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ABSTRACT 

Since nowadays most complex software systems are intrinsically multi-paradigm, their 

engineering is a challenging issue. Multi-Paradigm Modeling (MPM) aims at facing the 

challenge by providing concepts and tools promoting the integration of models, abstractions, 

technologies, and methods originating from diverse computational paradigms. In this paper we 

overview the main MPM approaches in the literature, evaluate their strengths and weaknesses, 

and compare them according to three main criteria—namely, (i) the software development 

process, (ii) the adoption of meta-model techniques, (iii) the availability of adequate supporting 

tools. We also explore the adoption of other promising approaches for the engineering of multi-

paradigm systems, such as Multi-Agent Systems (MAS) and Systems of Systems (SoS), and 

discuss the role of Situational Process Engineering (SPE) in the composition of multi-paradigm 

software processes. 
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INTRODUCTION 
Complex software systems are nowadays acknowledged to be inherently multi-paradigm – that 

is, built out from with diverse components, differing in terms of the basic abstractions they are 

based on, the technologies they exploit, the way in which they behave, the autonomy degree, the 

intelligence, to name just a few. So, their engineering is a challenge, calling for a multiplicity of 

concepts and tools, as well as the suitable integration of models, abstractions, technologies, and 

methods originating from diverse computational paradigms. In turn, these also mandate for the 

adequate integration of heterogeneous software development processes, and the related 

methodologies (and tools). Since each of the aspects bringing diversity in systems is typically 

best modelled and developed according to its own specific paradigm (Kuhn, 2012) (Zambonelli 

& Parunak, 2003), non-trivial software systems end up with being intrinsically multi-paradigm in 

their very nature. 

Along this line, Multi-Paradigm Modeling (MPM) approaches (Vangheluwe, 2002) aim at 

developing usable, effective, and coherent methods and techniques for the engineering of multi-

paradigm systems – both physical systems, software systems, and their combinations.  

Model Driven Engineering (MDE) moves precisely from the idea of “using different models 

at different levels of abstraction for developing systems” (Fondement & Silaghi, 2004): in fact, 

most MPM approaches build precisely on MDE notions, techniques and supporting tools.  

To this end, MDE technologies introduce and combine two key ingredients:  

• Domain Specific Modeling Languages (DSML) for “formalizing the application 

structure, behavior, and requirements within given domains” (Schmidt, 2006). DSML are 

often defined by meta-models, with transformations aimed at automatically generating 

(more specific) models from previous (more abstract) models. 

• Model transformations to “represent the automatic manipulation of a model with a 

specific intention” (Syriani, 2011).  The rules and mappings to do so are expressed at the 

meta-model layer, i.e. the layer where the transformation rules conceptually belong. 
Because so many MPM approaches have been proposed over the years, finding one’s way in 

such a field is anything but trivial: the differences among the available approaches range over 

several aspects and dimensions – from the more conceptual (i.e., developing processes, adopted 

abstractions, using of meta-modeling techniques) to the most practical ones (i.e., availability of 

effective tools, their learning curve, to name just some). Accordingly, choosing the adequate 

approach for a given application does not merely amount at listing the features, pros, and cons of 

the possible choices: what is needed is a key for understanding and choosing advisedly, possibly 

highlighting a uniform (pre-selected) set of key aspects, that enable a comparative analysis on a 

homogeneous basis. In order to work as an effective “choice helper” tool, the result of such a 

classification should be available not only in textual (verbose) form, but also in a more effective, 

concise form of eye-catching tables, for immediate reference at the reader’s convenience.  

This chapter is therefore organized as follows. First, we summarize the essential background 

as effectively as possible (Section Background), and overview the most relevant MPM 

approaches in the MDE&MDA perspective (Section Multi-Paradigm Modeling: Overview). 

Then (Section Comparison and Discussion) we discuss, compare and classify MPM approaches 

according to the three main criteria: 

1. the software development process 

2. the adoption of meta-model techniques 

3. the availability/unavailability of adequate supporting tools 



We also provide highlights on possible alternative views/approaches for engineering multi-

paradigm systems beyond MPM (Section Engineering Multi-Paradigm Systems beyond 

MPM) and finally draw some conclusions. 

 

BACKGROUND 

This section summarizes the basic concepts and aspects about development processes, 

methodologies, meta-models, modeling and meta-modeling languages.  

The development process is likely the single issue in software engineering where the 

simultaneous exploitation of multiple paradigms impacts the most: so, it is also our main 

comparison criterion. Subsection Developing Process provides some background on the 

different notions of development process in the literature, and their relationship with the 

methodology notion.  

The next key ingredient for the definition of new processes (and therefore another main 

classification criterion) is Meta-models, discussed in Subsection Meta-models. Because these 

are mostly defined via Unified Modeling Language (UML Home Page, 1997), Subsection Meta-

modeling Languages: UML & MOF recaps its infrastructure and relationship with Meta Object 

Facility (MOF Home Page, 2002), the OMG-standard meta-meta-model used for defining the 

UML meta-model. Finally, Subsection Model-Driven Engineering presents the model-driven 

engineering approach. 

Development Processes 

Defining a development process in a satisfactory way is not trivial, for it involves diverse 

elements and viewpoints. Different definitions can be found in the literature, focusing on specific 

aspects or adopting a specific viewpoint. Some major aspects that are typically found in all 

definitions are (i) the structural aspect, focusing on the key elements a development process is 

made of; (ii) the organizational aspect, referred in a broader sense to all the “surrounding” 

elements—people and people’s roles, deliverables, milestones, timing, and schedules, up to 

(possibly) monetary and marketing issues; and (iii) the technological aspect, referring to all the 

support tools, guidelines, software infrastructures that the development process relies on. 
The structural aspect is at the core of the definitions proposed in (Sommerville, 2007), 

according to which “A software process is a set of activities that leads to the production of a 

software product (...). Four general activities can be identified, that are common to all software 

processes: specification, design and implementation, validation, and evolution.” In (Fuggetta, 

2000), the author focuses on organizational and technological aspects: “A software 

(development) process can be seen as the coherent set of policies, organizational structures, 

technologies, procedures, and deliverables needed to conceive, develop, deploy, and maintain a 

software product.”  

Since no software process can be termed as ideal and successfully applied to any application 

scenarios (Brooks, 1987), different sorts of systems call for different software processes: their 

activities need to be “organized in different ways and described at different levels of detail for 

different types of software” (Sommerville, 2007). This consideration is at the base both of the 

identification of process models families, and of the definition of the so-called Situational 

Method Engineering (SME) (Brinkkemper, Saeki, & Harmsen, 1999) (Cossentino, Gaglio, 

Garro, & Seidita, 2007).  



Situational Method Engineering (SME) (Brinkkemper, Saeki, & Harmsen, 1999) means to 

provide the basis for “the composition of new, ad-hoc development processes for each specific 

need”. The term “situation” here concerns the specific problem to be faced, the process 

requirements, the development context, the legacy environment, and other aspects. SME 

suggests the adoption of adequate building tools based on the reuse of method fragments 

(Cossentino, Gaglio, Garro, & Seidita, 2007) – that is, portions of (both existing and created ex 

novo) development process, taken from a specific repository. 

Despite their strict relationship, software engineering methodologies and development 

processes are not the same: as sketched in (Cernuzzi, Cossentino, & Zambonelli, 2005), 

“Methodologies focus more explicitly on how an activity or task should be performed in specific 

stages of the process, [while] processes may also cover more general management aspects 

concerning who, when, how much, etc.”. Although both aspects are obviously an engineer’s 

concern, development processes focus on phases, relationships among phases, timing, roles, etc., 

while methodologies cope more specifically with the specific techniques adopted and work 

products. In this sense, development processes and methodologies can be seen as 

complementary—the development process being provided with suitable methodological 

guidelines that specify the tools to be used, the techniques to be adopted, the definition of the 

work products to be produced, best practices, etc. 

Meta-models 

Multi-Paradigm Modeling (MPM) means to provide software designers with “the most 

appropriate modeling abstractions for the particular problem domain, (automatically) 

transforming the resulting models into solution abstractions of the selected implementation 

platform” (Vangheluwe, 2002). In this context, meta-models aim to formalize the modeling 

abstractions, their admissible relationships, and the mapping between abstractions belonging to 

different conceptual levels. Meta-models capture the rules that connect (i) the modeling 

abstractions, possibly from different conceptual layers, to each other, and (ii) the activities and 

roles that compose a development process or methodology.  

Several definitions exist in the literature, e.g. (Bernon, Cossentino, Gleizes, Turci, & 

Zambonelli, 2004) (Gonzalez-Perez, McBride, & Henderson-Sellers, 2005): as the term suggests, 

they all share the idea that a meta-model is “a model of a model” (MDA Home Page, 2001). As 

highlighted in (Henderson-Sellers & Gonzalez-Perez, 2005), formalizing a methodology with a 

meta-model is useful for several reasons – consistency check, planning extensions, etc. So, in 

order to be fruitful, meta-models should deal with all the multi-facet aspects of a methodology –

process model, life cycle, activities, techniques, guidelines, up to the organization in the 

development team. In short, meta-models are an essential tool from a 360-degree perspective to 

study the completeness and expressiveness of a methodology, compare different methodologies 

(Henderson-Sellers & Gonzalez-Perez, 2005) and integrate methodologies (Cossentino, Gaglio, 

Garro, & Seidita, 2007). 

