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A Formal Approach to
Microservice Architecture Deployment∗

Mario Bravetti, Saverio Giallorenzo, Jacopo Mauro, Iacopo Talevi, and Gianluigi
Zavattaro

Abstract Following previous work on the automated deployment of component-
based applications, we present a formal model specifically tailored for reasoning
on the deployment of microservice architectures. The first result that we present is
a formal proof of decidability of the problem of synthesizing optimal deployment
plans for microservice architectures, a problem which was proved to be undecidable
for generic component-based applications. Then, given that such proof translates the
deployment problem into a constraint satisfaction problem, we present the imple-
mentation of a tool that, by exploiting state-of-the-art constraint solvers, can be used
to actually synthesize optimal deployment plans. We evaluate the applicability of
our tool on a realistic microservice architecture taken from the literature.

1 Introduction

Inspired by service-oriented computing, microservices structure software applica-
tions as highly modular and scalable compositions of fine-grained and loosely-

Mario Bravetti
Università di Bologna, Italy, e-mail: mario.bravetti@unibo.it

Saverio Giallorenzo
University of Southern Denmark, Denmark, e-mail: saverio@sdu.dk

Jacopo Mauro
University of Southern Denmark, Denmark, e-mail: mauro@sdu.dk

Iacopo Talevi
Università di Bologna, Italy, e-mail: iacopo.talevi@studio.unibo.it

Gianluigi Zavattaro
Università di Bologna, Italy, e-mail: gianluigi.zavattaro@unibo.it
∗ Research partly supported by the H2020-MSCA-RISE project ID 778233 “Behavioural Appli-

cation Program Interfaces (BEHAPI)”.

1



2 M. Bravetti at al.

coupled services [29]. These features support modern software engineering prac-
tices, like continuous delivery/deployment [40] and application autoscaling [3]. A
relevant problem in these practices consists of the automated deployment of the mi-
croservice application, i.e., the distribution of the fine-grained components over the
available computing nodes, and its dynamic modification to cope, e.g., with positive
or negative peaks of user requests.

In this paper, we address the problem of planning the deployment, and re-
deployment, of microservice architectures in a formal manner, by presenting an
approach for modeling microservice architectures, that allows us to both prove for-
mal properties and realize an implemented solution. We follow the approach taken
by the Aeolus component model [23, 25, 26], which was used to formally define the
problem of deploying component-based software systems and to prove that, in the
general case, such problem is undecidable [26]. The basic idea of Aeolus is to enrich
the specification of components with a finite state automaton that describes their
deployment life cycle. Previous work identified decidable fragments of the Aeolus
model: removing fromAeolus replication constraints, used e.g., to specify a minimal
amount of services connected to a load balancer, makes the deployment problem
decidable, but non-primitive recursive [25]; removing also conflicts, used e.g., to
express the impossibility to deploy in the same system two types of components,
makes the problem PSpace-complete [44] or even poly-time [26], but under the
assumption that every required component can be (re)deployed from scratch.

In a recent paper [15], we adapted the Aeolus model to formally reason on the
deployment of microservices. To achieve our goal, we significantly revisited the for-
malization of the deployment problem, replacing Aeolus components with a model
of microservices. The main difference between our model of microservices and
Aeolus components lies in the specification of their deployment life cycle. Instead
of using the full power of finite state automata, like in Aeolus and other TOSCA-
compliant deployment models [20], we assume microservices to have two states: (i)
creation and (ii) binding/unbinding. Concerning creation, we use strong dependen-
cies to express which microservices must be immediately connected to newly created
ones. After creation, we use weak dependencies to indicate additional microservices
that can be bound/unbound. The principle that guided this modification comes from
state-of-the-art microservice deployment technologies like Docker [45] and Kuber-
netes [39]. In particular, the weak and strong dependencies have been inspired by
Docker Compose [27], a language for defining multi-container Docker applications,
where it is possible to specify different relationships among microservices using,
e.g., the depends_on (resp. external_links) modalities that force (resp. do not force)
a specific startup order similarly to our strong (resp. weak) dependencies. Weak
dependencies are also useful to model horizontal scaling, e.g., a load balancer that
is bound to/unbound from many microservice instances during its life cycle.

In addition, w.r.t. the Aeolus model, we also consider resource/cost-aware de-
ployments, taking inspiration from the memory and CPU resources found in Kuber-
netes. Microservice specifications are enriched with the amount of resources they
need to run. In a deployment, a system of microservices runs within a set of com-
putation nodes. Nodes represent computational units, e.g., virtual machines in an
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Infrastructure-as-a-Service Cloud deployment. Each node has a cost and a set of
resources available to the microservices it hosts.

On the model above, it is possible to define the optimal deployment problem as
follows: given an initial microservice system, a set of available nodes, and a new
target microservice to be deployed, find a sequence of reconfiguration actions that,
once applied to the initial system, leads to a new deployment that includes the target
microservice. Such a deployment is expected to be optimal, meaning that the total
cost, i.e., the sum of the costs, of the nodes used is minimal. This problemwas proved
to be decidable [15] by presenting an algorithmworking in three phases: (1) generate
a set of constraints whose solution indicates the microservices to be deployed and
their distribution over the nodes; (2) generate another set of constraints whose
solution indicates the connections to be established; (3) synthesize the corresponding
deployment plan. The set of constraints includes optimization metrics that minimize
the overall cost of the computed deployment.

The algorithm has NEXPTIME complexity because, in the worst-case, the length
of the deployment plan could be exponential in the size of the input. However,
since in practice the number of microservices deployable on one node is limited
by the available resources, if each node can host at most a polynomial amount of
microservices the deployment problem is NP-complete and the problem of deploying
a system minimizing its total cost is an NP-optimization problem. Moreover, having
reduced the deployment problem in terms of constraints, it is possible to exploit
state-of-the-art constraint solvers [22, 34, 35], that are frequently used in practice to
cope with NP-hard problems. In particular, we investigate the possibility to actually
solve the deployment problem for microservices by exploiting Zephyrus2 [1], a
configurator optimizer that was originally envisaged for the Aeolus model [24]
but later extended and improved to support a new specification language and the
possibility to have preferences on the metrics to optimize, e.g., minimize not only
the cost but also the number of microservices. We have selected and customized
Zephyrus2 because it can easily support the solution of the optimization problems
to which we reduce the optimal deployment problem for microservices.

We have evaluated the actual exploitability of our implemented solution by com-
puting the initial optimal deployment, and some possible reconfigurations, for a
real-world microservice architecture, inspired by the reference email processing
pipeline from Iron.io [33]. That architecture is modeled in the Abstract Behavioral
Specification (ABS) language, a high-level object-oriented language that supports
deployment modeling [41]. Our technique is then used to compute two types of
deployments: an initial one, with one instance for each microservice, and a set of
deployments to horizontally scale the system depending on small, medium or large
increments in the number of emails to be processed. The experimental results are
encouraging in that we were able to compute deployment plans that add more than
30 new microservice instances, assuming availability of hundreds of machines of
three different types, and guaranteeing optimality.

