
16 July 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

MDE & MDA in a Multi-Paradigm Modeling Perspective / Ambra Molesini, Enrico Denti, Andrea Omicini. -
STAMPA. - (2021), pp. 4.64-4.87. [10.4018/978-1-7998-3661-2.ch004]

Published Version:

MDE & MDA in a Multi-Paradigm Modeling Perspective

Published:
DOI: http://doi.org/10.4018/978-1-7998-3661-2.ch004

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/769135 since: 2020-12-19

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.4018/978-1-7998-3661-2.ch004
https://hdl.handle.net/11585/769135

MDE & MDA in a Multi-Paradigm Modeling

Perspective

Ambra Molesini

DISI, Alma Mater Studiorum-Università di Bologna

Viale Risorgimento 2, 40136 Bologna, Italy

ambra.molesini@unibo.it

http://ambramolesini.apice.unibo.it

Enrico Denti

DISI, Alma Mater Studiorum-Università di Bologna

Viale Risorgimento 2, 40136 Bologna, Italy

enrico.denti@unibo.it

http://enricodenti.apice.unibo.it

Andrea Omicini

DISI, Alma Mater Studiorum-Università di Bologna

Via dell’Università,50, 47521 Cesena (FC), Italy

andrea.omicini@unibo.it

http://andreaomicini.apice.unibo.it

ABSTRACT

Since nowadays most complex software systems are intrinsically multi-paradigm, their

engineering is a challenging issue. Multi-Paradigm Modeling (MPM) aims at facing the

challenge by providing concepts and tools promoting the integration of models, abstractions,

technologies, and methods originating from diverse computational paradigms. In this paper we

overview the main MPM approaches in the literature, evaluate their strengths and weaknesses,

and compare them according to three main criteria—namely, (i) the software development

process, (ii) the adoption of meta-model techniques, (iii) the availability of adequate supporting

tools. We also explore the adoption of other promising approaches for the engineering of multi-

paradigm systems, such as Multi-Agent Systems (MAS) and Systems of Systems (SoS), and

discuss the role of Situational Process Engineering (SPE) in the composition of multi-paradigm

software processes.

Keywords: Multi-Paradigm Modeling; Development Process; Meta-Modeling; MDE

mailto:enrico.denti@unibo.it
http://enricodenti.apice.unibo.it/
mailto:andrea.omicini@unibo.it
http://andreaomicini.apice.unibo.it/

INTRODUCTION
Complex software systems are nowadays acknowledged to be inherently multi-paradigm – that

is, built out from with diverse components, differing in terms of the basic abstractions they are

based on, the technologies they exploit, the way in which they behave, the autonomy degree, the

intelligence, to name just a few. So, their engineering is a challenge, calling for a multiplicity of

concepts and tools, as well as the suitable integration of models, abstractions, technologies, and

methods originating from diverse computational paradigms. In turn, these also mandate for the

adequate integration of heterogeneous software development processes, and the related

methodologies (and tools). Since each of the aspects bringing diversity in systems is typically

best modelled and developed according to its own specific paradigm (Kuhn, 2012) (Zambonelli

& Parunak, 2003), non-trivial software systems end up with being intrinsically multi-paradigm in

their very nature.

Along this line, Multi-Paradigm Modeling (MPM) approaches (Vangheluwe, 2002) aim at

developing usable, effective, and coherent methods and techniques for the engineering of multi-

paradigm systems – both physical systems, software systems, and their combinations.

Model Driven Engineering (MDE) moves precisely from the idea of “using different models

at different levels of abstraction for developing systems” (Fondement & Silaghi, 2004): in fact,

most MPM approaches build precisely on MDE notions, techniques and supporting tools.

To this end, MDE technologies introduce and combine two key ingredients:

• Domain Specific Modeling Languages (DSML) for “formalizing the application

structure, behavior, and requirements within given domains” (Schmidt, 2006). DSML are

often defined by meta-models, with transformations aimed at automatically generating

(more specific) models from previous (more abstract) models.

• Model transformations to “represent the automatic manipulation of a model with a

specific intention” (Syriani, 2011). The rules and mappings to do so are expressed at the

meta-model layer, i.e. the layer where the transformation rules conceptually belong.
Because so many MPM approaches have been proposed over the years, finding one’s way in

such a field is anything but trivial: the differences among the available approaches range over

several aspects and dimensions – from the more conceptual (i.e., developing processes, adopted

abstractions, using of meta-modeling techniques) to the most practical ones (i.e., availability of

effective tools, their learning curve, to name just some). Accordingly, choosing the adequate

approach for a given application does not merely amount at listing the features, pros, and cons of

the possible choices: what is needed is a key for understanding and choosing advisedly, possibly

highlighting a uniform (pre-selected) set of key aspects, that enable a comparative analysis on a

homogeneous basis. In order to work as an effective “choice helper” tool, the result of such a

classification should be available not only in textual (verbose) form, but also in a more effective,

concise form of eye-catching tables, for immediate reference at the reader’s convenience.

This chapter is therefore organized as follows. First, we summarize the essential background

as effectively as possible (Section Background), and overview the most relevant MPM

approaches in the MDE&MDA perspective (Section Multi-Paradigm Modeling: Overview).

Then (Section Comparison and Discussion) we discuss, compare and classify MPM approaches

according to the three main criteria:

1. the software development process

2. the adoption of meta-model techniques

3. the availability/unavailability of adequate supporting tools

We also provide highlights on possible alternative views/approaches for engineering multi-

paradigm systems beyond MPM (Section Engineering Multi-Paradigm Systems beyond

MPM) and finally draw some conclusions.

BACKGROUND

This section summarizes the basic concepts and aspects about development processes,

methodologies, meta-models, modeling and meta-modeling languages.

The development process is likely the single issue in software engineering where the

simultaneous exploitation of multiple paradigms impacts the most: so, it is also our main

comparison criterion. Subsection Developing Process provides some background on the

different notions of development process in the literature, and their relationship with the

methodology notion.

The next key ingredient for the definition of new processes (and therefore another main

classification criterion) is Meta-models, discussed in Subsection Meta-models. Because these

are mostly defined via Unified Modeling Language (UML Home Page, 1997), Subsection Meta-

modeling Languages: UML & MOF recaps its infrastructure and relationship with Meta Object

Facility (MOF Home Page, 2002), the OMG-standard meta-meta-model used for defining the

UML meta-model. Finally, Subsection Model-Driven Engineering presents the model-driven

engineering approach.

Development Processes

Defining a development process in a satisfactory way is not trivial, for it involves diverse

elements and viewpoints. Different definitions can be found in the literature, focusing on specific

aspects or adopting a specific viewpoint. Some major aspects that are typically found in all

definitions are (i) the structural aspect, focusing on the key elements a development process is

made of; (ii) the organizational aspect, referred in a broader sense to all the “surrounding”

elements—people and people’s roles, deliverables, milestones, timing, and schedules, up to

(possibly) monetary and marketing issues; and (iii) the technological aspect, referring to all the

support tools, guidelines, software infrastructures that the development process relies on.
The structural aspect is at the core of the definitions proposed in (Sommerville, 2007),

according to which “A software process is a set of activities that leads to the production of a

software product (...). Four general activities can be identified, that are common to all software

processes: specification, design and implementation, validation, and evolution.” In (Fuggetta,

2000), the author focuses on organizational and technological aspects: “A software

(development) process can be seen as the coherent set of policies, organizational structures,

technologies, procedures, and deliverables needed to conceive, develop, deploy, and maintain a

software product.”

Since no software process can be termed as ideal and successfully applied to any application

scenarios (Brooks, 1987), different sorts of systems call for different software processes: their

activities need to be “organized in different ways and described at different levels of detail for

different types of software” (Sommerville, 2007). This consideration is at the base both of the

identification of process models families, and of the definition of the so-called Situational

Method Engineering (SME) (Brinkkemper, Saeki, & Harmsen, 1999) (Cossentino, Gaglio,

Garro, & Seidita, 2007).

Situational Method Engineering (SME) (Brinkkemper, Saeki, & Harmsen, 1999) means to

provide the basis for “the composition of new, ad-hoc development processes for each specific

need”. The term “situation” here concerns the specific problem to be faced, the process

requirements, the development context, the legacy environment, and other aspects. SME

suggests the adoption of adequate building tools based on the reuse of method fragments

(Cossentino, Gaglio, Garro, & Seidita, 2007) – that is, portions of (both existing and created ex

novo) development process, taken from a specific repository.

Despite their strict relationship, software engineering methodologies and development

processes are not the same: as sketched in (Cernuzzi, Cossentino, & Zambonelli, 2005),

“Methodologies focus more explicitly on how an activity or task should be performed in specific

stages of the process, [while] processes may also cover more general management aspects

concerning who, when, how much, etc.”. Although both aspects are obviously an engineer’s

concern, development processes focus on phases, relationships among phases, timing, roles, etc.,

while methodologies cope more specifically with the specific techniques adopted and work

products. In this sense, development processes and methodologies can be seen as

complementary—the development process being provided with suitable methodological

guidelines that specify the tools to be used, the techniques to be adopted, the definition of the

work products to be produced, best practices, etc.

