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Robust Estimation of a Location Parameter

with the Integrated Hogg Function

Leopoldo Cataniaa, Alessandra Luatib

aAarhus BSS and CREATES
bUniversity of Bologna

Abstract

We study the properties of an M-estimator arising from the minimisation of an integrated version of

the quantile loss function. The estimator depends on a tuning parameter which controls the degree of

robustness. We show that the sample median and the sample mean are obtained as limit cases. Consistency

and asymptotic normality are established and a link with the Hodges-Lehmann estimator and the Wilcoxon

test is discussed. Asymptotic results indicate that high levels of efficiency can be reached by specific choices

of the tuning parameter. A Monte Carlo analysis investigates the finite sample properties of the estimator.

Results indicate that efficiency can be preserved in finite samples by setting the tuning parameter to a low

fraction of a (robust) estimate of the scale.

Keywords: M-estimators; scoring rules; quantile function; robustness.

1. Introduction

Consider the following location scale model:

Yi = µ+ σεi (1)

where εi has cumulative density function (cdf) Fε ∈ F where F is the set of all continuous symmetric cdfs

with location equal to 0 and scale equal to 1. Assume that the εi form an independent sequence. Our aim is

to estimate the location parameter µ of the cdf of Yi, from a sample of observations y = (yi, i = 1, . . . , N).

Throughout the paper, we shall assume that the scale, σ, is known. Since εi is symmetric with location 0,

µ can be estimated by the sample median of (yi, i = 1, . . . , N). Alternatively, the empirical mean is also

a consistent estimator of µ, provided that εi has finite first moment.

Let QY (τ) and Qε(τ) = F−1
ε (τ) be the quantile functions of Yi and εi, respectively, evaluated at the

probability level τ ∈ (0, 1). Clearly, the following relation holds:
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QY (τ) = µ+ σQε(τ),

with Qε(0.5) = 0 and QY (0.5) = µ. Given this parameterization, a loss function which minimizes the

distance between the theoretical quantile function and its empirical counterpart, evaluated at yi, can be

constructed as follows:

IHF (yi, µ, σ, Fε) =

∫ 1

0
(yi −QY (τ))(τ − 1(yi ≤ QY (τ)))dτ,

=

∫ 1

0
(yi − µ− σF−1

ε (τ))

(
τ − 1

(
yi − µ
σ

≤ F−1
ε (τ)

))
dτ (2)

where 1(·) is the indicator function. Equation (2) is obtained as the limit of the objective function which

defines the Hogg estimator introduced by Koenker (1984), see also Koenker (2005, Section 5.5). For

this reason, we label it “integrated Hogg function” (IHF). Evidently, IHF integrates all quantile losses

ρτ (u) = u(τ − 1(u ≤ 0), by exploiting the location scale parametrization of Yi.

With a different label, the IHF has been employed as a proper scoring rule for quantiles (Gneiting and

Raftery, 2007); early works include the articles of Matheson and Winkler (1976) and Cervera and Munoz

(1996). Gneiting and Ranjan (2011) considered a weighted version of IHF by including a positive weighting

function, in order to emphasise different quantiles (for instance those in the tails). In the seminal work of

Koenker (1984), these weights were also considered, however with the goal of minimizing the asymptotic

variance of the L-Estimator proposed therein. Laio and Tamea (2007) proved that equation (2) is actually

proportional to the continuous rank probability score (CRPS) introduced by Brown (1974) and Matheson

and Winkler (1976), see also Hersbach (2000), which is another widely used proper scoring rule, defined

as:

CRPS(yi, µ, σ, Fε) =

∫ ∞
−∞

[
Fε

(
z − µ
σ

)
− 1

(
yi − µ
σ

≤ z − µ
σ

)]2

dz. (3)

Specifically, the following relation holds:

IHF (yi, µ, σ, Fε) =
1

2
CRPS(yi, µ, σ, Fε). (4)

Pfanzagl (1969) and Birgé and Massart (1993) derive consistency results for parameter estimation under

minimisation of proper scoring rule, such as IHF and CRPS, under the heading of minimum contrast

estimators, see Gneiting and Raftery (2007) for a discussion.
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In this paper, we consider Maximum likelihood-like estimators (M-Estimators), introduced by Huber

(1964) as minimisers of some criterion function, for the location parameter of model (1), under the IHF

loss function. Robust inference based on scoring rules as M-estimators has been recently considered also

in Dawid et al. (2016), Kanamori and Fujisawa (2014, 2015), and Ovcharov (2015). In a related paper,

Ferrari and La Vecchia (2012) introduce a robust estimator by maximising a surrogate likelihood function.