Structure of the chapter. In Section 2 we formally study the microservice deploy-
ment problem. In Section 3 we discuss Zephyrus2, the tool used to solve such a
problem, while in Section 4 we report the experimental results obtained by applying
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Fig. 1 Example of microservice deployment (blue boxes: nodes; green boxes: microservices;
continuous lines: the initial configuration; dashed lines: full configuration).

it to a real-world case-study. Finally, Section 5 discusses related work and draws
some concluding remarks.

Note that this chapter mainly reports and extends results published in [15] with
an additional section, namely Section 3, to provide more details on the Zephyrus2
tool and the extensions we implemented.

2 The microservice optimal deployment problem

In this section we present our model for representing microservice systems and
their deployment. We start from an informal presentation of the model and then we
move to define microservice deployment configurations, reconfiguration plans and
the optimal deployment problem, providing its decidability proof and an analysis of
its complexity.

2.1 Representing microservice systems and their deployment

We model microservice systems as aggregations of components with ports. Each
port instantiates either a provided or a required interface. Interfaces describe offered
and required functionalities. Microservices are connected by means of bindings in-
dicating which port provides the functionality required by another port. As discussed
in Section 1, we consider two kinds of requirements: strong required interfaces, that
need to be already fulfilled when the microservice is created, and weak required
interfaces, that must be fulfilled at the end of a deployment, or reconfiguration, plan.
Microservices are enriched with the specification of the resources they need to prop-
erly run. Such resources are provided to the microservices by nodes. Nodes can be
seen as the unit of computation executing the tasks associated to each microservice.
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As an example, in Figure 1 we report the representation of the deployment of
a microservice system where a Message Receiver microservice handles inbound
requests, passing them to aMessage Analyzer that checks the email content and sends
the attachments for inspection to an Attachment Analyzer. The Message Receiver
has a port with a weak required interface that can be fulfilled by Message Analyzer
instances. This requirement is weak, meaning that the Message Receiver can be
initially deployed without any connection to instances of Message Analyzer. These
connections can be established afterwards and reflect the possibility to horizontally
scale the application by adding/removing instances of Message Analyzer. This last
microservice has instead a port with a strong required interface that can be fulfilled
by Attachment Analyzer instances. This requirement is strong to reflect the need to
immediately connect a Message Analyzer to its Attachment Analyzer.

Figure 1 presents a reconfiguration that, starting from the initial deployment de-
picted in continuous lines, adds the elements depicted with dashed lines. Namely, a
couple of new instances of Message Analyzer and a new instance of Attachment An-
alyzer are deployed. This is done in order to satisfy numerical constraints associated
to both required and provided interfaces. For required interfaces, the numerical con-
straints indicate lower bounds to the outgoing bindings, while for provided interfaces
they specify upper bounds to the incoming connections. Notice that the constraint
≥ 3 associated to the weak required interface of Message Receiver is not initially
satisfied; this is not problematic because constraints on weak interfaces are relevant
only at the end of a reconfiguration. In the final deployment, such a constraint is
satisfied thanks to the two new instances of Message Analyzer. These two instances
need to be immediately connected to an Attachment Analyzer: only one of them can
use the initially available Attachment Analyzer, because of the constraint ≤ 2 associ-
ated to the corresponding provided interface. Hence, a new instance of Attachment
Analyzer is added.

We also model resources: each microservice has associated resources that it
consumes, see the CPU and RAM quantities associated to the microservices in
Figure 1. Resources are provided by nodes, that we represent as containers for the
microservice instances, providing them the resources they require. Notice that nodes
have also costs: the total cost of a deployment is the sum of the costs of the used
nodes, e.g., in the example the total cost is 598 cents per hour, corresponding to the
cost of 4 nodes: 2 C4 large and 2 C4 xlarge virtual machine instances of the Amazon
public Cloud.

2.2 Microservices, nodes and deployment configurations

We nowmove to formal definitions. Here we will introduce microservices (including
their required/provided/conflicting interfaces and consumed resources), nodes, and
deployment configurations.

We start from the definition of types of microservices, e.g., Attachment Analyzer,
Message Receiver, and Message Analyzer in the example of Figure 1, which can
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be instantiated when deploying microservice systems. In the following, we assume
I to denote the set of all possible interfaces and R to be a finite set of kinds of
resources. Moreover, we use N to denote natural numbers, N+ for N \ {0}, and N+∞
for N+ ∪ {∞}.

Definition 1 (Microservice type) The set Γ of microservice types, ranged over by
T1,T2, . . ., contains 5-ples 〈P,Ds,Dw,C,R〉 where:

• P = (I 7→ N+∞) are the provided interfaces, defined as a partial function from in-
terfaces to corresponding numerical constraints, indicating the maximum number
of connected microservices;

• Ds = (I 7→ N
+) are the strong required interfaces, defined as a partial function

from interfaces to corresponding numerical constraints, indicating the minimum
number of connected microservices;

• Dw = (I 7→ N) are the weak required interfaces, defined as the strong ones, with
the difference that also the constraint 0 can be used indicating that it is not strictly
necessary to connect microservices;

• C ⊆ I are the conflicting interfaces;
• R = (R → N) specifies resource consumption, defined as a total function from

resources to corresponding quantities indicating the amount of required resources.

We assume sets dom(Ds), dom(Dw) and C to be pairwise disjoint.2

Notation: In the remainder of the paper, we denote the name of a microservice
interface with the upper-case acronym of the name of its microservice, e.g., the
interface of the Message Analyzer is denoted MA.

Given a microservice type T = 〈P,Ds,Dw,C,R〉, we use the following postfix
projections .prov, .reqs, .reqw, .conf, and .res to decompose it:

• .prov returns the partial function associating arities to provided interfaces, e.g.,
in Figure 1, Message Receiver.prov(MR) = ∞;

• .reqs returns the partial function associating arities to strong required interfaces,
e.g., in Figure 1, Message Analyzer.reqs(AA) = 1;

• .reqw returns the partial function associating arities to weak required interfaces,
e.g., in Figure 1, Message Receiver.reqw(MA) = 3;

• .conf returns the conflicting interfaces;
• .res returns the total function from resources to their required quantities, e.g., in

Figure 1, Message Receiver.res(RAM) = 4.

When the numerical constraints are not explicitly indicated, we assume as default
value ∞ for provided interfaces, i.e., they can satisfy an unlimited amount of ports
requiring the same interface, and 1 for required interfaces, i.e., one connection with
a port providing the same interface is sufficient.

Inspired by [25], we allow a microservice to specify a conflicting interface that,
intuitively, forbids the deployment of other microservices providing the same inter-
face. Conflicting interfaces can be used to express conflicts among microservices,

2 Given a partial function f , we use dom( f ) to denote the domain of f , i.e., the set {e | ∃e′ :
(e, e′) ∈ f }.
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preventing both of them to be present at the same time, or cases in which only one
microservice instance can be deployed, e.g., a consistent and available microservice
that can not be replicated.

Definition 2 (Nodes) The set N of nodes is ranged over by o1,o2, . . . We assume
the following information to be associated to each node o in N .

• A function R = (R → N) that specifies node resource availability: we use o.res
to denote such a function.