Meta-modeling Languages: UML & MOF 

UML is “a general-purpose modeling language for describing artefacts in some domain of 

interest” (Atkinson & Kuhne, 2001), purposely designed to be useable at multiple levels in a 

multi-layer architecture—in particular to describe its own meta-model, providing for 

compactness, conceptual economy, easier support for CASE (Computer-Aided Software 

Engineering) tools.  



According to (Atkinson & Kuhne, 2001), four levels – normally referred to as M0, M1, M2, 

and M3, bottom-up – are adequate and enough for tool interoperability. The top layer, M3, 

provides the constructs for creating meta-models—that is, the meta-meta-models: a suitable 

example is MOF (Meta-Object Facility) (MOF Home Page, 2002). M2 is an instance of M3, 

which defines the modeling language to be used in M1: this is where the UML meta-model (an 

instance of MOF) is actually defined. M1 is an instance of M2 which defines the languages for 

describing the application domains: every user model is an instance of the UML meta-model. 

Finally, M0 expresses the actual run-time entities—instances of model elements defined in M1. 

A crucial aspect in such architecture is the one-to-one relationships among UML and MOF: 

“every model element of UML is an instance of exactly one model element in MOF” (MOF 

Home Page, 2002). So, MOF defines how UML models can be exchanged between tools: this is 

due to the reuse of the core modeling concepts (belonging to the Core Package) between UML, 

MOF and other OMG meta-models. Such “meta-models’ concepts sharing” is at the base of 

Model Driven Architecture (MDA). 

Finally, profiles are UML’s way to customize UML itself. The profile mechanism provides 

for adapting an existing meta-model (typically the UML meta-model) to a particular domain, 

thus enabling the definition of Domain-Specific Modeling Languages (DSML).  

 

Model-Driven Engineering 

Model-Driven Engineering (MDE) promotes the development of software systems by focusing 

on the creation of basic models and then transforming such models, across multiple levels of 

abstraction down to code generation (Rhazali, El Hachimi, Chana, Lahmer, & Rhattoy, 2019).  

Each MDE process defines (i) the models to be developed, (ii) in which order they should be 

developed, (iii) how a higher-level model is to be transformed into a lower-level one. The system 

under development is then first described by a model at the highest abstraction level 

(Computation Independent Model – CIM), and then iteratively transformed into a platform-

specific model via subsequent refinements through different abstraction levels (Rhazali, Yassine, 

Hadi, & Mouloudi, 2016). Accordingly, the CIM level means to represent only the business 

process reality, while the next level – Platform Independent Model (PIM) – describes models in a 

way that is effective for analysts and designers. The lowest abstraction level is the Platform 

Specific Model – PSM – made basically of code models (Rhazali, El Hachimi, Chana, Lahmer, & 

Rhattoy, 2019). 

Model Driven Architecture (MDA) (MDA Home Page) is OMG’s vision of MDE, which 

relies on UML and MOF to define the structure, semantics, and notation of models.  

The major goal of MDA is to develop sustainable models (both CIM and PIM models) to 

enable the automatic generation of all the application code, achieving a significant productivity 

gain (Rhazali, Yassine, Hadi, & Mouloudi, 2016). Despite being rooted on model 

transformations, MDA per se does not propose any methodological transformation process 

(Rhazali, Yassine, Hadi, & Mouloudi, 2016). Research efforts typically focus on the 

transformation from PIM to PSM, which are closely linked: instead, transforming the CIM level 

to the PIM level is rarely discussed in the literature, possibly because of their dissimilarity. A 

notable work about this crucial aspect is (Rhazali, Yassine, Hadi, & Mouloudi, 2016), where 

authors propose a methodology to master transformation from service-oriented CIM level to 

web-based PIM level. More recently (Rhazali, El Hachimi, Chana, Lahmer, & Rhattoy, 2019), a 

methodology has been proposed for the semi-automatic model transformation from CIM to PIM 

up to PSM.  



MULTI-PARADIGM MODELING: OVERVIEW 

To get a sense of Multi-Paradigm Modeling (MPM), let us overview the most relevant works, 

focusing on the development process, meta-model definitions, and the availability of adequate 

documentation and supporting tools. The same criteria are reused in Section Comparison and 

Discussion for comparative analysis and in-depth discussion. 

The basics 

MPM as a stand-alone discipline dates back more than a decade. In the first workshop (Giese & 

Levendovszky, 2006), many committed with the definition proposed by Vangheluwe et al. since 

2002 (Vangheluwe, 2002), which defined MPM as “the integration of model abstraction, multi-

formalism modeling and meta-modeling”.  

Moving from such definition, (Mosterman & Vangheluwe, 2002), (Mosterman & 

Vangheluwe, 2004) and (Denil, Vangheluwe, De Meulenaere, & Demeyer, 2012) introduce 

MPM approaches that explore and combine three aspects: 

• model abstraction, concerned with “the relationship between different models at 

different levels of abstraction”; 

• multi-formalism modeling, concerned with “the coupling of and transformation 

between models, described in different formalisms”; 

• meta-modeling, concerned with “the description (models of models) of classes of 

models—that is, the specification of formalisms”. 

MPM investigates their blending, by (i) combining, transforming, and relating formalisms one 

to each other; (ii) generating domain/problem-specific formalisms, methods, and tools; (iii) 

cross-checking the coherence among different views. 

The main reason beyond this idea is that problem-specific formalisms and tools are desirable, 

yet their development is difficult and time-consuming; moreover, adopting a multi-formalism 

approach calls for “interconnecting a plethora of different tools, each designed for a particular 

formalism” (Lara & Vangheluwe, 2002). This is precisely where meta-modeling comes to help: 

while the introduction of a meta-layer enables DSML definition, the meta-layer information 

enables the generation of specialized tools for supporting newly-defined DSML. Together, they 

can cut the development cost of a customized tool, making the difference for actual DSML 

adoption. Moreover, since the generated tools represent the models through a common data 

structure, transformations between DSML become transformations between these structures. 

Indeed, recent work by (Ciccozzi, Vangheluwe, & Weyns, 2019) investigate blended 

modeling, that is, “the activity of interacting seamlessly with a single model (i.e., abstract 

syntax) through multiple notations (i.e., concrete syntaxes), allowing a certain degree of 

temporary inconsistencies.” In short, blended modeling aims to provide blended editing and 

multiple visualizing notations to interact with a set of concepts, usable for the different aspects of 

design, development and stakeholder communication in an MDE process.  

Multi-Paradigm Modeling with AToM3 

To prove the effectiveness of the above ideas, Vangheluwe et al. developed the AToM3 tool: its 

input is an Entity-Relationship meta-specification extended with suitable constraints, whereas its 

output is a new, model-specific tool customized for processing the models described in a given 

DSML. The meta-model drives the automatic generation both of the DSML and of its relative 

supporting tool(s). AToM3 uses Abstract Syntax Graphs (Oliveira & Loh, 2013) to express 

models and graph grammar models (Ehrig, Engels, Kreowski, & Rozenberg, 1999) to express 



transformations, which take the form of graph rewriting. The meta-model of the DSML is in its 

turn represented as a meta-metamodel, like in the UML architecture: accordingly, new concepts 

are actually introduced at the meta-meta-level. 

Although no specific description is provided about the process to be followed when 

developing an MPM application, it is apparently left as understood that engineers should first 

specify the meta-models of the different formalisms to be used: AToM3 takes then care of 

generating the proper tools for each formalism. Once the tools are available, engineers can model 

the different pieces of the system adopting the most suitable formalism for each piece. The 

models (possibly represented in different formalisms) are then connected via generic links –  

AToM3 way of enabling the connection between the different parts. As a final step, AToM3 can 

automatically generate the source code according to user-defined transformations. 

A DSM-based MPM Approach for Simulation 

Domain-Specific Modeling (DSM) is one of the basic MDE techniques. (Li, Lei, Wang, Wang, 

& Zhu, 2013) presents a DSM-based, MPM approach which exploits MDE for integrating 

Models & Simulations (M&S) paradigms (Balci, 2012): the goal is to build a simulation 

framework combining multiple M&S languages to describe the different domain behaviors. 

This approach exploits several modeling methods—namely, (i) MDE models for the work 

products, with transformations and code generation for the development process; (ii) DSM to 

provide domain-specific solutions; and (iii) M&S formalisms to express the domain behaviors. 

