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GEVREY REGULARITY FOR A CLASS OF SUMS OF
SQUARES OF MONOMIAL VECTOR FIELDS

ANTONIO BOVE AND MARCO MUGHETTI

Abstract. Analytic or Gevrey hypoellipticity is proved for a class
of sums of squares of vector �elds having a symplectic characteris-
tic manifold of dimension 2 and arbitrary (even) codimension. We
note that this class contains examples for which the Treves strat-
i�cation seems to work as well as examples for which the Treves
strati�cation does not identify properly the non symplectic stra-
tum.

1. Introduction and Statement of the Result

The purpose of the present paper is to prove a real analytic or Gevrey
regularity result for a class of operators of the type �sum of squares�. We
consider a class of vector �elds having monomial coe�cients and such
that the characteristic variety of the operator is a symplectic manifold
of dimension 2 and codimension 2n.

More precisely consider in R
n
x × Ry the second order di�erential op-

erator

(1.1) P (x, y,Dx, Dy) =
N
∑

j=1

Xj(x, y,Dx, Dy)
2+

n
∑

k=1

N ′

∑

j=1

X̃jk(x, y,Dx)
2,

where the Xj, X̃jk are vector �elds and moreover

(1.2) Xj(x, y,Dx, Dy) =

{

Dj for j = 1, . . . , n;

cjy
ajxαjDy for j = n+ 1, . . . , N.

Here aj denotes a nonnegative integer and αj is a multiindex such that
|αj| > 0. We use the notation Dj = −i∂xj

and Dy = −i∂y.

Date: April 6, 2023.
2010 Mathematics Subject Classi�cation. 35H10, 35H20 (primary), 35B65,

35A20, 35A27 (secondary).
Key words and phrases. Sums of squares of vector �elds; Analytic hypoellipticity;
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2 ANTONIO BOVE AND MARCO MUGHETTI

The vector �elds X̃jk are de�ned as

(1.3) X̃jk(x, y,Dx) = c̃jky
bjkxβjkDk,

where |βjk| ≥ 0, bjk ≥ 0 and k ∈ {1, . . . , n}. The constants cjk, c̃jk are
real and non zero.

We make the following assumptions on the above vector �elds:

(H1) The vector �elds Xj, j = 1, . . . , N , satisfy Hörmander condi-
tion, i.e. the algebra generated by the Xj's and their iterated
brackets has dimension n+ 1.

(H2) The characteristic set of the operator P , Char(P ), is the set
Σ = {x = ξ = 0, η ̸= 0}.

We point out that Assumption (H1) implies that P is C∞ hypoelliptic
([8]), while (H2) ensures that its characteristic variety is the codimen-
sion 2 real analytic symplectic manifold {(0, y; 0, η) | η ̸= 0}.

Remark 1.1. As it will become quite evident from the proof below we
might give up the assumption that the vector �elds are monomials by
allowing the coe�cients cj, c̃j to be real analytic functions which do not
vanish at the origin. The Theorem proved below would be exactly the
same.
We chose to deal with constant cj, c̃j in order to not burden both the

notation and the proof below.

It is evident that a broad variety of model operators can be written
in the form P is written. Just to cite the best known we mention here

(1.4)
n
∑

j=1

D2
j +

n
∑

j=1

x
2kj
j D2

y,

where kj ∈ N, j = 1, . . . , n.
Other famous models are

(1.5) P1(x1, y,D1, Dy) = D2
1 + x

2(q−1)
1 D2

y + y2kx
2(ℓ−1)
1 D2

y,

when n = 1, ℓ, q ≥ 2, ℓ < q and k ∈ N (the generalized Métivier
operator, see e.g. [13] for its basic form).

It is known that (1.4) is analytic hypoelliptic and we refer to [19] and
[20] for a general statement including (1.4) when all the kj are equal
to 1. As for (1.5) it can be shown that it is Gevrey s hypoelliptic for

(1.6) s ≥
kq

kq − q + ℓ
.

There is no proof of the optimality of the above regularity to our knowl-
edge.
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De�nition 1.1. If Ω ⊂ R
n is an open set we say that the function u

belongs to the Gevrey class of order s ≥ 1, Gs(Ω), if u ∈ C∞(Ω) and
for every compact set K ⊂ Ω there exists a positive constant CK such
that

sup
K

|∂α
xu(x)| ≤ C

|α|+1
K α!s.

We point out that even though the operator in (1.5) has a symplec-
tic real analytic characteristic manifold it is not analytic hypoelliptic.
When ℓ = 1, q = 2 and k = 1 this has been shown by Métivier in [13];
on the other hand it is also true that, in Métivier's case, the charac-
teristic set is a real analytic manifold which is not symplectic. In a
forthcoming paper we introduce a method leading among other things
to the optimality proof of the value in (1.6).
Motivated by this type of model operators as well as by one model

introduced by Ole��nik and Radkevi£ (see [16], [17]), F. Treves in 1996,
[22], introduced the idea that, in order to predict the analytic regularity
of a sum of squares, one should examine a strati�cation of the char-
acteristic variety into real analytic submanifolds. He conjectured that
if each stratum is a symplectic manifold then the operator is analytic
hypoelliptic and viceversa.
To this end he proposed a strati�cation obtained using the iterated

Poisson brackets of the symbols of the vector �elds. Unfortunately it
has been shown in [1], [3] that the Poisson brackets do not identify
the right strata in certain cases. For the operator in (1.5) however the
Poisson bracket method gives the strata Σ1 = {(0, y; 0, η) | η ̸= 0, y ̸=
0} and Σ2 = {(0, 0; 0, η) | η ̸= 0}. Note that Σ2 is not symplectic;
actually it is a Hamilton leaf lying on the �ber of the cotangent bundle.
Actually the operator P in (1.1) generalizes this type of scenario,

possibly admitting a non symplectic stratum of the type of Σ2, even
though P may be an operator for which the Poisson strati�cation fails
to identify the non symplectic stratum. Since the characteristic mani-
fold has dimension 2 the stratum can only be one-dimensional.
In order to state the result we need some notation.

Denote by Q the set of all vector �elds Xj, j ≥ n + 1, for which
aj = 0. Hence if Xj ∈ Q we have that Xj(x,Dy) = cjx

αjDy, j ≥ n+1.
In Z

n
+ consider the set

(1.7) B = {αj ∈ Z
n
+ | Xj = cjx

αjDy for Xj ∈ Q}.

The important object for determining the regularity of the solutions is
the Newton polyhedron associated to B.
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De�nition 1.2. Denote by NP(B) the Newton polyhedron containing
the set B de�ned above:

(1.8) NP(B) = convex hull {α + R
n
+ | α ∈ B},

where R
n
+ = ×n

j=1R
+. We denote by ∂NP(B) its boundary: by de�ni-

tion it is the union of all the compact faces of NP(B).

(1.9) ∂NP(B) =
⋃

ℓ

Fℓ(B).

Let us now consider the set of all vector �elds Xj whose monomial
coe�cient has a factor y

E ′ = {Xj | Xj = cjy
ajxαjDy, with aj > 0}.

We are interested only in those for which the x-exponent lies under-
neath the Newton polyhedron. De�ne

(1.10) E = {αj | Xj ∈ E ′, αj ̸∈ NP(B)}.

Let γ ∈ E and consider the half line through γ, {λγ | λ > 0}. Because
of Assumption (H2) this half line intersects ∂NP(B) in one point. We
de�ne t(γ) so that

(1.11) {t(γ)γ} = {λγ | λ > 0} ∩ ∂NP(B) .

For instance if the half line meets ∂NP(B) in the face F1(B) and F1(B)
is the convex hull of the vectors β1, . . . , βm, with integer components
and m ≥ n. Without loss of generality, we can assume that the �rst n
vectors β1, . . . , βn are linearly independent. Therefore, we have

t(γ) =
⟨∧n

j=2(βj − β1), β1⟩

⟨∧n
j=2(βj − β1), γ⟩

.

Note that, by de�nition, t(γ) > 1 (see also Figure 1.)
Our result is

Theorem 1.1. Using the above notation, for γ ∈ E de�ne

(1.12) s(γ) =

(

1−
1

a(γ)

m

m+ 1

(

1−
1

t(γ)

))−1

,

where we denoted by a(γ) the y-exponent in the �eld containing xγ and
by m+ 1 the length of the minimal Poisson bracket generating the Lie
algebra, according to Assumption (H1).
Then the operator P in (1.1) is Gevrey hypoelliptic of order s, with

(1.13) s =

{

maxγ∈E s(γ) if E ̸= ∅,
1 if E = ∅.

We explicitly note that P in (1.1) is analytic hypoelliptic if E = ∅.
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The �rst example is the operator in (1.5). It is Gevrey hypoelliptic
of the order shown in (1.6). Here n = 1 and the Newton polygon is
made by one point, α = q − 1. γ = ℓ− 1, the corresponding a is equal
to k and �nally m+ 1 = q. Thus

s(γ) =

(

1−
1

k

q − 1

q

(

1−
ℓ− 1

q − 1

))−1

=
kq

kq − q + ℓ
,

which coincides with the value in (1.6).
We observe here that the Lie algebra is generated with the Poisson

brackets of length q: (ad(X1)
q−1X2. But computing a shorter bracket,

(ad(X1)
ℓ−1X3, we �nd a symbol vanishing on {x1 = ξ1 = 0, y = 0},

which is non symplectic.
The second example is more complicated: it is in three variables.