Meta-models

Multi-Paradigm Modeling (MPM) means to provide software designers with “the most

appropriate modeling abstractions for the particular problem domain, (automatically)

transforming the resulting models into solution abstractions of the selected implementation

platform” (Vangheluwe, 2002). In this context, meta-models aim to formalize the modeling

abstractions, their admissible relationships, and the mapping between abstractions belonging to

different conceptual levels. Meta-models capture the rules that connect (i) the modeling

abstractions, possibly from different conceptual layers, to each other, and (ii) the activities and

roles that compose a development process or methodology.

Several definitions exist in the literature, e.g. (Bernon, Cossentino, Gleizes, Turci, &

Zambonelli, 2004) (Gonzalez-Perez, McBride, & Henderson-Sellers, 2005): as the term suggests,

they all share the idea that a meta-model is “a model of a model” (MDA Home Page, 2001). As

highlighted in (Henderson-Sellers & Gonzalez-Perez, 2005), formalizing a methodology with a

meta-model is useful for several reasons – consistency check, planning extensions, etc. So, in

order to be fruitful, meta-models should deal with all the multi-facet aspects of a methodology –

process model, life cycle, activities, techniques, guidelines, up to the organization in the

development team. In short, meta-models are an essential tool from a 360-degree perspective to

study the completeness and expressiveness of a methodology, compare different methodologies

(Henderson-Sellers & Gonzalez-Perez, 2005) and integrate methodologies (Cossentino, Gaglio,

Garro, & Seidita, 2007).

Meta-modeling Languages: UML & MOF

UML is “a general-purpose modeling language for describing artefacts in some domain of

interest” (Atkinson & Kuhne, 2001), purposely designed to be useable at multiple levels in a

multi-layer architecture—in particular to describe its own meta-model, providing for

compactness, conceptual economy, easier support for CASE (Computer-Aided Software

Engineering) tools.

According to (Atkinson & Kuhne, 2001), four levels – normally referred to as M0, M1, M2,

and M3, bottom-up – are adequate and enough for tool interoperability. The top layer, M3,

provides the constructs for creating meta-models—that is, the meta-meta-models: a suitable

example is MOF (Meta-Object Facility) (MOF Home Page, 2002). M2 is an instance of M3,

which defines the modeling language to be used in M1: this is where the UML meta-model (an

instance of MOF) is actually defined. M1 is an instance of M2 which defines the languages for

describing the application domains: every user model is an instance of the UML meta-model.

Finally, M0 expresses the actual run-time entities—instances of model elements defined in M1.

A crucial aspect in such architecture is the one-to-one relationships among UML and MOF:

“every model element of UML is an instance of exactly one model element in MOF” (MOF

Home Page, 2002). So, MOF defines how UML models can be exchanged between tools: this is

due to the reuse of the core modeling concepts (belonging to the Core Package) between UML,

MOF and other OMG meta-models. Such “meta-models’ concepts sharing” is at the base of

Model Driven Architecture (MDA).

Finally, profiles are UML’s way to customize UML itself. The profile mechanism provides

for adapting an existing meta-model (typically the UML meta-model) to a particular domain,

thus enabling the definition of Domain-Specific Modeling Languages (DSML).

Model-Driven Engineering

Model-Driven Engineering (MDE) promotes the development of software systems by focusing

on the creation of basic models and then transforming such models, across multiple levels of

abstraction down to code generation (Rhazali, El Hachimi, Chana, Lahmer, & Rhattoy, 2019).

Each MDE process defines (i) the models to be developed, (ii) in which order they should be

developed, (iii) how a higher-level model is to be transformed into a lower-level one. The system

under development is then first described by a model at the highest abstraction level

(Computation Independent Model – CIM), and then iteratively transformed into a platform-

specific model via subsequent refinements through different abstraction levels (Rhazali, Yassine,

Hadi, & Mouloudi, 2016). Accordingly, the CIM level means to represent only the business

process reality, while the next level – Platform Independent Model (PIM) – describes models in a

way that is effective for analysts and designers. The lowest abstraction level is the Platform

Specific Model – PSM – made basically of code models (Rhazali, El Hachimi, Chana, Lahmer, &

Rhattoy, 2019).

Model Driven Architecture (MDA) (MDA Home Page) is OMG’s vision of MDE, which

relies on UML and MOF to define the structure, semantics, and notation of models.

The major goal of MDA is to develop sustainable models (both CIM and PIM models) to

enable the automatic generation of all the application code, achieving a significant productivity

gain (Rhazali, Yassine, Hadi, & Mouloudi, 2016). Despite being rooted on model

transformations, MDA per se does not propose any methodological transformation process

(Rhazali, Yassine, Hadi, & Mouloudi, 2016). Research efforts typically focus on the

transformation from PIM to PSM, which are closely linked: instead, transforming the CIM level

to the PIM level is rarely discussed in the literature, possibly because of their dissimilarity. A

notable work about this crucial aspect is (Rhazali, Yassine, Hadi, & Mouloudi, 2016), where

authors propose a methodology to master transformation from service-oriented CIM level to

web-based PIM level. More recently (Rhazali, El Hachimi, Chana, Lahmer, & Rhattoy, 2019), a

methodology has been proposed for the semi-automatic model transformation from CIM to PIM

up to PSM.

MULTI-PARADIGM MODELING: OVERVIEW

To get a sense of Multi-Paradigm Modeling (MPM), let us overview the most relevant works,

focusing on the development process, meta-model definitions, and the availability of adequate

documentation and supporting tools. The same criteria are reused in Section Comparison and

Discussion for comparative analysis and in-depth discussion.

The basics

MPM as a stand-alone discipline dates back more than a decade. In the first workshop (Giese &

Levendovszky, 2006), many committed with the definition proposed by Vangheluwe et al. since

2002 (Vangheluwe, 2002), which defined MPM as “the integration of model abstraction, multi-

formalism modeling and meta-modeling”.

Moving from such definition, (Mosterman & Vangheluwe, 2002), (Mosterman &

Vangheluwe, 2004) and (Denil, Vangheluwe, De Meulenaere, & Demeyer, 2012) introduce

MPM approaches that explore and combine three aspects:

• model abstraction, concerned with “the relationship between different models at

different levels of abstraction”;

• multi-formalism modeling, concerned with “the coupling of and transformation

between models, described in different formalisms”;

• meta-modeling, concerned with “the description (models of models) of classes of

models—that is, the specification of formalisms”.

MPM investigates their blending, by (i) combining, transforming, and relating formalisms one

to each other; (ii) generating domain/problem-specific formalisms, methods, and tools; (iii)

cross-checking the coherence among different views.

The main reason beyond this idea is that problem-specific formalisms and tools are desirable,

yet their development is difficult and time-consuming; moreover, adopting a multi-formalism

approach calls for “interconnecting a plethora of different tools, each designed for a particular

formalism” (Lara & Vangheluwe, 2002). This is precisely where meta-modeling comes to help:

while the introduction of a meta-layer enables DSML definition, the meta-layer information

enables the generation of specialized tools for supporting newly-defined DSML. Together, they

can cut the development cost of a customized tool, making the difference for actual DSML

adoption. Moreover, since the generated tools represent the models through a common data

structure, transformations between DSML become transformations between these structures.

Indeed, recent work by (Ciccozzi, Vangheluwe, & Weyns, 2019) investigate blended

modeling, that is, “the activity of interacting seamlessly with a single model (i.e., abstract

syntax) through multiple notations (i.e., concrete syntaxes), allowing a certain degree of

temporary inconsistencies.” In short, blended modeling aims to provide blended editing and

multiple visualizing notations to interact with a set of concepts, usable for the different aspects of

design, development and stakeholder communication in an MDE process.

Multi-Paradigm Modeling with AToM3

To prove the effectiveness of the above ideas, Vangheluwe et al. developed the AToM3 tool: its

input is an Entity-Relationship meta-specification extended with suitable constraints, whereas its

output is a new, model-specific tool customized for processing the models described in a given

DSML. The meta-model drives the automatic generation both of the DSML and of its relative

supporting tool(s). AToM3 uses Abstract Syntax Graphs (Oliveira & Loh, 2013) to express

models and graph grammar models (Ehrig, Engels, Kreowski, & Rozenberg, 1999) to express

transformations, which take the form of graph rewriting. The meta-model of the DSML is in its

turn represented as a meta-metamodel, like in the UML architecture: accordingly, new concepts

are actually introduced at the meta-meta-level.