The simulation model development is structured in four top-down steps, which correspond to 

the four M&S layers: 

1) the DSML layer, addressing the conceptual modeling; 

2) the M&S formalism layer, devoted to model architecting and integration; 

3) the model framework & specification layer, concerned with the model design and 

formal analysis, based on the M&S formalism; 

4) the executable model layer, addressing the model implementation, based on 

SMP2/C++ transformations. 

Authors (Li, Lei, Wang, Wang, & Zhu, 2013) move from the idea of decomposing a 

(complex) system into “a series of problem domains, defining domain-specific conceptual 

models for each domain”. At the highest (DSML) layer, each sub-system is modeled via a 

DSML, whose meta-model (i.e., grammar) is designed by the joint effort of domain experts, lan-

guage engineers and M&S experts. The next (M&S formalism) layer exploits model 

specification and simulator algorithms to model the behavior and provide the denotational 

semantics for each DSML. Since a single formalism supports DSM for multiple domains, formal 

analysis methods can be applied to perform an overall analysis. The third layer (model 

framework & specification) is the architecture of the simulation system, aimed at providing “a 

structural foundation for the integration of simulation models of sub-systems across different 

domains”.  

Aiming at being technology-independent, DSM is described in terms of high-level concepts, 

abstracting from the general structure of the specific system. The model framework obtained 

embodies the architecture from the simulation viewpoint: it is a first-class artifact providing the 

foundations – intended as the structural elements and their mutual relationships – for each 

domain. The model framework is then further combined with the behavior modeling, depicting 

the behavior patterns of each domain. The resulting model framework is finally mapped onto 

Simulation Model Portability 2 (SMP2), a standard MDA model specification, to provide a 



platform-independent model. 

The bottom (executable model) layer couples the structural aspects described in SMP2 with 

the behavioral code generated from the domain-specific models: such parts are finally integrated 

in the SMP2 framework for the generation of executable components (technically, this step is 

based on an SMP2/C++ mapping, performed via a custom C++ code generator in Eclipse). 

MPM in Model Transformation 

(Syriani, 2011) proposes an MPM technique for the engineering of a model transformation 

language – the language expressing model transformations – in order to automate the model 

transformation itself. The approach, rooted in (Mosterman & Vangheluwe, 2004), adopts the 

MPM principles, in particular, multi-abstraction – which is not the same as model abstraction. 

Quoting the author, “Model abstraction is a view of a system exhibiting some of its properties 

and hiding others, [while] multi-abstraction is the ability to express models at different 

abstraction levels”. 

The model transformation language is defined at the syntax level, while the semantics is 

modeled through meta-models and model transformations—the necessary enabling technologies. 

The aim is twofold: on the one side, to raise the abstraction level; on the other, to improve the 

mapping between model transformation languages and their corresponding domains, minimizing 

accidental complexity. The effectiveness of the resulting framework is illustrated by Syriani in 

the design and implementation of a model transformation language. However, emphasis is on 

expressiveness, rather than on the development process—in fact, no tools are actually provided. 

MPM in FTG+PM 

In (Mustafiz, Denil, Lucio, & Vangheluwe, 2012) an MPM framework is proposed, called 

Formalism Transformation Graph + Process Model (FTG+PM), which is also based on MDE 

and adopting the MPM definition in (Mosterman & Vangheluwe, 2002). As its name suggests, 

the first component is a graph, whose nodes are languages and edges are transformations, while 

the second component models the software lifecycle and its transformations activities via 

UML 2.0 activity diagrams. Different modeling languages can be used at different abstraction 

levels: authors adopt UML modeling languages, domain-specific modeling languages, natural 

languages, and general-purpose languages, mainly meta-modeled via UML class diagrams. 

Like any MDE process, FTG+PM includes several activities – from requirements to code 

synthesis – modeled at different abstraction levels, which depend on the different MDE phases: 

higher-level models (requirements models, domain-specific models) are transformed step-by-

step into source code. Each abstraction layer is associated to the detailed tasks to be performed: 

quoting the authors, they are “first declared as transformation definitions in FTG, then 

instantiated as PM activities”. Transformations represent the development glue: input models are 

turned onto one output model, all conforming to the meta-model. 

The FTG+PM approach is supported by AToMPM (A Tool for Multi-Paradigm Modeling), 

which covers both the definition of meta-models and transformations, and the execution of the 

transformation chain. 

An Orientation Framework for Multi-Paradigm Modeling 

Moving from the idea that each methodology is built upon some characteristic assumptions – its 

paradigm –, (Lorenz & Jost, 2006) observe that an effective modeling approach calls for best 

match of three key aspects: 

• purpose, defined as “the motivation of the intended modeling effort” 



• object, defined as “the real-world context under investigation” 

• methodology, defined as “a comprehensive, integrated series of techniques or methods 

creating a general systems theory of how a class of thought intensive work ought to be 

performed”. 

Since it is often the case that no single set of modeling paradigm and methodology fits 

satisfactorily a given context and purpose, the intriguing idea is to try to combine different 

methodologies, in an MPM perspective, taking the “best-fit” methods from different 

methodologies. The assumption is that such an approach should match the reality more closely: 

at the same time, effectively combining different paradigms is an issue. A possible way to do so 

is to select the “best-fit” paradigm for each sub-problem and then build the multi-paradigm 

model in terms of interacting modules: however, choosing the best-fit paradigm/method for each 

part of the system is critical. While authors present some hints to face this point, little is actually 

said about the development process, the supporting tools, and the meta-model techniques. 

MPM in software architectures 

In (Balasubramanian, Levendovszky, Dubey, & Karsai, 2014) authors discuss the multi-

paradigm issues encountered during the development of a domain-specific architecture 

description language for distributed embedded systems.  

Their software infrastructure, DREMS (Distributed Real-time Embedded Managed Systems) 

is aimed at “designing, implementing, configuring, deploying, and managing distributed read-

time embedded systems”. The two major subsystems respectively deal with (a) modeling, 

analyzing, synthesizing, implementing, debugging, testing, and maintaining the software 

application, and (b) deploying and managing the application on a network. 

Three main challenges are faced: (i) how to integrate the textual code inside the graphical 

modeling language; (ii) how to transform the high-level scheduling properties into the target 

platform schedule; and (iii) how to integrate different design-time analyses. 

The first challenge derives from the use of a graphical UI on the user side and of a textual 

language in the underlying platform, which adopts the Component-Based Software Engineering 

(CBSE) approach: there, applications are made of reusable software components whose 

interfaces are specified via the Interface Definition Language (IDL)—an OMG standard for this 

purpose; code generators process IDL to generate stubs, which are then merged with the user 

logic to build the final component. In DREMS, the integration of the textual IDL language is 

performed by creating an add-on to the modeling language that parses the textual language for 

setting attributes onto the graphical elements. 

The second challenge comes from the use of the DREMS temporal partition scheduler, which 

transforms the high-level scheduling constraints and artefacts (the process-partition assignment 

graph, and other details) into a detailed schedule usable by the underlying operating system. A 

schedule calculator then binds the individual temporal partitions to the DREMS schedule. 

The third challenge originates from the need to integrate three automated analyses—namely, 

the security of communications, the network quality of service (QoS), and the software 

component schedulability. While security is granted via a multi-level security policy, the analysis 

of QoS requirements is based on the support for QoS profiles in the modeling language, which is 

capable to describe the evolution of the network parameters and the QoS requirements. 

Schedulability analysis involves the verification of system properties, and is performed by 

generating a suitable Colored Petri Net (Jensen & Kristensen, 2009). 

The proposed solution goes beyond their specific case, and can be applied to similar 



situations, especially if aimed at providing an analogous level of tool automation. Because of the 

focus on domain-specific languages, however, other aspects – the development process, the 

supporting tools, the meta-model techniques – are left aside. 

Multi-Paradigm Design with Feature Modeling 

(Vranic, 2005) introduces Multi-Paradigm Design with Feature Modeling (MPDfm), aimed at 

enabling explicit reasoning about “paradigms viewed as solution domain concepts”, and at 

evaluating their “appropriateness for application domain concepts”. A solution domain 

represents the language for describing a solution—typically, a programming language. 

Application and solution domain are both modeled via feature modeling (Vranic, 2005), a 

modeling technique for multi-paradigm design. Application domain and feature models are 

subject to transformational analysis to define a suitable mapping between these domains. The 

mapping is expressed in the form of yet-another feature model, with the information about the 

application domain concepts and features (Vranic, 2005); overall, these determine the basic code 

structure. So, the development process is structured in four main steps: (i) application domain 

feature modeling; (ii) solution domain feature modeling; (iii) transformational analysis; and (iv) 

code skeleton design. The first two can proceed in parallel: then, the detailed design and 

implementation can follow the MPDfm approach. 

Authors report that the method is verified, with good results, adopting feature modeling as the 

application domain and the AspectJ language as the solution domain; yet, no specific supporting 

tools seem to be available. 