• A value in N that specifies node cost: we use o.cost to denote such a value.

As example, in Figure 1, the nodeNode1_large is such thatNode1_large.res(RAM) =
4 and Node1_large.cost = 100.

Notice that, both in Definition 1 and 2, we use the same symbol R to denote the re-
source function: in the former case it quantifies resources consumed by microservice
instances, in the latter it quantifies resources made available by nodes.

We now define configurations that describe systems composed of microservice
instances and bindings that interconnect them. We use Z to denote the set of all
possible microservice instances. A configuration, ranged over by C1,C2, . . ., is given
by a set of deployed microservice instances, with their associated type and node
hosting them, and a set of bindings. Formally:
Definition 3 (Configuration) A configuration C is a 4-ple 〈Z,T,N,B〉 where:

• Z ⊆ Z is the set of the currently deployed microservices;
• T = (Z → T) are the microservice types, defined as a function from deployed

microservices to microservice types;
• N = (Z → N) are the microservice nodes, defined as a function from deployed

microservices to nodes that host them;
• B ⊆ I × Z × Z is the set of bindings, namely 3-ples composed of an interface,

the microservice that requires that interface, and the microservice that provides
it; we assume that, for (p, z1, z2) ∈ B, the two microservices z1 and z2 are distinct
and p ∈ (dom(T(z1).reqs) ∪ dom(T(z1).reqw)) ∩ dom(T(z2).prov).
In our example, we have the binding (MA, instmr, instma)where instmr and instma are

the two initial instances in continuous lines of Message Receiver and Message Ana-
lyzer type, respectively. Notice that the interface MA satisfies the inclusion constraint
at the end of Definition 3 in that MA is a required interface of the Message Receiver
type, while it is a provided interface of the Message Analyzer type. Moreover, con-
cerning the microservice placement function N , we have N(instmr) = Node1_large
and N(instma) = Node2_xlarge.

2.3 Microservice deployment plans

We are now ready to formalize the notion of a microservice deployment plan, which
represents a sequence of deployment configurations, with the aim of reaching a final
configuration as in the example of Figure 1, by means of reconfiguration actions.
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The configurations traversed during a microservice deployment plan must satisfy
a correctness constraint related to the intended meaning of strong and weak required
interfaces and conflicts (see Definition 1). We first define provisional correctness,
considering only constraints on strong required and provided interfaces, and then we
define a general notion of configuration correctness, considering also weak required
interfaces and conflicts. The former is intended for transient configurations traversed
during the execution of a sequence of reconfigurations, while the latter is intended
for the final configuration.

Definition 4 (Provisionally correct configuration) AconfigurationC= 〈Z,T,N,B〉
is provisionally correct if, for each node o∈ ran(N), it holds3

∀ r ∈R . o.res(r) ≥
∑

z∈Z ,N (z)=o

T(z).res(r)

and, for each microservice z ∈ Z , both following conditions hold:

• (p 7→ n) ∈ T(z).reqs implies that there exist n distinct microservices z1, . . . , zn
∈ Z\{z} such that, for every 1 ≤ i ≤ n, we have 〈p, z, zi〉 ∈ B;

• (p 7→ n) ∈ T(z).prov implies that there exist no m distinct microservices
z1, . . . , zm ∈ Z \ {z}, with m > n, such that, for every 1 ≤ i ≤ m, we have
〈p, zi, z〉 ∈ B.

In the above definition, the initial inequality guarantees that the amount of re-
sources provided by the nodes are sufficient to satisfy the requests of all the hosted
microservices. The first item means that the strong requirements of all components
are all satisfied because there are at least as many bindings on those ports as the
associated lower bounds. The second item, on the other hand, guarantees that there
are no extra connections on provided interfaces, because all the ports exposing a
provided interface have no more bindings than the associated upper bound.

Definition 5 (Correct configuration) A configuration C= 〈Z,T,N,B〉 is correct if
C is provisionally correct and, for eachmicroservice z ∈ Z , both following conditions
hold:

• (p 7→ n) ∈ T(z).reqw implies that there exist n distinct microservices z1, . . . , zn
∈ Z\{z} such that, for every 1 ≤ i ≤ n, we have 〈p, z, zi〉 ∈ B;

• p∈T(z).conf implies that, for each z′ ∈ Z\{z}, we have p < dom(T(z′).prov).

In the definition above, besides the guarantees already given by Definion 4,
we have that also weak requirements are satisfied (first item), as well as conflicts
(second item): i.e., if an instantiated microservice has a conflict on an interface, such
an interface cannot be provided by any other microservice in the configuration.

Notice that, in the example in Figure 1, the initial configuration in continuous
lines is only provisionally correct in that the weak required interfaceMA, with arity 3,

3 Given a (partial) function f , we use ran( f ) to denote the range of f , i.e., the function image set
{ f (e) | e ∈ dom( f )}.
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of the Message Receiver is not satisfied, because there is only one outgoing binding.
The full configuration — including also the elements in dotted lines — is instead
correct: all the constraints associated to the interfaces are satisfied.

We now formalize how configurations evolve by means of atomic actions: we
have bind/unbind actions to create/destroy bindings on ports with weak required
interfaces; new to instantiate a newmicroservice instance and the necessary bindings
on ports with strong required interface; and del to destroy a microservice and,
implicitly, its bindings.

Definition 6 (Actions) The set A contains the following actions:

• bind(p, z1, z2) where z1, z2 ∈Z, with z1, z2, and p∈I: add a binding between z1
and z2 on interface p, which is supposed to be a weak required interface of z1 and
a provide interface of z2;

• unbind(p, z1, z2) where z1, z2 ∈ Z, with z1 , z2, and p ∈ I: remove the specified
binding on p, which is supposed to be a weak required interface of z1 and a
provide interface of z2;

• new(z,T ,o,Bs) where z ∈ Z, T ∈ Γ, o ∈ N and Bs = (dom(T .reqs) → 2Z−{z });
with Bs representing bindings from strong required interfaces in T to sets of
microservices, being such that, for each p ∈ dom(T .reqs), it holds |Bs(p)| ≥
T .reqs(p): add a new microservice z of type T hosted in o and bind each of its
strong required interfaces to a set of microservices as described by Bs;4

• del(z) where z ∈ Z: remove the microservice z from the configuration and all
bindings involving it.

In our example, assuming that the initially availableAttachment Analyzer is named
instaa, we have that the action to create the initial instance of Message Analyzer
is new(instma,Message Analyzer,Node2_xlarge, (AA 7→ {instaa})). Notice that it is
necessary to establish the binding with the Attachment Analyzer because of the
corresponding strong required interface.

The execution of actions can now be formalized using a labeled transition system
on configurations, which uses actions as labels.

