
12 July 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Quqa S.,  Landi L.,  Diotallevi P.P. (2021). Modal assurance distribution of multivariate signals for modal
identification of time-varying dynamic systems. MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 148, 1-
21 [10.1016/j.ymssp.2020.107136].

Published Version:

Modal assurance distribution of multivariate signals for modal identification of time-varying dynamic systems

Published:
DOI: http://doi.org/10.1016/j.ymssp.2020.107136

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/769372 since: 2021-01-29

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1016/j.ymssp.2020.107136
https://hdl.handle.net/11585/769372


Published in Mechanical Systems and Signal Processing 

Volume 148, February 2021, Article 107136. https://doi.org/10.1016/j.ymssp.2020.107136  

 1 

Modal assurance distribution of multivariate signals for modal 

identification of time-varying dynamic systems 
 

Said Quqaa,*, Luca Landia, Pier Paolo Diotallevia 

a Department DICAM, University of Bologna, Viale Risorgimento 2, 40136 Bologna, Italy 

  

 

ABSTRACT 

 

Most time-frequency representations (TFRs) and signal analysis methods used for the 

identification of dynamic systems through non-parametric techniques are based on univariate 

signals. However, combining the information obtained from different sensors to investigate the 

overall behavior of the monitored structure is not trivial, as different recordings may show 

different features. Moreover, methods based upon the analysis of the energy density distribution 

in the time-frequency plane generally suffer from problems related to crossing and closely-spaced 

modes. In this paper, a new time-frequency representation of multivariate and multicomponent 

signals based on the modal assurance criterion (MAC) is presented. The analysis of the modal 

assurance distribution (MAD) thus obtained enables the extraction of decoupled modal responses, 

which can then be used to evaluate the instantaneous modal parameters of time-varying systems. 

To this end, a decomposition algorithm based on modal assurance (DAMA) is proposed, 

employing the watershed segmentation of the MAD. The results for two case studies, a finite 

element model and a full-scale experimental benchmark, are shown, considering both the original 

MAD and two enhanced versions, here proposed to improve its readability. The results are 

compared with those obtained from modern and widely used techniques, showing the promising 

efficacy of the proposed method for signals with time-varying frequency and amplitude, even in 

the presence of narrow-band disturbances and white noise, as well as with vanishing modes. 

 

KEYWORDS: structural health monitoring; time-frequency representation; modal identification; 

modal assurance; multivariate signal; non-stationary signal. 
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1. INTRODUCTION 

 

Dynamic identification of vibrating systems is a fundamental aspect in different engineering areas, 

such as civil [1–3], mechanical [4,5], and aerospace [6,7], as it enables the monitoring of dynamic 

features also for structures which do not show a visible state of degradation, providing information 
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on their state of health which may support the decision making procedure related to maintenance 

management or early warning [8].  

In the last decades, an increasing number of techniques aimed at dynamic identification have been 

proposed, attempting to broaden the field of applicability and to release the assumptions which 

may limit practical applications. Some types of structures are indeed time-varying and traditional 

identification algorithms based on the assumption of stationarity may be unsuitable. This is 

generally the case for bridges with vehicular traffic [9], time-periodic systems [10], and robotic 

or aerospace structures with time-varying geometry [11,12], to name a few. 

Also, some research [13–15] has been recently conducted on methods that refer to short-term 

recordings obtained during strong events (e.g., seismic events) in order to study the variations of 

structural parameters due to non-linearities. It may therefore be of interest to accurately identify 

the dynamic parameters and their variations over time, which could be due both to ongoing 

damage and varying environmental or operational conditions. 

For this reason, a large amount of methods has been proposed for the modeling and analysis of 

non-stationary signals, which can be mainly classified into parametric and non-parametric 

methods. The first are mainly based on parametrized time series representations, namely, the time-

dependent extensions of autoregressive moving average (TARMA) [9,16,17]. On the other hand, 

the majority of non-parametric methods are based upon time-frequency representations (TFRs) of 

the vibration energy and allow a more intuitive extraction of modal parameters (i.e., natural 

frequencies, modal shapes, and damping ratios), which are the most used for damage 

identification of civil structures due to their explicit physical interpretation [1]. 

Due to the interconnections born in the last few decades between the fields of linear algebra and 

subband coding, which in fact are seen as two parts of a single framework [18], a considerable 

number of transforms leading to different TFRs have been proposed. The short-time Fourier 

transform (STFT) [19] and the wavelet transform (WT) [20] are among the most used linear 

transforms; the first employs a fixed complex exponential windowing function for the analysis, 

while the second relies on a family of more flexible functions. More recently, the S-transform 

[21] has received extensive interest due to its versatility, since its windowing function is a 

Gaussian-windowed complex exponential, the dimensions of which scale as a function of 

frequency, resulting in a frequency-dependent resolution analysis. 

The Wigner-Ville distribution (WVD) [22,23] has also been widely studied because of its 

paramount importance in TFR theory since it does not use any further windowing function except 

for the signal itself, which is autocorrelated in the transform definition. On the other hand, for this 

transform, practical applications on multi-component signals are challenging because of its 

bilinear structure that creates cross-terms which undermine the distribution readability. 

Most of the identification methods based on the analysis of TFRs may suffer from problems 

related to closely-spaced, vanishing, and crossing modes. Furthermore, energy concentrations in 

the time-frequency (or time-scale) plane could also be due to narrow-band disturbances in the 

excitation, which would be identified, in most cases, as structural modes. 

Two classes of methods aimed at improving the readability of TFRs are reassignment (or 

reallocation) and synchrosqueezing, shown to be the second a special case of the first [24]. From 

these post-processing techniques, highly localized TFRs have been derived from STFT and WT. 

In particular, the synchrosqueezed transform (SST) has been formalized as the application of 

synchrosqueezing on scalograms obtained through continuous wavelet transform and received 

great interest as an alternative to the Empirical Mode Decomposition (EMD) [25]. This last 

method  is a completely different technique used to extract signal components associated with 
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different frequencies, i.e., intrinsic mode functions (IMFs), without relying on any basis function 

[26], as it happens instead in STFT and WT. It is especially used together with the Hilbert 

transform (HT), resulting in the Hilbert-Huang transform (HHT). In its original form, this method 

is however affected by several problems, including mode mixing, which is one of the most 

important for applications aimed at structural health monitoring (SHM) [27]. For this reason, 

several variants have been proposed. One of the most used is the ensemble empirical mode 

decomposition (EEMD), which consists of sifting an ensemble of signals obtained by adding 

different white noise sequences to the original data and computing the final result as the mean of 

IMFs obtained [28]. This method still presents issues related to crossing and vanishing modes. 

Recently, the concept of modulated multivariate oscillations has been introduced [29,30], together 

with analysis methods capable of extracting TFRs from multichannel signals, exploiting the inter-

channel dependencies which may arise for multivariate data. Namely, extensions to the WVD 

[31], SST [32] and EMD [33] have been proposed. 

In particular, the purpose of multivariate empirical mode decomposition (MEMD) is that of 

extracting common IMFs from all data sets by analyzing different projections of the multivariate 

signal in order to calculate its envelopes and local mean. Furthermore, some techniques merge 

noise-assisted and multivariate approaches into increasingly complex methods [34]. The main 

disadvantage of these techniques is related to the high computational burden, given by the high 

number of ensembles necessary to remove the traces of noise introduced in the noise-assisted 

methods and the number of projections considered in the case of multivariate analysis through 

MEMD [35]. 