Model-driven System Engineering for Virtual Product Design 

(Dalibor, Jansen, Rumpe, Wachtmeister, & Wortmann, 2019) present a small Model-Driven 

System Engineering (MDSE) methodology to integrate the SysML paradigm with the CAD 

paradigm, that is, a method for integrating abstract system descriptions in the OMG Systems 

Modeling Language – SysML (SysML Open Source Project Home Page, 2003) with Computer-

Aided Design (CAD) models. SysML is an UML subset extended with a graphical modeling 

language for systems engineering, while the Computer-Aided x (CAx) paradigm embraces 

various Computer-Aided methods such as CAD, Computer-Aided Engineering (CAE) and 

Computer-Aided Manufacturing (CAM).  

The context is virtual product development, i.e. “a practice to support all phases of the 

product development process using a digital environment”. CAD modeling methods are applied 

in all the development-relevant phases of the product life-cycle, to simulate, verify, validate, and 

manufacture the product, while minimizing the creation of physical prototypes. Their 

combination for virtual product development leads to the so-called “CAx process chain”.   

Authors introduce the idea of connecting such a chain with the SysML models (created with 

the Object-Oriented Systems Engineering Method-OOSEM). Process systems engineers would 

then be able to describe the system in SysML (via an ad-hoc profile), and integrate the model 

into the CAx process chain. The process starts with a SysML modeling activity, where the 

systems engineer creates an abstract system model specifying the elements of the physical parts 

of the system. The next step is to forward the parameters that are relevant for CAD modeling. 

Using the resulting CAD model in combination with additional information from the SysML 

diagram, engineers can perform additional CAE analyses and CAM modeling.  

A suitable SysML Profile enables engineers to mark blocks of a SysML Block Definition 

Diagram as «CAD Element», and value properties that should serve as parametric design 

parameters as «CAD Parameter». Moreover, model information exchange in the SysML-CAD 



process chain is automated, via a special-purpose plug-in for the MagicDraw modeling 

environment (MagicDraw Home Page, 2019) that interchanges model information in a format 

suitable for Autodesk Inventor: so, the dimensions of concrete physical parts can be designed 

automatically.  

Despite being very special-purpose, the approach seems quite appealing: however, it is strictly 

tied to the example proposed in the paper, so its application to other product seems not so trivial, 

especially due to the work necessary for adapting the automatic the exchange of model 

information.  

A Multi-paradigm Modeling Framework for Modeling and Simulating Problem 
Situations 

(Lynch, Padilla, Diallo, Sokolowski, & Banks, 2014) propose a Multi-Paradigm Modeling 

Framework (MPMF) for modeling and simulating problem situations. The framework adopts 

three different levels of granularity (macro, meso, and micro) to analyze what is known and 

assumed about the problem situation. Such levels are then independently mapped to different 

modeling paradigms, which are combined to build up the comprehensive model and the 

corresponding simulation. 

MPMF is based on Modeling and Simulation-System Development Framework (MS-SDF) 

(Diallo, Andreas Tolk, Gore, & Padilla, 2005), which defines a high-level approach on how to 

derive a model from a problem situation, and a simulation from the model.  MS-SDF provides an 

effective approach to capture the information about the problem situation and represent it in a 

manner which is suitable for simulation, as well as to identify contradictions and inconsistencies. 

In MS-DSF, three high-level constructs are introduced – reference modeling, conceptual 

modeling, and simulation building – that MPMF expands to support simulation implementation. 

The good level of traceability – another key MS-SDF feature – is also maintained in MPMF, 

thanks to the recursive layout of the framework in the modeling process.  

In a multi-paradigm environment, the number of modeling paradigms to be handled represents 

a critical aspect to keep complexity manageable: accordingly, the number of modeling paradigms 

used to implement the simulation should be kept to the minimum. 

In our knowledge, no tool or documentation are currently available for this framework. 

Multi-Paradigm Modeling approach to live modeling 

A different, more recent perspective to MPM, based on the above-discussed FTG+PM (Mustafiz, 

Denil, Lucio, & Vangheluwe, 2012), can be found in (Van Tendeloo, Van Mierlo, & 

Vangheluwe, 2019), aimed at adding liveness to modeling languages in a way that is reusable 

across multiple formalisms: the reason is that the support for live modeling has been identified as 

a key feature to advance the usability of model-driven techniques. 

The basic idea is to transpose the essence of live programming to the modeling domain, in a 

generic way. Live programming concepts and techniques should be transposed to domain-

specific executable modeling languages, clearly distinguishing between generic and language-

specific concepts. However, domain-specific modeling means to handle (many) different 

domain-specific formalisms, each possibly with a handful of users, making it difficult to justify 

the investment for implementing live modeling techniques in an ad hoc way. So, to effectively 

support live modeling in the context of domain-specific formalisms, authors “deconstruct and 

reconstruct” the traditional live programming process. All the activities related to liveness are 

distilled into a single operation (“sanitization”): so, to make a formalism live, only sanitization 

needs to be updated, while the other aspects of live modeling can be reused. 



Author considered three types of executable modeling formalisms: Finite State Automata 

(FSAs), Discrete Time Causal Block Diagrams (DTCBDs), and Continuous Time Causal Block 

Diagrams (CTCBDs). They are all supported, together with their live implementation, in the 

Modelverse tool (Van Tendeloo, Van Mierlo, & Vangheluwe, 2018), which supports all the 

necessary phases – language engineering, model transformations, process enactment – as well as 

the use of multiple interfaces. There, users first start the live modeling process which pertains to 

the desired formalisms, possibly providing an initial model. It is worth highlighting that only the 

design models are stored: simulation, instead, is always started anew. The enactment closely 

resembles the usual modeling interface, except for the presence of an extra simulation window –

merely, an external program that visualizes the simulation results. In order to emphasize the 

uncoupling between model and formalisms, authors discuss three examples based on the exact 

same (parameterized) FTG+PM model, showing that only the sanitization operation is to be 

redefined for each formalism individually: the visual interfaces are untouched, as everything is 

based on process enactment. So, because of the independence between model and domain-

specific formalisms, and thanks to the availability of an effective tool based on FTG+PM, this 

approach seems potentially applicable to a wide variety of modeling formalisms.  

At the same time, Modelverse is a new tool, mainly based on the writing of Python code to 

create models via meta-model instantiation, (Van Tendeloo, Van Mierlo, & Vangheluwe, 2018), 

currently featuring no visual diagram support—a drawback which could limit actual usability, 

especially in more complex scenarios.  

COMPARISON AND DISCUSSION 

This section aims to discuss comparatively the approaches introduced in Section 3 according to 

three main criteria: 

(1) the development process 

(2) the possible adoption of meta-models 

(3) the availability of suitable supporting tools 

The very reason beyond the first criterion is well synthesized in (Sommerville, 2007): 

“Different types of systems need different development processes (...) [so] the use of an 

inappropriate software process may reduce the quality or the usefulness of the software product 

to be developed and/or increased”. This is particularly relevant for multi-paradigm systems, 

where the development process needs to adapt to diverse paradigms and application domains, in 

order to model the different parts of the system with a variety of abstractions. 

The second criterion derives from meta-models being the conceptual and practical tool to 

bridge between (abstractions from) different paradigms: in fact, MPM approaches exploit meta-

modeling techniques to define Domain-Specific Modeling Languages (DSMLs), which are then 

used for modeling specific sub-systems; in turn, these are further processed via (possibly 

automatic) transformations to map a DSML onto another. 

The third criterion comes from the finding that the actual applicability of the multi-paradigm 

approach depends on the availability of effective supporting tools—both because of the inherent 

complexity and multi-facet nature of the development process, and specifically for the definition 

of the DSML and the related processing. At the same time, the actual usability of such tools is 

often critical also for experienced users, which makes it a crucial factor to be accounted for. 

Development Process Comparison 

The analysis of the development process needs to start from the analysis of the process model.  



Appropriate comparison criteria for this aspect can be derived from Sommerville’s definition: 

(i) the kind (and structure) of process model  

(ii) whether the process is adequately documented (other than, indirectly, reasonably easy to 

learn and apply). 

As far as the first issue is concerned, one clear result is that, whenever a process model can be 

identified, it is a transformational process. This is not surprising, since a number of such 

approaches share the same root (Vangheluwe, 2002).  

The second, often underestimated, issue is particularly critical in the MPM context since the 

development of adequate documentation does not follow the physiological evolution of the 

process itself, which is inherently complex because of the inter-twining of different paradigms. 

Unfortunately, documentation and tutorials are often outdated and do not reflect the new process 

requirements or design techniques. As a further consequence, the lack of suitable documentation 

negatively impacts on the learning process. 

Table 1 summarizes the results of the comparison among the above-discussed approaches. 

Since the works by Vangheluwe, on which many approaches are based, refer to MDE principles 

and focus onto the automatic transformations among modeling domains/languages, the adoption 

of supporting tools like AToM3, AToMPM and Modelverse is an important factor. In many cases 

the presence of CASE tools influences the development process itself—indeed, the adoption of a 

given tool nearly imposes the process to be followed in the system development (Denil, 

Vangheluwe, De Meulenaere, & Demeyer, 2012), (Mosterman & Vangheluwe, 2002) 

(Mosterman & Vangheluwe, 2004) (Lara & Vangheluwe, 2002) (Mustafiz, Denil, Lucio, & 

Vangheluwe, 2012) (Van Tendeloo, Van Mierlo, & Vangheluwe, 2019). Alternatively, works 

inspired to the Features-Oriented software development, like (Vranic, 2005), adopt a 

transformational process model but blended with Features-Oriented ingredients. 