Definition 7 (Reconfigurations) Reconfigurations are denoted by transitions C α
−→

C′ meaning that the execution of α ∈ A on the configuration C produces a new
configuration C′. The transitions from a configuration C = 〈Z,T,N,B〉 are defined
as follows:

4 Given sets S and S′ we use: 2S to denote the power set of S, i.e., the set {S′ | S′ ⊆ S }; S − S′ to
denote set difference; and |S | to denote the cardinality of S.
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C
bind(p ,z1 ,z2)
−−−−−−−−−−−→ 〈Z ,T , N , B ∪ 〈p, z1, z2 〉〉
if 〈p, z1, z2 〉 < B and
p ∈ dom(T (z1).reqw) ∩ dom(T (z2).prov)

C
unbind(p ,z1 ,z2)
−−−−−−−−−−−−→ 〈Z ,T , N , B\ 〈p, z1, z2 〉〉
if 〈p, z1, z2 〉 ∈ B and
p ∈ dom(T (z1).reqw) ∩ dom(T (z2).prov)

C
new(z ,T ,o ,Bs )
−−−−−−−−−−−−→ 〈Z ∪ {z },T ′, N ′, B′〉
if z < Z and
∀ p ∈ dom(T.reqs). ∀z

′ ∈ Bs (p).
p ∈ dom(T (z′).prov) and

T ′ = T ∪ {(z 7→ T)} and
N ′ = N ∪ {(z 7→ o)} and
B′ = B ∪ {〈p, z, z′〉 | z′ ∈ Bs (p)}

C
del(z)
−−−−→ 〈Z\ {z },T ′, N ′, B′〉
if T ′ = {(z′ 7→ T) ∈ T | z , z′} and
N ′ = {(z′ 7→ o) ∈ N | z , z′} and
B′ = { 〈p, z1, z2 〉 ∈ B | z < {z1, z2 }}

A deployment plan is simply a sequence of actions that transform a provisionally
correct configuration without violating provisional correctness along the way and,
finally, reach a correct configuration.

Definition 8 (Deployment plan) A deployment plan P from a provisionally correct
configuration C0 is a sequence of actions α1, . . . , αm such that:

• there exist C1, . . . ,Cm provisionally correct configurations, with Ci−1
αi
−−→ Ci for

1 ≤ i ≤ m, and
• Cm is a correct configuration.

Deployment plans are also denoted with C0
α1
−−→ C1

α2
−−→ · · ·

αm
−−→ Cm.

In our example, a deployment plan that reconfigures the initial provisionally
correct configuration into the final correct one is as follows: a new action to create
the new instance of Attachment Analyzer, followed by two new actions for the new
Message Analyzers5 and finally two bind actions to connect the Message Receiver
to the two new instances of Message Analyzer.

Notice that, since in deployment plans the requirements associated with strong in-
terfaces must be satisfied immediately after each reconfiguration action, which must
yield a provisionally correct configuration, it is possible to deploy a configuration
with circular dependencies only if at least one weak required interface is involved in
the cycle. In fact, having a cycle with only strong required interfaces would require to
deploy all the microservices involved in the cycle simultaneously. We now formalize
a well-formedness condition on microservice types to guarantee the absence of such
configurations.

Definition 9 (Well-formed Universe) Given a finite set of microservice types U,
that we also call universe, the strong dependency graph of U is as follows: G(U) =
(U,V) with V = {(T ,T ′) | T ,T ′ ∈ U ∧ ∃p ∈ I.p ∈ dom(T .reqs) ∩ dom(T ′.prov)}.
The universe U is well-formed if G(U) is acyclic.

In the following, we always assume universes to be well-formed. Well-formedness
does not prevent the specification of microservice systems with circular dependen-
cies, which are captured by cycles with at least one weak required interface.

5 Notice that the connection between the Message Analyzers and the corresponding Attachment
Analyzers is part of these new actions.
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2.4 Microservice optimal deployment problem

We now have all the ingredients to define the optimal deployment problem, that is our
main concern: given a universe of microservice types, a set of available nodes and
an initial configuration, we want to know whether and how it is possible to deploy
at least one microservice of a given microservice type T by optimizing the overall
cost of nodes hosting the deployed microservices.

Definition 10 (Optimal deployment problem) The optimal deployment problem
has, as input, a finite well-formed universe U of microservice types, a finite set of
available nodesO, an initial provisionally correct configurationC0 and amicroservice
type Tt ∈ U. The output is:

• A deployment plan P = C0
α1
−−→ C1

α2
−−→ · · ·

αm
−−→ Cm such that

– for all Ci = 〈Zi,Ti,Ni,Bi〉, with 1 ≤ i ≤ m, it holds ∀z ∈ Zi . Ti(z) ∈ U ∧
Ni(z) ∈ O, and

– Cm = 〈Zm,Tm,Nm,Bm〉 satisfies ∃z ∈ Zm : Ti(z) = Tt ;

if there exists one. In particular, among all deployment plans satisfying the con-
straints above, one that minimizes

∑
o∈O.(∃z.Nm(z)=o) o.cost, i.e., the overall cost

of nodes in the last configuration Cm, is outputted.
• no (stating that no such plan exists); otherwise.

In the remainder of this section we present an algorithm for solving the optimal
deployment problem. This will allow us to complete the section by stating our main
result on the decidability of such a problem.

We assume that the input to the problem to be solved is given by U (the mi-
croservice types), O (the set of available nodes), C0 (the initial provisionally cor-
rect configuration), and Tt ∈ U (the target microservice type). We use I(U) to
denote the set of interfaces used in the considered microservice types, namely
I(U) =

⋃
T∈U dom(T .reqs) ∪ dom(T .reqw) ∪ dom(T .prov) ∪ T .conf.

The algorithm is based on three phases.

Phase 1 The first phase consists of the generation of a set of constraints that,
once solved, indicates how many instances should be created for each microservice
type T (denoted with inst(T )), and how many of them should be deployed on
node o (denoted with inst(T ,o)). We denote with bind(p,T ,T ′) the number of
bindings that should be established for each interface p from instances of type T
— considering both weak and strong required interfaces — to instances of type
T ′. We also generate an optimization function that guarantees that the generated
configuration is minimal w.r.t. its total cost.

We now incrementally report the generated constraints. The first group of con-
straints deals with the number of bindings:
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p∈I(U )

∧
T∈U , p∈dom(T .reqs)

T.reqs(p) · inst(T) ≤
∑
T′∈U

bind(p, T , T′) (1a)∧
p∈I(U )

∧
T∈U , p∈dom(T .reqw)

T.reqw(p) · inst(T) ≤
∑
T′∈U

bind(p, T , T′) (1b)∧
p∈I(U )

∧
T∈U , T .prov(p)<∞

T.prov(p) · inst(T) ≥
∑
T′∈U

bind(p, T′, T) (1c)∧
p∈I(U )

∧
T∈U , T .prov(p)=∞

inst(T) = 0 ⇒
∑
T′∈U

bind(p, T′, T) = 0 (1d)∧
p∈I(U )

∧
T∈U , p<dom(T .prov)

∑
T′∈U

bind(p, T′, T) = 0 (1e)

Constraints (1a) and (1b) guarantee that there are enough bindings to satisfy all the
required interfaces, considering both strong and weak requirements. Symmetrically,
constraint (1c) guarantees that the number of bindings is not greater than the total
available capacity, computed as the sum of the single capacities of each provided
interface. In case the capacity is unbounded (i.e., ∞), it is sufficient to have at
least one instance that activates such port to support any possible requirement, see
constraint (1d). Finally, constraint (1e) guarantees that no binding is established
connected to provided interfaces of microservice types that are not deployed.

