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Process Calculi as a Tool for Studying
Coordination, Contracts and Session Types?

Mario Bravetti Gianluigi Zavattaro

Department of Computer Science and Engineering & Focus Team, INRIA
University of Bologna, Italy

Abstract

We recall techniques, mainly based on the theory of process calculi, that we
used to prove results in twenty years of research, spanning across the old and
the new millennium, on the expressiveness of coordination languages and on
behavioural contracts for Service-Oriented Computing. Then, we show how
such techniques recently contributed to the clarification of aspects that were
unclear about session types, in particular, asynchronous session subtyping that
was considered decidable since 2009, while it was proved to be undecidable in
2017.

Keywords: Coordination Primitives, Behavioural Contracts, Session Types

1. Introduction

Shared dataspaces and the so-called generative communication paradigm [1]
attracted a lot of attention since the initial years of research about foundations
of coordination models and languages. Linda [2], probably the most popular
language based on this coordination model, is based on the idea that concurrent
processes interact via a shared dataspace, the so-called Tuple Space (TS for
short), where the information needed to coordinate the activities are introduced
and retrieved. After its insertion in the TS, a datum becomes equally accessible
to all processes, but it is bound to none. In this way, the interaction among
concurrent processes is decoupled in space and time, principles useful in the
development of modular and scalable concurrent and distributed systems.

Concerning foundational studies on Linda-like coordination languages, it
appeared immediately clear that techniques borrowed from the tradition of con-
currency theory could be naturally applied. At the first two editions of the
Coordination conference, two process calculi based on Linda were proposed by
De Nicola and Pugliese [3] and by Busi, Gorrieri and Zavattaro [4]. In par-
ticular, the latter started a line of research on the expressiveness of Linda-like

?Research partly supported by the H2020-MSCA-RISE project ID 778233 “Behavioural
Application Program Interfaces (BEHAPI)”.
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coordination primitives that exploited, besides process calculi, also Petri nets.
For instance, Petri nets were used in [5], to prove that a Linda process calculus
with input, output and test-for-absence is not Turing complete if the seman-
tics for output is unordered, i.e., there is an unpredictable delay between the
execution of an output and the actual availability of the emitted datum in the
TS. It is interesting to recall that, on the other hand, the same calculus is
Turing complete if an ordered semantics is considered, i.e. an emitted datum
is immediately available in the TS after the corresponding output is executed.
Turing completeness was proved by showing an encoding of a Turing powerful
formalism, namely Random Access Machines (RAMs), which is a computational
model based on registers that can be incremented, decremented and tested for
emptiness.

The success of the Linda coordination model was witnessed by the develop-
ment, at the end of the 90s, of Linda-based middlewares from main ICT vendors
like IBM and Sun Microsystem, which proposed T-Spaces and JavaSpaces, re-
spectively. The basic Linda coordination model was extended with primitives
for event notification, time-out based data expiration, and transactions. The
techniques for evaluating the expressive power of Linda languages had to become
more sophisticated to cope with these additional primitives. In particular, Petri
nets with transfer and reset arcs [6] were adopted to cope also with the new
coordination mechanisms for event notification [7] and for temporary data [8].

During the initial years of the new millennium, Service-Oriented Computing
(SOC) emerged as an alternative model for developing communication-based
distributed systems. In particular, the large diffusion of Web Services called for
the development of new languages and techniques for service composition (see
e.g. [9]). In SOC, the coordination model significantly changes w.r.t. Linda:
services reciprocally exchange messages sending them directly to the expected
receiver, instead of exploiting a shared dataspace.

The idea, at the basis of SOC, is to conceive an ecosystem of services that
expose operations that can be combined to realize new applications. To sup-
port this idea, it is necessary for the services to be equipped with an interface
that, besides describing the offered operations and the format of the exchanged
messages, defines the conversation protocols, i.e., the expected flow of invoca-
tions of the operations. These interfaces, in particular the specification of the
conversation protocol, are also called behavioural contracts.

Process calculi contributed to the development of theories for behavioural
contracts. This line of research was initiated by Carpineti, Castagna, Laneve
and Padovani [10], for the case of client-server composition, and by Bravetti and
Zavattaro [11], for multiparty service compositions. The latter is particularly
significant for the so-called service choreographies, i.e., systems in which there
exists no central orchestrator, responsible for invoking all the other services in
the system, because services reciprocally interact. Behavioural contract theories
focused mainly on the investigation of appropriate notions of correctness for
service compositions (i.e., define when a system based on services is free from
communication errors) and on the characterization of notions of compatibility
between services and behavioural contracts (i.e., define when a service conforms
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to a given behavioural contract).
For multiparty composition, a fairness based notion of correctness, called

compliance, was proposed for the first time in [11]: a system is correct if, what-
ever state can be reached, there exists a continuation of the computation that
yields a final state in which all services have successfully completed. Given the
notion of compliance, it is possible to define also a natural notion of refinement
for behavioural contracts: a refinement is a relation among contracts such that,
given a set of compliant contracts C1, · · · , Cn, each contract Ci can be inde-
pendently replaced by any of its possible refinements C ′i, and the overall system
obtained by composition of C ′1, · · · , C ′n is still compliant. Contract refinement
can then be used to check whether a service conforms with a behavioural con-
tract: it is sufficient to verify if the communication behaviour of the service
refines the behavioural contract. This, in fact, implies that such service can be
safely used wherever a service is expected with the behaviour specified by the
contract.

A negative result in the theory of behavioural contracts is that, in general,
the union of two refinement relations is not guaranteed to be itself a refinement.
This implies the impossibility to define a maximal notion of refinement. For
this reason, most of the effort in the line of research on behavioural contracts
initiated in [11] has been dedicated to the identification of interesting subclasses
of contracts for which the maximal refinement exists. Such classes are: contracts
with output persistence [11] (i.e. output actions cannot be avoided when a
state is entered in which they are ready to be executed), contract refinement
preserving strong compliance [12] (i.e. as soon as an output is ready to be
executed, a receiver is guaranteed to be ready to receive it), and asynchronously
communicating contracts [13] (i.e. communication is mediated by fifo buffers).
In the first two of these three cases, it has been also possible to provide a sound
algorithmic characterization of the corresponding maximal refinements.

To the best of our knowledge, characterizing algorithmically the maximal
contract refinement in case of asynchronous communication is still an open prob-
lem. The main source of difficulty derives from the fact that, due to the presence
of unbounded communication buffers, systems of asynchronously communicat-
ing contracts are infinite-state, even if contracts are finite-state. In the light of
this difficulty, we tried to take inspiration from work on session types, where
asynchronous communication has been investigated since the seminal work by
Honda, Yoshida and Carbone [14] (recipient of the most influential POPL’08 pa-
per award). Session types can be seen as a simplification of contracts obtained by
imposing some limitations: there are only two possible choices, internal choice
among distinct outputs and external choice among distinct inputs.

The counterpart of contract refinement in the context of session types is
subtyping [15]. If we consider asynchronous communication, both contract re-
finement and session subtyping can admit a refinement/subtype to perform the
communication actions in a different order. For instance, given a contract/type
that performs an input followed by an output, a refinement/subtype can antic-
ipate the output before the input, because such output can be buffered and ac-
tually received afterwards. Asynchronous session subtyping was already studied
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by Mostrous, Yoshida, and Honda in [16], where also an algorithm for checking
subtyping was presented. Upon studying this algorithm we noticed an error
in its proof of termination: if, while checking subtyping, the buffer grows un-
boundedly, the proposed procedure does not terminate. Subsequently, Bravetti,
Carbone and Zavattaro [17] and Lange and Yoshida [18] independently proved
that asynchronous session subtyping is actually undecidable. Our experience
in the modeling of Turing complete formalism (see the above discussion about
encoding RAMs in the Linda process calculus) helped in finding an appropriate
Turing powerful model to be encoded in terms of asynchronous session subtyp-
ing. In particular, we were able to present a translation from a Queue Machine
M (a computational model similar to pushdown automata, but with a queue
instead of a stack) to a pair of session types that are in asynchronous sub-
typing relation if and only if M does not terminate. Then, undecidability of
asynchronous session subtyping directly follows from the undecidability of the
halting problem for Queue Machines.

These negative results opened the problem of identifying significant classes
of session types for which asynchronous subtyping can be decided. Currently,
the most interesting fragments have been identified in [17, 18] and [19]. In the
former, an algorithm is presented for the case in which one of the two types
is completely deterministic, i.e. all choices –both internal and external– have
one branch only. In the latter, we have considered single-out (and single-in)
session types, meaning that in both types to be checked all internal choices
(resp. external choices) have one branch only. In the design of our algorithm
we have been inspired by our expertise in the analysis of the expressiveness of
Linda process calculi. In particular, the analysis techniques in Petri nets with
transfer and reset arcs (our tools to prove decidability results) are based on
the notion of well quasi ordering (wqo): while generating an infinite sequence of
elements, it is guaranteed to eventually generate an element that is greater –with
respect to the wqo– of an already generated element. Similarly to the procedure
in [16], our algorithm checks a sequence of judgements, but differently from [16],
termination is guaranteed because there exists a wqo on judgements, and the
algorithm can terminate when a judgement greater than an already checked one
is considered.

1.1. Structure of the paper

The remainder of this paper is divided in three parts.
In Section 2 we recall the techniques used to investigate the expressive power

of the Linda coordination model: the formalization of Linda-like process calculi,
the proof of Turing completeness of the calculi by reduction from Random Access
Machines (RAMs), and the identification of fragments that, on the contrary,
are not Turing complete. The non Turing completeness results are obtained by
proving the decidability of reachability properties; these decidability results are
proved by resorting to Well Structured Transition Systems (WSTS).

In Section 3 we recall the main results concerning behavioural contracts:
their formalization as process calculi, the notion of correct contract composi-
tion, the definition of contract refinement, and its algorithmic characterization.
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We consider both synchronous and asynchronous communication, excluding the
algorithmic characterization which is available only for the synchronous case.

Finally, in Section 4 we move to the analysis of asynchronous communication
in the simplified context of session types. In [16] it is stated that subtyping,
which is the counterpart of contract refinement, is decidable; recently it has
been proved that, on the contrary, it is undecidable. Here, we report the un-
decidability proof in [17]. Finally, we present the fragment of single-out session
types, for which subtyping turns out to be decidable [19]. The techniques for
these (un)decidability results can be seen as improvements of those developed
for Linda process calculi: reduction from more adequate Turing complete com-
putational models (queue machines instead of RAMs), and application of the
notion of wqo (at the basis of WSTS) to (a variant of) the subtyping algorithm
prposed in [16] that, differently from what stated therein, does not terminate in
some specific cases.

2. A Linda process calculus

In this section we present the syntax and the semantics of a calculus for
processes that interacts following the Linda coordination model. The calculus is
original, even if inspired by calculi such as those presented at the first editions of
the Coordination conference [3, 4]. The main novelty deals with the management
of names which is inspired by the π-calculus [20]: processes can generated new
names and pass them to other processes, simply by including such new names
inside tuples that are inserted in the shared dataspace.

Definition 2.1 (Processes). Let Name, ranged over by a, b, . . ., be a denu-
merable set of names. With Message we denote the set of tuples of names,
denoted with ã, b̃, . . .. The class of processes is described by the following gram-
mar:

η ::= a | (a)

P ::= 1 | out(ã) | in(η̃)P | (νa)P |
P + P | P |P | P ;P | P ∗

Communication is based on message emission and consumption. The operation
out(ã) emits a message consisting of the tuple of names ã. A consumption
operation in(η̃)P is based on a pattern η̃, which is a sequence of free and bound
names: the bound names are those in parentheses (i.e., a is free while (a) is
bound). The scope of bound names is the process P . A pattern 〈η1, · · · , ηn〉
matches message 〈a1, · · · , an〉 if ηi free implies ηi = ai. In this case, we write
η̃[aj/bj ]j∈J = ã, with J the set of the indexes of bound names in η̃, and bj
such that ηj = (bj) for every j ∈ J . Upon consumption of the tuple ã, the free
occurrences of bj in P are replaced by the corresponding aj names (substitution
denoted with P [aj/bj ]j∈J).

The term 1 denotes the process ready to terminate. The operator (νa)P
binds name a in P ; intuitively, the notation (νa) can be seen as the generation
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of a fresh name that is initially known by P only. The sum construct + is
used to make choice between the summands, parallel composition | is used to
run parallel programs, while ; executes first the left operand and then the right
one. The term P ∗ is used to denote a process that can repeat the execution of
P an arbitrary amount of times (possibly zero times). As usual, we admit α
conversion of bound names, and we use fn(P ) to denote the set of free names
occurring in P .

Example 2.1. As an example of a simple system modeled with our Linda cal-
culus, consider a sensor and a gateway that work in the following way. The
sensor periodically wakes up and starts a measuring session; in such a session
it measures temperature and the humidity, and communicate them to the gate-
way. Having no memory, the sensor communicates the measured temperature
and the humidity in two separate messages; such messages are inserted in a
common dataspace. The gateway reads the measured temperatures and humidi-
ties from the dataspace, and combines them in oder to produce pairs of measures
taken from the sensor in the same session.

The main problem in this simple system is how to guarantee that the gateway
correctly combines temperature and humidity measured in the same session. We
assume this problem is solved by enriching the temperature and humidity mes-
sages with a session identifier. Following this approach, the behaviour of the
sensor can be modeled as follows:

Sensor =
(

(νk)( out(T, t, k); out(H,h, k) )
)∗

where k is the session identifier which is freshly generated at the beginning of
each iteration; T (resp. H) is a constant indicating that the generated tuple
contains a measured temperature (resp. humidity); and t and h are the measured
temperature and humidity.1

The gateway must combine measures that share the same session identifier.
Following this approach, the behaviour of the gateway can be modeled as follows:

Gateway =
(
in(T, (x), (s))

(
in(H, (y), s)( out(x, y) )

) )∗
Notice that s is received when the first input of a temperature is executed, and
then it is used in the second operation to ensure that the corresponding humid-
ity is consumed from the dataspace. After consumption, a new message that
combines the paired temperature/humidity is placed in the dataspace.

The calculus assumes that processes are enriched with a shared dataspace
where tuples are stored and consumed.