Except for EMD and its extensions which directly provide IMFs, non-parametric methods require 

post-processing procedures to extract the modal parameters from TFRs, generally involving the 

preliminary decomposition into different modal responses [36,37]. To this aim, in several 

applications, a ridge extraction is directly performed on the TFR by finding the local maxima of 

the distribution over time [38,39]. This procedure may however suffer by problems related to the 

presence of components with non-stationary amplitudes and noisy signals [40]. Wang et al. [41] 

proposed a dynamic optimization method through the introduction of a penalty function for noisy 

signals, while other authors investigated the use of singular value decomposition (SVD) for ridge 

detection [42,43]. Ditommaso et al. [13] proposed an algorithm based on the manual selection of 

the areas of the TFR associated with the modal response of interest, facilitated by the good 

readability obtained through the S-transform. Quqa et al. [44] proposed an algorithm for near-

real-time extraction of modal responses suitable for wireless smart sensing nodes in a 

decentralized topology, based however on a static filter bank which is updated only at the 

occurrence of particular situations in order to preserve battery life. This algorithm has been 

applied in [45,46] for instantaneous damage identification. 

After detecting and extracting the ridges, modal parameters can be estimated from the skeleton of 

the TFR (i.e., the sequence of transform coefficients associated with the ridge) [36]. However, the 

mere extraction of coefficients associated with the frequency peaks may lead to problems related 

to the complete reconstruction of decoupled modal responses. 

In order to limit these issues, more sophisticated techniques based on image processing applied to 

TFRs are taking a step into system identification. Some research has firstly employed image 

processing to de-noise TFRs [47] and to attenuate cross-terms of WVD [48]. Successively, it has 

also been used to separate modal components. In [49], the regions of the time-frequency plane 

associated with the energy peaks of different modes are extracted by means of the watershed 

transform, which is a morphological-based segmentation algorithm [50] previously used by 

https://doi.org/10.1016/j.ymssp.2020.107136
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Roueff et al. on scalograms to separate seismic waves [51]. Zhuang et al. used a simpler 4-

connected-component labeling algorithm [52] to decompose the signal in the time-frequency 

domain [53]. One of the major problems related to these procedures concerns the difficulty of 

effectively separating closely-spaced modes, which may be merged into the same region of the 

time-frequency distribution by the pre-processing mathematical morphology operations 

performed to obtain a proper segmentation (e.g., dilation and closing) [54]. Other issues may arise 

in the case of noisy signals, for which the energy is spread throughout the time-frequency plane 

and spurious peaks may be detected. 

In this paper, a new representation for multivariate signals based on the modal assurance criterion 

(MAC) is proposed. In particular, after decomposing all the channels of a multivariate signal into 

narrow-frequency-band components through the wavelet packet transform (WPT), the wavelet 

coefficients obtained for consecutive components are interpreted as instantaneous operational 

deflection shapes (ODS) and compared through the MAC at each time instant. The MAC values 

are thus reported on the time-frequency plane, where the frequency is given by the index of the 

wavelet component. As a result, areas with high MAC values (i.e., close to 1) indicate the presence 

of consecutive components with similar ODSs. Assuming that each signal channel is also affected 

by uncorrelated white noise, in the regions of time-frequency plane where no vibration mode is 

excited, MAC values will be randomly distributed between 0 and 1. 

The modal assurance distribution (MAD) obtained in this way provides an intuitive representation 

of the modal features of multivariate signals. Moreover, the method proposed provides a TFR that 

is not directly dependent on the amplitude of signal components, but only on the signal to noise 

ratio (SNR) which affects the quality of the evaluated ODS, making it particularly suitable for 

non-stationary signals, even with vanishing components. 

Section 2 describes the proposed method in detail. Here, two techniques aimed at improving the 

readability of the distribution are also presented. In particular, an averaging criterion between the 

newly-estimated parameters and the “history” is examined, together with a noise-assisted variant 

of the procedure. 

In Section 3 a decomposition algorithm based on modal assurance (DAMA) is proposed. The 

algorithm computes the watershed segmentation of the MAD, allowing the extraction of the 

wavelet coefficients related to different vibration modes and the reconstruction of decoupled 

modal responses. In addition, some criteria aimed at assessing the effectiveness of decomposition 

are indicated, analyzing the properties of extracted modes and residue. 

In Section 4 two applications of the DAMA are reported. First, a synthetic signal is considered, 

representing the response of a simply-supported beam with time-varying features. Then, the 

structural response of a reinforced concrete (RC) structure under progressive damage scenarios is 

analyzed, performing instantaneous modal identification. 

At the end of the paper, concluding remarks are reported, with comments on the most important 

results obtained by means of the methods proposed. 
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2. MODAL ASSURANCE DISTRIBUTION 

 

The MAC is one of the most used statistical indicators of the similarity between two different 

modal shapes. It has been largely employed for identification purposes, in order to compare the 

results obtained through different techniques [55], to guide the stabilization of stochastic methods 

[56], and to merge signal components related to the same mode, as in the enhanced frequency 

domain decomposition (EFDD) [57]. While in the first examples it has been applied to identified 

modal shapes, in the last case it is used to compare the operating deflection shapes (ODSs) 

associated with consecutive frequency values. Since EFDD is an identification method in the 

frequency domain, it does not allow the identification of non-stationary systems. However, the 

concept of ODS comparison and clustering is extended in this study taking into account the time 

dependence of modal features, giving rise to the modal assurance distribution (MAD). 

 

2.1 Estimation of the instantaneous ODSs  

The displacement response in space and time 𝑢(𝑧, 𝑡) of a linear structure with distributed mass 

and elasticity in the continuous time, excited by a generic forcing function, can be represented in 

general as [58]: 

 

 
𝑢(𝑧, 𝑡) = ∑ 𝜙𝑗(𝑧)𝑞𝑗(𝑡)

∞

𝑗=1

 (1) 

 

with 𝜙𝑗(𝑧) the continuous 𝑗-th modal shape and 𝑞𝑗(𝑡) a function of time with narrow (in general, 

depending on damping) frequency band, the center of which is the damped frequency 𝜔𝑑,𝑗. 

Considering a structure with slowly varying features (i.e., with masses and stiffness which are 

assumable as piece-wise constant), the discrete signal recorded at a given position 𝑖 by means of 

a uni-axial accelerometric sensor can thus be modeled as: 

 

 
𝑥𝑖[𝑡] = ∑ 𝜙𝑖,𝑗

(𝑡)
�̈�𝑗[𝑡]

∞

𝑗=1

+ 𝑣𝑖[𝑡] (2) 

 

where 𝜙𝑖,𝑗
(𝑡)

 is the piece-wise constant element of the 𝑗-th modal shape, �̈�𝑗[𝑡] is the double 

derivative in time of 𝑞𝑗[𝑡], and 𝑣𝑖[𝑡] represents a white noise function referring to the 𝑖-th sensor. 