Let�x ∈ R
2�

(1.14)

P2(x, y,Dx, Dy) = D2
1 +D2

2 + x
2(r−1)
2 D2

y + x
2(q−1)
1 D2

y + x
2(p−1)
1 y2aD2

y.

T
re
gi
on

n
on

T
re
gi
on

F
ig
u
r
e
2
.
T
h
e
N
ew

to
n
p
ol
y
go
n
fo
r

in
(1
.1
4)
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Here we assume that 1 < p < q < r. As a consequence m + 1 = q.
The characteristic manifold is {(0, 0, y; 0, 0, η) | η ̸= 0}. The Newton
polygon associated to (1.14) is shown in Figure 2.
The Treves strati�cation detects a non symplectic stratum in this

case, given again by {(0, 0, 0; 0, 0, η) | η ̸= 0}.
Finally we would like to mention the following example:

(1.15)

P3(x, y,Dx, Dy) = D2
1 +D2

2 + x
2(r−1)
2 D2

y + x
2(q−1)
1 D2

y + x
2(p−1)
1 y2aD2

y.

where 1 < r < p < q. Its Newton polygon is shown in Figure 3.
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P3 and the operator in [1] consists in the fact that there is a non sym-
plectic �stratum� whose Hamilton leaf lies on the �ber of the cotangent
bundle. It is known that this situation is much more di�cult to treat
compared to leaves lying on the base of the cotangent bundle. At the
moment we have no optimality proof for the Gevrey regularity (1.16)
of (1.15). We also remark that the optimality of (1.16) would imply
that the Treves conjecture does not hold in dimension 3.
Finally a last remark concerning P1 in (1.5). Since the x-space di-

mension is 1 in this case, the Newton polygon is degenerate, i.e. it is
just one point on the real positive line:

0

Figure 4. The degenerate Newton polygon for in (1.5)

As a consequence the whole region below the Newton polygon is a
�T-region�, or, in other words, the Treves procedure correctly identi�es
the strata. This fact makes us to think that the Treves conjecture holds
in dimension 2, although we have no proof at the moment.

2. Proof of the Theorem: Preliminaries

The basic tool to prove Theorem 1.1 is the subelliptic a priori in-
equality proved by L. Hörmander, [8], and then improved by L. Roth-
schild and E. Stein in [18]. In our notation it can be written as

(2.1)

where , a neighborhood of the origin in , is a pos-
itive constant independent of and is the length of the maximal
Poisson bracket required to satisfy Hörmander condition. Using the
notation of the preceding section we have that

(2.2)

We are going to need some special cuto� functions in the proof:

De�nition 2.1. For any natural number, denote by a
function in . We say that is an Ehrenpreis sequence of cuto�
functions if there is a positive constant such that for we
have, for every

(2.3)
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where Cφ > 0 and independent of p.

This kind of cuto� functions has been explicitly constructed in [9].
We moreover are going to need cuto� functions of the above type but
only depending on the variable y. In fact if a cuto� function φ = φ(x, y)
is identically equal to 1 in a small neighborhood of the origin, each time
it gets derived with respect to x it has a support bounded away from
{x = 0}, i.e. it has support in the ellipticity region of the operator,
where analyticity is well known. For this reason we assume, without
loss of generality, that u is compactly supported with respect to x near
{x = 0}.

Our purpose is to prove that if u is a smooth function such that
Pu ∈ Gs1(Ω), for 1 ≤ s1 ≤ s, s de�ned in (1.13), then we have an
estimate of the form

(2.4) ∥X(Dk
yφp)D

ℓ
yu∥ ≤ Cp+1p!s, ℓ+ k ≤ p.

Here φp is a cuto� function of the type de�ned above, X denotes any
of the vector �elds involved in the de�nition of P and C is positive and
independent of p.

Actually, for technical reasons, it is useful to prove a slightly more
general estimate of the form

(2.5) ∥φ(h)
p Dℓ

yu∥ 1
m+1

+ max
j=1,...,N

∥Xjφ
(h)
p Dℓ

yu∥

+ max
j=1,...,n
k=1,...,N ′

∥X̃jkφ
(h)
p Dℓ

yu∥ ≤ Cℓ+1
1 Ch

2 p
s(h+ℓ),

with h, ℓ(m + 1) ∈ N, h + ℓ ≤ p, C1 and C2 positive constants in-

dependent of p. Here φ
(h)
p = Dh

yφp. Note that the above estimate is
meaningful if ℓ is large; for bounded values of ℓ it is an immediate con-
sequence of the C∞-regularity of u (due to the Hörmander theorem)
and of the estimates (2.3).

To prove (2.5) we proceed by induction on h + ℓ: the estimate is
trivially veri�ed if h + ℓ = 0. Assume that (2.5) is true if h + ℓ < p′.
We want to show that it holds when h + ℓ = p′. To this end we again
use induction on ℓ. If 0 < ℓ < 1 then (2.5) is easily deduced using
the properties of the cuto� function φp. Assume that (2.5) is true for
h+ ℓ = p′, but ℓ < p′′ ≤ p′ and show that it holds when ℓ = p′′.
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For the sake of simplicity we take p′′ = p′ = p. Thus we want to
show that

(2.6) ∥φpD
p
yu∥ 1

m+1
+ max

j=1,...,N
∥XjφpD

p
yu∥

+ max
j=1,...,n
k=1,...,N ′

∥X̃jkφpD
p
yu∥ ≤ Cp+1

1 psp,

assuming that for ℓ < p, h+ ℓ ≤ p we have

(2.7) ∥φ(h)
p Dℓ

yu∥ 1
m+1

+ max
j=1,...,N

∥Xjφ
(h)
p Dℓ

yu∥

+ max
j=1,...,n
k=1,...,N ′

∥X̃jkφ
(h)
p Dℓ

yu∥ ≤ Cℓ+1
1 Ch

2 p
s(h+ℓ).

Replacing u with φpD
p
yu in (2.1) we obtain

(2.8) ∥φpD
p
yu∥

2
1

m+1
+

N
∑

j=1

∥XjφpD
p
yu∥

2 +
n
∑

j=1

N ′

∑

k=1

∥X̃jkφpD
p
yu∥

2

≤ C
(

⟨PφpD
p
yu, φpD

p
yu⟩+ ∥φpD

p
yu∥

2
)

,

where again u ∈ C∞
0 (Ω).

First of all we show how to treat the error term in the right hand
side of (2.8) (as well as any similar terms coming from the estimate of
the scalar product):

Proposition 2.1 (([2])). Using the above notation we have the inequal-
ity

(2.9) ∥φpD
p
yu∥ ≤ Cp−

1
m+1∥φpD

p
yu∥ 1

m+1
+ Cp+1pp,

where C is positive and independent of p.

Proof. Let χ be a smooth function such that χ(t) = 1 if |t| ≥ 2 and
χ(t) = 0 if |t| ≤ 1. Consider the pseudodi�erential operator χ(p−1Dy).
We have that χ(p−1Dy) ∈ OPS0

0,0, the Hörmander (ρ, δ)�class of order
0 with ρ = δ = 0. Then

(2.10) ∥φpD
p
yu∥ ≤ ∥(1− χ(p−1Dy))φpD

p
yu∥+ ∥χ(p−1Dy)φpD

p
yu∥.

Consider the �rst summand on the r.h.s. above. Even though 1 − χ
has a compact support, we have no composition formula for χ. Observe
that

(2.11) φpD
p
yu =

p
∑

s=0

(−1)s
(

p

s

)

Dp−s
y

(

φ(s)
p u
)

,
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so that
(2.12)

∥(1− χ(p−1Dy))φpD
p
yu∥ ≤

p
∑

s=0

(

p

s

)

∥

∥(1− χ(p−1Dy))D
p−s
y

(

φ(s)
p u
)∥

∥ .

We immediately verify that

σ
(

(1− χ(p−1Dy))D
p−s
y

)

= (1− χ(p−1η))ηp−s ∈ S0
0,0,

because p−1|η| ≤ 2 in the support of 1 − χ. Here σ(A) denotes the
symbol of the pseudodi�erential operator A.
We also verify that

max
0≤α≤ℓ

sup
η

∣

∣∂α
η

(

1− χ(p−1η)ηp−s
)
∣

∣ ≤ Cp−s+1pp−s.