Although no specific description is provided about the process to be followed when

developing an MPM application, it is apparently left as understood that engineers should first

specify the meta-models of the different formalisms to be used: AToM3 takes then care of

generating the proper tools for each formalism. Once the tools are available, engineers can model

the different pieces of the system adopting the most suitable formalism for each piece. The

models (possibly represented in different formalisms) are then connected via generic links –

AToM3 way of enabling the connection between the different parts. As a final step, AToM3 can

automatically generate the source code according to user-defined transformations.

A DSM-based MPM Approach for Simulation

Domain-Specific Modeling (DSM) is one of the basic MDE techniques. (Li, Lei, Wang, Wang,

& Zhu, 2013) presents a DSM-based, MPM approach which exploits MDE for integrating

Models & Simulations (M&S) paradigms (Balci, 2012): the goal is to build a simulation

framework combining multiple M&S languages to describe the different domain behaviors.

This approach exploits several modeling methods—namely, (i) MDE models for the work

products, with transformations and code generation for the development process; (ii) DSM to

provide domain-specific solutions; and (iii) M&S formalisms to express the domain behaviors.

The simulation model development is structured in four top-down steps, which correspond to

the four M&S layers:

1) the DSML layer, addressing the conceptual modeling;

2) the M&S formalism layer, devoted to model architecting and integration;

3) the model framework & specification layer, concerned with the model design and

formal analysis, based on the M&S formalism;

4) the executable model layer, addressing the model implementation, based on

SMP2/C++ transformations.

Authors (Li, Lei, Wang, Wang, & Zhu, 2013) move from the idea of decomposing a

(complex) system into “a series of problem domains, defining domain-specific conceptual

models for each domain”. At the highest (DSML) layer, each sub-system is modeled via a

DSML, whose meta-model (i.e., grammar) is designed by the joint effort of domain experts, lan-

guage engineers and M&S experts. The next (M&S formalism) layer exploits model

specification and simulator algorithms to model the behavior and provide the denotational

semantics for each DSML. Since a single formalism supports DSM for multiple domains, formal

analysis methods can be applied to perform an overall analysis. The third layer (model

framework & specification) is the architecture of the simulation system, aimed at providing “a

structural foundation for the integration of simulation models of sub-systems across different

domains”.

Aiming at being technology-independent, DSM is described in terms of high-level concepts,

abstracting from the general structure of the specific system. The model framework obtained

embodies the architecture from the simulation viewpoint: it is a first-class artifact providing the

foundations – intended as the structural elements and their mutual relationships – for each

domain. The model framework is then further combined with the behavior modeling, depicting

the behavior patterns of each domain. The resulting model framework is finally mapped onto

Simulation Model Portability 2 (SMP2), a standard MDA model specification, to provide a

platform-independent model.

The bottom (executable model) layer couples the structural aspects described in SMP2 with

the behavioral code generated from the domain-specific models: such parts are finally integrated

in the SMP2 framework for the generation of executable components (technically, this step is

based on an SMP2/C++ mapping, performed via a custom C++ code generator in Eclipse).

MPM in Model Transformation

(Syriani, 2011) proposes an MPM technique for the engineering of a model transformation

language – the language expressing model transformations – in order to automate the model

transformation itself. The approach, rooted in (Mosterman & Vangheluwe, 2004), adopts the

MPM principles, in particular, multi-abstraction – which is not the same as model abstraction.

Quoting the author, “Model abstraction is a view of a system exhibiting some of its properties

and hiding others, [while] multi-abstraction is the ability to express models at different

abstraction levels”.

The model transformation language is defined at the syntax level, while the semantics is

modeled through meta-models and model transformations—the necessary enabling technologies.

The aim is twofold: on the one side, to raise the abstraction level; on the other, to improve the

mapping between model transformation languages and their corresponding domains, minimizing

accidental complexity. The effectiveness of the resulting framework is illustrated by Syriani in

the design and implementation of a model transformation language. However, emphasis is on

expressiveness, rather than on the development process—in fact, no tools are actually provided.

MPM in FTG+PM

In (Mustafiz, Denil, Lucio, & Vangheluwe, 2012) an MPM framework is proposed, called

Formalism Transformation Graph + Process Model (FTG+PM), which is also based on MDE

and adopting the MPM definition in (Mosterman & Vangheluwe, 2002). As its name suggests,

the first component is a graph, whose nodes are languages and edges are transformations, while

the second component models the software lifecycle and its transformations activities via

UML 2.0 activity diagrams. Different modeling languages can be used at different abstraction

levels: authors adopt UML modeling languages, domain-specific modeling languages, natural

languages, and general-purpose languages, mainly meta-modeled via UML class diagrams.

Like any MDE process, FTG+PM includes several activities – from requirements to code

synthesis – modeled at different abstraction levels, which depend on the different MDE phases:

higher-level models (requirements models, domain-specific models) are transformed step-by-

step into source code. Each abstraction layer is associated to the detailed tasks to be performed:

quoting the authors, they are “first declared as transformation definitions in FTG, then

instantiated as PM activities”. Transformations represent the development glue: input models are

turned onto one output model, all conforming to the meta-model.

The FTG+PM approach is supported by AToMPM (A Tool for Multi-Paradigm Modeling),

which covers both the definition of meta-models and transformations, and the execution of the

transformation chain.

An Orientation Framework for Multi-Paradigm Modeling

Moving from the idea that each methodology is built upon some characteristic assumptions – its

paradigm –, (Lorenz & Jost, 2006) observe that an effective modeling approach calls for best

match of three key aspects:

• purpose, defined as “the motivation of the intended modeling effort”

• object, defined as “the real-world context under investigation”

• methodology, defined as “a comprehensive, integrated series of techniques or methods

creating a general systems theory of how a class of thought intensive work ought to be

performed”.

Since it is often the case that no single set of modeling paradigm and methodology fits

satisfactorily a given context and purpose, the intriguing idea is to try to combine different

methodologies, in an MPM perspective, taking the “best-fit” methods from different

methodologies. The assumption is that such an approach should match the reality more closely:

at the same time, effectively combining different paradigms is an issue. A possible way to do so

is to select the “best-fit” paradigm for each sub-problem and then build the multi-paradigm

model in terms of interacting modules: however, choosing the best-fit paradigm/method for each

part of the system is critical. While authors present some hints to face this point, little is actually

said about the development process, the supporting tools, and the meta-model techniques.

MPM in software architectures

In (Balasubramanian, Levendovszky, Dubey, & Karsai, 2014) authors discuss the multi-

paradigm issues encountered during the development of a domain-specific architecture

description language for distributed embedded systems.

Their software infrastructure, DREMS (Distributed Real-time Embedded Managed Systems)

is aimed at “designing, implementing, configuring, deploying, and managing distributed read-

time embedded systems”. The two major subsystems respectively deal with (a) modeling,

analyzing, synthesizing, implementing, debugging, testing, and maintaining the software

application, and (b) deploying and managing the application on a network.

Three main challenges are faced: (i) how to integrate the textual code inside the graphical

modeling language; (ii) how to transform the high-level scheduling properties into the target

platform schedule; and (iii) how to integrate different design-time analyses.

The first challenge derives from the use of a graphical UI on the user side and of a textual

language in the underlying platform, which adopts the Component-Based Software Engineering

(CBSE) approach: there, applications are made of reusable software components whose

interfaces are specified via the Interface Definition Language (IDL)—an OMG standard for this

purpose; code generators process IDL to generate stubs, which are then merged with the user

logic to build the final component. In DREMS, the integration of the textual IDL language is

performed by creating an add-on to the modeling language that parses the textual language for

setting attributes onto the graphical elements.

The second challenge comes from the use of the DREMS temporal partition scheduler, which

transforms the high-level scheduling constraints and artefacts (the process-partition assignment

graph, and other details) into a detailed schedule usable by the underlying operating system. A

schedule calculator then binds the individual temporal partitions to the DREMS schedule.

The third challenge originates from the need to integrate three automated analyses—namely,

the security of communications, the network quality of service (QoS), and the software

component schedulability. While security is granted via a multi-level security policy, the analysis

of QoS requirements is based on the support for QoS profiles in the modeling language, which is

capable to describe the evolution of the network parameters and the QoS requirements.

Schedulability analysis involves the verification of system properties, and is performed by

generating a suitable Colored Petri Net (Jensen & Kristensen, 2009).

The proposed solution goes beyond their specific case, and can be applied to similar

situations, especially if aimed at providing an analogous level of tool automation. Because of the

focus on domain-specific languages, however, other aspects – the development process, the

supporting tools, the meta-model techniques – are left aside.

Multi-Paradigm Design with Feature Modeling

(Vranic, 2005) introduces Multi-Paradigm Design with Feature Modeling (MPDfm), aimed at

enabling explicit reasoning about “paradigms viewed as solution domain concepts”, and at

evaluating their “appropriateness for application domain concepts”. A solution domain

represents the language for describing a solution—typically, a programming language.