Definition 2.2 (Systems). A system is a pair 〈P,S〉 where P is a process and
S is a multiset over Message.

1In the real system, temperature and humidity are expected to be measured at each itera-
tion. In our simplified abstract model, we represent all these possibly different measures with
the same names t and h.
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We are now ready to define the operational semantics of systems; we first
define a labeled transition system on processes which indicates the possible
input and output actions, and then we define a transition relation on systems
which indicates the effect of process actions execution. Due to the presence
of the sequential composition operator P ;Q, we need to explicitly deal with
process completion, because Q can start executing only when P completes.

Process completion is denoted by a dedicated transition P
√
−→ P ′. We need an

auxiliary process 0 that we use as the target of the termination transition from

the process 1, i.e., 1
√
−→ 0.

Definition 2.3 (Process semantics). The semantics of processes is defined
by a labeled transition system on processes using three kinds of labels α: the

actions ãb̃ indicating the emission of the message ã extruding the bound names b̃,

the action η̃
[aj/bj ]j∈J indicating the consumption of a message ([aj/bj ]j∈J is the

substitution concerning the bound names in η̃), and the label
√

for termination
transitions. The transition system is the least one satisfying the axioms and
rules in Table 1 (plus the symmetric rules of PAR and SUM), where we use λ to
denote labels different from

√
, n(α) to denote the names occurring in the label

α, and bn(α) to denote the bound names in the label α. Namely, bn(ãb̃) contains
the names in b̃ while bn(α) is empty in all other cases.

Notice that we use two similar notations: η̃
[aj/bj ]j∈J and P [aj/bj ]. In the

first case, [aj/bj ]j∈J is to be interpreted as a tuple of pairs of names [aj/bj ], with
bj occurring bound in η̃ and aj denoting the corresponding name expected to be
retrieved from the dataspace. In the second case, P [aj/bj ] is the term obtained

by applying the substitutions [aj/bj ] to P .
The OUT axiom allows for the execution of an output operation; notice the

initial label ãε where ε (the empty sequence) indicates that all the names in ã
are free. The IN axiom, on the other hand, deals with input operations; the
substitution [aj/bj ]j∈J is guessed, following the so-called early approach, and
indicates the names aj that are expected to be present in the consumed message
in the positions of the template corresponding with the bound names (bj). As
discussed above, the END axiom deals with the termination transition for the
process 1. Rule ENDP states that a parallel process terminates only when both
its subprocesses terminates. PAR and SUM are the usual rules for the parallel and
choice operators, where the additional condition in PAR checks that if the action
α contains bound names, these do not occur free in Q (hence, they cannot be
captured). An action can traverse (νa) only if the involved names are different
from a (see RES), excluding the case of output actions including a, but in this
case the extruded name is added to the tuple of bound names in the label (see
OPEN). Rule SEQ1 allows the first process in a sequence to proceed2, SEQ2 allows

2The side condition in SEQ1 avoids name captures between new names in the first process
and free names in the second process in a sequential composition.
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OUT : out(ã)
ãε−→ 1 IN : in(η̃)P

η̃
[aj/bj ]j∈J

−→ P [aj/bj ]

END : 1
√
−→ 0 ENDP :

P
√
−→ P ′ Q

√
−→ Q′

P |Q
√
−→ P ′|Q′

PAR :
P

λ−→ P ′ bn(λ) ∩ fn(Q) = ∅

P |Q λ−→ P ′|Q
SUM :

P
α−→ P ′

P +Q
α−→ P ′

RES :
P

α−→ P ′ a 6∈ n(α)

(νa)P
α−→ (νa)P ′

OPEN :
P

ãb̃−→ P ′ a ∈ ã

(νa)P
ãb̃·a−→ P ′

SEQ1 :
P

λ−→ P ′ bn(λ) ∩ fn(Q) = ∅

P ;Q
λ−→ P ′;Q

SEQ2 :
P
√
−→ P ′ Q

α−→ Q′

P ;Q
α−→ Q′

ITER :
P

λ−→ P ′

P ∗
λ−→ P ′;P ∗

ENDI : P ∗
√
−→ 0

Table 1: The transition system for processes (λ 6=
√

, symmetric rules of PAR and SUM omitted).

the second one to start assuming the first one has completed. The last two rules
deal with iterations: rule ITER starts one iteration while axiom ENDI specifies
the possibility for iterations to conclude, simply by performing a termination
transition. This rule is necessary, for instance, to allow a process P ∗;Q to
activate Q after an arbitrary amount of executions of process P . Notice that
the termination transition of P ∗, labeled with

√
, is always provided by axiom

ENDI, so it is not necessary for rule ITER to deal with such transitions.
We can now complete the definition of the operational semantics.

Definition 2.4 (System semantics). The semantics of systems is defined by
the minimal transition system satisfying the rules in Table 2.

The transition system → simply allow processes to consume and introduce
messages to/from the dataspace; the third rule, on the other hand, allows ter-
minating processes to perform their final

√
transition. In case of output action

extruding names, it is necessary to check that the bound names are actually
fresh in the dataspace. In the following, we use →∗ to denote the reflexive and
transitive closure of →.

Example 2.2. In Example 2.1 we have introduced two processes, Sensor and
Gateway. We now consider the following system 〈Sensor |Gateway , ∅〉, repre-
senting an initial state with an instance of Sensor in parallel with an instance
of Gateway, with no message in the dataspace. According to our semantics, we
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P
η̃
[aj/bj ]j∈J

−→ P ′ η̃[aj/bj ]j∈J = ã

〈P,S ] ã〉 → 〈P ′,S〉

P
ãb1···bn−→ P ′ ∀i ∈ 1 . . . n.bi 6∈ S

〈P,S〉 → 〈P ′,S ] ã〉

P
√
−→ P ′

〈P,S〉 → 〈P ′,S〉

Table 2: The reduction relation for systems (brackets in singletons are omitted).

have that the following sequence of transitions are possible:

〈 Sensor | Gateway , ∅ 〉 →
〈 out(H,h, k); Sensor | Gateway , {〈T, t, k〉} 〉 →
〈 Sensor | Gateway , {〈T, t, k〉, 〈H,h, k〉} 〉 →
〈 out(H,h, k′); Sensor | Gateway , {〈T, t, k〉, 〈H,h, k〉, 〈T, t, k′〉} 〉

in which the sensor produces its first three messages. Notice that the name k,
bound inside Sensor by the binder (k), must be renamed in the second iteration.
In fact, the label 〈T, t, k〉 corresponding to the execution of the action out(T, t, k)
which is under the scope of the binder (k), becomes 〈T, t, k〉k when it traverses
such a binder. At the time the third message is produced, the name k is already
in the dataspace, hence the premises of the second rule of Table 2 are not satisfied
in that k occurs bound in the label and free in the dataspace. By α-converting
k in k′, the label of the transition becomes 〈T, t, k′〉k′ , the premises are now
satisfied, and the corresponding message can be introduced in the dataspace.

Suppose now that, after the above transitions, the Gateway starts consuming
the last message that was produced by the Sensor:

〈 out(H,h, k′); Sensor | Gateway , {〈T, t, k〉, 〈H,h, k〉, 〈T, t, k′〉} 〉 →
〈 out(H,h, k′); Sensor | in(H, (y), k′)( out(t, y) ); Gateway ,

{〈T, t, k〉, 〈H,h, k〉} 〉

Notice that in this last state, the Gateway cannot wrongly consume the message
〈H,h, k〉 as it is willing to access a humidity message with session identifier k′,
where k′ was received by consuming 〈T, t, k′〉, and bound to the name s in the
definition of Gateway (see Definition 2.1).

As discussed in the Introduction, the aim of this section is to recall tech-
niques that were used to investigate the expressive power of the Linda coordi-
nation primitives. More precisely, such techniques were adopted to prove the
decidability, or undecidability, of relevant properties for the considered calculi.
In order to discuss such techniques, we define two analysis problems for the new
Linda calculus presented above.

Informally, we consider the problem of checking whether a given initial sys-
tem can reach a target state in which the dataspace contains certain messages.
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In one case, namely reachability, we are interested in the dataspace to have a
precisely predefined content, in the second case, namely coverability, we want
the dataspace to contain at least some given messages.

Definition 2.5 (Reachability and Coverability problems). Let 〈P,S〉 be
an initial system and let T be a multiset over Message containing only names
that occur free in the process P or in the dataspace S. We say that 〈P,S〉
reaches T , written 〈P,S〉 ↓ T , if there exists P ′ such that 〈P,S〉 →∗ 〈P ′, T 〉
(assuming that no name in T is freshly generated during the computation). We
say that 〈P,S〉 covers T , written 〈P,S〉 ⇓ T , if there exists P ′ and S ′ such that
〈P,S〉 →∗ 〈P ′, T ]S ′〉 (assuming that no name in T is freshly generated during
the computation).

Typical safety properties can be seen as instances of coverability problems.
Consider a system 〈P,S〉 where internal errors are communicated by placing
in the dataspace a specific error message 〈error〉. We have that such sys-
tem is not safe (i.e. it is not error-free) if and only if 〈P,S〉 ⇓ {〈error〉}.
Reachability problems, on the other hand, coincide with stronger properties.
Consider, for instance, a system in which the generation of the 〈error〉 mes-
sage is not problematic if there exists also a 〈solution〉 message in the datas-
pace. The above property 〈P,S〉 ⇓ {〈error〉} holds even if the dataspace
{〈error〉, 〈solution〉} is reached. This is not the case if we consider the stronger
property 〈P,S〉 ↓ {〈error〉} that requires the only message 〈error〉 to be present
in the reached dataspace.

In the remainder of this section we prove the following decidability and
undecidability results of reachability/coverability on fragments of the calculus:

� if we remove the name generation operator (νa)P from the calculus both
coverability and reachability are decidable;

� for the full calculus both coverability and reachability are undecidable;

� if we consider a fragment of the calculus (that we call the local fragment)
in which received names cannot be used in input actions, but only in
outputs, coverability is decidable while reachability is not.

The above three results allow us to formally postulate expressiveness results
about the three considered fragments: it is not possible to define a translation
from the full calculus to the local fragment that preserves coverability, and
it is not possible to define a translation from the local fragment (hence also
from the full calculus) to the fragment without name generation that preserves
reachability.

2.1. Decidability results without name generation

In this subsection we consider processes that do not include name generation
(i.e. do not contain the (νa) operator) and we show that in this case we can
encode our systems into standard Place/Transition Petri nets. Standard reach-
ability analysis techniques for Petri nets can then be applied to solve both our
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reachability and coverability problems. This proof technique, i.e., translate a
Linda calculus into Petri nets, has been investigated for the first time by Nadia
Busi et al. in [5].

We start by recalling some preliminaries about Petri nets.
A Petri net is a tuple N = (P, T,m0), where P and T are finite sets of

places and transitions, respectively. A finite multiset over the set P of places
is called a marking, and m0 is the initial marking. Given a marking m and
a place p, we say that the place p contains a number of tokens equal to the
number of instances of p in m. A transition t ∈ T is a pair of markings denoted
with •t and t•. A transition t can fire in the marking m if •t ⊆ m (where ⊆ is
multiset inclusion); upon transition firing the new marking of the net becomes
n = (m \• t) ] t• (where \ and ] are the difference and union operators for
multisets, respectively). This is written as m 7→ n. We use 7→∗ to denote the
reflexive and transitive closure of 7→. We say that m′ is reachable from m if
m 7→∗ m′. We say that m′ is coverable from m if m 7→∗ m′′ with m′ ⊆ m′′.
Analysis techniques exist for both reachability [21] and coverability [22].

Our encoding of systems into Petri nets is based on the observation that if
no names can be freshly generated then the set of processes that can be reached
is finite, as well as the possible messages that can be ever produced. This result
holds under the assumption that α conversion is not considered, otherwise the
number of α convertible processes is clearly infinite. Disallowing α conversion
in this fragment is not restrictive; indeed the unique bound names are those
that can occur inside input operations, and in this case it is sufficient to assume
that they are different from any other free name in the initial process and the
initial dataspace to avoid name captures.

We define a Petri net with two kinds of places: places Q corresponding to
reachable processes, and places ã corresponding to tuples (with a predefined
maximal length) of names occurring in the initial process or in the initial datas-
pace. The transitions in the Petri net correspond to the execution of actions:
they consume one token from a place Q and produces a token in Q′ if there
exists a transition Q

α−→ Q′, and if α = ã then also a token is produced in the

place ã, while if α = η̃
[aj/bj ]j∈J a token is required to be consumed from the

corresponding place ã (such that η̃[aj/bj ]j∈J = ã) in order for the transition to
be fired.

Formally, we first define the set of derivatives of a process P with initial
multiset of messages S.

Definition 2.6. Let P be a process without name generation. We denote with
Der(P,S) the minimal set of processes including P and closed with respect to the

process labeled transition system under the assumption that in a label η̃
[aj/bj ]j∈J

all the names aj occur free in P or in S.

The first result that we prove is that the set of derivatives of a process P ,
with initial dataspace S, is always finite.

Lemma 2.1. Let P be a process without name generation and let S be a multiset
of messages. Then the set of its derivatives Der(P,S) is finite.
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Proof. First of all, let n be the maximal number of bound parameters in an in
operation. Moreover, let d be the number of names occurring free in P or in S.
By induction on the structure of P is immediate to see that size(P ), defined as
follows, is an upper bound to the cardinality of Der(P,S).

size(1) = 2 size(out(ã)) = 3 size(in(η̃)P ) = 1 + n× d× size(P )
size(P |Q) = size(P )× size(Q) size(P ∗) = size(P ) + 2
size(P +Q) = size(P ;Q) = 1 + size(P ) + size(Q)

�
We now define the Petri net encoding and formalise its correctness.