Here C > 0 is a suitable constant independent of p and ℓ is given in
Theorem (A.1). This bounds the S0

0,0�seminorms of (1−χ(p−1Dy))D
p−s
y

needed to apply the Calderón�Vaillancourt theorem (see Thm. (A.1)
in the appendix) so that we obtain that

∥(1− χ(p−1Dy))D
p−s
y ∥L (L2,L2) ≤ Cp−s+1pp−s,

for a new positive constant C. Hence, using the de�nition of the cuto�
function φp, we deduce

∥(1− χ(p−1Dy))φpD
p
yu∥ ≤

p
∑

s=0

(

p

s

)

Cp−s+1pp−s∥φ(s)
p u∥

≤ Cp+1Cφp
p∥u∥

p
∑

s=0

(

p

s

)(

Cφ

C

)s

≤ Cp+1
1 pp,

where C1 is independent of p if we choose C ≥ Cφ, which is always
possible.
Consider now the second summand in (2.10). We have

∥χ(p−1Dy)φpD
p
yu∥

= p−
1

m+1∥p
1

m+1χ(p−1Dy)D
− 1

m+1 ◦D
1

m+1φpD
p
yu∥,

where Ds = Op
(

(1 + |ξ|2 + η2)s/2
)

, for any s ∈ R. Again using the
support of χ we see that

σ
(

p
1

m+1χ(p−1Dy)D
− 1

m+1

)

= p
1

m+1χ(p−1η)(1 + |ξ|2 + η2)−
1

2(m+1) ∈ S0
0,0,
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with the S0
0,0�seminorms uniformly bounded w.r.t. p. Thus the Calderón�

Vaillancourt theorem yields

∥p
1

m+1χ(p−1Dy)D
− 1

m+1∥|L (L2,L2) ≤ C,

where C is a positive constant independent of p. So we have

∥χ(p−1Dy)φpD
p
yu∥ ≤ Cp−

1
m+1∥D

1
m+1φpD

p
yu∥

≤ Cp−
1

m+1∥φpD
p
yu∥ 1

m+1
.

This completes the proof of the proposition. □

In the next sections we are going to examine the terms in (2.8)
originating from the scalar product on the r.h.s. and containing the
Xj and those containing the X̃jk separately. As we shall see the main
contribution comes from those Xj whose coe�cients are represented as
points below the Newton polyhedron.

3. Proof of the Theorem: Dealing with the Fields Xj

Let us consider the scalar product

(3.1) ⟨PφpD
p
yu, φpD

p
yu⟩

in (2.8). We write

PφpD
p
yu = φpD

p
yPu+

[

P, φpD
p
y

]

u.

Since we are assuming that Pu is of Grevrey order s at least in a
neighborhood of the point we are looking at, it is easily seen that the
scalar product containing the �rst summand above yields an Gs growth
rate when we bound it via Cauchy�Schwartz.
We have to treat the commutator term. First of all, by (1.1),

(3.2)
[

P, φpD
p
y

]

=
N
∑

j=1

[

X2
j , φpD

p
y

]

+
n
∑

k=1

N ′

∑

j=1

[

X̃2
jk, φpD

p
y

]

.

Furthermore we have, for a generic vector �eld X and a generic cuto�
function φ,

(3.3)
[

X2, φDp
]

= 2X [X,φDp]− [X, [X,φDp]] .

First of all observe that our cuto� function φp depends on y only.
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Now from (2.8) and (3.3) we obtain that

(3.4)
∣

∣⟨PφpD
p
yu, φpD

p
yu⟩
∣

∣

≤
∣

∣⟨φpD
p
yPu, φpD

p
yu⟩
∣

∣+
∣

∣⟨
[

P, φpD
p
y

]

u, φpD
p
yu⟩
∣

∣

≤ C
(

∥φpD
p
yPu∥2 + ∥φpD

p
yu∥

2
)

+
N
∑

j=n+1

∣

∣⟨
[

X2
j , φpD

p
y

]

u, φpD
p
yu⟩
∣

∣

+
n
∑

k=1

N ′

∑

j=n

∣

∣

∣
⟨
[

X̃2
jk, φpD

p
y

]

u, φpD
p
yu⟩
∣

∣

∣
.

Moreover we observe that when Pu ∈ Gs the �rst term in the next to
last line above is easy to estimate:

∥φpD
p
yPu∥ ≤ Cp+1p!s

The second term in the next to last line of (3.4) is treated using Propo-

sition 2.1 and this yields the term p−
1

m+1∥φpD
p
yu∥ 1

m+1
that can be re-

absorbed in the l.h.s. of (2.8) since p >> 1.
Let us estimate the terms containing the X2

j . By (3.3) we have

(3.5) ⟨
[

X2
j , φpD

p
y

]

u, φpD
p
yu⟩

= 2⟨Xj

[

Xj, φpD
p
y

]

u, φpD
p
yu⟩ − ⟨

[

Xj,
[

Xj, φpD
p
y

]]

u, φpD
p
yu⟩

In this section and in the sections 4 and 5 we estimate the single and
double commutator terms containing the �elds Xj, for j = 1, . . . , N .

In the last section we include the estimate for the vector �elds X̃jk as
well as the �nal argument.
There are several cases:

i) The vector �eld Xj is one of the Xj when j = 1, . . . , n.
ii) We have Xj ∈ Q. In particular for these Xj we have aj = 0.
iii) The �eld Xj is such that aj > 0.

3.1. Case i). For j = 1, . . . , n, Xj = Dj, so that [Xj, φpD
p
y] = 0 as

well as [Xj, [Xj, φpD
p
y] ] = 0. Thus these �elds give no contribution.

One might object that this is due to the fact that we chose a simple
case where the coe�cients of the vector �elds Xj, j = 1, . . . , n, are 1.
No doubt this is true and simpli�es the argument at this stage, but a
more complicated model in which the sum

∑n
j=1 D

2
j is replaced by an

elliptic operator of the form
∑n

r,s=1 ars(x, y)XrXs would have also led
us to the same conclusion of Theorem 1.1, provided the coe�cients are
real valued, ars ∈ Cω(Ω) and the quadratic form is uniformly elliptic,
i.e.

∑n
r,s=1 ars(x, y)ξrξs ≥ c|ξ|2.
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This takes care of the �rst case.

3.2. Case ii). Let us consider the case when n < j ≤ N and aj = 0,
i.e. Xj = cjx

αjDy, αj ∈ Z
n
+, and of course |αj| > 0. Here Z+ denotes

the non negative integers. Note that these �elds correspond to points
that are either on the Newton polyhedron or above it.
Let us consider the commutator

cj
[

xαjDy, φpD
p
y

]

= cjx
αjφ′

pD
p
y,

where we use the notation φ
(k)
p = Dk

yφp.
Using the formula

(3.6) φ′
pD

p
y =

p−1
∑

ℓ=0

(−1)ℓDyφ
(ℓ+1)
p Dp−1−ℓ

y + (−1)pφ(p+1)
p ,

we may write

(3.7) cj
[

xαjDy, φpD
p
y

]

=

p−1
∑

ℓ=0

(−1)ℓcjx
αjDyφ

(ℓ+1)
p Dp−1−ℓ

y + (−1)pcjx
αjφ(p+1)

p

=

p−1
∑

ℓ=0

(−1)ℓXjφ
(ℓ+1)
p Dp−1−ℓ

y + (−1)pcjx
αjφ(p+1)

p .

Let us estimate the �rst summand in the r.h.s of (3.5) for the Xj's
considered in this section. Since the Xj are formally self adjoint we
have, for a positive δ small enough

(3.8) 2
∣

∣⟨Xj

[

Xj, φpD
p
y

]

u, φpD
p
yu⟩
∣

∣

= 2
∣

∣⟨
[

Xj, φpD
p
y

]

u,XjφpD
p
yu⟩
∣

∣

≤ δ2∥XjφpD
p
yu∥

2 +
1

δ2
∥
[

Xj, φpD
p
y

]

u∥2.

The �rst term can be absorbed on the left hand side of (2.8) provided δ
is su�ciently small. As for the second term, we have, because of (3.7),

1

δ
∥
[

Xj, φpD
p
y

]

u∥ ≤
1

δ

p−1
∑

ℓ=0

∥Xjφ
(ℓ+1)
p Dp−1−ℓ

y u∥+
C

δ
∥φ(p+1)

p u∥,

where C > 0 is a constant depending on the support of φp, on αj, but
independent of p.
Keeping into account the estimates (2.3) for φp and the inductive

hypothesis (2.7), the above terms can be bounded as we claimed, i.e.
by Cp+1

1 psp.
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The procedure followed above allows us to decrease the y−derivatives
on u and correspondingly increase the y−derivative on the cuto� func-
tion φp. Since the latter has actually an analytic behaviour, by abuse
of terminology we say that the terms yield an analytic growth rate.
Consider now the double commutator term in (3.5). We have

(3.9)
∣

∣⟨
[

Xj,
[

Xj, φpD
p
y

]]

u, φpD
p
yu⟩
∣

∣

= c2j
∣

∣⟨xαjφ′′
pD

p
yu, x

αjφpD
p
yu⟩
∣

∣

≤ C

(

1

p2
∥xαjφ′′

pD
p
yu∥

2 + p2∥xαjφpD
p
yu∥

2

)

≤ C1

(

p−1
∑

ℓ=0

1

p2
∥Xjφ

(ℓ+2)
p Dp−(ℓ+1)

y u∥2 +
1

p2
∥φ(p+2)

p u∥2

+

p−1
∑

ℓ=0

p2∥Xjφ
(ℓ)
p Dp−(ℓ+1)

y u∥2 + p2∥φ(p)
p u∥2

)

.