Applying a band-pass filter with impulse response 𝑏𝑘[𝑡] to the recorded signal 𝑥𝑖[𝑡], the filtered 

structural response can be computed as: 

 

 
(𝑥𝑖 ∗ 𝑏𝑘)[𝑡] = ∑ 𝜙𝑖,𝑗

(𝑡)
(�̈�𝑗 ∗ 𝑏𝑘)[𝑡]

∞

𝑗=1

+ (𝑣𝑖 ∗ 𝑏𝑘)[𝑡] (3) 

 

because of the linearity of the convolution operator (here indicated as ∗). Since 𝑞𝑗[𝑡] has a narrow 

band in the frequency domain, the terms of summation which give a non-zero result are only those 

with 𝜔𝑑,𝑗 close to the frequency band of  𝑏𝑘, i.e., (�̈�𝑗 ∗ 𝑏𝑘)[𝑡] is different from an all-zeros 

sequence only if 𝑄𝑗(𝜔)𝐵𝑘(𝜔) ≠ 0 for some value of 𝜔, where 𝑄𝑗(𝜔) and 𝐵𝑘(𝜔) denote the 
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Fourier transforms of �̈�𝑗[𝑡] and 𝑏𝑘[𝑡], respectively. Indicating with 𝑞𝑘[𝑡] the time function with 

frequency 𝜔𝑑,𝑘 included within the cutoff frequency values of 𝑏𝑘[𝑡] and neglecting the 

contributions of neighboring modes, the filtered response can be rewritten as: 

 

 𝑥𝑖,𝑘[𝑡] ≅ 𝜙𝑖,𝑘
(𝑡)(�̈�𝑘 ∗ 𝑏𝑘)[𝑡] + 𝑣𝑖,𝑘[𝑡] (4) 

 

with 𝑥𝑖,𝑘[𝑡] = (𝑥𝑖 ∗ 𝑏𝑘)[𝑡] and 𝑣𝑖,𝑘[𝑡] = (𝑣𝑖 ∗ 𝑏𝑘)[𝑡]. Considering moreover the signal 𝑥𝑟[𝑡] 
collected at a reference sensor position 𝑟, the instantaneous ratio between 𝑥𝑖,𝑘[𝑡] and 𝑥𝑟,𝑘[𝑡], 
obtained as indicated in (4) through the same filter 𝑏𝑘[𝑡], is: 

 

 𝑥𝑖,𝑘[𝑡]

𝑥𝑟,𝑘[𝑡]
≅

𝜙𝑖,𝑘
(𝑡)(�̈�𝑘 ∗ 𝑏𝑘)[𝑡] + 𝑣𝑖,𝑘[𝑡]

𝜙𝑟,𝑘
(𝑡)(�̈�𝑘 ∗ 𝑏𝑘)[𝑡] + 𝑣𝑟,𝑘[𝑡]

 (5) 

 

If the 𝑘-th vibration mode is sufficiently excited, the noise terms become negligible, and an 

estimate of the 𝑖-th element of the instantaneous modal shape can be calculated as: 

 

 
𝜙𝑖,𝑘[𝑡] ≅ 𝛾𝑘

(𝑡) 𝑥𝑖,𝑘[𝑡]

𝑥𝑟,𝑘[𝑡]
 (6) 

 

with 𝛾𝑘
(𝑡)

= 𝜙𝑟,𝑘
(𝑡)

 representing an instantaneous normalization factor. Considering a multivariate 

signal consisting of the accelerations collected at different sensor locations, the instantaneous 

modal shapes can be obtained by normalizing all the estimated values with respect to the same 

position. 

Considering a filter with impulse response 𝑏�̅�[𝑡] such that none of the natural frequencies are 

included between its cutoff frequencies, all the terms in the summation of Equation (3) are close 

to zero and may thus be neglected, with the filtered signal becoming: 

 

 𝑥𝑖,�̅�[𝑡] ≅ 𝑣𝑖,�̅�[𝑡] (7) 

 

and consisting of a filtered noise component. Therefore, the ratio between 𝑥𝑖,�̅�[𝑡] and 𝑥𝑟,�̅�[𝑡] 
continuously varies over time without reflecting the structural behavior. 

 

2.2 Signal-adaptive extension of the MAC 

In the original formulation, the MAC is defined as a normalized scalar product of two vectors 𝛗𝑎 

and 𝛗𝑏 representing two complex modal shapes or ODS: 

 

 
𝑀𝐴𝐶𝑎,𝑏 =

|𝛗𝑎
T𝛗𝑏

∗ |2

(𝛗𝑎
T𝛗𝑎

∗ )(𝛗𝑏
T𝛗𝑏

∗ )
 (8) 

 

where 𝛗∗ represents the complex conjugate and 𝛗T the transpose of 𝛗. In this study, the concept 

of modal assurance is applied to instantaneous estimates of the ODSs, calculated using narrow-

frequency components of the signals collected at different locations, obtained by means of the 

WPT, as schematized in Fig. 1. 
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Fig. 1: Schematics of MAD 

 

Considering a complete decomposition tree, the wavelet packet coefficients 𝑑𝑖,2𝑘
(𝑝+1)[𝑡] and 

𝑑𝑖,2𝑘+1
(𝑝+1) [𝑡] obtained by decomposing the coefficients 𝑑𝑘

(𝑝)
 at the level 𝑝 can be calculated 

recursively through the Mallat algorithm [59] as: 

 

 𝑑𝑖,2𝑘
(𝑝+1)[𝑡] = 𝑑𝑘

(𝑝)
∗ ℎ̅[2𝑡] 

 

𝑑𝑖,2𝑘+1
(𝑝+1) [𝑡] = 𝑑𝑘

(𝑝)
∗ �̅�[2𝑡] 

 

(9) 

where 𝑘 =  0, … , 2𝑝 indicates the subband of the obtained coefficients, ∗ denotes the convolution 

operator, and ℎ[𝑡] = ℎ̅[−𝑡] and 𝑔[𝑡] = �̅�[−𝑡] are the impulse responses of the low-pass and high-

pass filters associated with the selected wavelet function, respectively. Considering the discrete 

signal 𝑥𝑖[𝑡] collected at location 𝑖, the root of the tree 𝑑0
(0)

[𝑡] can be assumed coincident with 

𝑥𝑖[𝑡] if the sampling frequency of the collected signal is sufficiently high, committing however a 

“wavelet crime” [60]. It should be noted that the wavelet decomposition can also be implemented 

as a filtering procedure using a filter bank the elements of which are 2𝑛 equivalent filters that 

produce the coefficients (9) at the final transformation level, say 𝑛 [18]. Each filter obtained 

through this procedure has a passband range of 𝐹𝑠/2𝑛+1, where 𝐹𝑠 is the sampling frequency of 

the collected signal. It should be noted that, at a given transform level, a higher sampling 

frequency determines filters with wider passband range. It is therefore essential, in the case of 

high sampling frequencies, to select transforms with higher level to obtain a good frequency 

discretization of the signal. However, the maximum selectable level depends on the length of the 

signal and on the filter order. In particular, it is equal to the integer number 𝑛𝑚𝑎𝑥 ≤ log2(𝑁/𝑁𝑓), 

where 𝑁 and 𝑁𝑓 are the length of the signal and the order of the filter associated with the mother 

wavelet, respectively. 

https://doi.org/10.1016/j.ymssp.2020.107136
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The terms of vector 𝛗𝑘[𝑡], representing the real normalized instantaneous ODSs associated with 

a given subband 𝑘 of the level 𝑛 can thus be computed through the ratio: 

 

 
𝜑𝑖,𝑘[𝑡] =

𝑑𝑖,𝑘
(𝑛)[𝑡]

𝑑𝑟,𝑘
(𝑛)[𝑡]