The inadequate availability of up-to-date and complete documentation makes it often difficult 

not only to compare different development processes, but also to choose the most suited for the 

specific designer’s situation. Of course, this problem is not peculiar only to the MPM com-

munity, but affects other communities, like e.g. the Agent-Oriented Software Engineering 

(AOSE) community, which also needs a standard way of documenting the development 

processes. This is why the IEEE-FIPA standardization organism supported in the last years the 

development of a standard Documentation Template (Cossentino, Seidita, Hilaire, & Molesini, 

2014), based on a variant of SPEM 2.0 (Software & Systems Process Engineering Metamodel 

Specification. Version 2.0, 2008), which seems general enough to be potentially adopted also in 

domains other than AOSE—like, for instance, MPM.  

As shown in Table 1, the only proposal adopting a formal approach – namely, SPEM – to deal 

with the documentation issue is (Denil, Vangheluwe, De Meulenaere, & Demeyer, 2012): 

however, it adopts the (older) SPEM 1.0, and only for modeling a single fragment of the devel-

opment process. Other works opt for informal process documentation or examples to document 

their approaches: (Li, Lei, Wang, Wang, & Zhu, 2013) and (Mustafiz, Denil, Lucio, & 

Vangheluwe, 2012) are perhaps the ones providing the most complete documentation—with a 

positive impact on the learning process. Other approaches rely mostly on the supporting tools 

and related documentation for illustrating the development process, possibly suffering from the 

obsolescence problem of such documentation. In most cases, tools do not seem to be particularly 

suited for an easy learning, especially by non-expert designers. 

 

 



Table 1. Comparison of the development processes. 

Proposal 

Authors and Bibliography reference 

Process Model 

Type and Influence 

Documentation 

Formality Examples  

(Denil, Vangheluwe, De Meulenaere, & 

Demeyer, 2012) 

Type: transformational 

Influence: AToM3 

Formal (via 

SPEM 1.0) 

Not provided 

(Mosterman & Vangheluwe, 2002) 
Type: transformational 

Influence: CASE tool 
Not provided Not provided 

(Mosterman & Vangheluwe, 2004) 
Type: transformational 
Influence: CASE tool 

Not provided ✓ 

(Vangheluwe, 2002) 
Type: transformational 

Influence: – 
Informal Not provided 

(Lara & Vangheluwe, 2002) 
Type: transformational 

Influence: AtoM3 
Not provided ✓ 

(Li, Lei, Wang, Wang, & Zhu, 2013) 
Type: transformational 

Influence: N/A 
Not provided ✓ 

(Syriani, 2011) 
Type: not specified 

Influence: –   
Not provided ✓ 

(Mustafiz, Denil, Lucio, & Vangheluwe, 2012) 
Type: transformational 
Influence: AToMPM 

Informal ✓ 

(Lorenz & Jost, 2006) 
Type: not specified 

Influence: – 
Not provided ✓ 

(Balasubramanian, Levendovszky, Dubey, & 

Karsai, 2014) 

Type: not specified 

Influence: – 
Informal Not provided 

(Vranic, 2005) 

Type: transformational 

Influence: features 

design 

Informal ✓ 

(Dalibor, Jansen, Rumpe, Wachtmeister, & 

Wortmann, 2019) 

Type: transformational 

Influence: MDE 
Not provided ✓ 

(Lynch, Padilla, Diallo, Sokolowski, & Banks, 

2014) 

Type: not specified 

Influence: MS-SDF 
Not provided ✓ 

(Van Tendeloo, Van Mierlo, & Vangheluwe, 

2019) 

Type: iterative 

Influence: FTG+PM 

and Modelverse 

Informal 
 

✓ 

 

 

 

Meta-model Comparison 

As meta-models are one of the most powerful conceptual tools to bridge between different 

paradigms, one obvious comparison criterion is whether they are adopted in a given MPM 

approach: if so, two further aspects concern which language(s) is used for their utterance and for 

 

 



which purpose(s) they are used. While most MPM approaches are actually rooted in (Mosterman 

& Vangheluwe, 2002), where meta-models are at the core, other approaches, like (Lorenz & Jost, 

2006) and (Vranic, 2005), are based on different techniques—e.g., features. 

Meta-models can then be seen as a sort of grammar specifying the syntax of a set of models, 

while model transformations specify the corresponding semantics: their combined use provides 

for the automatic generation of the modeling environment. So, meta-models both bridge between 

paradigms and set the practical foundation for automating the building of Domain Specific 

Modeling environments. 

Table 2 reports the result of the comparison of the above approaches based on the meta-

modeling lens. When meta-modeling techniques are used, the most common representation 

language appears to be UML, possibly combined with Entity-Relationship (E-R): this is not 

surprising, since UML is the most used meta-modeling language. In other cases, however, either 

no assumption is made on the adopted language, or different languages are adopted. 

In UML-based proposals, meta-models are typically used first at meta-level for creating the 

specific DSML, and then at a lower level for modeling specific sub-systems: automatic model 

transformations, based on the relationships defined at the meta-level, finally map a DSML onto 

another, transforming an input model onto a new model in a different (lower level) language. 

Tool Comparison 

Tools must support not only the development process in general, but the specific abstractions and 

techniques that are peculiar to MPM: so, their design and implementation require a considerable 

development effort. The complexity and learning curve of the tools also needs to be evaluated, as 

it is often an obstacle also for experienced users. 

In the approaches derived from (Vangheluwe, 2002), based on meta-models, tools are asked 

to support the definition of the desired DSML and the related transformation processing; other 

approaches have their own, different requirements. While most of the above-presented 

approaches are not supported by a specific tool, three of them do have one—namely, AtoM3   

(Lara & Vangheluwe, 2002),  AToMPM  (Syriani & Vangheluwe, 2012), and Modelverse 

(Van Tendeloo, Van Mierlo, & Vangheluwe, 2019). Their evaluation criteria should therefore 

include the tool power vs. complexity, the user-friendliness of the installation procedure, the 

learning curve, and the state of the documentation: results are summarized in Table 3. 

All tools require their own (i.e., typically not the last) version of Python—namely, Python 2.3 

for AtoM3 and Python 2.7 for AToMPM and Modelverse, none of which is compatible with 

Python 3.x. Moreover, AToMPM adopts a client-server architecture, which requires that the 

server is properly configured to include a specific Python graphic package; the client instead just 

run inside Google Chrome, exploiting its JavaScript support. Modelverse, indeed, requires the 

SCCD compiler and runtime to be executed. They also require a proportionally long time to be 

learned and fruitfully exploited.  

AtoM3 may likely result too complicated for users with little experience in meta-model 

creation: in addition, users have to write by themselves the Python code for expressing pieces of 

models. On the other hand, it is well-documented— although the documentation and examples 

refer to an older version, with different GUI and functionalities, which makes it uneasy to follow 

the provided examples. AToMPM, instead, comes with a nice video and introductory tutorial 

 



Table 2. Comparing meta-models. 

Proposal 
Meta-models 

Adoption 

Meta-modeling 

Language 

Used for 

 DSML  Transformation 

(Denil, Vangheluwe, De 
Meulenaere, & Demeyer, 2012) 

✓ E-R + UML ✓ ✓ 

(Mosterman & Vangheluwe, 

2002) 
✓ different languages ✓ ✓ 

(Mosterman & Vangheluwe, 

2004) 
✓ UML ✓ ✓ 

(Vangheluwe, 2002)  (not applicable)  

(Lara & Vangheluwe, 2002) ✓ E-R + UML ✓ ✓ 

(Li, Lei, Wang, Wang, & Zhu, 
2013) 

✓ no assumption ✓ ✓ 

(Syriani, 2011) ✓ UML ✓ ✓ 

(Mustafiz, Denil, Lucio, & 

Vangheluwe, 2012) 
✓ UML ✓ ✓ 

(Lorenz & Jost, 2006)  (not applicable)  

(Balasubramanian, 

Levendovszky, Dubey, & Karsai, 

2014) 
✓ UML ✓  

(Vranic, 2005)  (not applicable)  

(Dalibor, Jansen, Rumpe, 

Wachtmeister, & Wortmann, 

2019) 
✓ UML ✓  

(Lynch, Padilla, Diallo, 

Sokolowski, & Banks, 2014)  (not applicable)  

(Van Tendeloo, Van Mierlo, & 

Vangheluwe, 2019)  (not applicable)  
 

 

Table 3. Comparison of the supporting tools. 