Each term above, by the properties of φp and the inductive hypothesis
give once more an analytic growth rate.
Hence we have bounded all terms originating from the vector �elds

considered in Case ii).

3.3. Case iii). Consider now vector �elds of the form

Xj = cjy
ajxαjDy, aj > 0.

Depending on the value of the multiindex αj, these �elds may be repre-
sented with points below the Newton polyhedron or inside the Newton
polyhedron. The latter are very easy to treat and we shall mention
them in Section 5. Hence we are going to assume that

(3.10) αj ̸∈ NP(B) .

Of course (3.10) implies that dist(αj, ∂NP(B)) > 0.

Remark 3.1. We point out explicitly that if y is bounded away from
zero there is nothing to prove, since these vector �elds can be treated as
we just did in the previous section, since at that point we may divide
by y. This in particular gives that the operator P in (1.1) is analytic
hypoelliptic away from y = 0.

Let us start with the simple commutator in (3.5).
[

Xj, φpD
p
y

]

= cjx
αj
(

yaj
[

Dy, φpD
p
y

]

+
[

yaj , φpD
p
y

]

Dy

)

= cjx
αjyajφ′

pD
p
y + cjx

αjφp

[

yaj , Dp
y

]

Dy.
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Since

(3.11)
[

yaj , Dp
y

]

= −

aj
∑

k=1

(

p

k

)

aj!

(aj − k)!
(−i)kyaj−kDp−k

y ,

we may write

[

Xj, φpD
p
y

]

= cjx
αjyajφ′

pD
p
y

−cjx
αjφp

aj
∑

ℓ=1

(

p

ℓ

)

aj!

(aj − ℓ)!
(−1)ℓyaj−ℓDp−ℓ+1

y .(3.12)

Using (3.6) to reconstruct a vector �eld in the �rst term on the right
of the above identity, we may conclude that

[

Xj, φpD
p
y

]

=

p
∑

k=1

(−1)k−1Xjφ
(k)
p Dp−k

y

+cjy
ajxαj(−1)pφ(p+1)

p(3.13)

−cjx
αjφp

aj
∑

ℓ=1

(

p

ℓ

)

aj!

(aj − ℓ)!
(−1)ℓyaj−ℓDp−ℓ+1

y .

Let us now examine the scalar product

2⟨Xj

[

Xj, φpD
p
y

]

u, φpD
p
yu⟩

= 2⟨
[

Xj, φpD
p
y

]

u,XjφpD
p
yu⟩

+ 2⟨
[

Xj, φpD
p
y

]

u,
aj
i
yaj−1xαjφpD

p
yu⟩,

since the �eld Xj is not formally self adjoint. Here u is a function in
C∞

0 (Ω).
We can now estimate the modulus of the above scalar product; for

a convenient positive small δ

(3.14) 2
∣

∣⟨Xj

[

Xj, φpD
p
y

]

u, φpD
p
yu⟩
∣

∣

≤ C
[

(1 + δ−2)∥
[

Xj, φpD
p
y

]

u∥2 + δ2∥XjφpD
p
yu∥

2 + ∥φpD
p
yu∥

2
]

The second term above is absorbable on the left hand side of (2.8)
provided δ is chosen conveniently small. The last term is treated as
indicated in Proposition 2.1. We are left with the norm containing the
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commutator, for which we have the expression (3.13). Thus

(3.15) ∥
[

Xj, φpD
p
y

]

u∥ ≤

p
∑

k=1

∥Xjφ
(k)
p Dp−k

y u∥

+ C1∥φ
(p+1)
p u∥+ C2

aj
∑

ℓ=1

(

p

ℓ

)

∥xαjyaj−ℓφpD
p−ℓ+1
y u∥,

where C1, C2 are positive constants independent of p but depending on
the support of u.
By the inductive hypothesis (2.7) the norms in the �rst sum above

give an analytic growth rate with respect to p, since they are exactly of
the same type as our starting term, with less derivatives landing onto
u.
The term with φ

(p+1)
p can be bound using the estimate (2.3) of the

cuto� function φp. We remark also that the constant C1 can be chosen
to be small if we shrink the neighborhood of the origin Ω where the
support of u is contained. Hence this term gives an analytic growth
rate too.
We are left with the terms in the second sum above.
First observe that

(

p

ℓ

)

=
p(p− 1) · · · (p− ℓ+ 1)

ℓ!
≤ pℓ.

Hence we are going to estimate

(3.16) C2p
ℓ∥xαjyaj−ℓφpD

p−ℓ+1
y u∥, ℓ = 1, . . . , aj.

We are going to use the elementary estimate

(3.17) xy ≤
xλ

λ
+

yµ

µ
, x, y ≥ 0,

1

λ
+

1

µ
= 1.

Pick a θ ∈]aj−ℓ

aj
, 1[

pℓ|y|aj−ℓ = p(1−θ)ℓ · pθℓ|y|aj−ℓ ≤ p(1−θ)ℓλ + pθℓµ|y|(aj−ℓ)µ

≤ p(1−θ)aj + p
θ

ℓaj

aj−ℓ |y|aj ,

if λ−1 + µ−1 = 1 and we choose

λ =
aj
ℓ
, µ =

aj
aj − ℓ

.

If ℓ = aj we simply skip this step.
Note that the choice of θ in the interval speci�ed above is a sort of

Ansatz that we shall verify in what follows.
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Thus we get

(3.18) pℓ∥xαjyaj−ℓφpD
p−ℓ+1
y u∥ ≤ p(1−θ)aj∥xαjφpD

p+1−ℓ
y u∥

+ p
θ

ℓaj

aj−ℓ∥yajxαjφpD
p+1−ℓ
y u∥.

Consider the second term in the r.h.s. above. Using the identity

(3.19) φpD
p′

y =

p′−1
∑

j=0

(−1)jDyφ
(j)
p Dp′−1−j

y + (−1)p
′

φ(p′)
p , p′ ≤ p,

we have

(3.20) p
θ

ℓaj

aj−ℓ∥yajxαjφpD
p+1−ℓ
y u∥

≤ C

p−ℓ
∑

h=0

p
θ

ℓaj

aj−ℓ∥Xjφ
(h)
p Dp−ℓ−h

y u∥+ Cp
θ

ℓaj

aj−ℓ∥φ(p+1−ℓ)
p u∥.

Let us look at the terms in the sum above. First note that the decrease
in the y-derivatives of u is strictly positive since ℓ+ h ≥ 1.
Our second remark is that, since |φ(h)| ≤ Ch+1

φ ph, a decrease of h

units in the order of Dy contributes a factor ph, while a decrease of ℓ
units in the order of Dy contributes a factor

p
θ

aj

aj−ℓ .

A similar argument holds for the second term in the right hand side of
(3.20).
Hence an iteration of this procedure yields a growth rate of the form

(3.21) p!
θ

aj

aj−ℓ ,

since θ
aj

aj−ℓ
> 1 by our Ansatz above.

Let us now focus on the �rst term in (3.18). First remark that

p(1−θ)aj |xαj | = pρ · p(1−θ)aj−ρ|xαj |,

so that, by (3.17) we have

p(1−θ)aj |xαj | ≤ pρσ1 + p((1−θ)aj−ρ)σ2 |xσ2αj |,

where
1

σ1

+
1

σ2

= 1.

Choose now, for reasons that will become clear in a short while,

σ2 = t(αj),
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where the right hand side has been de�ned in (1.11). Note that this
is �ne since t(αj) > 1 by de�nition when αj lies below the Newton
polyhedron. The above choice gives

σ1 =
t(αj)

t(αj)− 1
.

For the sake of simplicity we shall write just t instead of t(αj). Replac-
ing σj, j = 1, 2 with their values, we see that the �rst term in (3.18) is
estimated as

(3.22) p(1−θ)aj∥xαjφpD
p+1−ℓ
y u∥ ≤ pρ

t
t−1∥φpD

p+1−ℓ
y u∥

+ p((1−θ)aj−ρ)t∥xtαjφpD
p+1−ℓ
y u∥.

We note at this point that the choice of ρ > 0 can be done so that the
exponents of p above are ≥ 1. We may state this as an Ansatz that
will be con�rmed later.
Consider the second term on the right hand side of (3.22). By de�ni-

tion tαj ∈ ∂NP(B). This implies that tαj belongs to a face of ∂NP(B).
Since we may always suppose that the faces of the Newton polyhedron
are convex, we get that there are �nitely many vertices of ∂NP(B),
say β1, . . . , βq, q ∈ N depending on αj only, and q numbers t1, . . . , tq,
with tr ∈]0, 1[,

∑q
r=1 tr = 1, such that

tαj =

q
∑

r=1

trβr,

whence we have

|xtαj | ≤

q
∑

r=1

tr|x
βr |.

Therefore it follows

∥xtαjφpD
p+1−ℓ
y u∥ ≤

q
∑

r=1

∥xβrφpD
p+1−ℓ
y u∥.