 (10) 

 

with 𝑑𝑖,𝑘
(𝑛)[𝑡] denoting the 𝑡-th sample of the wavelet component related to the subband 𝑘 obtained 

by decomposing the signal collected at the location 𝑖, and 𝑟 indicating a reference location. Using 

these instantaneous estimates, the MAD is defined as the matrix 𝐌[2𝑛−1×𝑇] =

[𝐦[0], 𝐦[1], … 𝐦[𝑇]] consisting of the 𝐦[𝑡] vectors, related to time instants 𝑡, containing the 

elements: 

 

 
𝑚𝑘[𝑡] =

|𝛗𝑘
T[𝑡]𝛗𝑘+1[𝑡]|

2

(𝛗𝑘
T[𝑡]𝛗𝑘[𝑡])(𝛗𝑘+1

T [𝑡]𝛗𝑘+1[𝑡])
 (11) 

 

with 𝑘 = 1, … , 2𝑛 − 1 and 𝑇 denoting the length of 𝑑𝑖,𝑘
(𝑝)

. Each element of 𝐌 assumes a value 

between 0 and 1 and represents the instantaneous similarity of ODSs related to neighboring 

components 𝑘 and 𝑘 + 1. The ability to represent the time-varying modal features of the analyzed 

signal is due to the fact that damped modes have values in the frequency spectrum which are 

spread around the peak represented by the damped frequency. The spreading is generally 

dependent on both damping and natural frequency of the selected mode. If a sufficiently high 

decomposition level 𝑛 is selected for analyzing the response of a damped structure, the part of the 

spectrum related to each mode is divided into a set of narrow-frequency band components. Each 

of these components is however part of the same mode and, therefore, have similar ODSs 

(calculated by considering the same components of signals collected at different locations). This 

fact leads to high MAD values in the regions of the time-component plane where subbands of the 

same mode are present. On the other hand, the signal filtered through cutoff frequencies selected 

far from the damped frequency values consists of a filtered noise component, as reported in 

Equation (7), thus not characterized by physically meaning features which would generate 

persistently high MAD values in the time-component plane. 

 

2.3 Methods to improve the readability 

Far from natural frequencies, high MAD values are generated by random similarities between the 

ODSs of neighboring filtered noise components. This phenomenon may compromise the 

readability of the distribution and prevent a correct application of procedures for the extraction of 

modal responses. In order to reduce this risk, two techniques are proposed in this section to 

improve the readability of MAD. 

The first involves the selection of a forgetting factor 𝛼, used to compute the 𝑡-th element of a 

weighted distribution that also takes into account the previous estimates. In particular, each 

element of the weighted distribution �̅�𝑘[𝑡] can be computed as: 

 

 �̅�𝑘[𝑡] = (1 − 𝛼)𝑚𝑘[𝑡] + 𝛼�̅�𝑘[𝑡 − 1] (12) 
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The higher is 𝛼 and the more the distribution appears smooth in the time direction, resulting 

however in a slower updating and a lower sensitivity to sudden variations. This method is 

particularly effective to remove noise-generated random similarities, which are generally 

characterized by sharp peaks with short duration in time. 

The second criterion consists of a noise-assisted approach which, similar to the concept used in 

the EEMD, involves the computation of the final MAD as the mean of an ensemble of 𝐿 matrices, 

each consisting of the MAD evaluated on the multivariate signal plus an uncorrelated finite-

amplitude white noise matrix. Operating in this way, only persistently high values over the 

ensemble of trials will form the high-similarity areas of the final MAD, canceling out spurious 

peaks due to noise components which are different for each trial. The ensemble MAD is computed 

as: 

 

 

�̃�𝑘[𝑡] =
1

𝐿
∑ 𝑚𝑘

(𝜆)[𝑡]

𝐿

𝜆=1

 (13) 

 

where 𝑚𝑘
(𝜆)[𝑡] is the MAD value obtained on the 𝜆-th noise-added trial 𝐱[𝑡] + 𝐯𝜆[𝑡], with 𝐱[𝑡] =

[𝑥1[𝑡], 𝑥2[𝑡], … , 𝑥𝑟[𝑡]]
T

 the collected multivariate signal and 𝐯𝜆[𝑡] = [𝑣𝜆,1[𝑡], 𝑣𝜆,2[𝑡], … , 𝑣𝜆,𝑟[𝑡]]
T

 

a vector of uncorrelated white noise sequences. In order to prevent the added noise from covering 

the signal parts with low amplitude, the 𝑣𝜆,𝑘[𝑡] sequences can be chosen as non-stationary, having 

amplitude dependent on the analyzed signal: 

 

 𝑣𝜆,𝑘[𝑡] = 𝛽 𝑠𝑡𝑑{𝑥𝑘[𝑡 − 𝜏, 𝑡 + 𝜏]} 𝑠𝜆,𝑘[𝑡] (14) 

 

with 𝑠𝑡𝑑{𝑥𝑘[𝑡 − 𝜏, 𝑡 + 𝜏]} denoting the standard deviation of 𝑥𝑘 in the interval from 𝑡 − 𝜏 to 𝑡 +
𝜏, 𝑠𝜆,𝑘[𝑡] is a sequence of zero-mean white noise with standard deviation 1, and 𝛽, 𝜏 are user-

defined parameters that control the amplitude and adaptivity of the added noise, respectively. 

Considering the wavelet filters as ideal bandpass filters, if 𝛽 is higher than the standard deviation 

of the recording noise and the ensemble is formed by a high number of trials, the mean of MAD 

values in noise-only areas can be estimated as 1/𝑟, where 𝑟 is the number of sensors. It is indeed 

easy to prove that the expected value of the normalized dot product between two vectors 𝐚, 𝐛 ∈
ℝ𝑁, the elements of which are random variables independently distributed in a given interval, is: 

 

 
E [

|𝐚 ∙ 𝐛|2

|𝐚|2|𝐛|2
] =

1

𝑁
 (15) 

 

Since wavelet filters with limited order cannot be considered as ideal bandpass filters, the filtered 

noise components cannot be assumed as independent. Especially for high transform levels, the 

expectation of MAC tends in fact to a value which is higher than 1/𝑟. This value becomes 

however the minimum of MAD, canceling out the effects of recording noise. 

The criteria proposed here can also be applied together, increasing the readability of the 

distribution at the expense of a higher computational burden. 
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3. DECOMPOSITION ALGORITHM BASED ON MODAL ASSURANCE 

 

The MAD can be used as a TFR for visualizing the distribution of modal features through the 

time-component plane (from now on, mentioned as time-frequency plane, since the conversion is 

straightforward). Moreover, it can also be exploited to separate modal responses, since the 

physical meaning of the distribution enables the construction of a set of adaptive bandpass filters 

which allows the extraction of separate signal components delimited by low-valued MAD areas. 

 

3.1 Outline of the decomposition algorithm 

In order to automatize the recognition of the areas representing different modes, an algorithm 

based on watershed segmentation and MAC-based cluster analysis is proposed in this section. In 

this algorithm, the MAD is interpreted as a grey-scale image obtained by assigning the color white 

to 1 and black to 0 values. A mask 𝚵[2𝑛−1×𝑇] is then created, able to select the MAD values above 

a user-defined threshold 𝜂. Before applying the mask to the grey-scale distribution, opening and 

filling morphological operations are performed to remove small white peaks and black holes 

generated by noise. 