Application and solution domain are both modeled via feature modeling (Vranic, 2005), a

modeling technique for multi-paradigm design. Application domain and feature models are

subject to transformational analysis to define a suitable mapping between these domains. The

mapping is expressed in the form of yet-another feature model, with the information about the

application domain concepts and features (Vranic, 2005); overall, these determine the basic code

structure. So, the development process is structured in four main steps: (i) application domain

feature modeling; (ii) solution domain feature modeling; (iii) transformational analysis; and (iv)

code skeleton design. The first two can proceed in parallel: then, the detailed design and

implementation can follow the MPDfm approach.

Authors report that the method is verified, with good results, adopting feature modeling as the

application domain and the AspectJ language as the solution domain; yet, no specific supporting

tools seem to be available.

Model-driven System Engineering for Virtual Product Design

(Dalibor, Jansen, Rumpe, Wachtmeister, & Wortmann, 2019) present a small Model-Driven

System Engineering (MDSE) methodology to integrate the SysML paradigm with the CAD

paradigm, that is, a method for integrating abstract system descriptions in the OMG Systems

Modeling Language – SysML (SysML Open Source Project Home Page, 2003) with Computer-

Aided Design (CAD) models. SysML is an UML subset extended with a graphical modeling

language for systems engineering, while the Computer-Aided x (CAx) paradigm embraces

various Computer-Aided methods such as CAD, Computer-Aided Engineering (CAE) and

Computer-Aided Manufacturing (CAM).

The context is virtual product development, i.e. “a practice to support all phases of the

product development process using a digital environment”. CAD modeling methods are applied

in all the development-relevant phases of the product life-cycle, to simulate, verify, validate, and

manufacture the product, while minimizing the creation of physical prototypes. Their

combination for virtual product development leads to the so-called “CAx process chain”.

Authors introduce the idea of connecting such a chain with the SysML models (created with

the Object-Oriented Systems Engineering Method-OOSEM). Process systems engineers would

then be able to describe the system in SysML (via an ad-hoc profile), and integrate the model

into the CAx process chain. The process starts with a SysML modeling activity, where the

systems engineer creates an abstract system model specifying the elements of the physical parts

of the system. The next step is to forward the parameters that are relevant for CAD modeling.

Using the resulting CAD model in combination with additional information from the SysML

diagram, engineers can perform additional CAE analyses and CAM modeling.

A suitable SysML Profile enables engineers to mark blocks of a SysML Block Definition

Diagram as «CAD Element», and value properties that should serve as parametric design

parameters as «CAD Parameter». Moreover, model information exchange in the SysML-CAD

process chain is automated, via a special-purpose plug-in for the MagicDraw modeling

environment (MagicDraw Home Page, 2019) that interchanges model information in a format

suitable for Autodesk Inventor: so, the dimensions of concrete physical parts can be designed

automatically.

Despite being very special-purpose, the approach seems quite appealing: however, it is strictly

tied to the example proposed in the paper, so its application to other product seems not so trivial,

especially due to the work necessary for adapting the automatic the exchange of model

information.

A Multi-paradigm Modeling Framework for Modeling and Simulating Problem
Situations

(Lynch, Padilla, Diallo, Sokolowski, & Banks, 2014) propose a Multi-Paradigm Modeling

Framework (MPMF) for modeling and simulating problem situations. The framework adopts

three different levels of granularity (macro, meso, and micro) to analyze what is known and

assumed about the problem situation. Such levels are then independently mapped to different

modeling paradigms, which are combined to build up the comprehensive model and the

corresponding simulation.

MPMF is based on Modeling and Simulation-System Development Framework (MS-SDF)

(Diallo, Andreas Tolk, Gore, & Padilla, 2005), which defines a high-level approach on how to

derive a model from a problem situation, and a simulation from the model. MS-SDF provides an

effective approach to capture the information about the problem situation and represent it in a

manner which is suitable for simulation, as well as to identify contradictions and inconsistencies.

In MS-DSF, three high-level constructs are introduced – reference modeling, conceptual

modeling, and simulation building – that MPMF expands to support simulation implementation.

The good level of traceability – another key MS-SDF feature – is also maintained in MPMF,

thanks to the recursive layout of the framework in the modeling process.

In a multi-paradigm environment, the number of modeling paradigms to be handled represents

a critical aspect to keep complexity manageable: accordingly, the number of modeling paradigms

used to implement the simulation should be kept to the minimum.

In our knowledge, no tool or documentation are currently available for this framework.

Multi-Paradigm Modeling approach to live modeling

A different, more recent perspective to MPM, based on the above-discussed FTG+PM (Mustafiz,

Denil, Lucio, & Vangheluwe, 2012), can be found in (Van Tendeloo, Van Mierlo, &

Vangheluwe, 2019), aimed at adding liveness to modeling languages in a way that is reusable

across multiple formalisms: the reason is that the support for live modeling has been identified as

a key feature to advance the usability of model-driven techniques.

The basic idea is to transpose the essence of live programming to the modeling domain, in a

generic way. Live programming concepts and techniques should be transposed to domain-

specific executable modeling languages, clearly distinguishing between generic and language-

specific concepts. However, domain-specific modeling means to handle (many) different

domain-specific formalisms, each possibly with a handful of users, making it difficult to justify

the investment for implementing live modeling techniques in an ad hoc way. So, to effectively

support live modeling in the context of domain-specific formalisms, authors “deconstruct and

reconstruct” the traditional live programming process. All the activities related to liveness are

distilled into a single operation (“sanitization”): so, to make a formalism live, only sanitization

needs to be updated, while the other aspects of live modeling can be reused.

Author considered three types of executable modeling formalisms: Finite State Automata

(FSAs), Discrete Time Causal Block Diagrams (DTCBDs), and Continuous Time Causal Block

Diagrams (CTCBDs). They are all supported, together with their live implementation, in the

Modelverse tool (Van Tendeloo, Van Mierlo, & Vangheluwe, 2018), which supports all the

necessary phases – language engineering, model transformations, process enactment – as well as

the use of multiple interfaces. There, users first start the live modeling process which pertains to

the desired formalisms, possibly providing an initial model. It is worth highlighting that only the

design models are stored: simulation, instead, is always started anew. The enactment closely

resembles the usual modeling interface, except for the presence of an extra simulation window –

merely, an external program that visualizes the simulation results. In order to emphasize the

uncoupling between model and formalisms, authors discuss three examples based on the exact

same (parameterized) FTG+PM model, showing that only the sanitization operation is to be

redefined for each formalism individually: the visual interfaces are untouched, as everything is

based on process enactment. So, because of the independence between model and domain-

specific formalisms, and thanks to the availability of an effective tool based on FTG+PM, this

approach seems potentially applicable to a wide variety of modeling formalisms.

At the same time, Modelverse is a new tool, mainly based on the writing of Python code to

create models via meta-model instantiation, (Van Tendeloo, Van Mierlo, & Vangheluwe, 2018),

currently featuring no visual diagram support—a drawback which could limit actual usability,

especially in more complex scenarios.

COMPARISON AND DISCUSSION

This section aims to discuss comparatively the approaches introduced in Section 3 according to

three main criteria:

(1) the development process

(2) the possible adoption of meta-models

(3) the availability of suitable supporting tools

The very reason beyond the first criterion is well synthesized in (Sommerville, 2007):

“Different types of systems need different development processes (...) [so] the use of an

inappropriate software process may reduce the quality or the usefulness of the software product

to be developed and/or increased”. This is particularly relevant for multi-paradigm systems,

where the development process needs to adapt to diverse paradigms and application domains, in

order to model the different parts of the system with a variety of abstractions.

The second criterion derives from meta-models being the conceptual and practical tool to

bridge between (abstractions from) different paradigms: in fact, MPM approaches exploit meta-

modeling techniques to define Domain-Specific Modeling Languages (DSMLs), which are then

used for modeling specific sub-systems; in turn, these are further processed via (possibly

automatic) transformations to map a DSML onto another.

The third criterion comes from the finding that the actual applicability of the multi-paradigm

approach depends on the availability of effective supporting tools—both because of the inherent

complexity and multi-facet nature of the development process, and specifically for the definition

of the DSML and the related processing. At the same time, the actual usability of such tools is

often critical also for experienced users, which makes it a crucial factor to be accounted for.

Development Process Comparison

The analysis of the development process needs to start from the analysis of the process model.

Appropriate comparison criteria for this aspect can be derived from Sommerville’s definition:

(i) the kind (and structure) of process model

(ii) whether the process is adequately documented (other than, indirectly, reasonably easy to

learn and apply).

As far as the first issue is concerned, one clear result is that, whenever a process model can be

identified, it is a transformational process. This is not surprising, since a number of such

approaches share the same root (Vangheluwe, 2002).