The second group of constraints deals with the number of instances of microser-
vices to be deployed.

inst(Tt ) ≥ 1 (2a)∧
p∈I(U )

∧
T∈U ,

p∈T .conf

∧
T′∈U−{T},

p∈dom(T′ .prov)

inst(T) > 0 ⇒ inst(T′) = 0 (2b)

∧
p∈I(U )

∧
T∈U , p∈T .conf ∧
p∈dom(T .prov)

inst(T) ≤ 1 (2c)

∧
p∈I(U )

∧
T∈U

∧
T′∈U−{T}

bind(p, T , T′) ≤ inst(T) · inst(T′) (2d)∧
p∈I(U )

∧
T∈U

bind(p, T , T) ≤ inst(T) · (inst(T) − 1) (2e)

The first constraint (2a) guarantees the presence of at least one instance of the
target microservice. Constraint (2b) guarantees that no two instances of different
types will be created if one activates a conflict on an interface provided by the other
one. Constraint (2c), consider the other case in which a type activates the same
interface both in conflicting and provided modality: in this case, at most one instance
of such type can be created. Finally, constraints (2d) and (2e) guarantee that there
are enough pairs of distinct instances to establish all the necessary bindings. Two
distinct constraints are used: the first one deals with bindings between microservices
of two different types, the second one with bindings between microservices of the
same type.
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The last group of constraints deals with the distribution of microservice instances
over the available nodes O.

inst(T) =
∑
o∈O

inst(T , o) (3a)∧
r∈R

∧
o∈O

∑
T∈U

inst(T , o) · T.res(r) ≤ o.res(r) (3b)∧
o∈O

( ∑
T∈U

inst(T , o) > 0
)
⇔ used(o) (3c)

min
∑

o∈O , used(o)

o.cost (3d)

Constraint (3a) simply formalizes the relationship among the variables inst(T )
and inst(T ,o): the total amount of all instances of a microservice type, should
correspond to the sum of the instances locally deployed on each node. Constraint (3b)
checks that each node has enough resources to satisfy the requirements of all the
hosted microservices. The last two constraints define the optimization function used
to minimize the total cost: constraint (3c) introduces the boolean variable used(o)
which is true if and only if node o contains at least one microservice instance;
constraint (3d) is the function to be minimized, i.e., the sum of the costs of the used
nodes.

All the constraints of Phase 1, and the optimization function, are expected to be
given in input to a constraint/optimization solver. If a solution is not foundit is not
possible to deploy the required microservice system; otherwise, the next phases of
the algorithm are executed to synthesize the optimal deployment plan.

Phase 2 The second phase consists of the generation of another set of constraints
that, once solved, indicates the bindings to be established between any pair of
microservices to be deployed.More precisely, for each typeT such that inst(T ) > 0,
we use sTi , with 1 ≤ i ≤ inst(T ), to identify the microservices of type T to be
deployed. We also assume a function N that associates microservices to available
nodes O, which is compliant with the values inst(T ,o) already computed in Phase
1, i.e., given a type T and a node o, the number of sTi , with 1 ≤ i ≤ inst(T ), such
that N(sTi ) = o coincides with inst(T ,o).

In the constraints below we use the variable b(p, sTi , s
T′

j ), with i , j, if T = T ′:
its value is 1 if there is a connection between the required interface p of sTi and the
provided interface p of sT

′

j , 0 otherwise. We use n and m to denote inst(T ) and
inst(T ′), respectively, and an auxiliary total function limProv(T ′,p) that extends
T ′.prov associating 0 to interfaces outside its domain.
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T∈U

∧
p∈I(U )

∧
i∈1. . .n

∑
j∈(1. . .m)\{i |T=T′}

b(p, sTi , s
T′

j ) ≤ limProv(T′, p) (4a)∧
T∈U

∧
p∈dom(T .reqs)

∧
i∈1. . .n

∑
j∈(1. . .m)\{i |T=T′}

b(p, sTi , s
T′

j ) ≥ T.reqs(p) (4b)∧
T∈U

∧
p∈dom(T .reqw)

∧
i∈1. . .n

∑
j∈(1. . .m)\{i |T=T′}

b(p, sTi , s
T′

j ) ≥ T.reqw(p) (4c)∧
T∈U

∧
p<dom(T .reqs)∪dom(T .reqw)

∧
i∈1. . .n

∑
j∈(1. . .m)\{i |T=T′}

b(p, sTi , s
T′

j ) = 0 (4d)

Constraint (4a) considers the provided interface capacities to fix upper bounds
to the bindings to be established, while constraints (4b) and (4c) fix lower bounds
based on the required interface capacities, considering both theweak (constraint (4b))
and the strong (constraint (4c)) ones. Finally, constraint (4d) indicates that it is not
possible to establish connections on interfaces that are not required.

A solution for these constraints exists because, as also shown in [23], the con-
straints (1a) to (2e), already solved during Phase 1, guarantee that the configuration
to be synthesized contains enough capacity on the provided interfaces to satisfy all
the required interfaces.

Phase 3 In this last phase we synthesize the deployment plan that, when applied to
the initial configurationC0, reaches a new configurationCt with nodes, microservices
and bindings as computed in the first two phases of the algorithm. Without loss of
generality, in this decidability proof we show the existence of a simple plan that
first removes the elements in the initial configuration and then deploys the target
configuration from scratch. However, as also discussed in Section 4, in practice it
is possible to define more complex planning mechanisms that re-use microservices
already deployed.

Reaching an empty configuration is a trivial task since it is always possible to
perform in the initial configuration unbind actions for all the bindings connected
to weak required interfaces. Then, the microservices can be safely deleted. Thanks
to the well-formedness assumption (Definition 9) and using a topological sort, it
is possible to order the microservices to be removed without violating any strong
required interface, e.g., first remove the microservice not requiring anything and
repeat until all the microservices have been deleted.

The deployment of the target configuration follows a similar pattern. Given the
distribution of microservices over nodes –computed in Phase 1– and the correspond-
ing bindings –computed in Phase 2–, the microservices can be created by following
a topological sort considering the microservices dependencies following from the
strong required interfaces. When all the microservices are deployed on the corre-
sponding nodes, the remaining bindings, on weak required ports, may be added in
any possible order.

Given the existence of the above algorithm for solving the optimal deployment
problem, we can now formally state our main result.

Theorem 1 The optimal deployment problem is decidable.
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From the complexity point of view, it is possible to show that the decision versions
of the optimization problem solved in Phase 1 is NP-complete, in Phase 2 is in NP,
while the planning inPhase 3 is synthesized in polynomial time.Unfortunately, due to
the fact that numeric constraints can be represented in log space, the output of Phase
2 requiring the enumeration of all the microservices to deploy can be exponential
in the size of the output of Phase 1, indicating only the total number of instances
for each type. For this reason, the optimal deployment problem is in NEXPTIME.
However, we would like to note that this applies only when an exponential number of
microservices is required to be installed in a node. In practice, this does not happen
since every node provides some resources that are enough to deploy only a small
number of microservices. If at most a polynomial number of microservices can be
deployed on each node, we have that the optimal deployment problem becomes an
NP-optimization problem and its decision version is NP-complete. See the technical
report [16] for the formal proofs of complexity.