Then, a Gaussian filter with low standard deviation is applied to the masked matrix �̂� = 𝚵 ∙ 𝐌 

(with ∙ denoting the point-wise multiplication) to further smoothen the distribution, and the local 

maxima are identified. Finally, the watershed transform is applied to segment the masked 

distribution into different areas, each containing a single maximum, which are then converted into 

matrices 𝚵𝑎 [2𝑛−1×𝑇], each with the same size of �̂�, consisting of 1-values in the identified area 

and 0 values elsewhere. 

For each identified area, the 𝑎-th signal (localized both in frequency and time) can be extracted 

by means of a reconstruction matrix 𝐑𝑎 [2𝑛×𝑇], the elements of which are obtained as: 

 

 
𝜌𝑎,𝑘[𝑡] = {

1
0

         
𝑖𝑓 𝜉𝑎,𝑘[𝑡] = 1 ⋁ 𝜉𝑎,𝑘−1[𝑡] = 1

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (16) 

 

where 𝜉𝑎,𝑘[𝑡] are the elements of 𝚵𝑎. The partial multivariate signal component 𝐰𝑎[𝑡] extracted 

by 𝐑𝑎 can thus be computed as the inverse wavelet packet transform (IWPT) applied to the 

masked wavelet coefficients 𝑟𝑖,𝑘
(𝑛)[𝑡] = 𝑑𝑖,𝑘

(𝑛)
[𝑡]𝜌𝑎,𝑘[𝑡]. By means of the Mallat algorithm [59], the 

coefficients 𝑟𝑖,𝑘
(𝑝)[𝑡] at level 𝑝 can be evaluated recursively as: 

 

 𝑟𝑖,𝑘
(𝑝)[𝑡] = �̌�𝑖,2𝑘

(𝑝+1)
∗ ℎ[𝑡] + �̌�𝑖,2𝑘+1

(𝑝+1)
∗ 𝑔[𝑡] (17) 

 

where �̌�[𝑡] indicates the sequence obtained by inserting a zero between each sample of 𝑟[𝑡]. 

Therefore, 𝑤𝑖,𝑎[𝑡] = 𝑟𝑖,0
(0)

[𝑡] represents the 𝑖-th element of 𝐰𝑎[𝑡] (i.e., referring to the 𝑖-th sensor 

location). 

After reconstructing the partial components, each of them can be associated with a vibration mode 

by performing a MAC-based clustering procedure. In particular, the average modal shape of the 

𝑎-th partial component can be computed as: 
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𝛗𝑎 =

1

𝑠
∑

𝐰𝑎[𝑡]

𝑤1,𝑎[𝑡]

𝑠

𝑡=1

 (18) 

 

with 𝑠 the number of non-zero time samples in 𝑤1,𝑎[𝑡]. Then, the clustering can be performed 

with the following rule: 

 

 𝛗𝑎, 𝛗𝑏 ∈ 𝐶𝑙 ⇔ 𝑀𝐴𝐶𝑎,𝑏 ≥ 1 − 𝜃 (19) 

 

where 𝐶𝑙 represents the 𝑙-th cluster (related to the 𝑙-th mode), 𝑀𝐴𝐶𝑎,𝑏 is the modal assurance 

value between the shapes 𝛗𝑎 and 𝛗𝑏 obtained using two partial components 𝐰𝑎 and 𝐰𝑏, 

respectively, while 𝜃 is a user-defined sensitivity parameter. 

The complete decoupled modal responses can thus be obtained by merging (i.e., summing up) all 

the partial components associated with the same cluster. Moreover, instantaneous modal 

parameters can be identified from the extracted mono-component responses using, for example, 

the HT or the Teager energy operator (TEO) [44]. In particular, the responses extracted in 

locations far from the nodes of the modal shapes should be used to retrieve instantaneous 

frequencies in order to limit the influence of noise in their evaluation. 

In a previous work [44], the authors presented a two-step procedure for decoupling structural 

responses through clustered filter banks (CFBs) onboard wireless smart sensor networks. In the 

mentioned paper, the CFBs employed for decomposition are generated at the beginning of the 

procedure and used until the occurrence of particular events (e.g., damage or strong environmental 

variations) that make the filters no more suitable for modal identification due to their fixed cutoff 

frequencies. It should be noted that the DAMA proposed in the present paper is equivalent to a 

band-variable filter bank the parameters of which are signal-adaptive and estimated upon the 

MAD. This generalized filter bank with a variable number of components and cutoff frequencies 

enables the automatic extraction of modal responses even at the occurrence of strong variations 

in the dynamic behavior of the monitored system and in presence of vanishing components. 

 

3.2 Parameter selection and residual analysis 

The selection of different values for 𝜂 and 𝜃 may lead to different decompositions. In particular, 

𝜂 is responsible for signal segmentation: the higher this threshold, the smaller the masked areas, 

which could be eroded during the morphological operations, reducing however the noise included 

in the reconstructed partial components. On the other hand, 𝜃 concerns the final clustering 

procedure: high values of this parameter lead to more clusters, which could nevertheless belong 

to the same mode if slight variations affect the modal shapes over time (e.g., due to ongoing 

damage). 

A method for verifying the proper selection of the first parameter consists of the residual analysis. 

The residual of the DAMA can be obtained as: 

 

 𝛆[𝑡] = 𝐱[𝑡] − ∑ 𝐰𝑎[𝑡]

𝑎

 (20) 

 

The variance of this sequence should be similar to the variance of the recording noise, and 

therefore low if compared to the variance of the original signal. It is worthy to note that, even by 
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applying the noise-assisted method, the signal is not affected by added noise, since it is only used 

to select the masking matrix, which is then applied to the decomposed original signal. 

A criterion for selecting the correct value of 𝜂 in offline implementations could consist of applying 

DAMA with multiple thresholds, selecting the parameter after observing the curve of residual 

variance as a function of 𝜂. As the threshold increases, the variance of the residual should increase 

steeply for low and high values of 𝜂, presenting a lower slope in the central part. The first interval 

with a high slope is due to the overcoming of the recording noise, while the second part represents 

the inclusion of significant signal components into residuals. The optimal value of 𝜂 should 

therefore be selected in the part contained between these two high-slope intervals, for example 

immediately after the first one or where the slope of the curve is minimum. 

The 𝜃 parameter should be selected in order to obtain a small number of clusters that generate 

mono-component decoupled responses, i.e., containing information related to a single modal 

response. A PCA should thus be performed on the modal responses extracted at different sensor 

locations to evaluate the variance explained by each principal component (PC). In order to be 

mono-component, the percentage of variance explained by the first PC should be much higher 

than the variance explained by the others [61]. High variance explained in the other principal 

directions may denote both multi-component responses and high noise in the recordings. The first 

involves errors in the estimation of modal parameters for all sensor locations, except for those 

near to a node of the modal shape of the disturbing mode. On the other hand, if only a subset of 

recordings is characterized by a low SNR (due for example to the deployment of sensors near to 

a structural constraint), only the responses extracted at those locations will provide noisy 

parameters. If multi-component responses are identified, the analysis should be repeated upon 

increasing the 𝜃 parameter. 

 

 

4. APPLICATIONS 

 

In this section, the MAD is employed to decouple the modal responses of two case studies. The 

first consists of a simply-supported beam modeled through a finite element software, while the 

second is a full-scale RC building tested on a shaking table at the University of California, San 

Diego. 