As in our case, their estimator depends on a tuning parameter that balances robustness and efficiency and

can be selected through a function of the contamination error.

Recently, Zou and Yuan (2008) introduced the composite quantile regression (CQR) for model selection,

later extended to local polynomial regression by Kai et al. (2010), by minimizing a discretized version of

the IHF loss function. The latter authors explicitly refer to the Hogg estimator in a remark where they

quote Koenker (1984). In both cases, the CQR is not integrated, though Zou and Yuan (2008) point out a

possible extension of their method in the direction of the general CQR (GCQR) which resembles the IHF

considered in this paper. The GCQR is developed by Wu et al. (2019) who focus on the computational

advantages with respect to CQR, and do not address the robustness issue.

Similarly to the aforementioned papers, we do not require any specific knowledge about the shape of

Fε, except that it belongs to F . We show that the M-Estimator arising from minimisation of (2) or of (3)

is robust, consistent, and asymptotically Normal. We also show that the sample median and the sample

mean arise as limit cases for a tuning parameter c which controls the rate of robustness of the estimator.

Results show that, by picking any F̃ε ∈ F , with F̃ε possibly different from Fε, the resulting estimator for

µ is robust, consistent and asymptotically Normal. A link with the Hodges-Lehmann estimator and the

Wilcoxon test is detailed in the case Fε = F̃ε and σ = c. We do not require the existence of any moment

and consider the Cauchy and Gaussian models for examples and discussion.

The paper is organized as follows. Section 2 details the estimator and establishes its consistency and

asymptotic normality. Section 3 is concerned with efficiency and discusses three examples, for different

choices of Fε and F̃ε. Section 4 reports a Monte Carlo simulation study in order to assess the finite sample

properties of the estimator. Conclusions are drawn in Section 5. The Appendix contains the proofs of the

main results.

2. Robust location estimator

Let F̃ε be any cdf that belongs to F , and let c > 0 be a tuning parameter. We consider the following

estimator for the location of (1) according to a sample of N observations y = (yi, i = 1, . . . , N):
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TN = arg min
µ

N−1
N∑
i=1

IHF (yi, µ, c, F̃ε). (5)

The estimator is equivalently defined by the implicit equation

N−1
N∑
i=1

ψ(yi, µ, c, F̃ε) = 0. (6)

where

ψ(yi, µ, c, F̃ε) = F̃ε

(
yi − µ
c

)
− 1

2

is equal to minus the derivative of IHF (yi, µ, c, F̃ε) with respect to µ.1 Note that, in the limit case c→ 0,

equation (6) becomes

N−1
N∑
i=1

1(yi ≤ µ) =
1

2
,

for which TN is the empirical median. Hence, we expect that increasing c will imply a deterioration in the

robustness of TN . In the following we provide rigorous arguments about this.

A way of looking at the robustness of TN is to evaluate its breakdown point. As discussed in

Huber and Ronchetti (2009), the breakdown point is “the smallest fraction of bad observations that may

cause an estimator to take on arbitrarily large aberrant values“. In our case, ψ is skew-symmetric, i.e.

ψ(−∞, µ, c, F̃ε) = −ψ(∞, µ, c, F̃ε) < ∞, and the breakdown point of TN reaches its best possible values

of 1
2 , irrespectively on the choice of F̃ε and c. This means that TN is robust against Lévy and Prohorov

neighborhoods-type of contamination for Fε ∈ F , when contamination is up to 50%, see Huber and

Ronchetti (2009).

Another way to look at robustness, is to consider the influence curve (IC) introduced by Hampel (1968,

1974) and defined as

IC(x;Fε, TN ) =
ψ(x, TN , c, F̃ε)

EFε
[
ψ′
(
x, TN , c, F̃ε)

)] ,
1Here and throughout the paper we will assume that technical conditions to exchange integral and derivatives hold.
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where ψ′ = ∂ψ/∂µ. The IC allows one to assess the relative influence of individual observations toward

the value of TN and, in our case, it has the following form

IC(x;Fε, TN ) =
c
(
F̃ε

(
x−TN
c

)
− 1

2

)
EFε

[
f̃ε
(
εσc
)] . (7)

We have already showed that for c → 0, TN coincides with the sample median. On the other hand, to

investigate the properties of the estimator when c → ∞, we analyse the behaviour of IC(x;Fε, TN ) for

large values of c. By doing this, we first note that when c is large, F̃ε

(
x−TN
c

)
− 1

2 ≈
1
2 + sgn(x − TN )ε,

and EFε
[
f̃ε
(
εσc
)]
≈ f̃ε(0), such that:

IC(x;Fε, TN ) ≈ d(c), (8)

where |d(c)| = c(|ε|/f̃ε(0)) and |ε| small, for an arbitrarily large set of values x around TN . From (8) we

recognise that the behaviour of IC is that of the influence function of the (non robust) empirical mean

estimator which assigns equal weight to all observations.