3 Zephyrus

In this sectionwe describe the Zephyrus2 tool and how it can be used to actually solve
the optimal deployment problem as formalized in the previous section. Zephyrus2
is a configurator optimizer that was originally envisaged for the Aeolus model [24]
but later extended and improved to support a new specification language and the
possibility to have preferences on the metrics to optimize, e.g., minimize not only
the cost but, for instance, also the number of microservices [1].

Zephyrus2 in particular can be used to solve the optimization problems of the
first two phases described before, namely the distribution of the microservices on
the nodes, and the instantiation of the bindings between the different microservices.

3.1 Optimal distribution of microservices

Differently from what formally described before, for usability sake, Zephyrus2 al-
lows a far richer way of defining what are the deployment constraints of the users.
Indeed, while in the previous section the goal was to deploy at least a given microser-
vice (see constraint (2a)),6 Zephyrus2 natively supports a richer language powerful
enough to express, e.g., the presence of a given number of microservices and their
co-installation requirements or conflicts. For example, the user might require the
presence of at least one Message Receiver and 3 Message Analyzer and that, for

6 Note that despite this formal limitation, the possibility to install one microservice is enough to
encode far more elaborate constraints. Indeed, by using the strong requirements, it is possible to
create for example a dummy target microservice that forces other microservices to be present in a
certain amount.
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fault tolerance reasons, no two Message Analyzer instances should be installed on
the same node.

For microservice and nodes specifications, Zephyrus2 supports the JavaScript
Object Notation (JSON) format.7As an example, the following JSON snippet defines
the Message Receiver microservice in Figure 1.
"MessageReceiver": {

"resources": { "CPU": 2, "RAM": 4 },
"requires": { "MA": 3 },
"provides": [ { "ports": [ "MR" ], "num": -1 } ]

}

In the first line the name of the microservice is defined. Microservice names allow
for the usage of only letters, numbers, the underscore character, and they should start
with a letter. For this reason, here and in the following examples, in the Zephyrus2
snippets we will rename the services removing the trailing spaces (e.g., Message
Receiver becomes MessageReceiver).
In the second line, with the keyword resources, it is declared that Message
Receiver consumes 2 vCPUs and 4 units of RAM. The keyword requires defines
that the microservice has a requirement on interface MA with a capacity constraint
“≥ 3”. Similarly, the provides keyword declares that the microservice provides the
interface MR to a possibly unbounded number of microservices, represented by −1.
Note that here, Zephyrus2 does not distinguish between strong and weak require-
ments since this notion becomes relevant only later, namely, in Phase 2.

The definition of nodes is also done in JSON. For instance, the JSON input to
define 10 xlarge Amazon virtual machines is the following.
"xlarge": {

"num": 10,
"resources": { "CPU": 4, "RAM": 8 },
"cost": 199

}

For specifying the target configuration, Zephyrus2 introduces a new specification
language for expressing the deployment constraints to allows DevOps teams to
express more complex cloud- and application-specific constraints.

As shown in Figure 2 that reports the grammar of the specification language
defined using the ANTLR tool [5], a deployment constraint is a logical combination
of comparisons between arithmetic expressions. Besides integers, expressions may
refer to microservice names representing the total number of deployed instances of
a microservice. Location instances are identified by a location name followed by the
instance index, starting at zero, in square brackets. A microservice name prefixed by
a node stays for the number of microservice instances deployed on the given node.

For example, the following formula requires the presence of at least one Message
Receiver on the second large node, and exactly 3 Message Analyzer in the entire
system.

7 The formal JSON Schema of Zephyrus2 input is available at [43]. JSON was used since it is
one of the most common data formats for information exchange, thus easing a possible support of
external tools and standards.
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1 b_expr : b_term (bool_binary_op b_term )* ;
2 b_term : ('not')? b_factor ;
3 b_factor : 'true' | relation ;
4 relation : expr (comparison_op expr)? ;
5 expr : term (arith_binary_op term)* ;
6 term : INT |
7 ('exists ' | 'forall ') VARIABLE 'in' type ':' b_expr |
8 'sum' VARIABLE 'in' type ':' expr |
9 (( ID | VARIABLE | ID '[' INT ']' ) '.')? microservice |
10 arith_unary_op expr |
11 '(' b_expr ')' ;
12 microservice : ID | VARIABLE ;
13 type : 'components ' | 'locations ' | RE ;
14 bool_binary_op : 'and' | 'or' | 'impl' | 'iff' ;
15 arith_binary_op : '+' | '-' | '*' ;
16 comparison_op : '<=' | '=' | '>=' | '<' | '>' | '!=' ;
17 preferences: ('cost' | expr ) ( ';' 'cost' | expr )*
18 VARIABLE : '?'[a-zA-Z_][a-zA-Z0-9_]*;
19 ID : [a-zA-Z_][a-zA-Z0-9_]* ;
20 INT : [0-9]+ ;

Fig. 2 User desiderata specification language grammar.

large[1].MessageReceiver > 0 and MessageAnalyzer = 3

For quantification and for building sum expressions, Zephyrus2 use identifiers
prefixed with a question mark as variables. Quantification and sum constructs can
range over microservices –when the 'components' keyword is used–, nodes, –when
the 'locations' keyword is used–, or over microservices/nodes whose names match
a given regular expression (RE). Using such constraints, it is possible to express
more elaborate properties such as the co-location or distribution of microservices,
or limit the amount of microservices deployed on a given location. For example, the
constraint
forall ?x in locations: ( ?x.MessageReceiver > 0 impl
?x.MessageAnalyzer = 0)

states that the presence of an instance of a Message Receiver deployed on any node
x implies that no Message Analyzer can be deployed on the same node. As another
example, requiring the Message Receiver to be installed alone on a virtual machine
can be done by requiring that if a Message Receiver is installed on a given node
then the sum of the microservices installed on that node should be exactly 1. This
can be done by stating the following constraint.
forall ?x in locations: ( ?x.MessageReceiver > 0 impl
(sum ?y in components: ?x.?y) = 1 )

For defining the optimization metrics, Zephyrus2 extends what has been formally
presented in the previous section by allowing the user to express her preferences
over valid configurations in the form of a list of arithmetic expressions whose values
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should be minimized in the given priority order (see preferences in Line 17 of Table
2). While in the formalization in Section 2 the metric to optimize was only the cost,
Zephyrus2 solves instead a multi optimization problem taking into account different
metrics. For example, since the keyword cost (line 17 of Figure 2) can be used to
require the minimization of the total cost of the used nodes, the following listing
specifies in the Zephyrus2 syntax, the metric to minimize first the total cost of the
application and then the total number of microservices.
cost; ( sum ?x in components: ?x )

This is also the default metric used if the user does not specify her own preferences.