 

4.1 Case study 1: simulated simply-supported beam 

The first case study was modeled as a simply-supported RC beam with a rectangular section (40 

cm wide and 85 cm high) and a length of 10 m. The simulated instrumentation consists of four 

uni-axial accelerometers deployed in the vertical direction, as represented in Fig. 2. Damping with 

a ratio of 0.02 was selected for each mode to solve the equation of motion and obtain the structural 

response through the Newmark method. In order to simulate localized time-varying damage, a 

segment of the structure is modeled with varying Young modulus, as reported in Fig. 3. In 

particular, the damage is modeled as slowly increasing up to 1400 seconds, when an instantaneous 

retrofit is simulated. 
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Fig. 2: Scheme of the case study 1, units in meters 

 

 
Fig. 3: Simulated damage over time 

 

The data used to compute the MAD consists therefore of a multivariate signal of 2000 seconds, 

obtained by using the accelerations collected at the sensor locations indicated in Fig. 2 with a 

sampling frequency of 250 Hz. The input excitation used to compute the structural response is a 

synthetic acceleration obtained by adding a white noise sequence with a standard deviation of 1 

m/s2 to a harmonic component with amplitude 0.3 m/s2 and frequency of 50 Hz, which simulates 

a narrow-band disturbance, as reported in Fig. 4. The exciting input was applied to 11 nodes, 

equally spaced of 1 m, in the vertical direction. Before using the signals, each collected 

acceleration sequence was corrupted by introducing a zero-mean white noise component with a 

standard deviation of 10% with respect to that of the original response.  

 

 
Fig. 4: Frequency spectrum of the input excitation for case study 1 

 

In Fig. 5, the power spectrum of the signal collected at sensor location S3 computed through the 

STFT is represented. The narrow-band disturbance generates a high-amplitude component that 

intersects the modal responses in the time-frequency plane. This persistent peak in the frequency 
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spectrum could be interpreted as a modal component by analyzing the results of most of the 

traditional structural identification procedures. Moreover, it could corrupt neighboring modes and 

induce problems related to crossing modes. 

 

 
Fig. 5: Power spectrum of the analyzed signal 

 

The MAD was calculated on the multivariate signal by selecting the Fejér-Korovkin 22 wavelet 

function with a decomposition level 8 (Fig. 6a). In this case, the decomposition bank consists of 

256 filters with passband range of 0.49 Hz. 

It is possible to observe that regions in the time-frequency plane with high values (in white) are 

present along the entire distribution, following the trend of damage and also reflecting the abrupt 

variation that occurs at 1400 s. However, the disturbance component is completely overlooked, 

resulting in low MAD values around 50 Hz, since the ODSs associated with neighboring subbands 

are different. 

Due to the random similarities in noise-generated ODSs, there is a consistent number of spurious 

peaks which could undermine the application of DAMA. To smooth the distribution before further 

analyses, a forgetting factor of 0.9 is adopted, which leaves the frequency resolution unchanged 

but removes abrupt variations on the time axis, introducing however a slight delay in the updating 

of the equivalent band-variable filters (Fig. 6b). Afterward, a mask is applied to the distribution 

selecting the areas with MAD value higher than 𝜂 = 0.50. In Fig. 7, the variance of residual is 

reported in logarithmic scale as a function of 𝜂. It is possible to notice that the first interval with 

a high slope is for threshold values of 0.10-0.30, while other jumps are observable around 0.70 

and 0.85. The optimal value was chosen between these two intervals, where the slope of the 

average curve is minimum. 
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Fig. 6: MAD, smoothed MAD, watershed segmentation and DAMA application 

 

 
Fig. 7: Residual variance for different values of threshold, case study 1 

 

It is possible to observe how the frequency spectrum of the residual of sensor S4 (Fig. 8) is very 

similar to that of the input, i.e., almost white, except for the narrowband disturbance at 50 Hz. On 

the other hand, the spectrum of the reconstructed signal (obtained by summing up all the modal 

responses extracted at location S4) approximates well that of the original structural response, 

confirming the fact that all the significant information is extracted from the through DAMA. 
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Fig. 8: Frequency spectrum of the residual 

 

In order to apply the watershed segmentation, a Gaussian filter with standard deviation 1 is used 

before extracting the local maxima and obtaining the areas reported in Fig. 6c. 

MAC-based clustering with sensitivity 𝜃 = 0.05 is then applied to associate the components 

obtained by reconstructing the partial signals related to each area to a different vibration mode. In 

this way, the areas shown in Fig. 6d are obtained. In this experiment, a total number of 6 vibration 

modes are identified, one consisting of the orange area located around 1400 s, which should 

however be part of the fourth mode. The missing association with the appropriate cluster is due 

to the substantial change in the modal shape of mode 4 caused by the highly damaged state at the 

time interval close to 1400 s. 

The instantaneous frequencies identified by applying the HT to the decoupled modal responses 

extracted by means of DAMA on the signal collected in location S4 are reported in Fig. 9, 

superimposed on the theoretical values and on the disturbance component. A median filter with a 

window size of 1000 samples was applied to the identified frequencies before plotting, in order 

to improve the readability of the figure. 

 

 
Fig. 9: Theoretical (solid lines) and estimated (dots) instantaneous natural frequencies 

 

The estimated values for the first two modes are almost coincident with the theoretical curves. 

The third natural frequency is well-identified except for the time interval in which the disturbance 

intersects the natural frequency curve. On the other hand, the fourth frequency is not influenced 

https://doi.org/10.1016/j.ymssp.2020.107136


Published in Mechanical Systems and Signal Processing 

Volume 148, February 2021, Article 107136. https://doi.org/10.1016/j.ymssp.2020.107136  

 17 

by the disturbance, presenting however a slight underestimation for higher frequencies. The fifth 

mode is vanishing, since it is only visible in the interval between 700 and 1400 s due to the selected 

sampling frequency. However, a good estimation for the instantaneous frequency values is 

achieved, without leading to mode-mixing issues. 

As a comparison with literature methods for adaptive signal decomposition, both the EMD and 

its multivariate extension, the MEMD, were considered. In particular, the EMD was applied to 

the time history collected at the location S4 (see Fig. 2), while the MEMD was used to decompose 

the multivariate signal into four sets of IMFs (one for sensor location). The instantaneous 

frequencies obtained by applying the HT on the IMFs related to location S4 obtained by means 

of traditional and multivariate EMD are reported in Fig. 10. Here, the same median filter used to 

obtain the identified values reported in Fig. 9 is employed. It is possible to notice how the IMFs 

extracted by EMD are saturated with noise, showing scattered frequencies with a slightly variable 

mean trend, which are however not able to follow the theoretical curves. On the other hand, 

MEMD has shown to be less sensitive to noise, exhibiting however strong mode-mixing issues. 

It is indeed clearly noticeable how the instantaneous frequencies of all IMFs jump to the upper 

mode at 700 s and back to the lower at 1400 s. 

 

 
Fig. 10: Instantaneous frequencies estimated through EMD and its multivariate variant 

 

The modal shapes obtained as simple ratios between the modal responses extracted through 

DAMA are reported in Fig. 11 (the same median filter used for natural frequencies was employed 

on instantaneous ratios). In particular, the normalization was performed selecting the modal 

responses of sensor S1 as reference. It is possible to notice how the third mode, which already 

showed corrupted frequency values close to the intersection with the narrowband disturbance, is 

also influenced in the modal shape, which exhibits an oscillation across the theoretical curve 

around 700 s. Moreover, the fifth mode shows reliable estimates only around 800 s, with an 

underestimation of the ratio elsewhere. The underestimation is also noticeable for mode 4. 