2.1. Asymptotic results

We now establish consistency and asymptotic Normality of the estimator (5). Proofs are reported in

an online supplementary material file, see Appendix.

Theorem 1. (Consistency) Let F̃ε ∈ F , and let c > 0 be a tuning parameter. Then TN → µ in probability

and almost surely for N →∞.

Theorem 2. (Asymptotic Normality) Under the assumptions of Theorem 1,

√
N(TN − µ)→d N (0, v2),

where

v2 =
c2
[
EFε

[
F̃ε
(
εσc
)2]− 1

4

]
EFε

[
f̃ε
(
εσc
)]2 (9)

Theorems 1 and 2 indicate that estimation and inference on µ can be carried out based on any choice

of F̃ε. Consistency does not depend on σ or c, while the asymptotic variance of TN does.
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2.2. Robustness measures

The gross error sensitivity of TN at Fε measures the (normalized) infinitesimal effect of an outlier in

linear approximation and is given by

γ∗ = sup
x∈<
|IC(x;Fε, TN )| = c

2EFε
[
f̃ε
(
εσc
)] ,

which is bounded for finite values of c, and implies bias robustness (B–robustness) of TN . This measure

alone does not give a complete picture of the robustness of TN and it is usually paired with the change-

of-variance sensitivity κ∗, which measures the (normalized) infinitesimal effect of an outlier in linear

approximation to the variance of TN . We first introduce the change of variance function (CVF) as in

Hampel et al. (2005, Ch. 2.5)

CV F (x, ψ, Fε) = v2

1 +

(
F̃ε
(
x
c

)
− 1

2

)2

EFε
[
F̃ε
(
εσc
)2]− 1

4

−
2f̃ε
(
x
c

)
EF̃ε

[
f̃ε
(
εσc
)]
 ,

and then the sensitivity as

κ∗ = sup
x∈<

CV F (x, ψ, Fε)

v2
=

4EFε
[
F̃ε
(
εσc
)2]

4EFε
[
F̃ε
(
εσc
)2]− 1

.

We note that κ∗ is increasing in c and reaches its minimum at 2 for c→ 0, because limc→0 F̃ε
(
εσc
)

=

1(ε > 0), which is the change-of-variance sensitivity of the median estimator. For finite values of c, κ∗ is

finite which implies that TN is variance robust (V-robust).

2.3. Link with the Hodges-Lehmann estimator, the Wilcoxon test, and the ML logistic estimator

As noted in Huber and Ronchetti (2009), the rank estimate (R-Estimate) of location based on the

Wilcoxon signed-rank test (Wilcoxon, 1945) leads to the Hodges-Lehmann estimator (Hodges Jr and

Lehmann, 1963; Sen, 1963) for the location as the solution to:∫ ∞
−∞

Fε(2TN − x)fε(x)dx =
1

2
,

where we have assumed without loss of generality that µ = 0 and σ = 1. Notably, in our case of symmetric

Fε, the influence function of this estimator is:
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IC(x, Fε, TN ) =
Fε(x)− 1

2

EFε [fε(x)]
,

which is equivalent to our equation (7) in the case of F̃ε = Fε, and c = σ. Furthermore, we note that, if

we set F̃ε(x) = 1
2 + 1

2 tanh(x), i.e. the cdf of a logistic distribution, the M estimator (6) coincides with the

maximization of logistic likelihood. If also Fε = F̃ε and σ = c we have correct specification and equivalence

between the M estimator and logistic Maximum Likelihood estimator.

3. Efficiency

Efficiency depends on the true distribution function Fε, the scale σ, the choices of F̃ε and c. Thus,

explicit results cannot be obtained. Clearly, if Fε = F̃ε, the value of c which maximizes efficiency will be

the one that, if exists, ensures the equivalence between the Maximum Likelihood and the M-Estimator.

For example, if Fε = F̃ε = Φ, where Φ is the distribution function of a Gaussian random variable, then the

limit case c→∞ (empirical mean) implies maximum efficiency. A second case is given by the logistic case

Fε(x) = F̃ε(x) = 1
2 + 1

2 tanh(x), where c = σ leads to maximum efficiency. However, these results seem to

be somehow related only to the Gaussian and logistic cases. In other cases, especially when Fε 6= F̃ε, our

results indicate that the asymptotic variance (9) is minimized for a positive and finite value of c. In the

following, we discuss in detail some cases of particular interest.