The second, often underestimated, issue is particularly critical in the MPM context since the

development of adequate documentation does not follow the physiological evolution of the

process itself, which is inherently complex because of the inter-twining of different paradigms.

Unfortunately, documentation and tutorials are often outdated and do not reflect the new process

requirements or design techniques. As a further consequence, the lack of suitable documentation

negatively impacts on the learning process.

Table 1 summarizes the results of the comparison among the above-discussed approaches.

Since the works by Vangheluwe, on which many approaches are based, refer to MDE principles

and focus onto the automatic transformations among modeling domains/languages, the adoption

of supporting tools like AToM3, AToMPM and Modelverse is an important factor. In many cases

the presence of CASE tools influences the development process itself—indeed, the adoption of a

given tool nearly imposes the process to be followed in the system development (Denil,

Vangheluwe, De Meulenaere, & Demeyer, 2012), (Mosterman & Vangheluwe, 2002)

(Mosterman & Vangheluwe, 2004) (Lara & Vangheluwe, 2002) (Mustafiz, Denil, Lucio, &

Vangheluwe, 2012) (Van Tendeloo, Van Mierlo, & Vangheluwe, 2019). Alternatively, works

inspired to the Features-Oriented software development, like (Vranic, 2005), adopt a

transformational process model but blended with Features-Oriented ingredients.

The inadequate availability of up-to-date and complete documentation makes it often difficult

not only to compare different development processes, but also to choose the most suited for the

specific designer’s situation. Of course, this problem is not peculiar only to the MPM com-

munity, but affects other communities, like e.g. the Agent-Oriented Software Engineering

(AOSE) community, which also needs a standard way of documenting the development

processes. This is why the IEEE-FIPA standardization organism supported in the last years the

development of a standard Documentation Template (Cossentino, Seidita, Hilaire, & Molesini,

2014), based on a variant of SPEM 2.0 (Software & Systems Process Engineering Metamodel

Specification. Version 2.0, 2008), which seems general enough to be potentially adopted also in

domains other than AOSE—like, for instance, MPM.

As shown in Table 1, the only proposal adopting a formal approach – namely, SPEM – to deal

with the documentation issue is (Denil, Vangheluwe, De Meulenaere, & Demeyer, 2012):

however, it adopts the (older) SPEM 1.0, and only for modeling a single fragment of the devel-

opment process. Other works opt for informal process documentation or examples to document

their approaches: (Li, Lei, Wang, Wang, & Zhu, 2013) and (Mustafiz, Denil, Lucio, &

Vangheluwe, 2012) are perhaps the ones providing the most complete documentation—with a

positive impact on the learning process. Other approaches rely mostly on the supporting tools

and related documentation for illustrating the development process, possibly suffering from the

obsolescence problem of such documentation. In most cases, tools do not seem to be particularly

suited for an easy learning, especially by non-expert designers.

Table 1. Comparison of the development processes.

Proposal

Authors and Bibliography reference

Process Model

Type and Influence

Documentation

Formality Examples

(Denil, Vangheluwe, De Meulenaere, &

Demeyer, 2012)

Type: transformational

Influence: AToM3

Formal (via

SPEM 1.0)

Not provided

(Mosterman & Vangheluwe, 2002)
Type: transformational

Influence: CASE tool
Not provided Not provided

(Mosterman & Vangheluwe, 2004)
Type: transformational
Influence: CASE tool

Not provided ✓

(Vangheluwe, 2002)
Type: transformational

Influence: –
Informal Not provided

(Lara & Vangheluwe, 2002)
Type: transformational

Influence: AtoM3
Not provided ✓

(Li, Lei, Wang, Wang, & Zhu, 2013)
Type: transformational

Influence: N/A
Not provided ✓

(Syriani, 2011)
Type: not specified

Influence: –
Not provided ✓

(Mustafiz, Denil, Lucio, & Vangheluwe, 2012)
Type: transformational
Influence: AToMPM

Informal ✓

(Lorenz & Jost, 2006)
Type: not specified

Influence: –
Not provided ✓

(Balasubramanian, Levendovszky, Dubey, &

Karsai, 2014)

Type: not specified

Influence: –
Informal Not provided

(Vranic, 2005)

Type: transformational

Influence: features

design

Informal ✓

(Dalibor, Jansen, Rumpe, Wachtmeister, &

Wortmann, 2019)

Type: transformational

Influence: MDE
Not provided ✓

(Lynch, Padilla, Diallo, Sokolowski, & Banks,

2014)

Type: not specified

Influence: MS-SDF
Not provided ✓

(Van Tendeloo, Van Mierlo, & Vangheluwe,

2019)

Type: iterative

Influence: FTG+PM

and Modelverse

Informal

✓

Meta-model Comparison

As meta-models are one of the most powerful conceptual tools to bridge between different

paradigms, one obvious comparison criterion is whether they are adopted in a given MPM

approach: if so, two further aspects concern which language(s) is used for their utterance and for

which purpose(s) they are used. While most MPM approaches are actually rooted in (Mosterman

& Vangheluwe, 2002), where meta-models are at the core, other approaches, like (Lorenz & Jost,

2006) and (Vranic, 2005), are based on different techniques—e.g., features.

Meta-models can then be seen as a sort of grammar specifying the syntax of a set of models,

while model transformations specify the corresponding semantics: their combined use provides

for the automatic generation of the modeling environment. So, meta-models both bridge between

paradigms and set the practical foundation for automating the building of Domain Specific

Modeling environments.

Table 2 reports the result of the comparison of the above approaches based on the meta-

modeling lens. When meta-modeling techniques are used, the most common representation

language appears to be UML, possibly combined with Entity-Relationship (E-R): this is not

surprising, since UML is the most used meta-modeling language. In other cases, however, either

no assumption is made on the adopted language, or different languages are adopted.

In UML-based proposals, meta-models are typically used first at meta-level for creating the

specific DSML, and then at a lower level for modeling specific sub-systems: automatic model

transformations, based on the relationships defined at the meta-level, finally map a DSML onto

another, transforming an input model onto a new model in a different (lower level) language.

Tool Comparison

Tools must support not only the development process in general, but the specific abstractions and

techniques that are peculiar to MPM: so, their design and implementation require a considerable

development effort. The complexity and learning curve of the tools also needs to be evaluated, as

it is often an obstacle also for experienced users.

In the approaches derived from (Vangheluwe, 2002), based on meta-models, tools are asked

to support the definition of the desired DSML and the related transformation processing; other

approaches have their own, different requirements. While most of the above-presented

approaches are not supported by a specific tool, three of them do have one—namely, AtoM3

(Lara & Vangheluwe, 2002), AToMPM (Syriani & Vangheluwe, 2012), and Modelverse

(Van Tendeloo, Van Mierlo, & Vangheluwe, 2019). Their evaluation criteria should therefore

include the tool power vs. complexity, the user-friendliness of the installation procedure, the

learning curve, and the state of the documentation: results are summarized in Table 3.

All tools require their own (i.e., typically not the last) version of Python—namely, Python 2.3

for AtoM3 and Python 2.7 for AToMPM and Modelverse, none of which is compatible with

Python 3.x. Moreover, AToMPM adopts a client-server architecture, which requires that the

server is properly configured to include a specific Python graphic package; the client instead just

run inside Google Chrome, exploiting its JavaScript support. Modelverse, indeed, requires the

SCCD compiler and runtime to be executed. They also require a proportionally long time to be

learned and fruitfully exploited.

AtoM3 may likely result too complicated for users with little experience in meta-model

creation: in addition, users have to write by themselves the Python code for expressing pieces of

models. On the other hand, it is well-documented— although the documentation and examples

refer to an older version, with different GUI and functionalities, which makes it uneasy to follow

the provided examples. AToMPM, instead, comes with a nice video and introductory tutorial

Table 2. Comparing meta-models.

Proposal
Meta-models

Adoption

Meta-modeling

Language

Used for

 DSML Transformation

(Denil, Vangheluwe, De
Meulenaere, & Demeyer, 2012)

✓ E-R + UML ✓ ✓

(Mosterman & Vangheluwe,

2002)
✓ different languages ✓ ✓

(Mosterman & Vangheluwe,

2004)
✓ UML ✓ ✓

(Vangheluwe, 2002)  (not applicable) 

(Lara & Vangheluwe, 2002) ✓ E-R + UML ✓ ✓

(Li, Lei, Wang, Wang, & Zhu,
2013)

✓ no assumption ✓ ✓

(Syriani, 2011) ✓ UML ✓ ✓

(Mustafiz, Denil, Lucio, &

Vangheluwe, 2012)
✓ UML ✓ ✓

(Lorenz & Jost, 2006)  (not applicable) 

(Balasubramanian,

Levendovszky, Dubey, & Karsai,

2014)
✓ UML ✓ 

(Vranic, 2005)  (not applicable) 

(Dalibor, Jansen, Rumpe,

Wachtmeister, & Wortmann,

2019)
✓ UML ✓ 

(Lynch, Padilla, Diallo,

Sokolowski, & Banks, 2014)  (not applicable) 

(Van Tendeloo, Van Mierlo, &

Vangheluwe, 2019)  (not applicable) 

Table 3. Comparison of the supporting tools.