However, the general and constant shift in the values identified at locations S2, S3, and S4 

suggests that the error is only related to the curve associated with sensor S1. Therefore, different 
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normalization would have shown better results. On the other hand, modes 1 and 2 are identified 

with a very good approximation, regardless of the noise and narrowband disturbance.  

 

 
Fig. 11: Theoretical (solid lines) and estimated (dots) instantaneous amplitudes of modal shapes 

(normalized over the amplitude of S1) 
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4.2 Case study 2: RC building 

The second case study analyzed in this paper is a slice of a full-scale 7-story RC building with 

cantilever structural walls acting as a lateral force resisting system (Fig. 12). The structure is 20 

m high and consists of two perpendicular walls in elevation (i.e., web and flange walls) with a 

horizontal RC slab at each level. In addition, an auxiliary post-tensioned column provides 

torsional stability and 4 gravity columns support the slabs, as schematized in Fig. 12a. 

The test structure was tested on a shaking table at the University of California, San Diego, through 

the George E. Brown Jr. Network for Earthquake Engineering Simulation program [62–64] under 

seismic and white noise base-impressed excitation, the second with 0.03g root mean square 

(RMS) amplitude, as well as under ambient vibration (i.e., with the shaking table locked). 

 

 
Fig. 12: Case study 2 [64] 

 

The forced vibration tests were designed to progressively damage the building through the 

simulation of four historical earthquakes of increasing intensity recorded in Southern California. 

Before and after each test with seismic excitation, the building was subjected to intervals of white 

noise excitation and ambient vibration. In this paper, only the acceleration collected during the 

“inspection” intervals after the application of each seismic motion were used. In particular, for 

the “undamaged” (U) and for each damaged condition (A, B, C, and D), 8 minutes of white noise 

excitation and 2 minutes of ambient vibration data are considered and merged together in a single 

set of data with a total duration of 3000 s (as shown in Fig. 13). Therefore, the first 10 minutes of 

the data set refer to the reference condition U, after which the first seismic excitation (EQ1) of 

low intensity was applied, consisting of the longitudinal component recorded from the Van Nuys 

station during the San Fernando earthquake of 1971. Afterward, another inspection interval of 10 

minutes is considered, referring to the damaged condition A. The third interval (B) is collected 

after applying the first medium-intensity seismic excitation EQ2, selected as the transverse 

component recorded during the San Fernando earthquake from the Van Nuys station in 1971. 

Interval C was recorded after the second medium-intensity earthquake (EQ3), taken as the 

longitudinal component of the Northridge earthquake recorded from the Woodland Hills Oxnard 

Boulevard station in 1994. The last inspection interval (D) was recorded after a high-intensity 
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360° excitation (EQ4) recorded from the Sylmar Olive View Med during the Northridge 

earthquake of 1994. 

The structure was instrumented with a dense network of sensors with a total of 45 channels: 29 

longitudinal (three on each floor slab, one on the web wall at mid-height of each level, and one 

on the pedestal base), 14 transversal (2 on each floor slab), and 2 vertical (at the base, on the 

pedestal). The original data is sampled at 240 Hz. More details about the geometry and the 

instrumentation used can be found in [63–65]. In [63], the results of modal identification obtained 

by means of different input-output and output-only methods are reported. Here, considering the 

white noise base excitation, in the undamaged condition, three lateral modes are identified with 

natural frequencies 1.72 Hz, 11.88 Hz, and 24.64 Hz, respectively. One torsional and one coupled 

lateral-torsional modes are also identified by some techniques and only during particular damage 

conditions. Moreover, the MAC values calculated between modal shapes identified through 

different techniques for these two modes are rather low, showing high level of uncertainties. As 

shown in [63], indeed, the first lateral mode has a strongly predominant contribution to the total 

response, making the identification of the torsional mode difficult as it may be covered by the 

former. In this work, 4 acceleration channels at the locations indicated in Fig. 12 were used (i.e., 

only longitudinal, at the levels 1, 3, 5, and 7), resampled at 100 Hz, with the intent of identifying 

the first lateral modes (in the east-west direction) using limited instrumentation.  

The Fejér-Korovkin 22 wavelet function with a level 8 was employed for decomposition, 

generating 256 components with the same frequency range as the previous case study. In this 

section, the instantaneous natural frequencies and modal responses are estimated by using the 

output of DAMA and compared with the results reported in [63] regarding the EFDD method, 

assumed as reference values. 

 

 
Fig. 13: Multivariate signal used for the second case study 

 

In Fig. 14a, the MAD with a forgetting factor 0.9 is reported. It is possible to notice that high-

valued areas are widespread throughout the distribution, making it difficult to recognize different 

modal responses. The noise-assisted variant presented in Section 3.3 considering 100 trials in the 

ensemble of noise-added signals (Fig. 14b) was also applied. In this analysis, a set of signal-

adaptive Gaussian white noise sequences with standard deviation factor 𝛽 = 0.3 was used, with 

reference to Equation (14). In Fig. 15, the residual variance is represented as a function of the 

threshold 𝜂 both for the original formulation (dashed lines) and for the noise-assisted variant (solid 

lines). It is observable that the first interval characterized by a high slope is more prominent in the 

result of the noise-assisted procedure, related to the fact that the lower value of MAD for noise-
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only areas has shifted around 0.25. It is also noticeable that in the averaged MAD, the areas 

associated with the first three modal responses are more easily detectable than in the original 

distribution. Moreover, especially for conditions U and A, high values of MAD are obtained also 

for the signal parts recorded under low-amplitude ambient vibration, allowing the extraction of 

modal responses even when the signal amplitude is very low since MAD is not based on the 

energy distribution in the time-frequency plane as for traditional TFRs. In particular, as concerns 

the ambient vibration recordings of conditions B, C, and D, narrower areas are detected, the values 

of which are however close to 1, as in the white noise excitation counterparts. In other words, the 

extraction of high-value areas in the MAD allows the extraction of modal responses regardless of 

the signal amplitude, making the method suitable also for non-stationary recordings. 

The red areas shown in Fig. 14c represent the result of watershed segmentation applied to the 

masked MAD distribution, obtained by setting a threshold 𝜂 = 0.5. After applying the MAC-

based clustering with 𝜃 = 0.05 on the partial reconstructed signals, the resulting decomposition 

is represented in Fig. 14d. Thus, three modal responses are identified, which can be extracted by 

merging the related partial reconstructed signals. 

 

 
Fig. 14: Smoothed MAD, noise-assisted MAD, watershed segmentation and DAMA application 
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Fig. 15: Residual variance for different values of threshold, case study 2; solid lines indicate the 

results of the noise-assisted method, while dashed lines indicate the use of forgetting factor only 

 

After extracting the decoupled modal responses, the instantaneous frequencies (calculated using 

the modal responses extracted at level 7) are estimated through the HT and reported in Fig. 16. 