Definition 2.7. Let 〈P,S〉 be a system with P without name generation. Let n
be the maximal length of tuples of names in P or in S. We define the Petri Net
PT (〈P,S〉) = (Der(P,S) ] {ã | len(ã) ≤ n ∧ ai ∈ fn(P ) ∪ n(S)}, T, {P} ] S)
where n(S) is the set of names occurring in S and T is the following set of
transitions:

{t | •t = {Q}, t• = {Q′, ã}, Q ã−→ Q′} ∪

{t | •t = {Q, ã}, t• = {Q′}, Q η̃
[aj/bj ]j∈J

−→ Q′, η̃
[aj/bj ]j∈J = ã} ∪

{t | •t = {Q}, t• = {Q′}, Q
√
−→ Q′}

Note that the Petri net PT (〈P,S〉) is well defined as its sets of places and
transitions are both finite in consequence of Lemma 2.1

Proposition 2.1. Let 〈P,S〉 be a system with P without name generation and
let PT (〈P,S〉) be its corresponding Petri net. We have that 〈P,S〉 →∗ 〈P ′,S ′〉
if and only if the marking {P ′} ] S ′ is reachable in PT (〈P,S〉).

Proof. It is sufficient to proceed by induction on the length of the sequence of
transitions in 〈P,S〉 → · · · → 〈P ′,S ′〉. �

We can now conclude that both reachability problems are decidable for the
fragment without name creation.

Theorem 2.1. Let 〈P,S〉 be a system with P without name generation, and
let T be a target multiset of names. Then both 〈P,S〉 ↓ T and 〈P,S〉 ⇓ T are
decidable.

Proof. As a consequence of Proposition 2.1 it is sufficient to consider the Petri
net PT (〈P,S〉) and check whether one of the markings {Q} ] T is reachable
(or coverable) for any of the processes Q ∈ Der(P,S). The decidability result
follows from the decidability of reachability and coverability in Petri nets. �

2.2. Undecidability results in the full calculus

We prove the undecidability of reachability and coverability for the full calcu-
lus by reduction from the halting problem in Random Access Machines (RAMs).
The idea of exploiting RAMs to prove expressiveness results on Linda process
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calculi traces back to [4]. A RAM [23], denoted in the following with R, is a
computational model composed of a finite set of registers r1, . . . , rn, that can
hold arbitrary large natural numbers, and by a program composed by indexed
instructions (1 : I1), . . . , (m : Im), that is a sequence of simple numbered instruc-
tions, like arithmetical operations (on the contents of registers) or conditional
jumps. An internal state of a RAM is given by (i, c1, . . . , cn) where i is the
program counter indicating the next instruction to be executed, and c1, . . . , cn
are the current contents of the registers r1, . . . , rn, respectively.

Without loss of generality, we assume that the registers contain the value
0 at the beginning and at the end of the computation, and that the execution
of the program begins with the first instruction (1 : I1). In other words, the
initial configuration is (1, 0, . . . , 0). The computation continues by executing
the other instructions in sequence, unless a jump instruction is encountered.
The execution stops when the instruction Halt is reached. More formally, we
indicate by (i, c1, . . . , cn) →R (i′, c′1, . . . , c

′
n) the fact that the configuration of

the RAM R changes from (i, c1, . . . , cn) to (i′, c′1, . . . , c
′
n) after the execution of

the i-th instruction.
In [24] it is shown that the following two instructions are sufficient to model

every recursive function:

� (i : Succ(rj)): adds 1 to the content of register rj ;

� (i : DecJ(rj , s)): if the contents of register rj is not zero then decreases it
by 1 and go to the next instruction, otherwise jumps to instruction s.

We now discuss how to model RAMs in our calculus. The basic idea deals
with the representation of the natural numbers in registers: in order to model
number c we use a list of concatenated names of corresponding length: 〈xc, xc−1〉,
〈xc−1, xc−2〉, · · · 〈x1, x0〉, 〈x0〉. The entry point of the list for rj is stored inside
a message 〈rj , xc〉. The initial empty lists, one for each register r1, . . . , rn, are
generated by a bootstrap process

BootStrap = (νx1
0)
(
out(r1, x

1
0); out(x1

0)
)
;

· · ·
(νxn0 )

(
out(rn, x

n
0 ); out(xn0 )

)
;

out(p1)

that also generates the message p1 that will trigger the program execution start-
ing from the first instruction.

The program instructions are modeled as follows: an increment simply adds
a new pair in front of the list representing the register content, a decrement
by removing the initial pair, and a test-for-zero by checking whether the entry
point of the list corresponds with the ending tuple 〈xi0〉. More precisely, we
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model the program instructions as follows:

[[(i : Succ(rj))]] =
(
in(pi); in(rj , (x))

(
(νy)out(rj , y); out(y, x)

)
;

out(pi+1)
)∗

[[(i : DecJ(rj , s))]] =
(
in(pi); in(rj , (x))

(
in(x)(out(x); out(rj , x)); out(ps) +

in(x, (y))out(rj , y); out(pi+1)
)∗

[[(i : Halt)]] = in(pi); in(r1, (x1))in(x1);
· · ·
in(rn, (xn))in(xn); out(h)

The i-th instruction is modeled by a process that can repeatedly consume a
program counter datum pi, require the execution of a register action (either
increment, decrement or test for zero), and finally produce the subsequent pro-
gram counter pi+1 (or ps in case of jump to the s-th instruction). In case of
increment, it simply adds a pair to the list corresponding to the register to in-
crement. In case of decrement or jump instruction, the process checks whether
the list is empty or not: in the first case the empty register is re-produced and
ps produced, in the second one the first pair of the list is removed and pi+1

produced. A final Halt instruction removes the registers from the encoding and
produce the datum h, that will remain the unique message in the dataspace at
the end of the computation. In this case, we use the assumption that registers
are empty at the end of the computation.

We complete with the full definition of our encoding of a RAM R:

[[R]] = BootStrap |
∏

1≤i≤m

[[(i : Ii)]]

We can now state the correctness of our encoding.

Theorem 2.2. Let R be a RAM. We have that R terminates if and only if
〈[[R]], ∅〉 ⇓ {〈h〉}. Moreover, 〈[[R]], ∅〉 ⇓ {〈h〉} if and only if 〈[[R]], ∅〉 ↓ {〈h〉}.

Proof. The encoding proceeds deterministically by reproducing faithfully the
corresponding RAM instructions. When a Halt instruction is reached, accord-
ing with the assumption that the registers will be empty at the end of the
computation, we can assume that the register lists will be removed and the tu-
ple 〈h〉 will be produced. Moreover, as the lists have been removed, the tuple
〈h〉 will be the unique datum inside the dataspace. �

As a corollary we have the undecidability of both reachability and coverabil-
ity for our calculus.

2.3. The local fragment

In this subsection we identify an intermediary fragment of the calculus for
which reachability is undecidable while coverability is decidable. The technique
used in undecidability proof is still by encoding RAMs in the calculus, but in
this case the encoding in nondeterministic: there are several computations that
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can be executed by the encoding, but all wrong computations either block before
reaching the Halt instruction or leave in the dataspace some “garbage” messages.
On the other hand, the decidability proof exploits techniques borrowed from
the theory of Well Structured Transition Systems (WSTSs) [25]. To the best
of our knowledge, one of the first applications of WSTS to calculi based on the
notion of shared dataspace, is by Busi and Zavattaro who proved decidability
results for the Mobile Ambients calculus [26]. Mobile Ambients can be seen as
an extension of Linda with multiple nested dataspaces and mobility primitives
that can be used to dynamically modify the dataspace nesting topology: one
dataspace can enter in a sibling space, one dataspace can exit from an enclosing
space, a dataspace can open an enclosed dataspace to acquire its contents.

We first characterize the fragment of the calculus considered in this subsec-
tion, then we prove the undecidability of reachability, and then the decidability
of coverability, for such fragment.

The idea behind the definition of the fragment is to limit the use of names
that are received from the dataspace. When a name is received by means of a
bound name in the input pattern, then such name can be used only in output.
Formally, given a term in(η̃)P , for every (b) ∈ η, we impose that b cannot
occur free in input operations of P . Under this restriction, we have that even
if fresh names can be passed around, these cannot be used to specify new input
patterns. We call this the local fragment of the calculus because new names can
be used in input patterns only locally, in the initial scope of the name. In the
remainder of this section we will consider only processes of the local fragment.

Notice, for instance, that the process Gateway of the Example 2.1 does not
belong to the local fragment of the calculus. In fact, it receives a session identifier
while reading a temperature message, and then it uses such an identifier in the
subsequent input, in order to be sure to consume the corresponding humidity
message.

2.3.1. Undecidability of reachability for the local fragment

Also in this case, the proof is by reduction from the halting problem in
RAMs.

We start by presenting the encoding of program instructions:

[[(i : Succ(rj))]] :
(
in(pi); out(incj); in(ack); out(pi+1)

)∗
[[(i : DecJ(rj , s))]] :

(
in(pi); out(decj); in(ack); out(pi+1) +

in(pi); out(zeroj); in(ack); out(ps)
)∗

[[(i : Halt)]] : in(pi); out(h)

Also in this case, we use a program counter datum pi that triggers the execution
of the i-th instruction. Differently, in this case the instructions request the exe-
cution of a register action (either increment, decrement or test for zero) to other
processes (that we will describe in the following), wait for an acknowledgement
about the actual execution of the register action, and finally produce the sub-
sequent program counter pi+1 or ps. Notice that in the case of a DecJ(rj , s)
instruction, the process non deterministically selects whether to decrement or
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test for zero the register rj . In case of a Halt instruction the program counter
is not produced thus program execution is terminated (termination is notified
also in this case by producing h).

We now consider the modeling of registers:

[[rj ]] :
(
in(nrj); out(ack); (νu)

( (
in(incj); out(u); out(ack)

)∗ |(
in(decj); in(u); out(ack)

)∗ |
in(zeroj); out(nrj)

) )∗
Each register rj is activated by a request nrj whose effect is (after generation
of the acknowledgement) to generate a private name u used to represent the
register contents. Namely, the content cj of the register rj is represented by cj
instances of the private datum u. Being private, the messages u do not generate
interferences among the encodings of the different registers (i.e. it is not possible
to wrongly consider a datum u associated to a register different from the one
for which it was generated). An instance of u is produced when an increment
request is received, and it is consumed in case of decrement operations. It is
worth noticing that it could happen that a decrement request is received when
the register is empty. In this case the computation blocks because the in(u)
action cannot be executed.

Notice also that when a test for zero request is received, a new local name
u is generated by emitting nrj whose effect is to reset the register. If a non
empty register is reset, instances of the previous private datum u will indefinitely
remain in the dataspace.

The full definition of our encoding of a RAM R is as follows:

[[R]] =
∏

1≤i≤m [[(i : Ii)]] |
∏

1≤j≤n [[rj ]] |
out(nr1); in(ack); · · · ; out(nrn); in(ack); out(p1)

Besides the processes modeling the instructions and the registers we need a boot-
strap process that activates the registers and then produces the initial program
counter datum p1.

We can now conclude by stating the correctness of our encoding.

Theorem 2.3. Let R be a RAM. We have that R terminates if and only if
〈[[R]], ∅〉 ↓ {h}.

Proof. We start with the only if part. Assume R terminates. The system
〈[[R]], ∅〉 can faithfully reproduce the same sequence of increment, decrement and
test for zero actions until the Halt instruction is reached. In the finally reached
system the dataspace will contain the h datum only, as we have assumed RAMs
that starts and ends with all the registers empty.

We now consider the if part. Assume that 〈[[R]], ∅〉 reaches a system in
which the dataspace contains only h. The presence of h indicates that the last
executed instruction is Halt . The absence of data different from h guarantees
not only that the registers are empty at the end of the computation, but also
that the sequence of executed register actions is correct. In fact, as observed
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above, the encoding [[R]] could wrongly simulate DecJ instructions, by deciding
to decrement a register when it is empty, or test it for zero when it is not empty.
The first kind of error cannot occur because otherwise the computation blocks
(hence no datum h could be produced). The second kind of error cannot occur
because otherwise some private data u will remain in the dataspace (representing
the non empty content of the register at the time a wrong test for zero is
executed). �

As a corollary, from the undecidability of the halting problem for RAMs, we
can conclude the undecidability of reachability for our calculus.

2.4. Decidability of coverability for the local fragment

As mentioned above, the proof of decidability of coverability for the local
fragment exploits results taken from the theory of WSTS. We now recall the
main concepts of WSTS that are useful in our proof.

We start by recalling the notion of well quasi ordering (see, e.g., [25]).

Definition 2.8. A reflexive and transitive relation on a set X is called quasi
ordering. A well quasi ordering (wqo) is a quasi ordering (X,≤) such that, for
every infinite sequence x1, x2, · · · , there exist i < j with xi ≤ xj.

In the following we will use the following well known results for wqo:

� The identity on a finite set is a wqo.

� Consider a finite set S and the set of its multisets M(S). We have that
multiset inclusion is a well quasi ordering for the latter, namely (M(S),⊆)
is a wqo, where ⊆ denotes multiset inclusion.

� Consider k well quasi orderings (X1,≤1), · · · , (Xk,≤k). Let Π be the
cartesian product X1 × · · · ×Xk and ≤k be the natural extension of the
orderings ≤1, · · · ,≤k to Π, i.e., (x1, · · · , xk) ≤k (y1, · · · , yk) if and only if
x1 ≤1 y1, · · · , xk ≤k yk. We have that (Π,≤k) is a wqo.

We now recall, taking it from [25], the notion of compatibility3 of a transition
system w.r.t. an ordering.

Definition 2.9. A transition system (X,→) is compatible with respect to an
ordering (X,≤) if, given two states s, t ∈ X of the transition system such that
s < t and s→ s′ for some s′, then there exists t′ such that s′ ≤ t′ and t→ t′.

In transition systems compatible w.r.t. a wqo, the coverability problem can
be solved by applying a backward algorithm; this is possible under the additional
assumption that given a state t it is possible to compute its pred basis, i.e., a
finite characterization of the possible predecessors of states covering t, that is,
those states s such that s→ t′ with t′ above t (i.e., t ≤ t′).

3The compatibility notion used in this paper is named strict compatibility in [25].
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Definition 2.10. Consider a transition system (X,→) and a corresponding or-
dering (X,≤). Given t ∈ X and T ⊆ X we define Pred(t) = {s|s → t},
Pred(T ) = ∪t∈TPred(t), ↑ t = {t′|t ≤ t′} and ↑ T = ∪t∈T ↑ t. A pred basis of
state t is a finite set of states T such that ↑ T = ↑ Pred(↑ T ).