3.1. Gaussian errors and Gaussian F̃ε

In the case when Fε = F̃ε = Φ, the IC becomes

IC(x,Φ, µ) =

[
Φ

(
x− µ
c

)
− 1

2

]√
2π(σ2 + c2).

A closed form expression for the asymptotic variance of
√
NTN is not available if not when c = σ. In the

latter case we have

v2 = σ2π

3
,

such that the asymptotic relative efficiency (ARE) of the estimator is approximately 3/π ≈ 95%. Note

that, the median for a Gaussian distribution has an ARE of approximately 2/π ≈ 64%. When c 6= σ we

have that v2 is decreasing in c. To see this, we can compute the derivative of v2 with respect to c which is

∂v2

∂c
∝ −

∫ ∞
−∞

zφ
(
z
c

σ

)
2φ(z)Φ(z)dz,
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Figure 1: Asymptotic relative efficiency with respect to c (a), influence function (b), and change of variance function (c), in

the case Fε = F̃ε = Φ.

where φ indicates the density of a standard Normal random variable. We recognise that the integral is

positive since it is equivalent to the expectation of a function which is symmetric about 0, namely zφ
(
z cσ
)
,

with respect to a skew normal distribution with positive skewness coefficient equals to 1 and location equal

to 0, see Azzalini (1985). Numerical analysis indicates that v2 decreases to σ2 as long as c increases. This

suggests that in the limit case when c → ∞ we recover the variance of the non-robust ML estimator for

the location of the Gaussian, i.e., the empirical mean. Figure 1 reports the ARE, IC, and CVF for this

case.

3.2. Cauchy errors and Cauchy F̃ε

In the case of a Cauchy distribution, Fε(ε) = F̃ε(ε) = 1
π arctan(ε) + 1

2 and the IC becomes

IC(x, Fε, µ) = arctan

(
x− µ
c

)
(σ + c),

the asymptotic variance becomes

v2 = (σ + c)2 c

σπ

∫ ∞
−∞

arctan(ε)2

σ2 + ε2c2
dε,

which has a minimum at approximately c = 0.12σ with an ARE of approximately 91.5%. If c = σ, then

v2 = σ2π2

3 , which implies an ARE of 6/π2 ≈ 60%. Figure 2 reports the ARE, IC, and CVF for this case.
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Figure 2: Asymptotic relative efficiency with respect to c (a), influence function (b), and change of variance function (c), in

the Cauchy case Fε(ε) = F̃ε(ε) = 1
π

arctan(ε) + 1
2
.

3.3. Cauchy Errors and Gaussian F̃ε

In the case of Cauchy errors and F̃ε = Φ we obtain:

IC(x,Φ, µ) =
c2φ

(
σ
c

) [
Φ
(x−µ

c

)
− 1

2

]
(1− Φ(σc ))

,

the asymptotic variance becomes

v2 = σc

√
2

π

∫ 1

0

x2 exp{Φ−1(x)2

2 }
σ2 + c2Φ−1(x)2

dx,

which has a minimum for approximately c = 0.25σ with an ARE of approximately 93%. If c = σ, the

ARE decreases to approximately 76%. The ARE for the median estimator is approximately 80%. Figure

3 reports the ARE, IC, and CVF for this case.

4. Finite sample properties

We now investigate the finite sample properties of the M-estimator (5) with respect to different choices

of Fε, F̃ε, and c. We consider the finite sample bias (BIAS) and the relative efficiency loss (RELoss)

defined as one minus the ratio between the ARE and the efficiency for fixed N which can be written as:

RELoss(N) = 1− Var(TN )

v2
,
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Figure 3: Asymptotic relative efficiency with respect to c (a), influence function (b), and change of variance function (c), in

the case Fε(ε) = 1
π

arctan(ε) + 1
2

and F̃ε(ε) = Φ(ε).