Tool Installation requirements Learning time Documentation 

AtoM3 Python 2.3 Considerable 
documentation + examples 

(referred to an old version) 

AToMPM 
Python 2.7 + graphic package + 

JavaScript package 
considerable video + tutorial slides 

Modelverse 
SCCD compiler and runtime + 

Python 2.7  

 

considerable 
documentation  

+ technical report 
 

 

 

 



slides: still, the lack of a complete guide might force users to navigate menus and try out some 

modeling libraries to actually unleash its potential. Modelverse, however, requires users to write 

Python code in order to create their models.  

Another key point concerns scalability. Most of the above MPM approaches adopt the 

transformational process model and the MDE techniques, which means that the system under 

development is – roughly speaking – decomposed in multiple, independently-modeled sub-

systems, and the code is finally generated via model transformations. However, most of the 

accompanying examples refer to rather simple situations, like the car windows system in 

(Mosterman & Vangheluwe, 2004), whose decomposition is equally simple and the involved 

paradigms are just two or three. So, more complex case studies, with multiple involved 

paradigms, would be required for an effective assessment of the applicability of MPM 

approaches to intricate scenarios such as pervasive computing (Satyanarayanan, 2001), pervasive 

intelligent systems (Mariani & Omicini, 2013), self-organizing systems (Di Marzo Serugendo, 

Gleizes, & Karageorgos, 2006). 

 

ENGINEERING MULTI-PARADIGM SYSTEMS BEYOND MPM 

The Multi-Agent Systems paradigm 

Due to its different perspective, the Multi-Agent System paradigm is mostly ignored in MPM 

field, despite its widespread adoption as a “general-purpose paradigm for software development” 

(Zambonelli & Parunak, 2003) – possibly because the MPM community traditionally focuses on 

application domains rooted in the M&S field (Balci, 2012). A notable exception is (Lorenz & 

Jost, 2006), where agent-based modeling is considered in the simulation context. However, the 

agent paradigm is widely acknowledged to be well-suited to model complex systems, thanks to 

features such as agent autonomy, sociality, and more generally to foundational notions of goals, 

actors, environment, etc. (Molesini, 2008) which make it possible to design complex, interactive 

systems at the “adequate” abstraction level—usually, higher than other paradigms. Moreover, 

application scenarios such as complex socio-technical systems (Bryl, Giorgini, & Mylopoulos, 

2009) and pervasive intelligent systems (Mariani & Omicini, 2013) could likely benefit from a 

multi-paradigm approach that includes some key aspects of the MAS paradigm—for instance, to 

coordinate and govern the interaction among the many autonomous entities. 

Yet, most MPM approaches could hardly be applied to the agent paradigm “as they are”, since 

this would require that agent entities are transformed into suitable coordination “active entities” 

and vice-versa— would call for the agent paradigm to be integrated with other relevant 

paradigms, such as coordination (Papadopoulos, Stavrou, & Papapetrou, 2006) and event-based 

(Omicini, 2015) paradigms. In its turn, this would amount at (i) integrating the agent meta-model 

with the coordination meta-model, and (ii) creating a new development process by assembling 

fragments of agent-oriented methodologies with fragments of coordination methodologies. 

Analogously, integrating the agent paradigm with the event-based paradigm, as suggested in 

(Omicini, 2015), would require the suitable modeling of interactions between autonomous 

entities and the environment where they are immersed. 

Situational Process Engineering 

Situational Process Engineering (SPE) techniques (Cossentino, Gaglio, Garro, & Seidita, 2007) 

(Cossentino, Seidita, Hilaire, & Molesini, 2014) – that is, the evolution of the SME initially 

developed in the object-oriented field (Brinkkemper, Saeki, & Harmsen, 1999) – provide the 



conceptual and practical foundations for defining ad-hoc development processes, by suitably re-

combining pieces (reusable fragments) of existing processes, so as to create a methodology that 

is specific for a given purpose. 

Adopting SPE in a multi-paradigm context opens several challenges. First, the SPE approach 

cannot be used as is: integrating process fragments rooted on the same paradigm (and therefore 

sharing similar abstraction) is one thing, but doing the same with process fragments coming from 

methodologies based on completely different paradigms is all another story. 

The availability of such fragments is another issue: while process fragments from AOSE 

methodologies are available for integration, fragments from other paradigms would need to be 

created from scratch. This is all but trivial, since fragment extraction requires a deep knowledge 

of the specific methodology; alternatively, the methodology should be very well documented in a 

standard way (Cossentino, Seidita, Hilaire, & Molesini, 2014)—another critical issue per se. 

Suitably documenting such process fragments is one third, critical aspect. While the 

Documentation Template under development in the AOSE community could be of help for 

methodologies, the development of a standardized fragment documentation template is still a 

work in progress. 

The intriguing case of Systems of Systems 

From an opposite perspective, paradigms could be used as isolated worlds, if each sub-system is 

modeled with a separate paradigm and sub-systems have little inter-dependencies on each other. 

The development of each sub-system could then follow its own development process, tailored to 

the specific paradigm.  

An appealing approach could be to define a sort of “process orchestrator” to (i) manage the 

different sub-processes and their mutual inter-relationships in terms of time scheduling and 

interleaved activities, and (ii) analyze and design the interactions among sub-systems. 

An example is represented by the so-called System of Systems (SoS) (Nielsen, Fitzgerald, 

Woodcock, & Peleska, 2015)—basically, a set of ad-hoc systems that put their resources and 

skills together, so that the resulting system provides more features and services than the simple 

sum of its parts. SoS move from the idea that “the growing interdependency of systems 

contributes to an ever-emerging complexity” (Ross, Ulieru, & Gorod, 2014): the use of multi-

paradigm approach in that field is under investigation. A key challenge in this context is “to 

identify the boundaries of the overall SoS and of its independent constituent systems” (Nielsen, 

Fitzgerald, Woodcock, & Peleska, 2015), where “boundaries” refers both to technical (interfaces 

definition, integration, testing) and organizational aspects (governance, stakeholders). 

Moreover, an open research aspect is how to possibly exploit the presence of a “process 

orchestrator” to structure the design at two levels—a (lower) level for each sub-system, and the 

orchestrator in charge of the global development process, obtained by integrating and scheduling 

the development process of each sub-system, at a higher level. 

Multi-Agent Systems for Systems of Systems 

(Nielsen, Fitzgerald, Woodcock, & Peleska, 2015) argue that “the space of SoS might be 

described in terms of eight dimensions”—autonomy, independence, distribution, evolution, 

dynamic reconfiguration, emergence of behavior, interdependence, interoperability. Since these 

aspects fall well inside the MAS features, it is conceivable that the MAS paradigm can be 

exploited to address at least some of the SoS challenges: again, this is an open research issue. 



CONCLUSIONS 

Summing up, MPM approaches typically adopt a transformational process model, with UML 

being the most common representation language for meta-modeling techniques. However, 

documentation is often unsatisfactory and inadequate to the learning curve, especially in case of 

non-expert designers. Tools are powerful, but also suffer from the inadequacy of documentation, 

tutorials, and effective examples.  

Current MPM approaches seem not to consider the MAS paradigm, which could be of help to 

cope with complex scenarios such as pervasive intelligent systems, ubiquitous systems, and self-

organizing systems. The perspective of a blend of MAS within MPM approaches is appealing, 

both for the intrinsic agent features and because of the chance, provided by SPE, to build ad-hoc 

development processes by combining process fragments rooted into different paradigms: this is 

an open research area. The emergence of the SoS paradigm (Nielsen, Fitzgerald, Woodcock, & 

Peleska, 2015), where multi-paradigm approaches are also investigated (Ross, Ulieru, & Gorod, 

2014), opens another promising conceptual and technical framework for agent-oriented 

abstractions, technologies, and methodologies. 

Interestingly enough, the term “paradigm” is left in the background in most of the above 

works in the “multi-paradigm” modeling field: typically, it is merely mentioned to highlight the 

simultaneous presence/application of different approaches, set of rules, methods, etc. ”—yet, 

without pointing out what a “paradigm” is supposed to be, nor highlighting the possible 

paradigm shifts that, according to (Kuhn, 2012), inherently define the paradigm concept per se. 

This is not peculiar to the MPM field: looking wider, the same seems to hold for multi-paradigm 

programming (MPM), despite programming languages date back to the sixties. 

Overall, with the growing complexity of software systems in all fields, it can be expected that 

the practice of combining ideas, methods, approaches, processes, methodologies – paradigms, in 

the broadest sense – from diverse fields, possibly far from each other, becomes increasingly 

common for conceptual, economical and practical reasons. At the same time, being “multi-

paradigm” is much more than just “adopting” two paradigms in some way: suitable models, 

guidelines, and new ad-hoc research are needed to make this scenario actually fruitful. 

REFERENCES  

Atkinson, C., & Kuhne, T. (2001). The essence of multilevel metamodling. In G. M, & K. C., 

UML 2001 - The Unified Modeling Language. Modeling Languages, Concepts and Tools 

(Lecture Notes in Computer Science ed., Vol. 2185, pp. 19-33). Berlin Heidelberg: 

Springer. 