We now recall the main decidability result for WSTSs that we will use in
the following

Theorem 2.4 (Theorem 3.6 in [25]). Let (X,→) be a transition system com-
patible w.r.t. a wqo (X,≤) and with effective pred basis (i.e. given a state it is
possible to compute its pred basis). Given an initial state s and a target state
t, the existence of a computation starting from s and reaching any state t′, such
that t ≤ t′, is decidable.

To exploit this result, we need to define a wqo on systems of our calculus
which is compatible for the transition system defining the system semantics.
Concerning the dataspaces, which are multisets of messages, one could think of
using the above result stating that multiset inclusion, over multisets with a finite
domain, is a wqo. Unfortunately, due to the presence of the new name generation
operator (νa)P , unboundedly many different messages can be generated, hence
the domain of such multisets is not finite. Also for processes, the new name
generation mechanism allows for the generation of unboundedly many distinct
processes. This difficulty in applying WSTS theory directly on the calculus can
be overtaken by introducing an alternative semantics for the local fragment.
Such alternative semantics has the following property: the set of used names is
finite as well as the set of possible processes.

An alternative semantics for the local fragment

We now define an alternative semantics for the local fragment of our calculus
in which the active names are finite. By active, we mean a name which occurs
free in input actions. The number of active names turns out to be bound by the
initial number of free names plus the number of occurrences of the (νa) operator
in the initial process. In fact, when an instance of the (νa) operator inside a
cyclic process generates a new name, the name it generated at the previous
cycle is no longer active. The alternative semantics that we define, instead of
generating always fresh names, re-use the same name considered at the previous
cycle. Namely, each time an instance of (νa) requires the generation of a new
name, we always use a corresponding name a′. When a′ must be re-generated
inside a new cycle, the instances of a′ left in the dataspace or in other processes
are all renamed with a dummy name •, to indicate that they are no longer active.
In this way, only active names are faithfully represented while the names that
are no-longer active are all represented with the same dummy name •.

This specific discipline in the re-use of names has also another effect: it is no
longer necessary to use α-conversion under the assumption that all the names a
used by (νa) occurring in the initial process are pairwise distinct and different
from the initial free names.

18



Definition 2.11 (Alternative semantics). Let P be a process: without loss
of generality we assume that all the names occurring in binders are pairwise
distinct and different from the free names in P . Moreover, for each a in a (νa)
operator occurring in P , consider a fresh name a′. Consider now the labeled
transition system for processes

α
=⇒ defined as the one in Definition 2.3, but

without considering α-conversion. The alternative system reduction relation ⇒
is defined as in Definition 2.4 where

α
=⇒ is used instead of

α−→ and the second
rule of Table 2 is replaced by the following one:

P
b̃a1···an

=⇒ P ′

〈P,S〉 ⇒ 〈(P ′[•/a′i]i=1···n)[a′i/ai]i=1···n,S[•/a′i]i=1···n ] b̃[a′i/ai]i=1···n〉

where the substitutions are used to replace all previous instances of names a′i
with •, and the fresh instances of ai with a′i.

We now formalize the correspondence between the alternative and the stan-
dard semantics. We consider two distinct propositions, one showing how stan-
dard transitions are mimicked by the alternative semantics, and another one for
the vice versa. In these propositions we apply renaming functions to processes
and messages in the dataspace: P [f ] (resp. S[f ]) is the process (resp. the datas-
pace) obtained by replacing names according to the renaming function f . More
formally, f is a function from Name to Name, and P [f ] (resp. S[f ]) is obtained
by replacing in P (resp. S) each occurrence of a ∈ Name with f(a). With an
abuse of notation, we use f(α) to indicate the label obtained by replacing in α
each occurrence of a ∈ Name with f(a).

Proposition 2.2. Let 〈P,S〉 be a system with P such that all the names occur-
ring in binders are pairwise distinct and different from the free names in P and
from those in S. If 〈P,S〉 →∗ 〈P ′,S ′〉 then there exists a renaming function
f such that 〈P,S〉 ⇒∗ 〈P ′[f ],S ′[f ]〉 with f identity for the free names in the
initial configuration 〈P,S〉 and injective on the free names occurring in input
actions in P ′.

Proof. The proof is by induction on the length of the sequence of transitions
〈P,S〉 →∗ 〈P ′,S ′〉. The base case is trivial. In the inductive case we have
〈P,S〉 →∗ 〈P ′′,S ′′〉 → 〈P ′,S ′〉 with 〈P,S〉 ⇒∗ 〈P ′′[f ′],S ′′[f ′]〉 for some function
f ′ identity for the free names in 〈P,S〉 and injective for the free names occurring
in input actions in P ′′. We proceed with a case analysis on the transition
P ′′

α−→ P ′ used to infer the last transition 〈P ′′,S ′′〉 → 〈P ′,S ′〉.
We start from the simplest case: P ′′

√
−→ P ′. The possibility to termi-

nate, i.e., perform a
√

transition, is independent from the actually used names
because the terminating processes are 1 and P ∗ (and combinations of them).

Hence we simply observe that also P ′′[f ′]
√

=⇒ P ′[f ′]. This implies the thesis
〈P ′′[f ′],S ′′[f ′]〉 ⇒ 〈P ′[f ′],S ′[f ′]〉.
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Consider now P ′′
η̃
[aj/bj ]j∈J

−→ P ′. In this case we have the corresponding tran-

sition P ′′[f ′]
f ′(η̃

[aj/bj ]j∈J )
=⇒ P ′[f ′], from which 〈P ′′[f ′],S ′′[f ′]〉⇒〈P ′[f ′],S ′[f ′]〉

holds because f ′ renames the processes as well as the dataspace. Hence, a mes-
sage that could be consumed by an input operation before renaming, could be
consumed also after application of the renaming. We have that f ′ continue to
be the identity for the free names in 〈P,S〉 and injective for the free names
occurring in input actions in P ′. In fact, the names received by the executed
input, i.e. {f ′(bj) | j ∈ J}, cannot replace parameters of input operations. This
follows from the restrictions imposed in the local fragment.

The last case is for P ′′
ãb1···bn−→ P ′. In this case we have the corresponding

transition P ′′[f ′]
f ′(ãb1···bn )

=⇒ P ′[f ′], from which 〈P ′′[f ′],S ′′[f ′]〉⇒〈P ′[f ],S ′[f ]〉 for
a renaming f defined as follows. Let ai be the names to which bi is mapped by f ′

(i.e. f ′(bi) = ai). According to the alternative semantics, ai is the name used in
the instance (νai) occurring in the initial process P which is α-renamed to (νbi)
in P ′′. In the alternative semantics, (νai) is not α-renamed, but the correspond-
ing name a′i is used instead of bi; hence the renaming function f must map bi to
a′i (i.e. f(bi) = a′i). Moreover, in 〈P ′′[f ′],S ′′[f ′]〉, if there are free occurrences of
a′i, these are renamed to • by the transition 〈P ′′[f ′],S ′′[f ′]〉⇒〈P ′[f ],S ′[f ]〉. Let
b′i be the corresponding names in 〈P ′′,S ′′〉 (i.e. f ′(b′i) = a′i); the new renaming
function f must map b′i to • (i.e. f(b′i) = •). This new renaming f continue
to be injective on names that occur in input actions. This follows from the
fact that the names b′i which are all mapped to • by f cannot indeed occur in
input positions. In fact, these correspond to new names generated by the cor-
responding operators (νai). In the local fragment of the calculus, these names
can be used in input actions only inside the scope of the binder (νai). But, if
this operator generates a new name, this means that it is inside a repetition P ∗,
and the previous execution of the repetition has been already completed. Hence
also the scope of the previous (νai) instance has been completed. �

Similarly, we have that all the sequences of transitions in the alternative
semantics, have corresponding computations in the standard semantics.

Proposition 2.3. Let 〈P,S〉 be a system with P such that all the names occur-
ring in binders are pairwise distinct and different from the free names in P and
from those in S. If 〈P,S〉 ⇒∗ 〈P ′,S ′〉 then there exists 〈P,S〉 →∗ 〈Q, T 〉 and
a renaming f identity for the free names in the initial configuration 〈P,S〉 and
injective on the free names occurring in input actions in Q such that Q[f ] = P ′

and T [f ] = S ′.

We can finally prove that the alternative semantics preserves the coverability
problem for the local fragment.

Theorem 2.5. Let 〈P,S〉 be a system with P such that all the names occurring
in bonders are pairwise distinct and different from the free names in P and from
those in S. Given T a multiset over Message containing only names that occur
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free in the process P or in the dataspace S, we have that 〈P,S〉 ⇓ T if and only
if 〈P,S〉 ⇒∗ 〈P ′,S ′〉 with T ⊆ S ′.

Proof. The only-if part follows from Proposition 2.2. If 〈P,S〉 ⇓ T then
there exists a system 〈P ′′,S ′′〉 such that 〈P,S〉 →∗ 〈P ′′,S ′′〉 with T ⊆ S ′′. By
Proposition 2.2 there exists 〈P ′,S ′〉 such that 〈P,S〉 ⇒∗ 〈P ′,S ′〉 with S ′ = S ′′[f ]
with f identity for the free names in the initial configuration. Being T composed
of only names free in the initial configuration, we have also that T ⊆ S ′.

The if part follows from Proposition 2.3. Assume 〈P,S〉 ⇒∗ 〈P ′,S ′〉 with
T ⊆ S ′. By Proposition 2.3 there exists 〈P ′′,S ′′〉 such that 〈P,S〉 →∗ 〈P ′′,S ′′〉
and a renaming f , identity for the free names in the initial configuration 〈P,S〉,
such that S ′′[f ] = S ′. Being T composed of only names free in the initial
configuration, we have also that T ⊆ S ′′, hence also 〈P,S〉 ⇓ T . �

Resorting to the theory of WSTS

We now move to the proof of decidability of coverability for the alternative
semantics of the local fragment. The first step is to define a wqo for the alter-
native transition system: this is now possible because the number of reachable
processes is finite, as well as the names used in the dataspace. This finiteness
result follows from the re-use, of the predefined names a′, when new names are
needed.

Proposition 2.4. Let 〈P0,S0〉 be a system with P0 such that all the names oc-
curring in binders are pairwise distinct and different from the free names in
P0 and from those in S0. Let DerP and DerS be the reachable processes and
the reachable dataspaces, i.e., DerP = {P |〈P0,S0〉 ⇒∗ 〈P,S〉} and DerS =
{S|〈P0,S0〉 ⇒∗ 〈P,S〉}. We have that DerP is finite while DerS contains mul-
tisets of messages taken from a finite domain.

Proof. We start by showing that DerS contains messages taken from a finite
domain. Messages are tuples of names; the length of the tuples in the reachable
dataspaces is bound by max , where max is the greatest value between the
maximal length of the tuples in the initial dataspace S0 and the maximal number
of parameters in an out operation. Moreoveor, the names occuring in such tuples
are taken from the following finite set: fn(P )∪n(S0)∪{a′ | (νa) occurs in P}∪•
where n(S0) are the names occurring in S0. Obviously, the possible tuples of
bound length, containing names taken from a finite set, are finite as well.

Concerning DerP , as in the proof of Lemma 2.1, we prove by induction
on the structure of P that a function sizea(P ) returns an upper bound to the
cardinality of DerP .

sizea(1) = 2 sizea(out(ã)) = 3
sizea(in(η̃)P ) = 1 + n× d× sizea(P ) sizea((νa)P ) = sizea(P )
sizea(P |Q) = sizea(P )× sizea(Q) sizea(P ∗) = sizea(P ) + 2
sizea(P +Q) = sizea(P ;Q) = 1 + sizea(P ) + sizea(Q)

where, in this case, n is the maximal number of bound parameters in an in
operation, and d is the cardinality of the set of possible names fn(P ) ∪ n(S0) ∪
{a′ | (νa) occurs in P} ∪ • discussed above. �
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We are now ready to define an ordering on systems which is a wqo when
applied to the systems that can be reached from an initial one:

〈P,S〉 ≤S 〈P ′,S ′〉 ⇔ P = P ′ ∧ S ⊆ S ′

Notice that the ordering ≤S simply combines the identity on processes and
multiset inclusion on dataspaces.

Proposition 2.5. Let S0 = 〈P0,S0〉 be a system with P0 such that all the names
occurring in binders are pairwise distinct and different from the free names in
P0 and from those in S0. Let Sys be the set of systems that are reachable from
〈P0,S0〉 according to the alternative semantics, i.e., Sys = {〈P,S〉 |〈P0,S0〉 ⇒∗
〈P,S〉}. We have that (Sys,≤S) is a wqo, and that (Sys,⇒) is compatible with
(Sys,≤S).

Proof. The ordering (Sys,≤S) is a wqo as a direct consequence of Proposition
2.4 and of the three well known results about wqo recalled after Definition 2.8: in
fact ≤S simply combines two orderings, the identity on the reachable processes
(that are finite) and multiset inclusion on the reachable dataspaces (that are
multisets on a finite domain).

We now consider the compatibility of (Sys,⇒) w.r.t. the ordering ≤S . Con-
sider 〈P1,S1〉 ≤S 〈P2,S2〉 and 〈P1,S1〉 ⇒ 〈P ′1,S ′1〉. Being 〈P1,S1〉 ≤S 〈P2,S2〉,
we have that P1 = P2 and S1 ⊆ S2. It is easy to see that the process transition
used to infer 〈P1,S1〉 ⇒ 〈P ′1,S ′1〉 can be used to infer also 〈P1,S2〉 ⇒ 〈P ′1,S ′2〉,
with S ′1 ⊆ S ′2. Hence, we have that 〈P ′1,S ′1〉 ≤S 〈P ′1,S ′2〉. �

We are finally ready to prove the decidability of coverability for the local
fragment.

Theorem 2.6. Let 〈P,S〉 be a system of the local fragment and let T be a target
multiset of messages. Then 〈P,S〉 ⇓ T is decidable.