3.2 Bindings optimization

As described in Section 2, the second phase of the approach consists of the instan-
tiation of the bindings among the microservices. In particular, the constraints (4a)
to (4d) enforce the satisfaction of the capacity constraints of the interfaces. However,
in a real application, a user often has preferences on how microservices are con-
nected. For instance, usually public clouds are composed by different data centers
available in different regions, and load balancers deployed in a region are connected
only with the back-end services deployed on the same region.

To capture this kind of preferences, one can easily enrich the constraints (4a)
to (4d) with new metrics to optimize. For example, to maximize the local bindings
(i.e., give a preference to the connections among microservices hosted in the same
node) the following metric can be added.

min
∑

T ,T′∈U ,i∈1...inst(T), j∈1...inst(T′),p∈I(U),N (sTi ),N (s
T′

j )

b(p, sTi , s
T′

j )

Another example, used in the case study discussed in Section 4, is the following
metric that maximizes the number of bindings:8

max
∑

sTi ,s
T′

j ,p∈I(U)

b(p, sTi , s
T′

j )

Zephyrus2 supports the possibility to specify these binding preferences. The
grammar to express a preference is defined in Figure 3. A preference may be either
the string local or an arithmetic expression (Line 1). The local preference is used
to maximize the number of bindings among the microservices deployed in the same
node. Arithmetic expressions are used instead to capture more advanced preferences.
These expressions are built by using as basic atoms integers (Line 2) and the predicate

8 We model a load balancer as a microservice having a weak required interface, with arity 0,
that can be provided by its back-end service. By adopting the above maximization metric, the
synthesized configuration connects all possible services to such required interface, thus allowing
the load balancer to forward requests to all of them.
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1 preference: 'local ' | expr ;
2 term : INT |
3 'bind' '(' VARIABLE ',' VARIABLE ',' var_or_port ')' |
4 ('exists ' | 'forall ') VARIABLE ('of' 'type' RE)?
5 'in' typeV ':' b_expr |
6 'sum' VARIABLE ('of' 'type' RE)?
7 'in' typeV ':' expr |
8 '(' b_expr ')' ;
9 microservice : ID | ID '[' ID ']' | ID '[' RE ']' ;
10 typeV : 'ports ' | 'locations ' | RE ;
11 var_or_port : ID | VARIABLE ;

Fig. 3 Grammar to express binding preferences (missing non terminals are as defined in Figure 2).

bind(?x,?y,z), which is assumed to be evaluated to 1 if the microservice referenced
by the variable x is connected with the microservice y using interface z, 0 otherwise.
Notice that in this case z can be a concrete interface name or an interface variable.
In order to instantiate the variables of the term bind, quantifiers (Line 4-8) and sum
expressions (Line 6-7) may be used.

As an example, assume that we have two kinds of node: those available in region
A and those available in region B. The first nodes can be distinguished from the
second ones thanks to their name. Node names from region A end with '_A' while
the other node names end with '_B'. If we would like a Message Analyzer deployed
in region A to be connected with all the Message Receivers in the same region we
can add the following preference.
sum ?x of type MessageAnalyzer in '.*_A' :
forall ?y of type MessageReceiver in '.*_A' :
bind(?x,?y,MA)

In the first line we use the sum expression to match to the variable ?x all the Message
Analyzer instances hosted by a nodewhose namematches the regular expression '.*

_A'. Similarly, in the second line we use the forall expression tomatch to the variable
?y all the Message Receiver deployed in a node having a name endingwith '_A'. The
forall expression is evaluated to 1 if, fixing the possible assignments of the variable
?y, the predicate bind(?x,?y,MA) is true (MA is the name of the interface required
by a Message Receiver and provided by a Message Analyzer, see Figure 1). If
instead there is an instance of a Message Receiver in region A that is not connected
to the Message Analyzer ?x than the forall expression returns 0. Due to the fact
that the first expression is a sum expression, the final behaviors of the preference is
to maximize the number of instances of Message Analyzer deployed in region A
that are connected to all the instances of Message Analyzer deployed in the same
region. Note that, if the Message Receiver is seen as a kind of loadbalancer for the
Message Analyzer instances, what we have achieved is to state the preference that
all the backend in a region should be connected with all their loadbalancers deployed
in the same region.
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Fig. 4 Microservice architecture for email processing pipeline.

Zephyrus2 solves the previously described multi optimization problems, by trans-
lating them intoConstraint Optimization Problems (COP) encoded in MiniZinc [46]
and using state-of-the-art solvers such as Chuffed [22], Or-Tools [35], or Gecode [34].
In particular, preferences are given in a list based on the user priority. The early the
preference comes in the list, the higher is its priority. Zephyrus2 optimizes the
preference with highest priority first, and then proceeds with the other preferences
sequentially based on their priority.

4 Application of the technique to the case-study

In this section, we evaluate the applicability of our solution by modeling several
deployment configurations of a real-world microservice architecture, namely the
email processing pipeline described in [33].

The considered architecture separates and routes the components found in an
email (headers, links, text, attachments) into distinct, parallel sub-pipelines with
specific tasks, e.g., check the format of the email, tag its content, detect malicious
attachments. We report in Figure 4 a depiction of the architecture. The Message
Receiver microservice is the entry-point of the architecture and acts as a proxy by
receiving and triggering the analysis of incoming emails. The Message Receiver
forwards a inbound email to the Message Parser, which performs some preliminary
validity checks. If the message is well-formatted, the Message Parser first stores a
pending-analysis task under a unique identifier for the current email in a companion
database (DB) service. The DB maintains the status of all pending analyses in the
system and it is an element external to the architecture — this is represented by
the faded part at the top of Figure 4. After storing the pending task, the Message
Parser i) splits the parsed email into four components: header, links, text, and at-
tachments, ii) it tags them with the unique identifier of the pending-analysis task,
and iii) it sends the four components to their corresponding sub-pipelines. The first
two sub-pipelines from the top of Figure 4 include just one microservice, which
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respectively analyze the headers (Header Analyzer) and the links (Link Analyzer)
contained in the mail. The third sub-pipeline includes a Text Analyzer that syn-
chronously invokes a Sentiment Analyzer, to add tags to the body of the message.
The last sub-pipeline handles attachments and it is the most complex in the system.
The first microservice in the sub-pipeline is a Virus Scanner, which checks each at-
tachment for the presence of malicious software. If an attachment results malicious,
it is deleted and signaled as dangerous to the Message Analyzer, as described later.
Safe attachments are forwarded to an Attachment Manager for further analyses. The
Attachment Manager inspects each attachment to identify its content type (image,
audio, archive) and route it to the appropriate part of the sub-pipeline. In Figure 4
we just exemplify the concept with an Image Analyzer which synchronously calls
two microservices to tag the content of each image (Image Recognizer) and whether
it does not include explicit content (NSFW Detector). All sub-pipelines forward the
result of their (asynchronous) analysis to the Message Analyzer, which collects them
in the DB. After all analyses belonging to the same pending task are completed, the
Message Analyzer combines them and reports the result of the processing.