Tool Installation requirements Learning time Documentation

AtoM3 Python 2.3 Considerable
documentation + examples

(referred to an old version)

AToMPM
Python 2.7 + graphic package +

JavaScript package
considerable video + tutorial slides

Modelverse
SCCD compiler and runtime +

Python 2.7

considerable
documentation

+ technical report

slides: still, the lack of a complete guide might force users to navigate menus and try out some

modeling libraries to actually unleash its potential. Modelverse, however, requires users to write

Python code in order to create their models.

Another key point concerns scalability. Most of the above MPM approaches adopt the

transformational process model and the MDE techniques, which means that the system under

development is – roughly speaking – decomposed in multiple, independently-modeled sub-

systems, and the code is finally generated via model transformations. However, most of the

accompanying examples refer to rather simple situations, like the car windows system in

(Mosterman & Vangheluwe, 2004), whose decomposition is equally simple and the involved

paradigms are just two or three. So, more complex case studies, with multiple involved

paradigms, would be required for an effective assessment of the applicability of MPM

approaches to intricate scenarios such as pervasive computing (Satyanarayanan, 2001), pervasive

intelligent systems (Mariani & Omicini, 2013), self-organizing systems (Di Marzo Serugendo,

Gleizes, & Karageorgos, 2006).

ENGINEERING MULTI-PARADIGM SYSTEMS BEYOND MPM

The Multi-Agent Systems paradigm

Due to its different perspective, the Multi-Agent System paradigm is mostly ignored in MPM

field, despite its widespread adoption as a “general-purpose paradigm for software development”

(Zambonelli & Parunak, 2003) – possibly because the MPM community traditionally focuses on

application domains rooted in the M&S field (Balci, 2012). A notable exception is (Lorenz &

Jost, 2006), where agent-based modeling is considered in the simulation context. However, the

agent paradigm is widely acknowledged to be well-suited to model complex systems, thanks to

features such as agent autonomy, sociality, and more generally to foundational notions of goals,

actors, environment, etc. (Molesini, 2008) which make it possible to design complex, interactive

systems at the “adequate” abstraction level—usually, higher than other paradigms. Moreover,

application scenarios such as complex socio-technical systems (Bryl, Giorgini, & Mylopoulos,

2009) and pervasive intelligent systems (Mariani & Omicini, 2013) could likely benefit from a

multi-paradigm approach that includes some key aspects of the MAS paradigm—for instance, to

coordinate and govern the interaction among the many autonomous entities.

Yet, most MPM approaches could hardly be applied to the agent paradigm “as they are”, since

this would require that agent entities are transformed into suitable coordination “active entities”

and vice-versa— would call for the agent paradigm to be integrated with other relevant

paradigms, such as coordination (Papadopoulos, Stavrou, & Papapetrou, 2006) and event-based

(Omicini, 2015) paradigms. In its turn, this would amount at (i) integrating the agent meta-model

with the coordination meta-model, and (ii) creating a new development process by assembling

fragments of agent-oriented methodologies with fragments of coordination methodologies.

Analogously, integrating the agent paradigm with the event-based paradigm, as suggested in

(Omicini, 2015), would require the suitable modeling of interactions between autonomous

entities and the environment where they are immersed.

Situational Process Engineering

Situational Process Engineering (SPE) techniques (Cossentino, Gaglio, Garro, & Seidita, 2007)

(Cossentino, Seidita, Hilaire, & Molesini, 2014) – that is, the evolution of the SME initially

developed in the object-oriented field (Brinkkemper, Saeki, & Harmsen, 1999) – provide the

conceptual and practical foundations for defining ad-hoc development processes, by suitably re-

combining pieces (reusable fragments) of existing processes, so as to create a methodology that

is specific for a given purpose.

Adopting SPE in a multi-paradigm context opens several challenges. First, the SPE approach

cannot be used as is: integrating process fragments rooted on the same paradigm (and therefore

sharing similar abstraction) is one thing, but doing the same with process fragments coming from

methodologies based on completely different paradigms is all another story.

The availability of such fragments is another issue: while process fragments from AOSE

methodologies are available for integration, fragments from other paradigms would need to be

created from scratch. This is all but trivial, since fragment extraction requires a deep knowledge

of the specific methodology; alternatively, the methodology should be very well documented in a

standard way (Cossentino, Seidita, Hilaire, & Molesini, 2014)—another critical issue per se.

Suitably documenting such process fragments is one third, critical aspect. While the

Documentation Template under development in the AOSE community could be of help for

methodologies, the development of a standardized fragment documentation template is still a

work in progress.

The intriguing case of Systems of Systems

From an opposite perspective, paradigms could be used as isolated worlds, if each sub-system is

modeled with a separate paradigm and sub-systems have little inter-dependencies on each other.

The development of each sub-system could then follow its own development process, tailored to

the specific paradigm.

An appealing approach could be to define a sort of “process orchestrator” to (i) manage the

different sub-processes and their mutual inter-relationships in terms of time scheduling and

interleaved activities, and (ii) analyze and design the interactions among sub-systems.

An example is represented by the so-called System of Systems (SoS) (Nielsen, Fitzgerald,

Woodcock, & Peleska, 2015)—basically, a set of ad-hoc systems that put their resources and

skills together, so that the resulting system provides more features and services than the simple

sum of its parts. SoS move from the idea that “the growing interdependency of systems

contributes to an ever-emerging complexity” (Ross, Ulieru, & Gorod, 2014): the use of multi-

paradigm approach in that field is under investigation. A key challenge in this context is “to

identify the boundaries of the overall SoS and of its independent constituent systems” (Nielsen,

Fitzgerald, Woodcock, & Peleska, 2015), where “boundaries” refers both to technical (interfaces

definition, integration, testing) and organizational aspects (governance, stakeholders).

Moreover, an open research aspect is how to possibly exploit the presence of a “process

orchestrator” to structure the design at two levels—a (lower) level for each sub-system, and the

orchestrator in charge of the global development process, obtained by integrating and scheduling

the development process of each sub-system, at a higher level.

Multi-Agent Systems for Systems of Systems

(Nielsen, Fitzgerald, Woodcock, & Peleska, 2015) argue that “the space of SoS might be

described in terms of eight dimensions”—autonomy, independence, distribution, evolution,

dynamic reconfiguration, emergence of behavior, interdependence, interoperability. Since these

aspects fall well inside the MAS features, it is conceivable that the MAS paradigm can be

exploited to address at least some of the SoS challenges: again, this is an open research issue.

CONCLUSIONS

Summing up, MPM approaches typically adopt a transformational process model, with UML

being the most common representation language for meta-modeling techniques. However,

documentation is often unsatisfactory and inadequate to the learning curve, especially in case of

non-expert designers. Tools are powerful, but also suffer from the inadequacy of documentation,

tutorials, and effective examples.

Current MPM approaches seem not to consider the MAS paradigm, which could be of help to

cope with complex scenarios such as pervasive intelligent systems, ubiquitous systems, and self-

organizing systems. The perspective of a blend of MAS within MPM approaches is appealing,

both for the intrinsic agent features and because of the chance, provided by SPE, to build ad-hoc

development processes by combining process fragments rooted into different paradigms: this is

an open research area. The emergence of the SoS paradigm (Nielsen, Fitzgerald, Woodcock, &

Peleska, 2015), where multi-paradigm approaches are also investigated (Ross, Ulieru, & Gorod,

2014), opens another promising conceptual and technical framework for agent-oriented

abstractions, technologies, and methodologies.

Interestingly enough, the term “paradigm” is left in the background in most of the above

works in the “multi-paradigm” modeling field: typically, it is merely mentioned to highlight the

simultaneous presence/application of different approaches, set of rules, methods, etc. ”—yet,

without pointing out what a “paradigm” is supposed to be, nor highlighting the possible

paradigm shifts that, according to (Kuhn, 2012), inherently define the paradigm concept per se.

This is not peculiar to the MPM field: looking wider, the same seems to hold for multi-paradigm

programming (MPM), despite programming languages date back to the sixties.

Overall, with the growing complexity of software systems in all fields, it can be expected that

the practice of combining ideas, methods, approaches, processes, methodologies – paradigms, in

the broadest sense – from diverse fields, possibly far from each other, becomes increasingly

common for conceptual, economical and practical reasons. At the same time, being “multi-

paradigm” is much more than just “adopting” two paradigms in some way: suitable models,

guidelines, and new ad-hoc research are needed to make this scenario actually fruitful.