Proof. It is not restrictive to assume P such that all the names occurring in
(νa) operators are pairwise distinct and different from the free names in P0

and from those in S0; in fact, if this is not the case, it is sufficiente to apply
appropriate α-conversions.4

By Theorem 2.5 we have that 〈P,S〉 ⇓ T if and only if 〈P,S〉 ⇒∗ 〈P ′,S ′〉
with T ⊆ S ′. We now prove that the latter is decidable by applying the results
for WSTS to the transition system (Sys,⇒) defined as in Proposition 2.5, i.e.,
Sys = {〈P ′,S ′〉 |〈P,S〉 ⇒∗ 〈P ′,S ′〉}.

By Proposition 2.5 we know that (Sys,≤S) is a wqo, and that (Sys,⇒) is
compatible with (Sys,≤S). We now show that it is possible to algorithmically
decide whether 〈P,S〉 ⇒∗ 〈P ′,S ′〉 with T ⊆ S ′, by resorting to the decidability
result of WSTS recalled in Theorem 2.4.

4It is possible to consider α-conversion because in the statement of the Theorem we consider
〈P,S〉 ⇓ T , which is defined on the standard semantics including α-conversion.
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By Proposition 2.4, we have that the possible processes P ′ in Sys are finite;
let DerP be such finite set of processes. Moreover, T ⊆ S ′ implies that, for every
P ′, 〈P ′, T 〉 ≤S 〈P ′,S ′〉. Hence, our problem consists of checking, if there exists
at least one P ′, taken from the finite set DerP , such that 〈P,S〉 ⇒∗ 〈P ′,S ′〉
with 〈P ′, T 〉 ≤S 〈P ′,S ′〉. By Theorem 2.4 we have that the latter is decidable
under the assumption that it is possible to compute the so-called pred basis for
each state of the transition system (Sys,⇒). We complete the proof by showing
that this actually holds.

Let 〈Q,U〉 ∈ Sys; we now show how to compute its corresponding pred basis

First of all let Q = {Q′ ∈ DerP |Q′
α

=⇒ Q}: this set is finite (and com-
putable) as DerP is finite. For each process Q′ ∈ Q, depending on the kind

of process transition Q′
α

=⇒ Q, we add a predecessor system 〈Q′,UQ〉 to the
pred basis. There are three kinds of transition: those corresponding to an input

(i.e., Q′
η̃
[aj/bj ]j∈J

=⇒ Q), to an output (i.e., Q′
b̃a1···an

=⇒ Q), and the termination

transitions (i.e., Q′
√

=⇒ Q). In the first case, the input action consumes from
the dataspace the tuple ã = η̃[aj/bj ]j∈J ; in this case we consider the predecessor

system 〈Q′,U ] {ã}〉. In the second case, the emitted message is b̃; in this case
we consider the predecessor system 〈Q′,U \{b̃}〉. In the third case, we have that
the process transition does not modify the dataspace, hence we consider the pre-
decessor system 〈Q′,U〉. The set containing all such predecessors (computable
because finite) is a pred basis for 〈Q,U〉. �

3. Behavioural Contracts

Behavioural contracts are used to describe the message-passing behaviour
of services. The adoption of process calculi for the specification and analysis
of behavioural contracts was initiated by Fournet et al. [27], who proposed to
specify contracts with a calculus inspired by CCS [28]. They also defined a
notion of conformance between processes and contracts following a substitution
principle: a process conforms to a contract if it can replace it in any context
without adding additional stuck behaviour. Contract have been subsequently
studied in the context of service oriented computing: contracts for client-service
interaction have been proposed by Carpineti et al. [10] and then independently
extended along different directions by, e.g., Bravetti and Zavattaro (see e.g. [11,
12, 29]) by Laneve and Padovani [30], by Castagna et al. [31], and Barbanera
and de’Liguoro [32].

All such theories of contracts introduce, under different assumptions, notions
of contract refinements that can be seen as generalizations of the notion of con-
formance initially studied in [27]: a contract refines another one if it can safely
replace it in any possible context. To give to the reader an idea of such tech-
niques, here we report the contract theory discussed in [29, 33], for synchronous
communication, and [13], for the asynchronous case. In particular, the latter
represents the unique contract theory, to the best of our knowledge, specifically
tailored to asynchronous communication.

23



More precisely, the contract theory that we present is based on the follow-
ing ingredients: the notion of correct contract composition, the definition of
contract refinement, and its algorithmic characterization. The theory considers
both synchronous and asynchronous communication, excluding the algorithmic
characterization which is available only for the synchronous case.

3.1. The Service Calculus

We start by presenting the formal definition of services following the ap-
proach of [29, 33]. Services are assumed to reside at a certain location over the
network. They are denoted by representing service behaviour with essentially
the same syntax as the Linda calculus of the previous Section 2, but consider-
ing channel based (instead of tuple based) communication actions/operations
as in the context of Service Oriented Computing. We assume a denumerable
set of action names N , ranged over by a, b, c, . . . and a denumerable set Loc of
location names, ranged over by l, l′, l1, · · · . We use τ /∈ N to denote an inter-
nal (unsynchronizable) service computation. Moreover, we use a and al, with
a ∈ N , to denote service input and output messages, respectively, where a desti-
nation location (identifying the service to which the message is sent) is specified
for outputs. Finally, we represent inner service communication, modeling, e.g.,
internal process message exchange: we use a∗ and a∗, with a ∈ N , to denote
internal service input and output messages, where processes executing a∗ and
a∗ must synchronize in order to proceed (as in CCS [28] synchronization).

Definition 3.1. (Services) The syntax of services is defined by the following
grammar

S ::= 1 | τ | a∗ | a∗ | a | al |

S+S | S|S | S;S | S∗

In the process algebra we use, as for the Linda calculus of Section 2: the choice
+ , parallel | , sequential ; , and repetition ∗ operators and “1” denoting

(successful) termination.5 Notice that a term S represents the behavior of a
single service: the parallel | operator is used to represent its internal processes.
Subsequently we will introduce systems, where communication among several
services (residing at different locations over the network) is modeled, considering
both the case of synchronous and asynchronous communication.

The operational semantics of services is defined in terms of a transition
system labeled over {a, al, a∗, a∗, τ,

√
| a ∈ N , l ∈ Loc}, ranged over by λ, λ′,

. . . , obtained by the rules in Table 3 (plus symmetric rules). As in the previous
section, in the operational semantics we use an auxiliary process “0” as the
target of the termination transitions

√
. Semantic rules are the standard ones:

choice + , parallel | , sequential ; , and repetition ∗ operators and “1”

5In the following, when writing services, we omit parentheses under the assumption that
sequencing ; takes priority over choice + and parallel | .
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1
√
−→ 0 α

α−→ 1

S1
λ−→ S′1

S1+S2
λ−→ S′1

S1
λ−→ S′1 λ 6=

√

S1;S2
λ−→ S′1;S2

S1

√
−→ 0 S2

λ−→ S′2

S1;S2
λ−→ S′2

S1
a∗−→ S′1 S2

a∗−→ S′2

S1|S2
τ−→ S′1|S′2

S1

√
−→ 0 S2

√
−→ 0

S1|S2

√
−→ 0

S1
λ−→ S′1 λ 6=

√

S1|S2
λ−→ S′1|S2

S∗1

√
−→ 0

S1
λ−→ S′1 λ 6=

√

S∗1
λ−→ S′1;S∗1

Table 3: Semantic rules for services (symmetric rules omitted).

are dealt with as for the Linda calculus of Section 2. In particular a∗ and a∗
synchronize over parallel as for CCS [28]. Given a (possibly empty) sequence of

labels w = λ1λ2 · · ·λn−1λn, we use S
w−→ S′ to denote a sequence of transitions

S
λ1−→ S1

λ2−→ · · · λn−1−→ Sn−1
λn−→ S′ (in case of w = ε we have S′ = S, i.e.,

S
ε−→ S).
As in [29, 33], the semantics of a service S yields a finite-state labeled tran-

sition system whose states are terms S′ reachable from S, i.e. ∃w : S
w−→ S′.

Example 3.1. (Authentication Server)
We now present a simple example of an authentication server that repeatedly

performs two kinds of task: (i) the authentication of clients by receiving their
username and password, and (ii) the request to an external account service for
update of the list of the registered users.

( username; password; (acceptedclient + failedclient) +

updateAccountsaccountServer;newAccounts )∗

The service indicates a repeated choice between the two possible tasks. The first
task is activated by the reception of an invocation on username. In this case,
a password should subsequently be received and then two possible answers are
sent back to the client: either accepted or failed. The second task is acti-
vated by sending a request for update to the accountServer. In this case, the
newAccounts are subsequently received.

Example 3.2. (Travel Agency)
As a more involved example we consider, in Table 4, a travel agency service.

Upon reception of a client’s reservation request, the travel agency sends two
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Reservation; ( ReserveF lightairRes | ReserveRoomhotelRes );
(

(AvailF lights; (okF light∗ + koF light∗) +NoFlights; koF light∗) |
(NoRooms;ReserveRoomhotelRes)

∗;AvailRoom;

(okF light∗;TravelP lanclient + koF light∗;NoAvailclient))
Table 4: Travel agency service.

parallel requests: to airplane and hotel reservation services. Then it spawns
two internal processes that wait in parallel for the replies of each of the two
reservation services. The first process, that waits for the reply of the airplain
reservation service, internally communicates to the other process, using local
names okF light∗ and koF light∗, whether a satisfactory flight is available: the
okF light∗ message is sent if a list of available fights is received and one of them
is deemed to be satisfactory (based, e.g., on times/prices), otherwise koF light∗
is used to explicitely communicate that no satisfactory flight has been found.
The second process, that waits for the reply of the hotel reservation service,
keeps actively querying such a service (e.g. trying with different hotels/nearby
locations) until an available room is found; then it replies to the initial client’s
reservation request: based on the local message received from the other process
either sends a travel plan or provides a negative answer.

3.2. Contract-based Service Discovery

We now define the notion of behavioural contract, as it appears in [34], which
will allow us to reason about service compliance and retrieval independently of
the language used for implementing service behaviour.

Contracts are defined as labeled transition systems, representing the commu-
nicating behavior of a service, standing at a certain location over the network,
with respect to its environment (the other services). Thus, formally, as actions in
their transition labels we just use τ for internal computations/synchronizations
and a and al for inputs/outputs (where the outputs, as for the service calculus,
are directed to a destination location l ∈ Loc). We first define the class of
labeled transition systems of interest for defining contracts.

Definition 3.2. (Finite Connected LTS with Termination Transitions)
A finite connected labeled transition system (LTS) with termination transitions
is a tuple T = (S,L,−→, sh, s0) where S is a finite set of states, L is a set
of labels, the transition relation −→ is a finite subset of (S − {sh}) × (L ∪
{
√
}) × S such that (s,

√
, s′) ∈−→ implies s′ = sh, sh represents a halt state,

s0 ∈ S represents the initial state, and it holds that every state in S is reachable
(according to −→) from s0.

As in the semantics of services, in a finite connected LTS with termination
transitions we use

√
transitions (leading to the halt state sh) to represent suc-

cessful termination. On the contrary, if we get (via a transition different from
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√
) into a state with no outgoing transitions (like, e.g., sh) then we intend to

represent an internal failure or a deadlock.

Definition 3.3. (Behavioural Contracts) A behavioural contract is a finite
connected LTS with termination transitions, that is a tuple T = (S,L,−→,
sh, s0), where L = {a, al, τ | a ∈ N ∧ l ∈ Loc}.

Services S give rise to a behavioral contract as the labeled transition system
obtained by their semantics, where a∗ and a∗ labeled transitions (representing
potential internal communications that did not actually take place) are disre-
garded. More precisely, the obtained behavioural contract is (S,L,−→, sh, s0)
where: the initial state s0 is S, the halt state sh is 0, the set of states S includes,
besides 0, the terms S′ such that ∃w : S

w−→ S′ ∧ a∗, a∗ /∈ w (i.e., both a∗ and
a∗ do not belong to the label sequence w) and the transition relation −→ is the

set of trasitions S′
λ−→ S′′ such that S′, S′′ ∈ S and λ /∈ {a∗, a∗}.

3.3. Behavioural Contracts as Terms

We now introduce a process algebraic representation for behavioural con-
tracts by using basic CCS [35] over L prefixes extended with successful ter-
mination “1”, whereas the traditional null process “0” is the halt state and
denotes a failure or a deadlock, if not reached by a

√
transition (see the discus-

sion above about the halt state). Representing contracts as terms will be useful
when developing their theory.

Definition 3.4. (Behavioural Contracts as Terms) We consider a denu-
merable set of contract variables Var ranged over by X, Y , · · · . The syntax of
contracts is defined by the following grammar

C ::= 0 | 1 | α.C | C+C | X | recX.C
α ::= τ | a | al

where recX. is a binder for the process variable X denoting recursive definition
of processes. We assume that in a contract C all process variables are bound.
In the following we will omit trailing “ .1” when writing contracts.6

Notice that, even if we represent contract LTSes as terms, we preserve their lan-
guage independent nature (they are just a syntactical representation of LTSes).

The operational semantics of contracts C is defined in terms of a transition
system labeled over {a, al, τ,

√
| a ∈ N , l ∈ Loc}, ranged over by λ, λ′, . . . ,

obtained by the rules in Table 5 (plus a symmetric rule for choice). We use the
notation C{ / } to denote syntactic replacement. Semantic rules are the stan-
dard ones, apart from that of term 1, which performs a

√
transition denoting

successful termination. We use C
w−→ C ′ to denote a sequence of transitions

6We also omit parentheses under the assumption that prefix α. takes priority over choice
+ (similarly as we did for services).
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1
√
−→ 0 α.C

α−→ C

C
λ−→ C ′

C+D
λ−→ C ′

C{recX.C/X} λ−→ C ′

recX.C
λ−→ C ′

Table 5: Semantic rules for contracts (symmetric rules omitted).

from C to C ′ labeled according to the label sequence w (formally the definition
is the same as for service terms S).

The semantics of a behavioural contract term C gives rise to a finite7 con-
nected LTS with termination transitions (S,L,−→,0, C), i.e. indeed a contract
according to Definition 3.3, where S includes, besides 0, the set of states C ′

reachable from C, i.e. such that ∃w : C
w−→ C ′, and −→ includes only tran-

sitions between states of S. In [36] we formalize the correspondence between
contracts T = (S,L,−→, sh, s0) and their representation as terms C by showing
how to obtain from a contract T a corresponding C with the same behaviour.