This is bounded, using (3.19), as

(3.23) p((1−θ)aj−ρ)t∥xtαjφpD
p+1−ℓ
y u∥

≤ p((1−θ)aj−ρ)t

q
∑

r=1

[

p−ℓ
∑

λ=0

∥xβrDyφ
(λ)
p Dp−ℓ−λ

y u∥+ ∥xβrφ(p+1−ℓ)
p u∥

]

≤ C ′p((1−θ)aj−ρ)t

q
∑

r=1

[

p−ℓ
∑

λ=0

∥Xjrφ
(λ)
p Dp−ℓ−λ

y u∥+ ∥φ(p+1−ℓ)
p u∥

]

,
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Xjr being the vector �elds cjrx
βrDy, r = 1, ..., q.

An argument similar to that which led us to (3.21) allows us to con-
clude, using the inductive hypothesis, that the terms under the inner
summation give a growth rate

(3.24) p!((1−θ)aj−ρ) t
ℓ .

Finally the last term ∥φ
(p+1−ℓ)
p u∥ appearing in (3.23) is easy since it

gives a growth rate of analytic type due to (2.3). We are left then with
the �rst term on the right hand side of (3.22)

(3.25) pρ
t

t−1∥φpD
p+1−ℓ
y u∥

for which is not possible to reconstruct a vector �eld. To treat this term
we have to resort to the subelliptic part of estimate (2.8). In particular
we would like to pull back a fraction of the y-derivative. The problem
is that a fraction of a derivative is a pseudodi�erential operator and we
have to commute it with the cuto� function φp whose derivatives we
can estimate up to order Rp�see De�nition 2.1. To this end we are
going to use Lemma B.1 and Corollary B.1 of [1], but before that we
introduce a couple of auxiliary cuto� functions, χp, ωp (see also [1] for
the method used in the following.)
Let ωp, χp denote Ehrenpreis cuto� function in C∞(R), such that

ωp, χp are non negative and moreover ωp(x) = 1 for |x| > 2, ωp(x) = 0
for |x| < 1. We also assume that χp(x) = 0 for |x| < 3 and χp(x) = 1
for |x| > 4. Then ωpχp = χp.
Consider the norm in (3.25). We have

(3.26) ∥φpD
p+1−ℓ
y u∥ ≤ ∥φp(1− χp(p

−1Dy))D
p+1−ℓ
y u∥

+ ∥φpχp(p
−1Dy)D

p+1−ℓ
y u∥.

Now the �rst term is easily bounded by arguing as done in Prop. 2.1
since on the support of 1− χp, |η| ≤ 4p. Hence

pρ
t

t−1∥φp(1− χp(p
−1Dy))D

p+1−ℓ
y u∥ ≤ Cp

1p!

and we get

(3.27) pρ
t

t−1∥φpD
p+1−ℓ
y u∥ ≤ pρ

t
t−1∥φpχp(p

−1Dy)D
p+1−ℓ
y u∥ + Cp

1p!.
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Consider the other summand above. We have

(3.28) ∥φpχp(p
−1Dy)D

p+1−ℓ
y u∥

= ∥φpωp(p
−1Dy)χp(p

−1Dy)D
1

m+1
y D

p−ℓ+ m
m+1

y u∥

≤ ∥ωp(p
−1Dy)D

1
m+1
y φpχp(p

−1Dy)D
p−ℓ+ m

m+1
y u∥

+ ∥[ωp(p
−1Dy)D

1
m+1
y , φp] χp(p

−1Dy)D
p−ℓ+ m

m+1
y u∥.

In view of the Calderón-Vaillancourt theorem (see Theorem. A.1 in
Appendix) ωp(p

−1Dy) is L
2 bounded and we conclude that

(3.29) ∥φpχp(p
−1Dy)D

p+1−ℓ
y u∥ ≤ ∥φpχp(p

−1Dy)D
p−ℓ+ m

m+1
y u∥ 1

m+1

+ ∥[ωp(p
−1Dy)D

1
m+1
y , φp] χp(p

−1Dy)D
p−ℓ+ m

m+1
y u∥.

Summing up (3.27), (3.29) we obtain

(3.30) pρ
t

t−1∥φpD
p+1−ℓ
y u∥ ≤ pρ

t
t−1∥φpχp(p

−1Dy)D
p−ℓ+ m

m+1
y u∥ 1

m+1

+ pρ
t

t−1∥[ωp(p
−1Dy)D

1
m+1
y , φp] χp(p

−1Dy)D
p−ℓ+ m

m+1
y u∥

where the harmless term Cp
1p! is omitted.

The �rst term above allows us to apply the inductive hypothesis, as
we shall see in the following. We only have to take care of the norm
containing the commutator.

For clarity let us state the lemma we need

Lemma 3.1 ([1] Appendix B). Let 0 < θ < 1. Then

(3.31) [ωp(p
−1Dy)D

θ
y, φp(y)]χp(p

−1Dy)D
p−ℓ+1−θ
y

=

p−ℓ+1
∑

k=1

ap,k(y,Dy)χp(p
−1Dy)D

p−ℓ+1
y ,

where ap,k is a pseudodi�erential operator of order −k such that
(3.32)
|∂β

y ∂
α
η ap,k(y, η)| ≤ Ck+1+α+β

a pk+α+βη−k−α, 1 ≤ k ≤ p−ℓ+1, α, β ≤ p.

Furthermore

Corollary 3.1 ([1] Appendix B). For 1 ≤ k ≤ p− ℓ in (3.31) we have

(3.33) ap,k(y,Dy)χp(p
−1Dy)D

p−ℓ+1
y

=
θ(θ − 1) · · · (θ − k + 1)

k!
Dk

yφp(y)χp(p
−1Dy)D

p−ℓ+1−k
y .
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Using both Lemma 3.1 and Corollary 3.1 we deduce that

∥[ωp(p
−1Dy)D

1
m+1
y , φp] χp(p

−1Dy)D
p−ℓ+ m

m+1
y u∥

=

p−ℓ+1
∑

k=1

∥ap,k(y,Dy)χp(p
−1Dy)D

p−ℓ+1
y u∥

≤

p−ℓ
∑

k=1

∥φ(k)
p χp(p

−1Dy)D
p−ℓ+1−k
y u∥

+ ∥ap,p−ℓ+1(y,Dy)χp(p
−1Dy)D

p−ℓ+1
y u∥.

If we go back to (3.30) we �nd that

(3.34) pρ
t

t−1∥φpD
p+1−ℓ
y u∥

≤ pρ
t

t−1

[

∥φpχp(p
−1Dy)D

p−ℓ+ m
m+1

y u∥ 1
m+1

+

p−ℓ
∑

k=1

∥φ(k)
p χp(p

−1Dy)D
p−ℓ+1−k
y u∥

+∥ap,p−ℓ+1(y,Dy)χp(p
−1Dy)D

p−ℓ+1
y u∥

]

Let us start by discussing the �rst term on the right hand side of the
above inequality:

pρ
t

t−1∥φpχp(p
−1Dy)D

p−ℓ+ m
m+1

y u∥ 1
m+1

.

We have by the Calderón-Vaillancourt theorem

pρ
t

t−1∥φpχp(p
−1Dy)D

p−ℓ+ m
m+1

y u∥ 1
m+1

≤ pρ
t

t−1∥φpD
p−ℓ+ m

m+1
y u∥ 1

m+1

+ pρ
t

t−1∥φp(1− χp(p
−1Dy))D

p−ℓ+ m
m+1

y u∥ 1
m+1

≤ pρ
t

t−1∥φpD
p−ℓ+ m

m+1
y u∥ 1

m+1
+ Cp+1p!

We may use the estimate (2.8) and induction, to obtain a bound of the
type

pρ
t

t−1∥φpχp(p
−1Dy)D

p−ℓ+ m
m+1

y u∥ 1
m+1

≤ Cp+1p!s1(ρ),

where

(3.35) s1(ρ) = ρ
t

t− 1

(

ℓ−
m

m+ 1

)−1

= ρ
t

t− 1
·

m+ 1

ℓ(m+ 1)−m
.
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On the other hand from (3.24) and (3.21) we found the exponents

(3.36) s2(θ) = θ
aj

aj − ℓ
, and s3(θ, ρ) = ((1− θ)aj − ρ)

t

ℓ
.

We choose θ, ρ so that

(3.37) s1(ρ) = s2(θ) = s3(θ, ρ).

This is the sole choice allowing us not to lose regularity in two out of
three of the terms examined. We thus obtain

(3.38) θ =
t(m+ 1)(aj − ℓ)

ajt(m+ 1)−m(t− 1)
,

and
(3.39)

ρ = aj
ℓt(m+ 1)− (t− 1)m

ajt(m+ 1)− (t− 1)m
·

(t− 1)(ℓ(m+ 1)−m)

(t− 1)(ℓ(m+ 1)−m) + ℓ(m+ 1)
.

The Gevrey regularity we get�the common value of sj for j = 1, 2, 3�
is then

(3.40) sj = s0 =

(

1−
1

aj

(

1−
1

t

)

m

m+ 1

)−1

,

which is the value we want to �nd if the index αj is the only point
underneath the Newton polyhedron (see (1.12)).
First of all we have to make sure that the Ansatz (or the Ansätze)

we made are indeed veri�ed.
Now θ > (aj − ℓ)/aj is easily seen since s0 = θ

aj
aj−ℓ

> 1. Let us verify

that 1− θ > 0.