REFERENCES

Atkinson, C., & Kuhne, T. (2001). The essence of multilevel metamodling. In G. M, & K. C.,

UML 2001 - The Unified Modeling Language. Modeling Languages, Concepts and Tools

(Lecture Notes in Computer Science ed., Vol. 2185, pp. 19-33). Berlin Heidelberg:

Springer.

Balasubramanian, D., Levendovszky, T., Dubey, A., & Karsai, G. (2014). Taming Multi-

Paradigm Integration in a Software Architecture Description Language. In D.

Balasubramanian, C. Jacquet, P. Van Gorp, S. Kokaly, & T. Meszaros (Ed.), 8th

Workshop on Multi-Paradigm Modeling (MPM@MODELS 2014). 1237, pp. 67-76.

RWTH Aachen University: Sun SITE Central Europe. Retrieved from http://ceur-

ws.org/Vol-1237/paper7.pdf

Balci, O. (2012, jul). A Life Cycle for Modeling and Simulation. Simulation, 88(7), 870-883.

doi:10.1177/0037549712438469

Bernon, C., Cossentino, M., Gleizes, M.-P., Turci, P., & Zambonelli, F. (2004). In J. Odell, P.

Giorgini, & J. P. Muller, Agent Oriented Software Engineering V (Lecture Notes in

Computer Science ed., Vol. 3382, pp. 62-77). Berlin Heidelberg: Springer.

doi:10.1007/978-3-540-30578-1_5

Boehm, B. W. (1988, may). A Spiral Model of Software Development and Enhancement. IEEE

Computer, 21(5), 61-72. doi:10.1109/2.59

Brinkkemper, S., Saeki, M., & Harmsen, F. (1999). Meta-Modelling Based Assembly

Techniques for Situational Method Engineering. Information Systems, 24(3), 209-228.

doi:10.1016/S0306-4379(99)00016-2

Brooks, F. P. (1987, apr). No Silver Bullet Essence and Accidents of Software Engineering.

IEEE Computer, 20(4), 10-19. doi:10.1109/MC.1987.1663532

Bryl, V., Giorgini, P., & Mylopoulos, J. (2009, feb). Designing Socio-Technical Systems: From

Stakeholder Goals to Social Networks. Requirement Engineering, 14(1), 47-70.

doi:10.1007/s00766-008-0073-5

Cernuzzi, L., Cossentino, M., & Zambonelli, F. (2005, mar). rocess Models for Agent-Based

Development. Engineering Applications of Artificial Intelligence, 18(2), 205-222.

doi:10.1016/j.engappai.2004.11.015

Ciccozzi, F. a., Vangheluwe, H., & Weyns, D. (2019). Blended Modelling – What, why and

how. First International Workshop on Multi-Paradigm Modelling for Cyber-Physical

Systems. Munich. Retrieved from

https://msdl.uantwerpen.be/conferences/MPM4CPS/2019/wp-

content/uploads/2019/09/mpm4cps2019_Blended.pdf

Cossentino, M., Gaglio, S., Garro, A., & Seidita, V. (2007). Method fragments for agent design

methodologies: from standardisation to research. International Journal of Agent Oriented

Software Engineering (IJAOSE), 1(1), 91-121. doi:10.1504/IJAOSE.2007.013266

Cossentino, M., Seidita, V., Hilaire, V., & Molesini, A. (2014). FIPA Design Process

Documentation and Fragmentation Working Group. Retrieved from FIPA Design

Process Documentation and Fragmentation Working Group:

http://www.pa.icar.cnr.it/cossentino/fipa-dpdf-wg/

Dalibor, M., Jansen, N., Rumpe, B., Wachtmeister, L., & Wortmann, A. (2019). Model-Driven

Systems Engineering for Virtual Product Design. MPM4CPS 2019 : First International

Workshop on Multi-Paradigm Modelling for Cyber-Physical Systems. Retrieved from

https://msdl.uantwerpen.be/conferences/MPM4CPS/2019/wp-

content/uploads/2019/09/Paper_MDSE4VirtualProductDesign.pdf

Denil, J., Vangheluwe, H., De Meulenaere, P., & Demeyer, S. (2012). Calibration of

Deployment Simulation Models: A Multi-Paradigm Modelling Approach. 2012

Symposium on Theory of Modeling and Simulation -- DEVS Integrative M&S Symposium

(TMS/DEVS '12). Orlando, Florida: Society for Computer Simulation International.

Retrieved from http://dl.acm.org/citation.cfm?id=2346629

Di Marzo Serugendo, G., Gleizes, M.-P., & Karageorgos, A. (2006, jan). Self-Organization in

Multi-Agent Systems. The Knowledge Engineering Review, 20(2), 165-189.

doi:10.1017/S0269888905000494

Diallo, S., Andreas Tolk, A., Gore, R., & Padilla, J. (2005). Modeling and simulation framework

for systems engineering. In D. Gianni, A. D'Ambrogio, & A. Tolk, Modeling and

Simulation-Based Systems Engineering Handbook (First Edition ed., p. 377-401). Boca

Raton: CRC Press. doi:10.1201/b17902

Ehrig, H., Engels, G., Kreowski, H.-J., & Rozenberg, G. (1999). Handbook of Graph Grammars

and Computing by Graph Transformation. River Edge, NJ, USA: World Scientific.

doi:10.1142/4180

Fondement, F., & Silaghi, R. (2004). Defining Model Driven Engineering Processes. In M.

Gogolla, P. Sammut, & J. Whittle (Ed.), 3rd UML Workshop in Software Model

Engineering (WiSME 2004) (pp. 1-11). Lisbon, Portugal: Universidade Nova de Lisboa.

Retrieved from http://ctp.di.fct.unl.pt/UML2004/workshop.html#ws5

Fuggetta, A. (2000). Software Process: A Roadmap. ICSE '00: Proceedings of the Conference on

The Future of Software Engineering (p. 25-34). Limerick, Ireland: ACM Press.

doi:10.1145/336512.336521

Giese, H., & Levendovszky, T. (Eds.). (2006). Proceedings of the Workshop on Multi-Paradigm

Modeling: Concepts and Tools 2006. Proceedings of the Workshop on Multi-Paradigm

Modeling: Concepts and Tools. 2006/1. BME-DAAI Technical Report Series. Retrieved

from http://avalon.aut.bme.hu/\~mesztam/conferences/mpm06/mpm06_proc.pdf

Gonzalez-Perez, C., McBride, T., & Henderson-Sellers, B. (2005). A Metamodel for Assessable

Software Development Methodologies. Software Quality Journal, 13(2), 195-214.

doi:10.1007/s11219-005-6217-7

Group, O. (2008). SPEM 2.0 . Tratto da Software & Systems Process Engineering Metamodel

Specification. Version 2.0: http://www.omg.org/spec/SPEM/2.0/

Hardebolle, C., & Boulanger, F. (2009, nov). Exploring Multi-Paradigm Modeling Techniques.

Simulation, 85(11-12), 688-708. doi:10.1177/0037549709105240

Henderson-Sellers, B. (2002). Process Metamodelling and Process Construction: Examples

Using the OPEN Process Framework OPF. Annals of Software Engineering, 14(1), 341-

362. doi:10.1023/A:1020570027891

Henderson-Sellers, B., & Gonzalez-Perez, C. (2005, jan). A Comparison of Four Process

Metamodels and the Creation of a New Generic Standard. Information & Software

Technology, 47(1), 49-65. doi:10.1016/j.infsof.2004.06.001

Jensen, K., & Kristensen, L. M. (2009). Coloured Petri Nets. Modelling and Validation of

Concurrent Systems. Berlin Heidelberg: Springer. doi:10.1007/b95112

Kuhn, T. S. (2012). The Structure of Scientific Revolutions (50th Anniversary ed.). Chicago :

University of Chicago Press.

Lara, J. d., & Vangheluwe, H. (2002). Computer Aided Multi-paradigm Modelling to Process

Petri-Nets and Statecharts. In A. Corradini, H. Ehrig, H. -J. Kreowski, & G. Rozenberg,

Graph Transformation (Lecture Notes in Computer Science ed., Vol. 2505, p. 239-253).

Berlin Heidelberg: Springer. doi:10.1007/3-540-45832-8

Larman, C., & Basili, V. R. (2003, jun). Iterative and Incremental Development: A Brief History.

IEEE Computer , 36(6), 47-56. doi:10.1109/MC.2003.1204375

Li, X., Lei, Y., Wang, W., Wang, W., & Zhu, Y. (2013). A DSM-based Multi-Paradigm

Simulation Modeling Approach for Complex Systems. 2013 Winter Simulation

Conference: Simulation: Making Decisions in a Complex World (WSC '13) (pp. 1179-

1190). Piscataway, NJ, USA: IEEE Press. Retrieved from

http://dl.acm.org/citation.cfm?id=2675983.2676133

Lorenz, T., & Jost, A. (2006). Towards an Orientation Framework in Multi-Paradigm Modeling:

Aligning Purpose, Object and Methodology in System Dynamics, AGent-Based

Modeling and DIscrete-EVent-Simulation. In A. Grosler, E. A. Rouwette, R. S. Langer, J.