Example 3.3. (Authentication Server Contract)
We now present the contract for authentication service that we introduced

in Example 3.1. In this simple case the contract is very similar to the service
description itself:

recX.( username.password.(acceptedclient.X + failedclient.X) +

updateAccountsaccountServer.newAccounts.X + 1 )

We just have that sequencing “;” is turned into prefix “.”, that repetition via
“∗” is expressed by using recursion “recX” and that “1” is used to represent
successful termination.

Example 3.4. (Travel Agency Contract)
We also present, in Table 6, the contract for the travel agency service pre-

sented in Example 3.2 (see Table 4). This example shows how contracts are just
a syntactical representation of LTSes and abstract from the service language;
in particular from the internal structure (e.g. internal processes) and internal
communications of services: what in the service was internally communicated
via okF light∗ and koF light∗ messages is now simply seen as a τ prefix. Notice
that in Table 6, for clarity of presentation, parts of the the contract for the travel
agency service have been separately defined, i.e. contracts: CX , representing the
status of the service after that the two initial concurrent requests have been sent;

7As for basic CCS [28] finite-stateness is an obvious consequence of the fact that the process
algebra does not include static operators, like parallel or restriction.
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Reservation.(

ReserveF lightairRes.ReserveRoomhotelRes.CX +

ReserveRoomhotelRes.ReserveF lightairRes.CX
)

CX = recX.(
AvailRoom.(

AvailF lights.(τ.T ravelP lanclient + τ.NoAvailclient) +

NoFlights.τ.NoAvailclient
) +

NoRooms.(
ReserveRoomhotelRes.X +
AvailF lights.ReserveRoomhotelRes.CY +
NoFlights.ReserveRoomhotelRes.CZ
) +

AvailF lights.CY +
NoFlights.CZ

)

CY = recY.(

AvailRoom.(τ.T ravelP lanclient + τ.NoAvailclient) +
NoRooms.ReserveRoomhotelRes.Y

)

CZ = recZ.(

AvailRoom.τ.NoAvailclient +
NoRooms.ReserveRoomhotelRes.Z

)

Table 6: Travel agency contract (trailing “.1” are omitted).

CY , representing the status after that an “AvailF lights” message has been re-
ceived, but no room as been found yet; and CZ , representing the status after that
a “NoFlights” message has been received, but no room has been found yet.

In order to show how a contract with 0 (representing failure or deadlock) is
generated, we consider a variant of the travel agency service presented in Table
4, where we take

(okF light∗;TravelP lanclient + koF light∗;NoAvailclient)

to be replaced by
okF light∗;TravelP lanclient

that is the service programmer “forgot” to consider the case in which the koF light∗
message is internally transmitted. In this case, whenever a “NoFlights” mes-
sage is received, the subsequent internal koF light∗ communication cannot be
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completed and a deadlock is originated. The obtained contract is as that shown
in Table 6, but for the two occurrences of

(τ.T ravelP lanclient + τ.NoAvailclient)

being replaced by
τ.T ravelP lanclient

and the two occurrences of “τ.NoAvailclient” being replaced by “ 0”. The ob-
tained contract, thus, shows that a deadlock is reached whenever the “NoFlights”
message is received (from the flight reservation service).

3.4. Output persistence property

In the following we will study independent contract refinement. As already
anticipated in the Introduction under synchronous communication a maximal
independent contract refinement that preserves compliance does not exist. In
[11] we showed that this is a consequence of the symmetry between input and
output actions and that a possible solution, for synchronous communication, is
to resort to output persistent contracts; thus breaking such a symmetry.

Definition 3.5 (Output Persistence). A contract C is output persistent if,

for any C ′ such that C
w−→ C ′ and C ′

al−→, the following holds: C ′
√
−→/ and, if

C ′
α−→ C ′′ with α 6= al, then also C ′′

al−→.

In the above definition we use C
λ−→ to mean ∃C ′ : C

λ−→ C ′.
The output persistence property states that once a contract decides to exe-

cute an output, its actual execution is mandatory in order to successfully com-
plete the execution of the contract. This property typically holds in languages
for the description of service orchestrations (see e.g. WS-BPEL [37]) in which
output actions cannot be used as guards in external choices (see e.g. the pick
operator of WS-BPEL which is an external choice guarded on input actions).

Example 3.5. It is easy to see that, while the travel agency contract of Example
3.4 is output persistent, the authentication server contract of Example 3.3 is not.
However, the following modified version of the latter can be considered, to be used
in a synchronous setting:

recX.( username.password.(τ.acceptedclient.X + τ.failedclient.X) +

τ.updateAccountsaccountServer.newAccounts.X + 1 )

Notice that, in this new version of the authentication server, we have simply
added an internal action τ in front of outputs occurring in choices. This guar-
antees that, at the moment the choice is to be resolved, the output action is
not yet ready to be executed: it becomes available only after the τ and, then,
its eventual execution is mandatory. As a consequence we have that the output
persistence property is satisfied.
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As observed in [29], a syntactical condition on the service calculus of Defini-
tion 3.1, which guarantees that output persistent contracts are always obtained,
is: each output “al” must always occur in sequence with a preceding “τ”, i.e.
syntactically occur as “τ ; al”. For instance, if in the service of Example 3.1 we
replace each output “al” with “τ ; al” we obtain the output persistent contract
presented in the Example 3.5 above.8

In the remainder, when we consider synchronous communication, we will
restrict to output persistent contracts.

3.5. Synchronous Contract Composition

Synchronous systems are formed by the parallel composition of contracts.

Definition 3.6 (Synchronous Systems). The syntax of synchronous systems
is defined by the following grammar

P ::= [C]l | P ||P

We assume systems to be such that: (i) every contract subterm [C]l occurs
in P at a different location l and (ii) no output action with destination l is
syntactically included inside a contract subterm occurring in P at the same
location l, i.e. actions al cannot occur inside a subterm [C]l of P .

A contract located at location l is denoted with [C]l. Located contracts can be
combined in parallel with the operator P ||P .

Example 3.6. We consider a synchronous system in which we combine the
output persistent contract for the authentication server presented in Example
3.5, here denoted with CAuthServer and located at “authServer” location, with a
“client” contract and an “accountServer” contract, which interact, respectively,
with the two tasks of the authentication server:

[CAuthServer]authServer ||
[usernameauthServer.passwordauthServer.(accepted+ failed)]client ||
[updateAccounts.newAccountsauthServer]accountServer

System operational semantics is defined by the rules in Table 7 plus sym-
metric rules. Transition system labels, still ranged over by λ, λ′, · · · , are now
taken from the set {asr, asr, τ,

√
| a ∈ N ; s, r ∈ Loc}, where: asr (asr, resp.)

denotes a potential output (input, resp.) with the sender being at location s
and the receiver at location r, τ denotes a synchronization or a move performed
internally by one contract in the system and

√
denotes successful termination.

8In [33] the same effect of requiring each output “al” to syntactically occur as “τ ; al” is
obtained by modifying service operational semantics of Table 3 so that outputs are executed
in two steps: the first step is a “τ” transition and the second step the actual “al” transition.
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C
ar−→ C ′

[C]s
asr−→ [C ′]s

C
a−→ C ′

[C]r
asr−→ [C ′]r

C
λ−→ C ′

[C]l
λ−→ [C ′]l

λ∈{τ,
√
}

P
λ−→ P ′

P ||Q λ−→ P ′||Q
λ 6=
√ P

asr−→ P ′ Q
asr−→ Q′

P ||Q τ−→ P ′||Q′
P
√
−→ P ′ Q

√
−→ Q′

P ||Q
√
−→ P ′||Q′

Table 7: Synchronous system semantics (symmetric rules omitted).

3.6. Asynchronous Contract Composition

In asynchronous systems contracts are equipped with an input message
queue.

Definition 3.7 (Asynchronous Systems). The syntax of asynchronous sys-
tems is defined by the following grammar

P ::= [C,Q]l | P ||P
Q ::= ε | al :: Q

We assume asynchronous systems to be such that: (i) and (ii) of Definition 3.6
(with [C,Q]l replacing [C]l) hold true.

Terms Q denote message queues. They are sequences of messages, each one
denoted with al where a is the action name and l is the location of the sender.
We use “ε” to denote the empty message queue. Trailing ε are usually left
implicit, and we use “::” also as an operator over the syntax: if Q and Q′
are ε-terminated queues, according to the syntax above, then Q :: Q′ means
appending the two queues into a single ε-terminated list. Therefore, if Q is a
queue, then ε :: Q, Q :: ε, and Q are syntactically equal. In the following, when
we talk about asynchronous contract systems, we will use the shorthand [C]l to
stand for [C, ε]l.

Example 3.7. We consider an asynchronous system in which we combine the
contract for the travel agency defined in Table 6, here denoted with CTravelAgency
and located at “travelAgency” location, with a “client” contract, an airplane
reservation contract “airRes” and an hotel reservation contract “hotelRes”:

[ReservationtravelAgency.(TravelP lan+NoAvail)]client ||
[CTravelAgency]travelAgency ||
[ReserveF light.(AvailF lightstravelAgency +NoFlightstravelAgency)]airRes ||
[recX.(ReserveRoom.(NoRoomstravelAgency.X +AvailRoomtravelAgency.X)

+ 1)]hotelRes
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C
ar−→ C ′

[C,Q]s
asr−→ [C ′,Q]s

[C,Q]r
asr−→ [C,Q :: as]r

C
√
−→ C ′

[C, ε]l

√
−→ [C ′, ε]l

C
τ−→ C ′

[C,Q]s
τ−→ [C ′,Q]s

C
a−→ C ′ bl∈Q ⇒ b 6=a

[C,Q :: as :: Q′]r
τ−→ [C ′,Q :: Q′]r

Table 8: Asynchronous system semantics (rules for parallel omitted).

Asynchronous system operational semantics is defined by the rules in Table 8
plus the rules for the parallel operator of Table 7. In Table 8 we assume that
bl ∈ Q holds true if and only if bl syntactically occurs inside Q. This notation
is used in the premise of the novel τ synchronization rule that represents the
consumption of an a message from the queue by removal of the oldest a one.

As an example consider the system: [as.bs]r || [b.a]s. After executing the two
outputs, the system evolves to [1]r || [b.a, ar :: br]s. The receiver is now ready to
consume the two messages stored in the queue, thus reaching [1]r || [1]s. Notice
that the two messages are consumed in the opposite order of reception.

This means that the information about the sender attached to queue mes-
sages is actually not used by the operational semantic rules in Table 8: even if
omitted we would have obtained the same transitions. Nevertheless, we decided
to use the same queue syntax as in [13] to be more adherent to reality, where
messages can be distinguished e.g. depending on the sender. As a matter of
fact, in [13], this information is used to produce, instead of τ actions, more
informative labels that include denotation of the sender-receiver (this makes it
possible to establish conformance w.r.t. a given choreographical specification).

3.7. Contract Refinement

We now recall the formal definition of independent contract refinement that
preserves correct composition of contracts in both the synchronous and asyn-

chronous cases. With P
τ−→
∗
P ′ we denote the existence of a (possibly empty)

sequence of τ -labeled transitions starting from the system P and leading to P ′.

Definition 3.8 (Correct Contract Composition – Compliance). A sys-
tem P is a correct contract composition, denoted P ↓, if for every P ′ such

that P
τ−→
∗
P ′, there exists P ′′ such that P ′

τ−→
∗
P ′′ and P ′′

√
−→.

Intuitively, a system composed of contracts is correct if any possible computa-
tion may guarantee completion, i.e. it can be extended to reach a successfully
terminated computation (in the asynchronous case this means that all queues
are empty). In this case, such contracts are called compliant. An example of
contract composition that is correct (both in the synchronous and asynchronous
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case) is [al3 ]l1 || [bl3 ]l2 || [a.b]l3 . Another example is [as.bs]r || [b.a]s considered
above, which is correct in the asychronous case only.

Example 3.8. As larger examples, consider the sychronous and asychronous
systems of Examples 3.6 and 3.7. While the latter is a correct contract compo-
sition, the former is surely not correct because the contract of the authServer
can internally decide to invoke the update task twice, while the contract of the
accountServer is able to reply only once. This problem is solved if we, instead,
consider an accountServer with the following recursive contract:

recX.(updateAccounts.newAccountsauthServer.X + 1)

After replacement of the accountServer contract with the one above, it is
easy to see that the contract composition turns out to be correct: the system can
always successfully complete after having performed (in every possible order)
one authentication task and an arbitrary number of update tasks. A version in
which also the authentication task can be performed arbitrarily many times can
be obtained by considering a client with the following contract:

recX.(usernameauthServer.passwordauthServer.(accepted.X + failed.X) + 1)

Notice that the discussion above is valid also under asychronous communication.

We are now ready to define the notion of contract refinement. Given a
contract C, we use oloc(C) to denote the set of locations used as destinations
in all the output actions occurring inside C.

Definition 3.9 (Independent Refinement). A pre-order ≤ over contracts
is an independent refinement if, for any n ≥ 1, contracts C1, . . . , Cn and
C ′1, . . . , C

′
n such that ∀i. C ′i ≤ Ci, and distinguished location names l1, . . . , ln ∈

Loc such that ∀i. oloc(Ci) ∪ oloc(C ′i) ⊆ {lj | 1 ≤ j ≤ n ∧ j 6= i}, we have:

([C1]l1 || . . . || [Cn]ln)↓ ⇒ ([C ′1]l1 || . . . || [C ′n]ln)↓

An independent refinement pre-order formalizes the possibility to replace in a
correct contract composition every contract with one of its refinements, with
the guarantee that the new system is still correct. In [11] it is shown that in
the synchronous case, in the absence of the output persistence assumption, it
could happen that given two independent refinement pre-orders, their union is
no longer an independent refinement pre-order. In other words, there exists no
maximal independent refinement pre-order.