To model the system above, we use the Abstract Behavioral Specification (ABS)
language, a high-level object-oriented language that supports deployment model-
ing [41]. ABS is agnostic w.r.t. deployment platforms (Amazon AWS, Microsoft
Azure) and technologies (e.g., Docker or Kubernetes) and it offers high-level de-
ployment primitives for the creation of new deployment components and the in-
stantiation of objects inside them. Here, we use ABS deployment components as
computation nodes, ABS objects as microservice instances, and ABS object ref-
erences as bindings. Strong required interfaces are modeled as class annotations
indicating mandatory parameters for the class constructor: such parameters con-
tain the references to the objects corresponding to the microservices providing the
strongly required interfaces. Weak required interfaces are expressed as annotations
concerning specific methods used to pass, to an already instantiated object, the ref-
erences to the objects providing the weakly required interfaces. We define a class
for each microservice type, plus one load balancer class for each microservice type.
A load balancer distributes requests over a set of instances that can scale horizon-
tally. Finally, we model nodes corresponding to Amazon EC2 instances: c4_large,
c4_xlarge, and c4_2xlarge, with the corresponding provided resources and costs.

Finally, to compute deployment plans for our case-study, we exploit Smart-
Depl [36], an extension of ABS that supports the possibility to include into ABS
additional deployment annotations that, besides the other annotations describing
strong and weak required interfaces and the available computing nodes, are used as
input for Zephyrus2. In this way, Zephyrus2 can compute optimal deployment plans,
that are then translated into corresponding ABS code.

Eachmicroservice in the architecture has a given resource consumption, expressed
in terms of CPU and memory. As expected, the processing of each email component
entails a specific load. Some microservices can handle large inputs, e.g., in the range
of 40K simultaneous requests like the Header Analyzer that processes short and
uniform inputs. Other microservices sustain heavier computations, like the Image
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Microservice (max computational load) Initial (10K) +20K +50K +80K
MessageReceiver(∞) 1 - - -
MessageParser(40K) 1 - +1 -
HeaderAnalyzer(40K) 1 - +1 -

LinkAnalyzer(40K) 1 - +1 -
TextAnalyzer(15K) 1 +1 +2 +2

SentimentAnalyzer(15K) 1 +3 +4 +6
VirusScanner(13K) 1 +3 +4 +6

AttachmentsManager(30K) 1 +1 +2 +2
ImageAnalyzer(30K) 1 +1 +2 +2
NSFWDetector(13K) 1 +3 +4 +6

ImageRecognizer(13K) 1 +3 +4 +6
MessageAnalyzer(70K) 1 +1 +2 +2

Table 1 Description of different scaling scenarios.

Recognizer, and can handle smaller simultaneous inputs, e.g., in the range of 10K
requests.

In Table 1, we report the result of our algorithm w.r.t. four incremental deploy-
ments: the initial in column 2 and under incremental loads in 3–5.We also consider an
availability of 40 nodes for each of the three node types. In the first column of Table 1,
next to a microservice type, we report its corresponding maximum computational
load, expressed as the maximal number of simultaneous requests that a microservice
can manage. In the column, we use the standard suffix K to represent numbers in the
thousands, e.g., 30K corresponds to 30.000 simultaneous requests. In our example,
the maximal computational load of each microservice comes from an educated guess
drawn from the experience of the authors. Concretely, those estimations are straight-
forward to obtain through e.g., a measurement of the performance like the response
times of each microservice, under increasing simulated traffic loads. As visible in
columns 2–5, different maximal computational loads imply different scaling factors
w.r.t. a given number of simultaneous requests. In the initial configuration we con-
sider 10K simultaneous requests and we have one instance of each microservice type
and of the corresponding load balancer. The other deployment configurations deal
with three scenarios of horizontal scaling, assuming three increasing increments of
inbound messages: +20K, +50K, and +80K. Concerning the deployment plan syn-
thesis, in the three scaling scenarios, we do not implement the planning algorithm
described in Phase 3 of the proof of Theorem 1. We take advantage of the presence
of the load balancers: instead of emptying the current configuration and deploy the
new one from scratch, we keep the load balancers in the configuration and simply
connect to them the newly deployed microservice instances. This is achieved, as
described in Section 3, with an optimization function that maximizes the number of
bindings of the load balancers.

For every scenario, we use SmartDepl to generate the ABS code for the plan that
deploys an optimal configuration, setting a timeout of 30 minutes for the compu-
tation of every deployment scenario.9 The ABS code modeling the system and the

9 Here, 30 minutes are a reasonable timeout since we predict different system loads and we compute
in advance a different deployment plan for each of them. An interesting future work would aim at
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generated code are publicly available at [14]. A graphical representation of the initial
configuration is available in the technical report [16].

5 Related Work and Conclusion

In this work, we consider a fundamental building block of modern Cloud systems,
microservices, and prove that the generation of a deployment plan for an architecture
of microservices is decidable and fully automatable; spanning from the synthesis of
the optimal configuration to the generation of the deployment actions. To illustrate
our technique, we model a real-world microservice architecture in the ABS [41]
language and we compute a set of deployment plans.

The context of our work regards automating Cloud application deployment,
for which there exist many specification languages [8, 21], reconfiguration proto-
cols [10, 30], and system management tools [37, 42, 47, 48]. Those tools support
the specification of deployment plans but they do not support the automatic distri-
bution of software instances over the available machines. The proposals closest to
ours are those by Feinerer [31] and by Fischer at al. [32]. Both proposals rely on a
solver to plan deployments. The first is based on the UML component model, which
includes conflicts and dependencies, but lacks the modeling of nodes. The second
does not support conflicts in the specification language. Neither proposals support
the computation of optimal deployments. Notice that our work focuses on architec-
tural aspects of (deployed) microservices and not on their low-level invocation flow,
which regards issues of service behavioural compliance (see, e.g., [4, 12, 13, 18]
where process algebra [7] related techniques are adopted) or deadlock/termination
analysis (see, e.g., [9, 19]) that are not a concern of this paper.

Three projects inspire our proposal: Aeolus [23, 25], Zephyrus [1], and Conf-
Solve [38]. The Aeolus model paved the way to reason on deployment and recon-
figuration, proving some decidability results. Zephyrus is a configuration tool based
on Aeolus and it constitutes the first phase of our approach. ConfSolve is a tool for
the optimal allocation of virtual machines to servers and of applications to virtual
machines. Both tools do not synthesize deployment plans.

Regarding autoscaling, existing solutions [2, 6, 28, 39] support the automatic
increase or decrease of the number of instances of a service/container, when some
conditions, e.g., CPU average load greater than 80, are met. Our work is an example
of how we can go beyond single-component horizontal scaling policies, as analyzed,
e.g., in [17] by using Markovian process algebras [11].

As future work, we want to investigate local search approaches to speed-up the
solution of the optimization problems behind the computation of a deployment plan.
Shorter computation timeswould open our approach to contextswhere it is unfeasible
to compute plans ahead of time, e.g., due to unpredictable loads.

shortening the computation to a few minutes (e.g., around the average start-up time of a virtual
machine in a public Cloud) to obtain on-the-fly deployment plans tailored to unpredictable system
loads.
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