors.

scenario) has been conducted for more than 40 hours of

computation on a single machine with 32 CPU cores and 1

NVIDIA GTX Titan X.

Hyper-parameters used in the experiments are reported

instead in Tab. 3. Hyper-parameters have been chosen for

each strategy in order to maximize the A metric at the end

of each run. Parallel instances indicates the number of

ViZDoom instances and agents running in parallel for the

roll-outs always fixed to 20. Episode size is the number

of frames (not considering the skip-rate of 4 as explained

in section 4) after which a weights update is performed.

The rsmavg and rlmavg size parameters represent instead the



number of training episodes to consider for the short and

long-term moving average, respectively.

Focusing only on the strategies employing consolidation

η, α and λ are the parameters already described in section

4 while Fisher freq., Fisher clip and Fisher sample size

represent respectively i) the computing frequency of the

fisher matrix in terms of training episodes, ii) the clipping

value of the importance magnitude as described in [30],

and iii) the number of episodes used to estimate the fisher

information of each weight.

For more details about the experiments please refer to the

extended preprint [25].

5. Discussion and Conclusions

In this work we introduced and openly released a new

environment and benchmark for easily assessing continual

reinforcement learning algorithms on a complex 3D non-

stationary environment. The preliminary experiments intro-

duced in section 4 on four different scenarios and 5 different

strategies show that the proposed unsupervised approach

without any distributional shift supervised signal, external

model or distribution-specific over-parametrization is not

only possible but may be competitive with respect to a stan-

dard supervised counterpart.

However, as we observed in some experiments (where

there is a noticeable gap between the CRL-Sup and CRL-

Unsup strategies), the detection of a timely consolidation

signal can be sometimes critical. For example, in case of

positive forward transfer followed by a possible negative

backward transfer [28] (i.e. being able to perform well on

new conditions but impacting negatively on learned knowl-

edge about the previous ones) memory consolidation can

not take place just by looking at the training cumulative re-

ward curve since steadily growing. This problem may be

tackled by looking at an additional regularization loss for

reconstructing the input frame (or predicting the next one)

since changes in the input space may be more evident. In

this way, while still using a single end-to-end model and con-

structing more robust features [15, 22], it would be possible

to integrate the benefit of both approaches when learning

continuously.

In the future we plan to expand this work in several other

directions. Firstly by moving towards a more flexible and

more principled solution where the consolidation is propor-

tional to the expected reward difference encoded directly in

the loss function. Secondly by integrating more accurate

synaptic plasticity models as shown in [19, 5] and going

beyond mere consolidation processes which tend to quickly

saturate the model learning capacity.

Finally, we plan to extend our evaluation where existing

environmental changes are discretized by providing addi-

tional training maps for each category and by adding a new

environmental change category where the size of the maze

Table 3. Specific hyper-parameters used for each strategy and sce-

nario.

Naive Sup Static Unsup Multienv

L
ig

h
t

Parallel instances 20 20 20 20 20

Learning rate 6e-5 9e-5 9e-5 9e-5 6e-5

Discount factor 0.99 0.99 0.99 0.99 0.99

Episode Size 20 20 20 20 20

Train episodes 300 300 300 300 600

Test episodes 100 100 100 100 100

rlmavg size n.d. n.d. n.d. 50 n.d.

rsmavg size n.d. n.d. n.d. 6 n.d.

η n.d. n.d. n.d. -80 n.d.

α n.d. n.d. n.d. 10e7 n.d.

λ n.d. 10e7 10e5 n.d. n.d.

Fisher freq. n.d. 300 100 100 n.d.

Fisher clip n.d 10e-7 10e-7 10e-7 n.d.

Fisher sample size n.d 100 100 100 n.d.

T
ex

tu
re

Parallel Instances 20 20 20 20 20

Learning rate 9e-5 2e-4 2e-4 2e-4 9e-5

Discount factor 0.99 0.99 0.99 0.99 0.99

Episode Size 20 20 20 20 20

Train episodes 300 300 300 300 600

Test episodes 100 100 100 100 100

rlmavg size n.d. n.d. n.d. 50 n.d.

rsmavg size n.d. n.d. n.d. 6 n.d.

η n.d. n.d. n.d. -50 n.d.

α n.d. n.d. n.d. 5e6 n.d.

λ n.d. 5e6 5e6 n.d. n.d.

Fisher freq. n.d. 300 100 100 n.d.

Fisher clip n.d 10e-7 10e-7 10e-7 n.d.

Fisher sample size n.d 60 60 60 n.d.

O
b
je

ct

Parallel Instances 20 20 20 20 20

Learning rate 9e-5 2e-4 2e-4 2e-4 2e-4

Discount factor 0.99 0.99 0.99 0.99 0.99

Episode Size 20 20 20 20 20

Train episodes 500 500 500 500 2600

Test episodes 100 100 100 100 100

rlmavg size n.d. n.d. n.d. 50 n.d.

rsmavg size n.d. n.d. n.d. 6 n.d.

η n.d. n.d. n.d. -60 n.d.

α n.d. n.d. n.d. 3e6 n.d.

λ n.d. 3e6 3e6 n.d. n.d.

Fisher freq. n.d. 500 100 100 n.d.

Fisher clip n.d 10e-7 10e-7 10e-7 n.d.

Fisher sample size n.d 60 60 60 n.d.

A
ll

Parallel Instances 20 20 20 20 20

Learning rate 9e-5 2e-4 2e-4 2e-4 2e-4

Discount factor 0.99 0.99 0.99 0.99 0.99

Episode Size 40 40 40 40 40

Train episodes 500 500 500 500 2600

Test episodes 100 100 100 100 100

rlmavg size n.d. n.d. n.d. 50 n.d.

rsmavg size n.d. n.d. n.d. 6 n.d.

η n.d. n.d. n.d. -100 n.d.

α n.d. n.d. n.d. 1e6 n.d.

λ n.d. 7e6 3e6 n.d. n.d.

Fisher freq. n.d. 500 166 166 n.d.

Fisher clip n.d 10e-7 10e-7 10e-7 n.d.

Fisher sample size n.d 60 60 60 n.d.

is substantially varied.

While still in their infancy we can foresee a new gen-

eration of reinforcement learning algorithms which can

learn continually in complex non-stationary environments,

opening the door to artificial learning agents which can

autonomously acquire new knowledge and skills in unpre-

dictable, real-word settings.
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