1− θ = 1−
aj − ℓ

aj
s0 > 0

is equivalent to

ℓ >

(

1−
1

t

)

m

m+ 1
,

and this is obvious since both factors on the right are less than 1.
Next we verify that ρ < (1− θ)aj. We have

1− θ =
ℓt(m+ 1)− (t− 1)m

ajt(m+ 1)− (t− 1)m
,

so that

ρ = aj(1− θ)
(t− 1)(ℓ(m+ 1)−m)

(t− 1)(ℓ(m+ 1)−m) + ℓ(m+ 1)
,

and the fraction is less than 1.



24 ANTONIO BOVE AND MARCO MUGHETTI

Let us go back to (3.34) and discuss the other terms:

pρ
t

t−1∥φ(k)
p χp(p

−1Dy)D
p−ℓ+1−k
y u∥,

k = 1, . . . , p− ℓ, and

pρ
t

t−1∥ap,p−ℓ+1(y,Dy)χp(p
−1Dy)D

p−ℓ+1
y u∥.

The last norm, by Lemma 3.1, (3.32), and by the Calderón Vaillan-
court theorem, keeping into account the support of χp, is bounded by

Cp+1
3 pρ

t
t−1pp ≤ C ′p+1

3 p!, so that it gives an analytic growth rate.
Consider one of the norms involving derivatives of φp in (3.34), for

ℓ = 1, . . . , aj, k = 1, . . . , p− ℓ,

pρ
t

t−1∥φ(k)
p χp(p

−1Dy)D
p−ℓ+1−k
y u∥.

To evaluate this we are in the same position as before�see (3.28) and
(3.29). An iteration of the above procedure and using the properties of
the cuto� φp, we see that this type of terms have a bound of the form

Cp+1p!s(ℓ,k),

where

s(ℓ, k) = ρ
t

t− 1

1

ℓ+ k − m
m+1

+
k

ℓ+ k − m
m+1

.

But

s(ℓ, k) = ρ
t

t− 1

1

ℓ− m
m+1

ℓ− m
m+1

ℓ+ k − m
m+1

+
k

ℓ+ k − m
m+1

= s0
ℓ− m

m+1

ℓ+ k − m
m+1

+
k

ℓ+ k − m
m+1

< s0,

by (3.35) and (3.40).
This accomplishes the estimate of the single commutator terms in

(3.5) for the vector �elds where aj > 0. We must now estimate the
double commutator terms.
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4. Case iii). The double commutator terms

Let us go back to equation (3.5) to estimate the double commutator
summand for the vector �eld Xj = cjy

ajxαjDy. From (3.12) we have

[

Xj,
[

Xj, φpD
p
y

]]

= c2j
[

yajxαjDy , yajxαjφ′
pD

p
y

]

− c2j

[

yajxαjDy ,

aj
∑

ℓ=1

(

p

ℓ

)

aj!

(aj − ℓ)!
(−i)ℓxαjφpy

aj−ℓDp−ℓ+1
y

]

= B1 − B2

B1 is readily computed using the formula

(4.1)
[

a(x, y)Dy , φ(y)a(x, y)Dp
y

]

= a(x, y)2φ′(y)Dp
y

− (p− 1)a(x, y)φ(y)a′y(x, y)D
p
y

− a(x, y)φ(y)

p
∑

ℓ=2

(

p

ℓ

)

a(ℓ)y (x, y)Dp+1−ℓ
y ,

where φ′(y) = Dyφ(y) and a
(ℓ)
y (x, y) = Dℓ

ya(x, y). Hence replacing a
with yajxαj and φ with φ′

p, we obtain

(4.2) B1 = c2j

(

x2αjy2ajφ′′
pD

p
y − aj(p− 1)(−i)x2αjy2aj−1φ′

pD
p
y

−

aj
∑

ℓ=2

(

p

ℓ

)

(−i)ℓ
aj!

(aj − ℓ)!
x2αjy2aj−ℓφ′

pD
p+1−ℓ
y

)

.

Let us consider B2. We have the formula

(4.3)
[

a(x, y)Dy , bℓ(x, y)D
p−ℓ+1
y

]

= a(x, y)b′ℓ(x, y)D
p+1−ℓ
y

−

p+1−ℓ
∑

k=1

(

p+ 1− ℓ

k

)

bℓ(x, y)D
k
ya(x, y)D

p+2−ℓ−k
y ,

where b′ℓ(x, y) = Dybℓ(x, y).
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Replacing a with xαjyaj and bℓ with
(

p
ℓ

) aj !

(aj−ℓ)!
(−i)ℓxαjyaj−ℓφp, we

obtain that

(4.4) B2 = c2j

aj
∑

ℓ=1

(

p

ℓ

)

aj!

(aj − ℓ)!
(−i)ℓ

[

x2αjy2aj−ℓφ′
pD

p+1−ℓ
y

+ (−i)(aj − ℓ)x2αjy2aj−ℓ−1φpD
p+1−ℓ
y

−

aj
∑

k=1

(

p+ 1− ℓ

k

)

aj!

(aj − k)!
(−i)kx2αjy2aj−ℓ−kφpD

p+2−ℓ−k
y

]

.

Thus from (4.2) and (4.4) we �nally get

(4.5)
[

Xj,
[

Xj, φpD
p
y

]]

= c2j

[

x2αjy2ajφ′′
pD

p
y − aj(p− 1)(−i)x2αjy2aj−1φ′

pD
p
y

− 2

aj
∑

ℓ=2

(

p

ℓ

)

(−i)ℓ
aj!

(aj − ℓ)!
x2αjy2aj−ℓφ′

pD
p+1−ℓ
y

+ ipajx
2αjy2aj−1φ′

pD
p
y

−

aj
∑

ℓ=1

(

p

ℓ

)

(−i)ℓ+1 aj!

(aj − ℓ− 1)!
x2αjy2aj−ℓ−1φpD

p+1−ℓ
y

+

aj
∑

ℓ=1

aj
∑

k=1

(

p

ℓ

)(

p+ 1− ℓ

k

)

(−i)ℓ+k aj!
2

(aj − ℓ)!(aj − k)!

· x2αjy2aj−ℓ−kφpD
p+2−ℓ−k
y

]

.



GEVREY REGULARITY FOR MONOMIAL VECTOR FIELDS 27

Using this identity we compute the scalar product in (3.5) containing
the double commutator:

(4.6) ⟨
[

Xj,
[

Xj, φpD
p
y

]]

u, φpD
p
yu⟩

= c2j

[

⟨x2αjy2ajφ′′
pD

p
yu, φpD

p
yu⟩

+ iaj(p− 1)⟨x2αjy2aj−1φ′
pD

p
yu, φpD

p
yu⟩

− 2

aj
∑

ℓ=2

(

p

ℓ

)

(−i)ℓ
aj!

(aj − ℓ)!
⟨x2αjy2aj−ℓφ′

pD
p+1−ℓ
y u, φpD

p
yu⟩

−

aj−1
∑

ℓ=1

(

p

ℓ

)

(−i)ℓ+1 aj!

(aj − ℓ− 1)!
⟨x2αjy2aj−ℓ−1φpD

p+1−ℓ
y u, φpD

p
yu⟩

+

aj
∑

ℓ=1

aj
∑

k=1

(

p

ℓ

)(

p+ 1− ℓ

k

)

aj!
2

(aj − ℓ)!(aj − k)!
(−i)ℓ+k

· ⟨x2αjy2aj−ℓ−kφpD
p+2−ℓ−k
y u, φpD

p
yu⟩

]

=
5
∑

ρ=1

Aρ.

Let us estimate Aρ, ρ = 1, . . . , 5.

4.1. A1. Observe that

A1 = c2j⟨
1

p
xαjyajφ′′

pD
p
yu, px

αjyajφpD
p
yu⟩.

We want to reconstruct, when possible, a vector �eld in each factor of
the above scalar product. To this end we use (3.6) where φ′

p is replaced
by the cuto� function appearing in the factors. Note that we consider
the factor p as part of the cuto� since its role in A1 is that of balancing
the growth of the cuto� w.r.t. p.
Thus

A1

= c2j⟨x
αjyaj

[

p−1
∑

ℓ=0

(−1)ℓDy
1

p
φ(ℓ+2)
p Dp−1−ℓ

y u+ (−1)p
1

p
φ(p+2)
p

]

u,

xαjyaj
[

p−1
∑

ℓ′=0

(−1)ℓ
′

Dypφ
(ℓ′)
p Dp−1−ℓ′

y + (−1)ppφ(p)
p

]

u⟩.
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As a consequence

A1 =

p−1
∑

ℓ,ℓ′=1

(−1)ℓ+ℓ′⟨Xj

(φ
(ℓ+2)
p

p

)

Dp−1−ℓ
y u,Xj(pφ

(ℓ′)
p )Dp−1−ℓ′

y u⟩

+

p−1
∑

ℓ=1

cj(−1)ℓ+p

[

⟨Xj

(φ
(ℓ+2)
p

p

)

Dp−1−ℓ
y u, xαjyaj(pφ(p)

p )u⟩

+ ⟨xαjyaj
1

p
φ(p+2)
p u,Xj(pφ

(ℓ)
p )Dp−1−ℓ

y u⟩

]

+ c2j⟨x
αjyaj

1

p
φ(p+2)
p u, xαjyajpφ(p)

p u⟩

=

p−1
∑

ℓ,ℓ′=1

A1,ℓ,ℓ′ +

p−1
∑

ℓ=1

(A1,ℓ,+ + A1,ℓ,−) + A1,0.