On the contrary, if we restrict to output persistent contracts or we consider
asynchronous communication, we have that the maximal independent refine-
ment pre-order exists: it can be achieved by considering a coarser form of re-
finement in which, given any system composed of a set of contracts, refinement
is applied to one contract only (thus leaving the others unchanged). This form of
refinement, that we call compliance testing [38], is a form of testing where both
the test and the system under test must reach success. Given a system P , we
use loc(P ) to denote the subset of Loc of the locations of contracts syntactically
occurring inside P .
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Definition 3.10 (Refinement Relation). A contract C ′ is a refinement of a
contract C denoted C ′ � C, if and only if for all l ∈ Loc and system P such
that l /∈ loc(P ) and l /∈ oloc(C) ∪ oloc(C ′) ⊆ loc(P ), we have:

([C]l||P )↓ ⇒ ([C ′]l||P )↓

In the following, whenever C ′ � C we will also say that C ′ is a subcontract of
C (or equivalently that C is a supercontract of C ′).

Theorem 3.1 (Maximal Independent Refinement). There exists a maxi-
mal independent refinement ≤ pre-order and it corresponds to the (compliance
testing based) refinement relation “�”.

3.8. Properties of Contract Refinement

We now discuss some properties of contract refinement and also show a
sound characterization that is decidable for the synchronous case. We use I(C)
(O(C), resp.) to stand for the set of names a (located names al, resp.) of
input actions a (output actions al, resp.) syntactically occurring in C. Given
N ⊆ {al | a ∈ N ∧ l ∈ Loc}, we assume N to stand for {al | al ∈ N}.

We first observe that the refinement relation � allows input on new names
(and unreachable outputs on new names) to be added in refined contracts.

Theorem 3.2 (Refinements with Extended Inputs and Outputs). Let
C,C ′ be contracts. Both of the following hold

C ′{0/α.C ′′ | α ∈ I(C ′)− I(C)} ≺ C ⇔ C ′ ≺ C
C ′{T/α.C ′′ | α ∈ O(C ′)−O(C)} ≺ C ⇔ C ′ ≺ C

where T is: 0 in the synchronous case, τ.0 in the asynchronous case.

This theorem is a direct consequence of queue based communication (in the
asynchronous case) and output persistence (in the synchronous case): concern-
ing its second statement, it follows from the fact that a subcontract C ′ cannot
have reachable outputs that were not included in the potential outputs of the
supercontract C; concerning its first statement, it follows from similarly observ-
ing that a compliant test P of a contract [C]l cannot have reachable outputs
directed to l that C cannot receive (e.g. in the asynchronous case [a]l||[al + bl]l′

is not a correct contract composition). From the first statement of this theorem
we can derive a fundamental property of the maximal independent refinement
pre-order, which holds both in synchronous and asynchronous cases: external
choices on inputs can be extended, e.g. a + b � a. Concerning outputs, we in-
stead have that al � al + bl in the asynchronous case only and τ.al � τ.al + τ.bl
in both synchronous and asynchronous cases, i.e. internal choices on outputs
can be reduced. This because the lefthand term is more deterministic (typical
property in testing).
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Example 3.9. As a larger example, consider the contract CTravelAgency in Ta-
ble 6 of the travel agency service presented in Example 3.2 (see Table 4). A
supercontract of CTravelAgency is obtained by considering the contract of a mod-
ified version of the travel agency service where we replace the line

(NoRooms;ReserveRoomhotelRes)
∗;AvailRoom;

in Table 4 with just
AvailRoom;

The obtained contract C is a modification of that presented in Table 6 where in
the definition of contracts CX , CY and CZ we just remove the whole branch of
choice (i.e. “+′′) starting with the “NoRooms” input (in the case of CY and
CZ the choice itself is consequently removed). Since in such a contract C the
“NoRooms” input no longer occurs, we have NoRooms ∈ I(CTravelAgency) −
I(C), hence, according to Theorem 3.2 (first statement), CTravelAgency ≺ C.
Formally this derives from the fact that C ≺ C and that the LTS of C{0/α.C ′ |
α ∈ I(CTravelAgency)− I(C)} is the same as that of CTravelAgency.

We now focus on determining an algorithmic sound characterization of the
synchronous contract refinement relation. This is achieved by resorting to the
theory of fair testing, called should-testing [39].

Should-testing is a fair variant of must testing [40] where successful tests
are defined as follows: process B passes test t iff every finite execution of B||t
(the process subjected to the test, where “ || ” denotes parallel execution of two
processes, synchronized on all observable actions) has passed through or can be
extended to pass through a successful state of t.

As a side result we also have that the refinement relation � is coarser than
fair testing preorder. We denote with �test the should-testing pre-order defined
in [39] where we consider

√
to be included in the set of actions of terms under

testing as any other action (
√

is treated as a normal action and not as the
special action representing success of tests in [39]). In order to resort to the
theory should-testing, we define a normal form for contracts C, denoted with
NF(C), that corresponds to terms of the language in [39] (mainly a matter of
replacing 1 with a

√
action, see [29] for details).

Theorem 3.3 (Resorting to Fair Testing). Let C,C ′ be contracts. We have

NF(C ′{0/α.C ′′ | α ∈ I(C ′)− I(C)}) �test NF(C) ⇒ C ′ � C

The opposite implication does not hold in general. This can be easily seen by
considering uncontrollable contracts, i.e. contracts for which there is no compli-
ant test. For instance the contract 0, any other contract a.b.0 or c.d.0 or more
complex examples like a + a.b. These contracts are all equivalent according to
our refinement relation, but of course not according to fair testing. Notice that
such uncontrollable contracts have completely different traces: this means that
trace pre-order is not coarser than our refinement relation.
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4. Session Types

In this section we move to session types, in particular we report about
our study of asynchronous session subtyping. Session types [41, 14] are types
for controlling the communication behaviour of processes over channels. In a
very simple but effective way, they express the pattern of sends and receives
that a process must perform. They are, therefore, similar to behavioural con-
tracts, but more constrained in the kind of behaviours they can express. Since
they can guarantee freedom from some basic programming errors, session types
are becoming popular with many main stream language implementations, e.g.,
Haskell [42], Go [43] or Rust [44]. In [16] session subtyping is introduced for
asynchronous communication and it is also stated that it is decidable. Recently
it has been proven that, on the contrary, it is undecidable. Here we present such
an undecidability result [17] and the decidability result in [19], where the largest
known decidable fragment is introduced. In particular, we recall the basic def-
initions of session types and synchronous and asynchronous session subtyping.
We then report the undecidability proof in [17]. Finally, we present the frag-
ment of single-out (and single-in) session types, for which we show asynchronous
subtyping to be decidable [19]. The techniques for these (un)decidability results
can be seen as improvements of those developed for Linda process calculi: re-
duction from Turing complete computational models and exploitation of well
quasi orderings.

4.1. Session Subtyping

Session subtyping, which is the counterpart for session types of refinement for
behavioural contracts, was first introduced by Gay and Hole [15] for a session-
based π-calculus where communication is synchronous. Session subtyping of [15]
is endowed with covariant/contravariant properties that correspond to those we
observed on behavioural contract refinement: internal choices on outputs can
be reduced, while external choices on inputs can be extended. To the best of
our knowledge, Mostrous et al. [16] were the first to adapt the notion of session
subtyping to an asynchronous setting. Their computation model is a session
π-calculus with asynchronous communication that makes use of session queues
for maintaining the order in which messages are sent. Based on such a model
they introduce the idea of output anticipation, which is also relevant for our
results in [17, 19] that we present here. Mostrous and Yoshida [45] extended
the notion of asynchronous subtyping to session types for the higher-order π-
calculus. They also observed that their definition of asynchronous subtyping
allows for orphan messages, i.e. sent messages which are never consumed from
the session queue. Orphan messages are, instead, prohibited with the definition
of subtyping given by Chen et al. [46]: they show that such a definition is both
sound and complete w.r.t. type safety and orphan message freedom.

We start with the formal syntax of binary session types, adopting a simpli-
fied notation (used, e.g., in [17, 19]) without dedicated constructs for sending
an output/receiving an input. We instead represent outputs and inputs directly
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inside choices. More precisely, we consider output selection ⊕{li : Ti}i∈I , ex-
pressing an internal choice among outputs, and input branching &{li : Ti}i∈I ,
expressing an external choice among inputs. Each possible choice is labeled by
a label li, taken from a global set of labels L, followed by a session continuation
Ti. Labels in a branching/selection are assumed to be pairwise distinct.

Definition 4.1 (Session Types). Given a set of labels L, ranged over by l,
the syntax of binary session types is given by the following grammar:

T ::= ⊕{li : Ti}i∈I | &{li : Ti}i∈I | µt.T | t | end

A session type is single-out if, for all of its subterms ⊕{li : Ti}i∈I , |I| = 1; it
is single-in if, for all of its subterms &{li : Ti}i∈I , |I| = 1.

In the sequel, we leave implicit the index set i ∈ I in input branchings and
output selections when it is already clear from the denotation of the types.
Note also that we abstract from the type of the message that could be sent over
the channel, since this is orthogonal to our theory. Types µt.T and t denote
standard tail recursion for recursive types. We assume recursion to be guarded:
in µt.T , the recursion variable t occurs within the scope of an output or an
input type. In the following, we will consider closed terms only, i.e., types with
all recursion variables t occurring under the scope of a corresponding definition
µt.T . Type end denotes the type of a channel that can no longer be used.

For session types, we define the usual notion of duality: given a session type
T , its dual T is defined as: ⊕{li : Ti}i∈I = &{li : T i}i∈I , &{li : Ti}i∈I = ⊕{li :
T i}i∈I , end = end, t = t, and µt.T = µt.T . In the sequel, we say that a
relation R on session types is dual closed if (S, T ) ∈ R implies (T , S) ∈ R.

We start by considering a synchronous subtyping relation, similar to that
of Gay and Hole [15] but, to be more consistent with contracts, following a
process-oriented instead of a channel-based approach.9 Moreover, following [16],
we consider a generalized version of unfolding that allows us to unfold recursions
µt.T as many times as needed.

Definition 4.2 (n-unfolding).

unfold0(T ) = T unfold1(⊕{li : Ti}i∈I) = ⊕{li : unfold1(Ti)}i∈I
unfold1(µt.T ) = T{µt.T/t} unfold1(&{li : Ti}i∈I) = &{li : unfold1(Ti)}i∈I
unfold1(end) = end unfoldn(T ) = unfold1(unfoldn−1(T ))

Definition 4.3 (Synchronous Subtyping, ≤s). R is a synchronous subtyp-
ing relation whenever (T, S) ∈ R implies that:

1. if T = end then ∃n ≥ 0 such that unfoldn(S) = end;

2. if T = ⊕{li : Ti}i∈I then ∃n ≥ 0 such that unfoldn(S) = ⊕{lj : Sj}j∈J ,
I ⊆ J and ∀i ∈ I. (Ti, Si) ∈ R;

9Differently from our definitions, in the channel-based approach of Gay and Hole [15]
subtyping is covariant on branchings and contra-variant on selections.
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3. if T = &{li : Ti}i∈I then ∃n ≥ 0 such that unfoldn(S) = &{lj : Sj}j∈J ,
J ⊆ I and ∀j ∈ J. (Tj , Sj) ∈ R;

4. if T = µt.T ′ then (T ′{T/t}, S) ∈ R.

T is a synchronous subtype of S, written T≤sS, if there is a synchronous sub-
typing relation R such that (T, S) ∈ R.

Two types T and S are related by ≤s, whenever S is able to simulate T with
output and input types enjoying covariance and contravariance properties, re-
spectively. Notice the asymmetric use of unfolding between the left- and right-
hand terms T and S: in T recursion is always unfolded once, while in S many
unfoldings can be needed in order to expose the starting operator of T .

As already discussed, subtyping is the counterpart of contract refinement in
the context of session types. Consider, for instance,

&{a : end, b : end} ≤s &{a : end} ⊕ {a : end} ≤s ⊕ {a : end, b : end}

that hold for input contravariance and output covariance. These examples of
subtypings precisely correspond to those of contract refinements commented in
Section 3.8. Note that, while in the case of contracts they were obtained as a
consequence of considering the maximal independent refinement, in the theory
of session types they are taken by definition.

We now consider the standard notion of asynchronous subtyping ≤ intro-
duced by Chen et al. [46], which enjoys orphan message freedom; we consider
the simple rephrasing based on dual closeness we introduced in [19]. In the
definition of ≤ we use the following notion of input context.

Definition 4.4 (Input Context). An input context A is a session type with
multiple holes defined by the syntax:

A ::= [ ]n | &{li : Ai}i∈I

The holes [ ]n, with n ∈ N+, of an input context A are assumed to be consistently
enumerated, i.e. there exists m ≥ 1 such that A includes one and only one [ ]n

for each n ≤ m. Given types T1,. . . , Tm, we use A[Tk]k∈{1,...,m} to denote the
type obtained by filling each hole k in A with the corresponding term Tk.

Definition 4.5 (Asynchronous Subtyping, ≤). R is an asynchronous sub-
typing relation whenever it is dual closed and (T, S) ∈ R implies 1., 3., and 4.
of Definition 4.3, plus the following modified version of 2.:

2. if T = ⊕{li : Ti}i∈I then ∃n ≥ 0,A such that

� unfoldn(S) = A[⊕{lj : Skj}j∈Jk ]k∈{1,...,m},

� ∀k ∈ {1, . . . ,m}. I ⊆ Jk and

� ∀i ∈ I, (Ti,A[Ski]
k∈{1,...,m}) ∈ R

T is an asynchronous subtype of S, written T ≤S, if there is an asynchronous
subtyping relation R such that (T, S) ∈ R.
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We now explain the modified version of Rule 2. and its impact on the ob-
tained subtyping relation. Concerning the adopted notation, for each hole k of
the input context A (which is at the beginnig of the righthand term S after
any needed unfolding), we take lj , with j ∈ Jk, to be the labels of the output
selection in the hole. Moreover, we use Skj to denote the type reached after
output lj in the hole k. An important characteristic of asynchronous subtyping
(formalized by Rule 2. above) is the following one. In a subtype output selec-
tions can be anticipated so to bring them before the input branchings that in
the supertype occur in front of them. For example

⊕
{
l : &{l1 : T1, l2 : T2}

}
≤ &

{
l1 : ⊕{l : T1}, l2 : ⊕{l : T2}

}
where the output selection with label l (occurring in the supertype) is antici-
pated w.r.t. the input branching with labels l1 and l2 (such an output selection
is present in all its input branches). As already discussed in the Introduction,
output anticipation reflects the fact that we are considering asynchronous com-
munication protocols in which messages are stored in queues. In this setting, it
is safe to replace a peer that follows a given protocol with another one follow-
ing a modified protocol where outputs are anticipated: in fact, the difference is
simply that such outputs will be stored earlier in the communication queue.