BIAS RELoss

{Fε, F̃ε} = {Φ,Φ} {Fε, F̃ε} = {C, C} {Fε, F̃ε} = {C,Φ} {Fε, F̃ε} = {Φ,Φ} {Fε, F̃ε} = {C, C} {Fε, F̃ε} = {C,Φ}

c N = 100 N = 500 N = 100 N = 500 N = 100 N = 500 N = 100 N = 500 N = 100 N = 500 N = 100 N = 500

0.1 1E-03 -4E-04 2E-04 2E-04 -2E-03 5E-04 -0.01 0.00 -0.10 -0.07 -0.09 -0.06

0.5 -8E-04 -3E-04 -4E-03 -4E-04 -5E-04 1E-03 0.00 0.00 -0.15 -0.12 -0.11 -0.08

1.0 2E-03 -1E-03 -5E-04 -1E-04 2E-03 -1E-03 0.00 0.00 -0.20 -0.18 -0.13 -0.11

1.5 -2E-03 7E-04 -5E-03 2E-03 5E-03 8E-04 -0.01 0.00 -0.27 -0.25 -0.17 -0.15

2.0 -3E-04 -2E-04 -4E-03 -8E-04 2E-03 3E-03 0.01 0.00 -0.34 -0.33 -0.19 -0.19

2.5 -6E-04 9E-05 -4E-03 3E-04 -3E-04 -2E-04 0.00 0.00 -0.42 -0.39 -0.24 -0.23

3.0 1E-03 -6E-04 -3E-03 -1E-03 6E-03 -4E-04 0.00 0.00 -0.51 -0.48 -0.28 -0.27

Table 1: Bias and relative efficiency loss (RELoss) for of the M-estimator (5) for different choices of {Fε, F̃ε}, c, and N .

where Var(TN ) indicates the variance of the estimator for fixed N . We consider three cases for the pair

{Fε, F̃ε}: i) {Φ,Φ}, ii) {C, C}, and iii) {C,Φ}, where C represents the distribution function of a Cauchy

random variable. The tuning parameter c takes values {0.1, 0.5, 1.0, 1.5, . . . , 3.0}, while the value of the

scale and the true location are set to σ = 1 and µ = 0, respectively. Note that, since we fix σ, results

regarding c should be interpreted as in percentage of σ. For example, c = 0.1 means that c is the 10% of

σ. We consider medium and large sample size, i.e. N = 100 and N = 500, respectively. The bias and the

RELoss are computed after 5000 simulations for each triplet ({Fε, F̃ε}, c, N).

Table 1 summarizes the results. We see that the bias is generally very low and does not depend on the

shape of the true distribution, neither on the choice of F̃ε, N , and c. This suggests that finite sample bias
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is negligible. Results for efficiency depict a different story. We find that the efficiency loss can be severe

in finite samples, when the data are generated from a fat tailed distribution. On the contrary, when the

data are sampled from a Gaussian distribution, there is no efficiency loss, even in small samples. In the

fat-tailed case, the results strongly depend on the choice of c. Specifically, when c is large, the efficiency

loss is large as well. This can be problematic given that efficiency can be quite low even asymptotically

when c is large, see Section 3. On the contrary, when c is low, say in the interval (0.1, 0.5), the efficiency

loss is confined in the range 6%−15%. Interestingly, we find that if the data are generated from a Cauchy

distribution, then the use of a Gaussian cdf F̃ε helps in reducing efficiency losses.2

Overall, the results suggest to be careful with the selection of c if efficiency is the main concern. Being

conservative and setting c equal to a small fraction of a (robust) estimate of σ seems a sensible strategy.

For instance, the median absolute deviations from the median (MAD) estimator provides good results.

5. Discussion and concluding remarks

We studied the properties of the M-estimator for location arising from minimization of the proper

scoring rule IHF/CRPS in the case of a location scale model with symmetric errors. We showed that

the estimator introduced in the paper admits as limit cases the sample median and the sample mean,

arising when c → 0 and c → ∞, respectively. Consistency and asymptotic normality of the estimator is

established for any choice of F̃ε ∈ F , where F is the set of all continuous symmetric distribution function

centered at zero. Notably, F̃ε can be different from the true distribution function Fε. A link with the

Hodges-Lehmann estimator and the logistic Maximum Likelihood estimator is discussed.

Efficiency of the estimator has been studied in detail. Results indicated that high efficiency levels can

be reached asymptotically by an appropriate choice of c. However, in the case of Gaussian Fε and Gaussian

F̃ε, this strategy leads to the non robust empirical mean estimator. When the observations come from a

fat tailed distribution, we found that setting c to a small fraction of a (robust) estimate of the scale σ,

such as the MAD, is a reasonable choice. A finite sample analysis indicates that a conservative choice of

c (like c = 0.1σ or c = 0.5σ), is key to preserve acceptable efficiency levels. As a rule for selecting c, the

minimum mean square error criterion of Ferrari and La Vecchia (2012) can be possibly adopted. Results

also indicated that finite sample bias is not a cause of concern.

2Note that ARE is very similar in the cases {Fε, F̃ε} = {C, C} and {Fε, F̃ε} = {C,Φ}.
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Appendix

The proof of Theorems 1 and 2 can be found online in a supplementary material file, see Appendix A.
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