The last term has a straightforward estimate since

|A1,0| ≤ CδC2p+3
φ ∥u∥2p2p+2,

where Cφ is the constant in De�nition 2.1, C is a positive constant
depending only on the operator and δ can be taken small since the
neighborhood of the origin where u has its support can be chosen small.
Let us estimate next A1,ℓ,ℓ′ , since this motivates the insertion of the

factor p on the left hand side of the scalar product to balance the higher
derivative of φp.
We have

|A1,ℓ,ℓ′ | = |⟨Xj

(φ
(ℓ+2)
p

p

)

Dp−1−ℓ
y u,Xj(pφ

(ℓ′)
p )Dp−1−ℓ′

y u⟩|

≤ ∥Xj

(φ
(ℓ+2)
p

p

)

Dp−1−ℓ
y u∥ ∥Xj(pφ

(ℓ′)
p )Dp−1−ℓ′

y u∥.

The above estimate allows us to apply the a priori estimate (2.8) with

a slightly modi�ed cuto� function p−1φ
(ℓ+2)
p or pφ

(ℓ′)
p , respectively. Di-

viding the �rst function by Cφ and multiplying the second by the same
positive constant we have that these two functions satisfy estimates of
the form of those in De�nition 2.1. Thus the term A1,ℓ.ℓ′ yields only
analytic growth.
Next we want to bound A1,ℓ,±. This is actually a blend of the two

previous estimates:

|A1,ℓ,+| ≤ CδCp+2
φ ∥u∥pp+1∥Xj

(φ
(ℓ+2)
p

p

)

Dp−1−ℓ
y u∥,
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with an analogous meaning of the constants as well as δ > 0. The norm
above is treated as before. Finally the term A1,ℓ,− is dealt with in a
completely analogous way and we omit it.

4.2. A2. We write

A2 = iajc
2
j⟨x

αjyaj−1φ′
pD

p
yu, (p− 1)xαjyajφpD

p
yu⟩.

Hence, using formula (3.6) once more on the second factor of the scalar
product,

(4.7) |A2| ≤ C∥xαjyaj−1φ′
pD

p
yu∥∥cjx

αjyajpφpD
p
yu∥

≤ C∥xαjyaj−1φ′
pD

p
yu∥

[

p−1
∑

ℓ=0

∥Xjpφ
(ℓ)
p Dp−1−ℓ

y u∥+ δp∥φ(p)
p u∥

]

.

Here C and δ have a meaning analogous to that of the previous sub-
section.
Now we already saw how to estimate the terms in brackets obtaining,

at least for this branch of the induction tree, an analytic growth rate.
On the other hand the �rst factor is a norm we already bounded in
(3.16), obtaining a Gevrey-s0 growth rate. Note that strictly speaking
the di�erence between the factor in (4.7) above and the norm in (3.16)
is that the norm (3.16) with ℓ = 1 has no derivative of φp, but has an
extra factor p in front. The two situations are analogous as far as the
estimates are concerned.

4.3. A3. We are going to estimate

A3,ℓ =

(

p

ℓ

)

(−i)ℓ
aj!

(aj − ℓ)!
⟨x2αjy2aj−ℓφ′

pD
p+1−ℓ
y u, φpD

p
yu⟩,

the generic summand in (4.6) for ℓ = 2, ..., aj. Since the binomial factor
is bound by pℓ, we have

(4.8) |A3,ℓ| ≤ C|⟨pℓ−1xαjyaj−ℓφ′
pD

p+1−ℓ
y u, xαjyajpφpD

p
yu⟩|

≤ C

(

pℓ∥xαjyaj−ℓ
(φ′

p

p

)

Dp+1−ℓ
y u∥

)

(

p∥xαjyaj−1φpD
p
yu∥
)

,

where we used the fact that, near the origin, |yaj | ≤ |yaj−1|.
Both norms above are of the form we bounded in (3.18). The �rst

corresponds to the case when ℓ derivatives have been performed and
we remark that the cuto� function p−1φp satis�es the same estimates
as φp. The second norm corresponds to the case ℓ = 1 in (3.18). As a
consequence we get a Gevrey�s0 growth rate from this term.
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4.4. A4. Using the same notation as in the preceding subsection, we
set, for ℓ = 1, ..., aj − 1

A4,ℓ =

(

p

ℓ

)

(−i)ℓ+1 aj!

(aj − ℓ− 1)!
⟨x2αjy2aj−ℓ−1φpD

p+1−ℓ
y u, φpD

p
yu

and we observe that

(4.9) |A4,ℓ| ≤ C|pℓ⟨xαjyaj−ℓφpD
p+1−ℓ
y u, xαjyaj−1φpD

p
yu⟩|

≤ C
(

pℓ∥xαjyaj−ℓφpD
p+1−ℓ
y u∥

) (

p∥xαjyaj−1φpD
p
yu∥
)

.

Note that the constant C has di�erent meanings in di�erent terms.
Moreover here we just increased by one the number of p-factors in
order to exactly match the expression already bounded in (3.18). As
above we get a Gevrey-s0 growth type.

4.5. A5. Again we bound the summand

(4.10) A5,ℓ,k =

(

p

ℓ

)(

p+ 1− ℓ

k

)

aj!
2

(aj − ℓ)!(aj − k)!
(−i)ℓ+k

· ⟨x2αjy2aj−ℓ−kφpD
p+2−ℓ−k
y u, φpD

p
yu⟩

in the last term of (4.6) with ℓ = 1, ..., aj, k = 1, ..., aj, by noting that

(4.11) |A5,ℓ,k| ≤ Cpℓ+k

· |⟨xαjyaj−(ℓ+k−1)φpD
p+1−(ℓ+k−1)
y u, xαjyaj−1φpD

p
yu⟩|

≤ C
(

pℓ+k−1∥xαjyaj−(ℓ+k−1)φpD
p+1−(ℓ+k−1)
y u∥

)

·
(

p∥xαjyaj−1φpD
p
yu∥
)

,

and again both norms above match the norms bounded in (3.18) thus
yielding a Gevrey-s0 growth rate.
This completes the estimate of the double commutator terms for the

vector �elds Xj.

5. The vector fields Xj in the Newton polyhedron

In this section we study the vector �elds Xj = cjy
ajxαjDy, aj > 0

that belong to the Newton polyhedron NP(B).
From (3.4) we have to estimate

(5.1) ⟨
[

X2
j , φpD

p
y

]

u, φpD
p
yu⟩

= 2⟨Xj

[

Xj, φpD
p
y

]

u, φpD
p
yu⟩ − ⟨

[

Xj,
[

Xj, φpD
p
y

]]

u, φpD
p
yu⟩.
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We proceed as done in Sect.3 Case iii) and we start by considering the
�rst term with a single commutator in the r.h.s. above. Arguing as in
(3.14) and in (3.15), we have

(5.2) ∥
[

Xj, φpD
p
y

]

u∥ ≤

p
∑

k=1

∥Xjφ
(k)
p Dp−k

y u∥

+ C1∥φ
(p+1)
p u∥+ C2

aj
∑

ℓ=1

(

p

ℓ

)

∥xαjyaj−ℓφpD
p−ℓ+1
y u∥,

By the inductive hypothesis (2.7) and from the regularity property
(2.3) of the cuto� φp the �rst two summands in r.h.s. of (5.2) gives an
analytic growth rate.
Therefore we are left with the last summand in the r.h.s. of (5.2).
Since xαj belongs to the Newton polyhedron, there are �nitely many
vertices of ∂NP(B), say β1, . . . , βq, q ∈ N depending on αj only, such
that

|xαj | ≤ C

q
∑

r=1

|xβr |.

on the compact support of u. Thus we get
(

p

ℓ

)

∥xαjyaj−ℓφpD
p−ℓ+1
y u∥ ≤ Cpℓ

q
∑

r=1

∥xβrφpD
p−ℓ+1
y u∥

Using the formula

(5.3) φpD
p−ℓ+1
y =

p−ℓ+1
∑

k=0

(−1)kDyφ
(k)
p Dp−ℓ−k

y + (−1)pφ(p+1−ℓ)
p ,

we can reconstruct the vector �elds corresponding to the vertices β1, . . . , βq

of ∂NP(B)

(5.4) Xjr = cjrx
βrDy, r = 1, ..., q.

Thus we get

(5.5) pℓ
q
∑

r=1

∥xβrφpD
p−ℓ+1
y u∥ ≤ Cpℓ

q
∑

r=1

[

p−ℓ+1
∑

k=0

∥Xjrφ
(k)
p Dp−ℓ−k

y u∥

+ ∥φ(p+1−ℓ)
p u∥

]

.