Balasubramanian, D., Levendovszky, T., Dubey, A., & Karsai, G. (2014). Taming Multi-

Paradigm Integration in a Software Architecture Description Language. In D. 

Balasubramanian, C. Jacquet, P. Van Gorp, S. Kokaly, & T. Meszaros (Ed.), 8th 

Workshop on Multi-Paradigm Modeling (MPM@MODELS 2014). 1237, pp. 67-76. 

RWTH Aachen University: Sun SITE Central Europe. Retrieved from http://ceur-

ws.org/Vol-1237/paper7.pdf 

Balci, O. (2012, jul). A Life Cycle for Modeling and Simulation. Simulation, 88(7), 870-883. 

doi:10.1177/0037549712438469 

Bernon, C., Cossentino, M., Gleizes, M.-P., Turci, P., & Zambonelli, F. (2004). In J. Odell, P. 

Giorgini, & J. P. Muller, Agent Oriented Software Engineering V (Lecture Notes in 

Computer Science ed., Vol. 3382, pp. 62-77). Berlin Heidelberg: Springer. 

doi:10.1007/978-3-540-30578-1_5 



Boehm, B. W. (1988, may). A Spiral Model of Software Development and Enhancement. IEEE 

Computer, 21(5), 61-72. doi:10.1109/2.59 

Brinkkemper, S., Saeki, M., & Harmsen, F. (1999). Meta-Modelling Based Assembly 

Techniques for Situational Method Engineering. Information Systems, 24(3), 209-228. 

doi:10.1016/S0306-4379(99)00016-2 

Brooks, F. P. (1987, apr). No Silver Bullet Essence and Accidents of Software Engineering. 

IEEE Computer, 20(4), 10-19. doi:10.1109/MC.1987.1663532 

Bryl, V., Giorgini, P., & Mylopoulos, J. (2009, feb). Designing Socio-Technical Systems: From 

Stakeholder Goals to Social Networks. Requirement Engineering, 14(1), 47-70. 

doi:10.1007/s00766-008-0073-5 

Cernuzzi, L., Cossentino, M., & Zambonelli, F. (2005, mar). rocess Models for Agent-Based 

Development. Engineering Applications of Artificial Intelligence, 18(2), 205-222. 

doi:10.1016/j.engappai.2004.11.015 

Ciccozzi, F. a., Vangheluwe, H., & Weyns, D. (2019). Blended Modelling – What, why and 

how. First International Workshop on Multi-Paradigm Modelling for Cyber-Physical 

Systems. Munich. Retrieved from 

https://msdl.uantwerpen.be/conferences/MPM4CPS/2019/wp-

content/uploads/2019/09/mpm4cps2019_Blended.pdf 

Cossentino, M., Gaglio, S., Garro, A., & Seidita, V. (2007). Method fragments for agent design 

methodologies: from standardisation to research. International Journal of Agent Oriented 

Software Engineering (IJAOSE), 1(1), 91-121. doi:10.1504/IJAOSE.2007.013266 

Cossentino, M., Seidita, V., Hilaire, V., & Molesini, A. (2014). FIPA Design Process 

Documentation and Fragmentation Working Group. Retrieved from FIPA Design 

Process Documentation and Fragmentation Working Group: 

http://www.pa.icar.cnr.it/cossentino/fipa-dpdf-wg/ 

Dalibor, M., Jansen, N., Rumpe, B., Wachtmeister, L., & Wortmann, A. (2019). Model-Driven 

Systems Engineering for Virtual Product Design. MPM4CPS 2019 : First International 

Workshop on Multi-Paradigm Modelling for Cyber-Physical Systems. Retrieved from 

https://msdl.uantwerpen.be/conferences/MPM4CPS/2019/wp-

content/uploads/2019/09/Paper_MDSE4VirtualProductDesign.pdf 

Denil, J., Vangheluwe, H., De Meulenaere, P., & Demeyer, S. (2012). Calibration of 

Deployment Simulation Models: A Multi-Paradigm Modelling Approach. 2012 

Symposium on Theory of Modeling and Simulation -- DEVS Integrative M&S Symposium 

(TMS/DEVS '12). Orlando, Florida: Society for Computer Simulation International. 

Retrieved from http://dl.acm.org/citation.cfm?id=2346629 

Di Marzo Serugendo, G., Gleizes, M.-P., & Karageorgos, A. (2006, jan). Self-Organization in 

Multi-Agent Systems. The Knowledge Engineering Review, 20(2), 165-189. 

doi:10.1017/S0269888905000494 

Diallo, S., Andreas Tolk, A., Gore, R., & Padilla, J. (2005). Modeling and simulation framework 

for systems engineering. In D. Gianni, A. D'Ambrogio, & A. Tolk, Modeling and 

Simulation-Based Systems Engineering Handbook (First Edition ed., p. 377-401). Boca 

Raton: CRC Press. doi:10.1201/b17902 

Ehrig, H., Engels, G., Kreowski, H.-J., & Rozenberg, G. (1999). Handbook of Graph Grammars 

and Computing by Graph Transformation. River Edge, NJ, USA: World Scientific. 

doi:10.1142/4180 

Fondement, F., & Silaghi, R. (2004). Defining Model Driven Engineering Processes. In M. 



Gogolla, P. Sammut, & J. Whittle (Ed.), 3rd UML Workshop in Software Model 

Engineering (WiSME 2004) (pp. 1-11). Lisbon, Portugal: Universidade Nova de Lisboa. 

Retrieved from http://ctp.di.fct.unl.pt/UML2004/workshop.html#ws5 

Fuggetta, A. (2000). Software Process: A Roadmap. ICSE '00: Proceedings of the Conference on 

The Future of Software Engineering (p. 25-34). Limerick, Ireland: ACM Press. 

doi:10.1145/336512.336521 

Giese, H., & Levendovszky, T. (Eds.). (2006). Proceedings of the Workshop on Multi-Paradigm 

Modeling: Concepts and Tools 2006. Proceedings of the Workshop on Multi-Paradigm 

Modeling: Concepts and Tools. 2006/1. BME-DAAI Technical Report Series. Retrieved 

from http://avalon.aut.bme.hu/\~mesztam/conferences/mpm06/mpm06\_proc.pdf 

Gonzalez-Perez, C., McBride, T., & Henderson-Sellers, B. (2005). A Metamodel for Assessable 

Software Development Methodologies. Software Quality Journal, 13(2), 195-214. 

doi:10.1007/s11219-005-6217-7 

Group, O. (2008). SPEM 2.0 . Tratto da Software & Systems Process Engineering Metamodel 

Specification. Version 2.0: http://www.omg.org/spec/SPEM/2.0/ 

Hardebolle, C., & Boulanger, F. (2009, nov). Exploring Multi-Paradigm Modeling Techniques. 

Simulation, 85(11-12), 688-708. doi:10.1177/0037549709105240 

Henderson-Sellers, B. (2002). Process Metamodelling and Process Construction: Examples 

Using the OPEN Process Framework OPF. Annals of Software Engineering, 14(1), 341-

362. doi:10.1023/A:1020570027891 

Henderson-Sellers, B., & Gonzalez-Perez, C. (2005, jan). A Comparison of Four Process 

Metamodels and the Creation of a New Generic Standard. Information & Software 

Technology, 47(1), 49-65. doi:10.1016/j.infsof.2004.06.001 

Jensen, K., & Kristensen, L. M. (2009). Coloured Petri Nets. Modelling and Validation of 

Concurrent Systems. Berlin Heidelberg: Springer. doi:10.1007/b95112 

Kuhn, T. S. (2012). The Structure of Scientific Revolutions (50th Anniversary ed.). Chicago : 

University of Chicago Press. 

Lara, J. d., & Vangheluwe, H. (2002). Computer Aided Multi-paradigm Modelling to Process 

Petri-Nets and Statecharts. In A. Corradini, H. Ehrig, H. -J. Kreowski, & G. Rozenberg, 

Graph Transformation (Lecture Notes in Computer Science ed., Vol. 2505, p. 239-253). 

Berlin Heidelberg: Springer. doi:10.1007/3-540-45832-8 

Larman, C., & Basili, V. R. (2003, jun). Iterative and Incremental Development: A Brief History. 

IEEE Computer , 36(6), 47-56. doi:10.1109/MC.2003.1204375 

Li, X., Lei, Y., Wang, W., Wang, W., & Zhu, Y. (2013). A DSM-based Multi-Paradigm 

Simulation Modeling Approach for Complex Systems. 2013 Winter Simulation 

Conference: Simulation: Making Decisions in a Complex World (WSC '13) (pp. 1179-

1190). Piscataway, NJ, USA: IEEE Press. Retrieved from 

http://dl.acm.org/citation.cfm?id=2675983.2676133 

Lorenz, T., & Jost, A. (2006). Towards an Orientation Framework in Multi-Paradigm Modeling: 

Aligning Purpose, Object and Methodology in System Dynamics, AGent-Based 

Modeling and DIscrete-EVent-Simulation. In A. Grosler, E. A. Rouwette, R. S. Langer, J. 