Identified instantaneous values are superimposed on the reference estimates obtained in [63] 

through EFDD, represented as constant values over each condition. Due to system non-linearities, 

a significant shift in natural frequency is observable within the same condition when passing from 

a higher-amplitude white noise excitation to ambient vibration. While the instantaneous frequency 

of mode 1 is almost perfectly reconstructed, also tracking the shifts due to non-linearity, a higher 

variability in identified values is notable for the higher modes. This fact may be due to the 

presence of a combined lateral-torsional mode in the frequency band between 7 and 12 Hz [63], 

the shapes of which are classified as “similar” to the shapes of the identified translational modes 

since only four acceleration channels are considered in this study to evaluate the MAC. This 

phenomenon can be observed for mode 2 in condition B, where two neighboring high-valued 

areas in the MAD are assigned to the same mode during the clustering process (Fig. 14d), although 

they are well separated in the time-frequency distribution. 

 

 
Fig. 16: Theoretical (solid lines) and estimated (dots) instantaneous natural frequencies 
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The uncertainties related to the second mode are also visible in the instantaneous estimate of the 

related modal shape (Fig. 17), which is generally more dispersed with respect to those of modes 

1 and 3. On the right side of Fig. 17, the average modal shapes evaluated over each damage 

condition are reported, with the color changing from green to red as the damage increases. For 

modes 1 and 3, an increment in the displacement of the first level with damage is noticeable. As 

regards mode 2, the parameters estimated by sensor 1 are unstable, indicating that the 

instantaneous ratio between the modal response obtained by sensor 4 and that of sensor 1 varies 

considerably over time. This phenomenon could be due both to noisy measurements and 

multicomponent responses. To confirm this fact, a PCA is conducted considering the modal 

responses extracted at all sensor locations in each damage scenario, the results of which are 

reported in Fig. 18. In the lower-right part of each diagram, the variance explained by each PC is 

reported for each mode. High values in the first PC and low values for the other PCs denote mono-

component and low-noise responses, meaning that MAD areas have been properly clustered into 

separate modal responses. On the other hand, low values in the first PC represent noisy recordings 

or signals containing the information of two or more modal responses. Observing the parameters 

reported in Fig. 18, the large variance obtained for modes 1 and 3 in the first PC denotes a good 

accuracy in the extraction of the first modal response. However, considering the values calculated 

for mode 2, especially for the conditions U, A, and B, the extracted modal response seems to be 

multi-component. This property also appears in the diagram of the component scores (represented 

as points in Fig 18), which are sparse in the plane of the first two principal components for mode 

2, especially for condition B. 

However, observing the principal directions, represented as lines starting from the origin in Fig. 

18, it is possible to notice how their projections on the PC 1 axis (interpretable as an estimate of 

modal shapes) are generally stable, i.e., change slightly as damage increases, except for the 

direction of sensor S1 for mode 2 which varies considerably in each diagram.  
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Fig. 17: Instantaneous amplitudes (normalized over the amplitude of S4) of the identified modal 

shapes (left) and average values for each damage scenario (right) 
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Fig. 18: Principal directions and scores (represented as the first two PCs) of modal responses 

extracted from white noise recordings for each condition; the numbers on the lower-right part 

of each diagram represent the percentage of variance explained by each PC 

 

Since a high variability in both instantaneous amplitude and principal direction is observed in 

conditions U, A, and B only for mode 2 at sensor location S1, the estimation error seems to be 

related to a low SNR in the frequency band of the second mode for the recording collected at the 
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first level. In condition D, since considerable damage was experienced [63], the amplitude of the 

second mode at the location of sensor S1 increased, thus reducing the issues due to the low SNR. 

According to [63], the higher estimation error of the second lateral mode may also be due to the 

proximity of its natural frequency to the frequency of the oil column of the vibration table. 

It is also observable that the instantaneous estimates of modal shapes are corrupted when passing 

from a damage scenario to another, as well as when the input excitation changes. This fact may 

be due to two phenomena. The first regards the delay in the masking matrix due to the forgetting 

factor adopted to improve the MAD readability. The reconstructed signal is indeed obtained 

through a bandpass filter which is adapted to the signal with a delay, which could be estimated as 

illustrated in [44]. The second reason is related to the assumption of slowly varying features, 

which is violated when a sudden change in the dynamics occurs, i.e., when passing through 

recordings collected during different inspection intervals.   

For comparison, the instantaneous natural frequencies were also extracted by using the HT on 

IMFs obtained through EMD, EEMD, and MEMD. In Fig. 19, the estimated frequencies are 

represented superimposed on the reference values. In particular EMD and EEMD were applied 

on the signal collected by sensor S4, while MEMD considered the four channels used in the 

previous analyses. It is possible to observe that, although the same median filter used to obtain 

the values reported in Fig. 16 is used, the identified values are considerably noisier in this case. 

Moreover, a high number of IMFs is generally extracted, not reflecting the real modal responses 

and showing mode mixing problems.  

 

 
Fig. 19: Instantaneous frequencies estimated through EMD and its variants 

 

 

5. CONCLUSIONS 

 

In this paper, a novel TFR for multivariate signals is presented, which is not based on the 

distribution of energy density through the time-frequency plane, but on the similarities between 

instantaneous ODSs related to neighboring narrow-frequency band signal components. In this 
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work, the decomposition into signal subbands is performed by means of the discrete WPT, which 

can be implemented in efficient algorithms for near-real-time applications. In order to improve 

the readability of MAD, which generally presents random similarities in non-modal ODSs, two 

criteria are also presented. The first simply involves the use of a forgetting factor, while the second 

consists of a noise-assisted procedure, which however does not corrupt the final results, as it 

happens instead in the EEMD if the number of trials is low since noise is only used to create a 

mask for the extracted signal. 

Moreover, the DAMA has been proposed to extract decoupled modal responses by applying a 

MAD-driven watershed segmentation and a MAC-based clustering procedure. The MAD has 

shown to be particularly suitable for watershed segmentation, as the areas associated with 

different modes are well-separated by low values in the distribution. However, the use of a 

forgetting factor in the MAD may lead to local unreliable estimates of modal parameters, which 

are nevertheless limited to the intervals where dynamics vary abruptly. The two main parameters 

of the DAMA have been discussed, also proposing a selection criterion based upon the analyzed 

signal. 

In the Applications section, the theory illustrated in the first part of the paper has been applied to 

two case studies presenting both slow and abrupt variations in the dynamics. In particular, the 

analyses conducted on a first simulated case study demonstrate the potential of the method, 

showing low sensitivity to narrow-band disturbances and performing well also with vanishing 

modes and considerable variations of the dynamic features. On the other hand, the analyses 

conducted on the second case study show the applicability of the method to signals collected on 

real structures, even under varying excitation with non-stationary amplitude. Accurate results are 

obtained for both the case studies, especially for the lower modes, both in terms of identified 

instantaneous natural frequencies and modal shapes. 

The method proposed is compared with the EMD and its multivariate variant, which has however 

shown mode mixing problems and the inability to identify vanishing modes. The quality of 

extracted modal responses was also investigated, attributing the discrepancies between estimated 

modal parameters and the ones considered as a reference to the presence of noise and imperfect 

clustering, which may generate multi-component responses. 

The idea of measuring the similarity in neighboring ODSs has already been successfully used in 

the EFDD algorithm for frequency-domain modal identification and is here extended in the time-

frequency domain, giving rise to a new adaptive TFR which can be employed as the starting point 

of several algorithms for signal analysis and system identification, even for near real-time 

applications. 
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