It is easy to see that the terms in the r.h.s. yield an analytic growth
rate.
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Finally we are left with the double commutator term in (5.1) and by
(4.6) we have

⟨
[

Xj,
[

Xj, φpD
p
y

]]

u, φpD
p
yu⟩ =

5
∑

ρ=1

Aρ.

Arguing as done above, in each summand Aρ we can reconstruct the
vector �elds (5.4) in both sides of the scalar product, yielding again
terms with an analytic growth rate and this completes the analysis of
the vector �elds in the Newton polyhedron.

6. The vector fields X̃j

In this section we examine the terms produced by the second sum-
mand on the right hand side of (3.2). We �x j ∈ {1, . . . , N ′} and
k ∈ {1, . . . , n} and want to evaluate (3.3) when X is replaced by
X̃jk = c̃jky

bjkxβjkDk. This is used in the right hand side of (3.4) in
the same way as we did for the vector �elds Xj. Thus we have

(6.1) ⟨
[

X̃2
jk, φpD

p
y

]

u, φpD
p
yu⟩

= 2⟨X̃jk

[

X̃jk, φpD
p
y

]

u, φpD
p
yu⟩ − ⟨

[

X̃jk,
[

X̃jk, φpD
p
y

]]

u, φpD
p
yu⟩

First of all using the same argument we did for (3.14) we see that
the only terms we have to treat are of two types:

α)

∥
[

X̃jk, φpD
p
y

]

u∥;

β)

⟨
[

X̃jk,
[

X̃jk, φpD
p
y

]]

u, φpD
p
yu⟩.

6.1. Estimate of the norms in α). First of all we compute

[

X̃jk, φpD
p
y

]

= φp

[

X̃jk, D
p
y

]

= c̃jkφp

[

xβjkybjkDk, D
p
y

]

= c̃jkφp

[

ybjk , Dp
y

]

xβjkDk = −c̃jkφp

[

Dp
y, y

bjk
]

xβjkDk

= −

p
∑

σ=1

(

p

σ

)

bjk!

(bjk − σ)!
(−i)σ c̃jkφpy

bjk−σxβjkDp−σ
y Dk.

It is of course understood that σ ≤ bjk, or, in other words, that the
involved factorials have a non negative argument.
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Plugging this into the norm in the �rst item above we obtain

(6.2) ∥
[

X̃jk, φpD
p
y

]

u∥

≤

p
∑

σ=1

(

p

σ

)

bjk!

(bjk − σ)!
|c̃jk|∥x

βjkybjk−σφpD
p−σ
y Dku∥

≤ C

p
∑

σ=1

pσ∥xβjkybjk−σφpD
p−σ
y Dku∥

≤ Cδ

p
∑

σ=1

pσ∥XkφpD
p−σ
y u∥,

where δ ≥ sup{|xβjkybjk−σ| | (x, y) ∈ supp u} and Xk has been de�ned
in (1.2).
Each summand above is ready for an application of the inductive

estimate (2.7).
We deduce thus that the Gevrey-s0 regularity (see (3.40)) is again

an upper bound for the growth rate of the terms in α).

6.2. Estimate of the scalar products in β). Using the expression
above for the simple commutator we get that
[

X̃jk,
[

X̃jk, φpD
p
y

]]

= −

p
∑

σ=1

(

p

σ

)

bjk!

(bjk − σ)!
(−i)σ c̃2jk

[

xβjkybjkDk, φpy
bjk−σxβjkDp−σ

y Dk

]

= −

p
∑

σ=1

(

p

σ

)

bjk!

(bjk − σ)!
(−i)σ c̃2jkφpy

bjk−σ
[

xβjkybjkDk, x
βjkDp−σ

y Dk

]

=

p
∑

σ=1

(

p

σ

)

bjk!

(bjk − σ)!
(−i)σ c̃2jkφpy

bjk−σ(xβjkDk)
2
[

Dp−σ
y , ybjk

]

=

p
∑

σ=1

p−σ
∑

σ′=1

(

p

σ

)(

p− σ

σ′

)

bjk!
2

(bjk − σ)!(bjk − σ′)!
(−1)σ+σ′

c̃2jk

· φpy
2bjk−σ−σ′

(xβjkDk)
2Dp−σ−σ′

y ,

with the usual convention about the factorials. We observe that this
convention allows us to replace the p of the upper limit of the summa-
tions with bjk, since p is de�nitely a large integer.
Note that

(xβjkDk)
2 = x2βjkD2

k +
⟨βjk, ek⟩

i
x2βjk−ekDk,
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where ek denotes the unit n-vector in the direction of the k-th axis.
Then �nally we have

(6.3)
[

X̃jk,
[

X̃jk, φpD
p
y

]]

=

bjk
∑

σ=1

bjk
∑

σ′=1

(

p

σ

)(

p− σ

σ′

)

bjk!
2

(bjk − σ)!(bjk − σ′)!
(−1)σ+σ′

c̃2jk

· φpy
2bjk−σ−σ′

x2βjkD2
kD

p−σ−σ′

y

+

bjk
∑

σ=1

bjk
∑

σ′=1

(

p

σ

)(

p− σ

σ′

)

bjk!
2

(bjk − σ)!(bjk − σ′)!
(−1)σ+σ′

c̃2jk

·
⟨βjk, ek⟩

i
φpy

2bjk−σ−σ′

x2βjk−ekDkD
p−σ−σ′

y

= E2 + E1.

Denote by E2,σ,σ′ and by E1,σ,σ′ the summands for E2 and for E1 re-
spectively. We start by estimating

⟨E2,σ,σ′u, φpD
p
yu⟩.

Because of (6.3), integrating by parts w.r.t. xk and taking into account
that supp u is a compact set, we have

|⟨E2,σ,σ′u, φpD
p
yu⟩|

≤ Cpσ+σ′

[

|⟨φpy
bjk−σ−σ′

xβjkXkD
p−σ−σ′

y u,XkφpD
p
yu⟩|

+ |⟨φpy
bjk−σ−σ′

xβjk−ekXkD
p−σ−σ′

y u, φpD
p
yu⟩|

]

≤ Cδpσ+σ′

[

∥XkφpD
p−σ−σ′

y u∥ ∥XkφpD
p
yu∥

+ ∥XkφpD
p−σ−σ′

y u∥ ∥φpD
p
yu∥
]

,

where δ ≥ sup{|ybjk−σ−σ′

xβjk−ek | | (x, y) ∈ supp u}.
The second factor in each summand above can be absorbed on the

right hand side of (2.8), so that, modulo a square, we are left with
pσ+σ′

∥XkφpD
p−σ−σ′

y u∥, which can be by the induction (see (2.7)). The
same argument applies to the second factor of the second summand
with just obvious changes.
Consider next E1,σ,σ′ . We have to estimate

⟨E1,σ,σ′u, φpD
p
yu⟩.

The above term is easier than the preceding one, since we cannot in-
tegrate by parts. The only remark is that the cuto� function φp can
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slide past the vector �eld Xk, since it does not depend on x, so that

|⟨E1,σ,σ′u, φpD
p
yu⟩| ≤ Cδpσ+σ′

∥XkφpD
p−σ−σ′

y u∥ ∥φpD
p
yu∥.

The above quantity can be treated exactly as we did for the second
term in E2,σ,σ′ .

This ends the proof of the theorem.

A. Appendix

For the sake of completeness we recall here some well-known facts
used throughout the paper.

De�nition A.1. For any m ∈ R, ρ, δ ∈ R with 0 ≤ δ ≤ ρ ≤ 1, δ < 1,
we denote by Sm

ρ,δ the set of all the functions p(x, ξ) ∈ C∞(R2n) such
that for every multi-index α, β there exits a positive constant Cα,β for
which

|∂α
ξ ∂

β
xp(x, ξ)| ≤ Cα,β⟨ξ⟩

m−ρ|α|+δ|β|,

where ⟨ξ⟩ = (1 + |ξ|2)
1
2 .

We denote by OPSm
ρ,δ the class of the corresponding pseudodi�erential

operators P = p(x,D) .

It is trivial to see that the symbol class Sm
ρ,δ equipped with the semi-

norms

|p|
(m)
ℓ = max

|α+β|≤ℓ
sup
(x,ξ)

{|∂α
ξ ∂

β
xp(x, ξ)|⟨ξ⟩

−(m−ρ|α|+δ|β|)}, ℓ ∈ N

is a Fréchet space.
The Calderón-Vaillancourt theorem shows the L2-continuity proper-

ties of the pseudodi�erential operators in the above classes (see [6] or,
for a more general setting, [12] Chap. 7, Th.1.6). We state below a
formulation of such a theorem for pseudodi�erential operators of order
zero.

Theorem A.1 (Calderón-Vaillancourt). Let P = p(x,D) ∈ OPS0
ρ,δ

with ρ ≤ δ, δ < 1. Then there exist a positive integer ℓ and a positive
constant M (depending only on n) such that

∥Pu∥ ≤ M |p|
(0)
ℓ ∥u∥, for every u ∈ L2(Rn).
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