I. Rowe, & J. M. Yanni (Ed.), 24th International Conference of the System Dynamics 

Society (pp. 2134-2151). Albany, NY, USA: System Dynamics Society. Retrieved from 

http://www.systemdynamics.org/conferences/2006/proceed/papers/LOREN178.pdf 

Lynch, C., Padilla, J., Diallo, S., Sokolowski, J., & Banks, C. (2014). A multi-paradigm 

modeling framework for modeling and simulating problem situations. Proceedings of the 



Winter Simulation Conference 2014 (p. 1688-1699). Savanah, GA, USA: IEEE. 

doi:10.1109/WSC.2014.7020019 

Mariani, S., & Omicini, A. (2013). Molecules of Knowledge: Self-Organisation in Knowledge-

Intensive Environments. In G. Fortino, C. Badica, M. Malgeri, & R. Unland (A cura di), 

Intelligent Distributed Computing VI. 446, p. 17-22. Berlin Heidelberg: Springer. 

doi:10.1007/978-3-642-32524-3_4 

Molesini, A. (2008). Meta-Models, Environment and Layers: Agent-Oriented Engineering of 

Complex Systems. Ph.D Thesis, Alma Mater Studiorum - Università di Bologna , 

Dipartimento di Elettronica, Informatica e Sistemistica, Bologna. 

Mosterman, P. J., & Vangheluwe, H. (2002, oct). Guest Editorial: Special Issue on Computer 

Automated Multi-Paradigm Modeling. ACM Transactions on Modeling and Computer 

Simulation (TOMACS), 12(4), 249-255. doi:10.1145/643120.643121 

Mosterman, P. J., & Vangheluwe, H. (2004). Computer Automated Multi-Paradigm Modeling: 

An Introduction. Simulation, 80(9), 433-450. doi:10.1177/0037549704050532 

Mustafiz, S., Denil, J., Lucio, L., & Vangheluwe, H. (2012). The FTG+PM Framework for 

Multi-paradigm Modelling: An Automotive Case Study. 6th International Workshop on 

Multi-Paradigm Modeling (MPM '12) (pp. 13-18). New York, NY, USA: ACM. 

doi:10.1145/2508443.2508446 

Nielsen, C. B., Fitzgerald, J., Woodcock, J., & Peleska, J. (2015). Systems of Systems 

Engineering: Basic Concepts, Model-Based Techniques, and Research Directions. ACM 

Computer Surveys, 48(2), 1-41. doi:10.1145/2794381 

NoMagic. (2019). MagicDraw Home Page. Retrieved 11 20, 2019, from NoMagic: 

https://www.nomagic.com/products/magicdraw 

Oliveira, B. C., & Loh, A. (2013). Abstract Syntax Graphs for Domain Specific Languages. 

ACM SIGPLAN 2013 Workshop on Partial Evaluation and Program Manipulation 

(PEPM '13) (p. 87-96). New York, NY, USA: ACM. doi:10.1145/2426890.2426909 

OMG. (1997). UML Home Page. Retrieved from UML: http://www.uml.org 

OMG. (2001). MDA Home Page. Retrieved from MDA: http://www.omg.org/mda/ 

OMG. (2002). MOF Home Page. Retrieved from MOF: http://www.omg.org/mof/ 

OMG. (2008). Software & Systems Process Engineering Metamodel Specification. Version 2.0. 

Retrieved from SPEM: http://www.omg.org/spec/SPEM/2.0/ 

Omicini, A. (2015). Event-Based vs.\ Multi-Agent Systems: Towards a Unified Conceptual 

Framework. In G. Fortino, W. Shen, J.-P. Barthès, J. Luo, W. Li, S. Ochoa, . . . M. 

Ramos (A cura di), 2015 19th IEEE International Conference on Computer Supported 

Cooperative Work in Design (CSCWD2015) (p. 1-6). Los Alamitos, CA, USA: IEEE 

Computer Society. doi:10.1109/CSCWD.2015.7230924 

Organization, S. (2003). SysML Open Source Project Home Page. Retrieved from SysML Open 

Source Project: https://sysml.org/ 

Papadopoulos, G. A., Stavrou, A., & Papapetrou, O. (2006, mar). An Implementation 

Framework for {S}oftware {A}rchitectures Based on the Coordination Paradigm. 

Science of Computer Programming, 60(1), 27--67. doi:10.1016/j.scico.2005.06.002 

Rhazali, Y., El Hachimi, A., Chana, I., Lahmer, M., & Rhattoy, A. (2019). Automate Model 

Transformation From CIM to PIM up to PSM in Model-Driven Architecture. In B. B. 

Gupta, Modern Principles, Practices, and Algorithms for Cloud Security (p. 262-283). 

doi:10.4018/978-1-7998-1082-7.ch013 

Rhazali, Yassine, Hadi, Y., & Mouloudi, A. (2016). CIM to PIM Transformation in MDA: from 



Service-Oriented Business Models to Web-Based Design Models. International Journal 

of Software Engineering and Its Applications, 10(4), 125-142. 

doi:http://dx.doi.org/10.14257/ijseia.2016.10.4.13 

Ross, W., Ulieru, M., & Gorod, A. (2014). A Multi-Paradigm Modelling & Simulation Approach 

for System of Systems Engineering: A Case Study. 9th International Conference on 

System of Systems Engineering (SoSE 2014) (p. 183-188). Piscataway, NJ, USA: IEEE. 

doi:10.1109/SYSOSE.2014.6892485 

Satyanarayanan, M. (2001). Pervasive Computing: Vision and Challenges. IEEE Personal 

Communications, 8(4), 10--17. doi:10.1109/98.943998 

Schmidt, D. C. (2006, feb). Guest Editor's Introduction: Model-Driven Engineering. IEEE 

Computer, 39(2), 25-31. doi:10.1109/MC.2006.58 

Sommerville, I. (2007). Software Engineering (8th ed.). Edinburgh, UK: Addison-Wesley. 

Syriani, E. (2011). A Multi-Paradigm Foundation for Model Transformation Language 

Engineering. McGill University, School of Computer Science. Montreal, QC, Canada: 

McGill University. 

Syriani, E., & Vangheluwe, H. (2012). AToMPM Home Page. Retrieved from AToMPM: 

http://www-ens.iro.umontreal.ca/$%5Csim$syriani/atompm/atompm.htm 

Van Tendeloo, Y., Van Mierlo, S., & Vangheluwe, H. (2018). Modelverse Home Page. 

Retrieved from Modelverse: https://msdl.uantwerpen.be/git/yentl/modelverse 

Van Tendeloo, Y., Van Mierlo, S., & Vangheluwe, H. (2019, oct). A Multi-Paradigm Modelling 

approach to live modelling. Software & Systems Modeling, 18(5), 2821--2842. 

doi:10.1007/s10270-018-0700-7 

Vangheluwe, H. (2002). An Introduction to Multiparadigm Modelling and Simulation. AI, 

Simulation & Planning in High Autonomy Systems (AIS 2002) (p. 9-20). Lisbon, 

Portugal: Society for Modeling & Simulation International (SCS). 

Vangheluwe, H. (2002). An Introduction to Multiparadigm Modelling and Simulation. AI, 

Simulation & Planning in High Autonomy Systems (AIS 2002) (p. 9-20). Lisbon, 

Portugal: Society for Modeling & Simulation International (SCS). 

Vranic, V. (2005, jun). Multi-Paradigm Design with Feature Modeling. Computer Science and 

Information Systems, 2(1), 79-102. doi:10.2298/CSIS0501079V 

Zambonelli, F., & Parunak, H. V. (2003). Towards a Paradigm Change in Computer Science and 

Software Engineering: A Synthesis. The Knowledge Engineering Review(4), 329--342. 

doi:10.1017/S0269888904000104 

 

 


	ABSTRACT
	Introduction
	Background
	Development Processes
	Meta-models
	Meta-modeling Languages: UML & MOF
	Model-Driven Engineering

	Multi-Paradigm Modeling: OVERVIEW
	The basics
	Multi-Paradigm Modeling with AToM3
	A DSM-based MPM Approach for Simulation
	MPM in Model Transformation
	MPM in FTG+PM
	An Orientation Framework for Multi-Paradigm Modeling
	MPM in software architectures
	Multi-Paradigm Design with Feature Modeling
	Model-driven System Engineering for Virtual Product Design
	A Multi-paradigm Modeling Framework for Modeling and Simulating Problem Situations
	Multi-Paradigm Modeling approach to live modeling

	Comparison and Discussion
	Development Process Comparison
	Meta-model Comparison
	Tool Comparison

	Engineering Multi-Paradigm Systems BEYOND MPM
	The Multi-Agent Systems paradigm
	Situational Process Engineering
	The intriguing case of Systems of Systems
	Multi-Agent Systems for Systems of Systems

	Conclusions
	References