I. Rowe, & J. M. Yanni (Ed.), 24th International Conference of the System Dynamics

Society (pp. 2134-2151). Albany, NY, USA: System Dynamics Society. Retrieved from

http://www.systemdynamics.org/conferences/2006/proceed/papers/LOREN178.pdf

Lynch, C., Padilla, J., Diallo, S., Sokolowski, J., & Banks, C. (2014). A multi-paradigm

modeling framework for modeling and simulating problem situations. Proceedings of the

Winter Simulation Conference 2014 (p. 1688-1699). Savanah, GA, USA: IEEE.

doi:10.1109/WSC.2014.7020019

Mariani, S., & Omicini, A. (2013). Molecules of Knowledge: Self-Organisation in Knowledge-

Intensive Environments. In G. Fortino, C. Badica, M. Malgeri, & R. Unland (A cura di),

Intelligent Distributed Computing VI. 446, p. 17-22. Berlin Heidelberg: Springer.

doi:10.1007/978-3-642-32524-3_4

Molesini, A. (2008). Meta-Models, Environment and Layers: Agent-Oriented Engineering of

Complex Systems. Ph.D Thesis, Alma Mater Studiorum - Università di Bologna ,

Dipartimento di Elettronica, Informatica e Sistemistica, Bologna.

Mosterman, P. J., & Vangheluwe, H. (2002, oct). Guest Editorial: Special Issue on Computer

Automated Multi-Paradigm Modeling. ACM Transactions on Modeling and Computer

Simulation (TOMACS), 12(4), 249-255. doi:10.1145/643120.643121

Mosterman, P. J., & Vangheluwe, H. (2004). Computer Automated Multi-Paradigm Modeling:

An Introduction. Simulation, 80(9), 433-450. doi:10.1177/0037549704050532

Mustafiz, S., Denil, J., Lucio, L., & Vangheluwe, H. (2012). The FTG+PM Framework for

Multi-paradigm Modelling: An Automotive Case Study. 6th International Workshop on

Multi-Paradigm Modeling (MPM '12) (pp. 13-18). New York, NY, USA: ACM.

doi:10.1145/2508443.2508446

Nielsen, C. B., Fitzgerald, J., Woodcock, J., & Peleska, J. (2015). Systems of Systems

Engineering: Basic Concepts, Model-Based Techniques, and Research Directions. ACM

Computer Surveys, 48(2), 1-41. doi:10.1145/2794381

NoMagic. (2019). MagicDraw Home Page. Retrieved 11 20, 2019, from NoMagic:

https://www.nomagic.com/products/magicdraw

Oliveira, B. C., & Loh, A. (2013). Abstract Syntax Graphs for Domain Specific Languages.

ACM SIGPLAN 2013 Workshop on Partial Evaluation and Program Manipulation

(PEPM '13) (p. 87-96). New York, NY, USA: ACM. doi:10.1145/2426890.2426909

OMG. (1997). UML Home Page. Retrieved from UML: http://www.uml.org

OMG. (2001). MDA Home Page. Retrieved from MDA: http://www.omg.org/mda/

OMG. (2002). MOF Home Page. Retrieved from MOF: http://www.omg.org/mof/

OMG. (2008). Software & Systems Process Engineering Metamodel Specification. Version 2.0.

Retrieved from SPEM: http://www.omg.org/spec/SPEM/2.0/

Omicini, A. (2015). Event-Based vs.\ Multi-Agent Systems: Towards a Unified Conceptual

Framework. In G. Fortino, W. Shen, J.-P. Barthès, J. Luo, W. Li, S. Ochoa, . . . M.

Ramos (A cura di), 2015 19th IEEE International Conference on Computer Supported

Cooperative Work in Design (CSCWD2015) (p. 1-6). Los Alamitos, CA, USA: IEEE

Computer Society. doi:10.1109/CSCWD.2015.7230924

Organization, S. (2003). SysML Open Source Project Home Page. Retrieved from SysML Open

Source Project: https://sysml.org/

Papadopoulos, G. A., Stavrou, A., & Papapetrou, O. (2006, mar). An Implementation

Framework for {S}oftware {A}rchitectures Based on the Coordination Paradigm.

Science of Computer Programming, 60(1), 27--67. doi:10.1016/j.scico.2005.06.002

Rhazali, Y., El Hachimi, A., Chana, I., Lahmer, M., & Rhattoy, A. (2019). Automate Model

Transformation From CIM to PIM up to PSM in Model-Driven Architecture. In B. B.

Gupta, Modern Principles, Practices, and Algorithms for Cloud Security (p. 262-283).

doi:10.4018/978-1-7998-1082-7.ch013

Rhazali, Yassine, Hadi, Y., & Mouloudi, A. (2016). CIM to PIM Transformation in MDA: from

Service-Oriented Business Models to Web-Based Design Models. International Journal

of Software Engineering and Its Applications, 10(4), 125-142.

doi:http://dx.doi.org/10.14257/ijseia.2016.10.4.13

Ross, W., Ulieru, M., & Gorod, A. (2014). A Multi-Paradigm Modelling & Simulation Approach

for System of Systems Engineering: A Case Study. 9th International Conference on

System of Systems Engineering (SoSE 2014) (p. 183-188). Piscataway, NJ, USA: IEEE.

doi:10.1109/SYSOSE.2014.6892485

Satyanarayanan, M. (2001). Pervasive Computing: Vision and Challenges. IEEE Personal

Communications, 8(4), 10--17. doi:10.1109/98.943998

Schmidt, D. C. (2006, feb). Guest Editor's Introduction: Model-Driven Engineering. IEEE

Computer, 39(2), 25-31. doi:10.1109/MC.2006.58

Sommerville, I. (2007). Software Engineering (8th ed.). Edinburgh, UK: Addison-Wesley.

Syriani, E. (2011). A Multi-Paradigm Foundation for Model Transformation Language

Engineering. McGill University, School of Computer Science. Montreal, QC, Canada:

McGill University.

Syriani, E., & Vangheluwe, H. (2012). AToMPM Home Page. Retrieved from AToMPM:

http://www-ens.iro.umontreal.ca/$%5Csim$syriani/atompm/atompm.htm

Van Tendeloo, Y., Van Mierlo, S., & Vangheluwe, H. (2018). Modelverse Home Page.

Retrieved from Modelverse: https://msdl.uantwerpen.be/git/yentl/modelverse

Van Tendeloo, Y., Van Mierlo, S., & Vangheluwe, H. (2019, oct). A Multi-Paradigm Modelling

approach to live modelling. Software & Systems Modeling, 18(5), 2821--2842.

doi:10.1007/s10270-018-0700-7

Vangheluwe, H. (2002). An Introduction to Multiparadigm Modelling and Simulation. AI,

Simulation & Planning in High Autonomy Systems (AIS 2002) (p. 9-20). Lisbon,

Portugal: Society for Modeling & Simulation International (SCS).

Vangheluwe, H. (2002). An Introduction to Multiparadigm Modelling and Simulation. AI,

Simulation & Planning in High Autonomy Systems (AIS 2002) (p. 9-20). Lisbon,

Portugal: Society for Modeling & Simulation International (SCS).

Vranic, V. (2005, jun). Multi-Paradigm Design with Feature Modeling. Computer Science and

Information Systems, 2(1), 79-102. doi:10.2298/CSIS0501079V

Zambonelli, F., & Parunak, H. V. (2003). Towards a Paradigm Change in Computer Science and

Software Engineering: A Synthesis. The Knowledge Engineering Review(4), 329--342.

doi:10.1017/S0269888904000104

	ABSTRACT
	Introduction
	Background
	Development Processes
	Meta-models
	Meta-modeling Languages: UML & MOF
	Model-Driven Engineering

	Multi-Paradigm Modeling: OVERVIEW
	The basics
	Multi-Paradigm Modeling with AToM3
	A DSM-based MPM Approach for Simulation
	MPM in Model Transformation
	MPM in FTG+PM
	An Orientation Framework for Multi-Paradigm Modeling
	MPM in software architectures
	Multi-Paradigm Design with Feature Modeling
	Model-driven System Engineering for Virtual Product Design
	A Multi-paradigm Modeling Framework for Modeling and Simulating Problem Situations
	Multi-Paradigm Modeling approach to live modeling

	Comparison and Discussion
	Development Process Comparison
	Meta-model Comparison
	Tool Comparison

	Engineering Multi-Paradigm Systems BEYOND MPM
	The Multi-Agent Systems paradigm
	Situational Process Engineering
	The intriguing case of Systems of Systems
	Multi-Agent Systems for Systems of Systems

	Conclusions
	References