As a further example, consider the types T = µt.&{l : ⊕{l : t}} and S =
µt.&{l : &{l : ⊕{l : t}}}. We have T ≤S by considering an infinite subtyping
relation including pairs (T ′, S′), with S′ being &{l : S}, &{l : &{l : S}}, &{l :
&{l : &{l : S}}}, . . . ; that is, the effect of each output anticipation is that a
new input &{l : } is accumulated in the initial part of the r.h.s. It is worth
to observe that every accumulated input &{l : } is eventually consumed in the
simulation game (orphan message freedom), but the accumulated inputs grows
unboundedly.

4.2. Undecidability of Asynchronous Subtyping

Asynchronous session subtyping was considered decidable before Bravetti,
Carbone and Zavattaro [17] and Lange and Yoshida [18] independently proved
that it was undecidable. Here, we report the proof of undecidability in [17],
which is by reduction from the acceptance problem for queue machines. Queue
machines are a variant of Pushdown automata that exploits a queue instead
of a stack. Differently from a stack, a queue allows the automata to access
any symbol in memory without losing other symbols, that can be simply re-
enqueued. For this reason, Queue machines are Turing powerful while Pushdown
automata are not.

Definition 4.6 (Queue machine). A queue machine M is defined by a six-
tuple (Q,Σ,Γ, $, s, δ) where: Q is a finite set of states; Σ ⊂ Γ is a finite set
denoting the input alphabet; Γ is a finite set denoting the queue alphabet (ranged
over by A,B,C,X); $ ∈ Γ − Σ is the initial queue symbol; s ∈ Q is the start
state; δ : Q× Γ→ Q× Γ∗ is the transition function.

We now formally define queue machine computations.

40



Definition 4.7 (Queue machine computation). A configuration of a queue
machine is an ordered pair (q, γ) where q ∈ Q is its current state and γ ∈ Γ∗ is
the queue (Γ∗ is the Kleene closure of Γ). The starting configuration on an input
string x is (s, x$). The transition relation →M over configurations Q×Γ∗, lead-
ing from a configuration to the next one, is defined as follows. For any p, q ∈ Q,
A ∈ Γ and α, γ ∈ Γ∗ we have (p,Aα) →M (q, αγ) whenever δ(p,A) = (q, γ).
A machine M accepts an input x if it eventually terminates on input x, i.e. it
reaches a blocking configuration with the empty queue (notice that, as the tran-
sition relation is total, the unique way to terminate is by emptying the queue).
Formally, x is accepted by M if (s, x$) →∗M (q, ε) where ε is the empty string
and →∗M is the reflexive and transitive closure of →M .

As observed above Queue machines are Turing complete, see [47] (page 354)
and [17], hence it is undecidable whether a queue machine M accepts input x.

The undecidability of asynchronous session subtyping is proved as follows:
given queue machine M with input x, construct a pair of types, say T and S,
such that: T ≤S if and only if x is not accepted by M . Given the undecidability
of the acceptance problem for queue machines, we also have the undecidability
of session subtyping.

Consider a queue machine M with input x. We will define a type T that
encodes the finite control of M , i.e., its transition function δ, starting from its
initial state s. We first concentrate on the definition of a type S that encodes
the machine queue that initially contains x$, where assume x to be the input
string x = X1 · · ·Xn of length n ≥ 0. Before presenting the formal definition
of this type S, we discuss Figure 1 which contains a graphical representation of
such type. Session types can be represented as labeled transition systems (in the
form of communicating automata [48]), where an output selection ⊕{li : Ti}i∈I
is represented as a choice among alternative output transitions labeled with
“li!”, and an input branching &{li : Ti}i∈I is represented as a choice among
alternative input transitions labeled with “li?”.

In Figure 1 we report the graphical representation of the session type used
to model the initial queue with content X1 · · ·Xn$. Such session type starts
with n + 1 inputs, respectively on the labels X1 · · ·Xn$ (notice that the label
alphabet for the session type corresponds with the queue alphabet Γ of the queue
machine). After such sequence of inputs, there is a recursive type representing
the capability to enqueue new symbols. Such a type repeatedly performs an
output selection with one choice for each symbol Ai in the queue alphabet Γ
(with k being the cardinality of Γ), followed by an input labeled with the same
symbol Ai. In this way, assuming to play the subtyping simulation game, the
effect of simulating an output on label Ai is that of adding a new input on label
Ai at the end of the sequence of input on labels X1 · · ·Xn$. In other words,
this coincides with enqueueing Ai as the new sequence of inputs X1 · · ·Xn$Ai
is obtained.

We are now ready to formally define the encoding of the queue of a machine
into a session type. Notice that, in order to have a general definition, instead
of considering the initial queue X1 · · ·Xn$ we consider a generic queue content

41



A1?

Ak!

.....

$?X1? Xn?.....
A1!

Ak?
Figure 1: Session type encoding the initial queue X1 · · ·Xn$

C1 · · ·Cm.

Definition 4.8 (Queue Encoding). Let M = (Q,Σ,Γ, $, s, δ) be a queue ma-
chine and let C1 · · ·Cm ∈ Γ∗, with m ≥ 0. We define:

[[C1· · ·Cm]] = &{C1: . . .&{Cm : µt.⊕ {A : &{A : t}}A∈Γ}}

Given a configuration (q, γ) of M , the encoding of the queue γ = C1 · · ·Cm is
thus defined as [[C1 · · ·Cm]].

Note that whenever m = 0, we have [[ε]] = µt.⊕ {A : &{A : t}}A∈Γ. Observe
that we are using a slight abuse of notation: in both output selections and input
branchings, labels lA, with A ∈ Γ, are simply denoted by A.

We now move to the encoding of the finite control of the queue machine
into a session type. In Figure 2, we report a graphical representation of such
type. We focus on the transition function δ, and a state q ∈ Q: let us consider
δ(q, Ai) = (qi, B

i
1 · · ·Bini

), with ni ≥ 0, for all i in {1, . . . , k}. This particular
state of the queue machine has a corresponding state [[q]] of the graphical repre-
sentation of the session type. This state [[q]] performs an input branching with
a choice for each symbol in the queue alphabet Γ (with k being the cardinality
of Γ). Each of these choices represents a possible symbol that can be read from
the queue. In fact, the idea is to play a subtyping simulation game where this
type is the subtype, and the type encoding the queue machine (discussed above)
is the supertype. The latter initially has an input on a label Aj representing
the initial symbol of the queue. Hence, the unique branch to be considered in
the simulation game is the one having such label Aj . After this initial selection,
the continuation is composed of a sequence of outputs labeled with the symbols
Bj1 · · ·Bjnj

that are expected to be inserted in the queue as the effect of consum-
ing Aj from the queue. After these output actions have been considered in the
simulation game (with the effect of enqueuing the corresponding symbols, see
the discussion above about the encoding of the queue) state [[qi]] of the session
type, corresponding to the subsequent state qi of the queue machine, is reached.

We are now ready to formally define the encoding of the finite control of the
queue machine.
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1
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Figure 2: Session type encoding a finite control (for Γ = {Ai|i ≤ k} and δ(q,Ai) =
(qi, B

i
1 · · ·Bi

ni
) for every i).

Definition 4.9 (Finite Control Encoding). Let M = (Q,Σ,Γ, $, s, δ) be a
queue machine and let q ∈ Q and S ⊆ Q. We define:

[[q]]S =


µq.&{A :⊕{BA1 : · · · ⊕ {BAnA

: [[q′]]S∪q}}}A∈Γ

if q 6∈ S and δ(q, A) = (q′, BA1 · · ·BAnA
)

q if q ∈ S

The encoding of the transition function of M is then defined as [[s]]∅.

We finally state our undecidability result by means of the Theorem below
which was proved in [17].

Theorem 4.1. Given a queue machine M = (Q,Σ,Γ, $, s, δ), an input string
x, and the two types T = [[s]]∅ and S = [[x$]], we have that M accepts x iff
T 6≤S.

4.3. Decidability of Single-Out/Single-In Asynchronous Subtyping

We have seen that the problem of checking asynchronous session subtyping
is undecidable. Despite this negative result, several simplified cases have been
considered in [17, 18] for which asynchronous session subtyping tunrs out to
be decidable. These simplified cases are obtained by imposing limitations to
the session type syntax. Here, we report the decidability result for the two
fragments of single-out and single-in session types, which was proved in [19].
These fragments are more general than those presented in [17, 18].

We start by recalling a procedure (an algorithm that does not necessarily
terminate) for the general subtyping relation, which we previously showed to be
undecidable. We first introduce two functions on the syntax of types.

The function outDepth calculates how many unfoldings are necessary for
bringing an output outside a recursion (in every possible input path). If that is
not possible, the function is undefined (denoted by ⊥). As an example consider,
for any T1 and T2, outDepth(⊕{l1 : T1, l2 : T2}) = 0. On the other hand,

consider the type Tex = &
{
l1 : µt.⊕

{
l2 : T1

}
, l3 : µt.&

{
l4 : µt′.⊕{l5 : T2}

}}
:

we have, outDepth
(
Tex
)

= 2.
We then define outUnf(), a variant of the unfolding function given in Defini-

tion 4.2, which unfolds only where it is necessary, in order to reach an output.
The function above differs from unfoldn: for example, unfold2

(
Tex
)

would unfold
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twice both subterms µt.⊕{l2 : T1} and µt.&
{
l4 : µt′.⊕{l5 : T2}

}
. On the other

hand, applying outDepth to the same term would unfold once the term reached
with l1 and twice the one reached with l3. In the subtyping procedure defined
below we make use of outUnf() in order to have that recursive definitions under
the scope of an output are never unfolded. This guarantees that during the ex-
ecution of the procedure, even if the set of reached terms could be unbounded,
all the subterms starting with an output are taken from a bounded set of terms.
This is important to guarantee termination of the algorithm that we are going
to define as an extension of the procedure described below.

In the definition of the procedure, we also make use of the notation & ∈ T to
mean that T eventually reaches an input. Formally, & ∈ T if T = &{li : Ti}i∈I ,
or T = ⊕{li : Ti}i∈I with & ∈ Ti for all i ∈ I, or T = µt.T ′ with & ∈ T ′.

Subtyping Procedure. An environment Σ is a set containing pairs (T, S), where
T and S are types. Judgements are triples of the form Σ ` T ≤a S which
intuitively read as “in order to succeed, the procedure must check whether T
is a subtype of S, provided that pairs in Σ have already been visited”. The
subtyping procedure, applied to the types T and S, consists of deriving the state
space of our judgments using the rules in Figure 3 bottom-up starting from the
initial judgement ∅ ` T ≤a S. More precisely, we use the transition relation
Σ ` T ≤a S → Σ′ ` T ′ ≤a S

′ to indicate that if Σ ` T ≤a S matches the
conclusions of one of the rules in Figure 3, then Σ′ ` T ′ ≤a S

′ is produced by
the corresponding premises. The procedure explores the reachable judgements
according to this transition relation. We give highest priority to rule Asmp,
thus ensuring that at most one rule is applicable.10 The idea behind Σ is
to avoid cycles when dealing with recursive types. Rules RecR1 and RecR2

deal with the case in which the type on the right-hand side is a recursion and
must be unfolded. If the type on the left-hand side is not an output then
the procedure simply adds the current pair to Σ and continues. On the other
hand, if an output must be found, we apply RecR1 which checks whether such
output is available. Rule Out allows nested outputs to be anticipated (when
not under recursion) and condition

(
A 6= [ ]1

)
⇒ ∀i ∈ I.& ∈ Ti (inspired by

[46]) makes sure there are no orphan messages. In fact, this condition implies
that if there is some output which is anticipated in the subtype w.r.t. some
inputs, in every continuation of the subtype there are input actions that will
eventually reproduce also the input behaviour of the supertype. The remaining
rules are self-explanatory. Σ ` T ≤a S →∗ Σ′ ` T ′ ≤a S′ is the reflexive
and transitive closure of the transition relation among judgements. We write
Σ ` T ≤a S →ok if the judgement Σ ` T ≤a S matches the conclusion of one
of the axioms Asmp or End, and Σ ` T ≤a S →err to mean that no rule can
be applied to Σ ` T ≤a S. Due to input branching and output selection, the
rules In and Out could generate branching also in the state space to be explored

10The priority of Asmp is sufficient because all the other rules are alternative, i.e., given a
judgement Σ ` T ≤a S there are no two rules different from Asmp that can be both applied.
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(A 6= [ ]1)⇒ ∀i ∈ I.& ∈ Ti
∀n.I ⊆ Jn ∀i ∈ I .Σ ` Ti ≤a A[Sni]

n

Σ ` ⊕{li : Ti}i∈I ≤a A[⊕{lj : Snj}j∈Jn ]n
Out

J ⊆ I ∀j ∈ J .Σ ` Tj ≤a Sj

Σ ` &{li : Ti}i∈I ≤a &{lj : Sj}j∈J
In

Σ ` end ≤a end
End

Σ, (T, S) ` T ≤a S
Asmp

Σ, (µt.T, S) ` T{µt.T/t} ≤a S

Σ ` µt.T ≤a S
RecL

T = end ∨ T = &{li : Ti}i∈I Σ, (T, µt.S) ` T ≤a S{µt.S/t}
Σ ` T ≤a µt.S

RecR1

outDepth(S) ≥ 1 Σ, (⊕{li : Ti}i∈I , S) ` ⊕{li : Ti}i∈I ≤a outUnf(S)

Σ ` ⊕{li : Ti}i∈I ≤a S
RecR2

Figure 3: A Procedure for Checking Subtyping

by the procedure. Namely, given a judgement Σ ` T ≤a S, there are several
subsequent judgements Σ′ ` T ′ ≤a S

′ such that Σ ` T ≤a S → Σ′ ` T ′ ≤a S
′.

The procedure could (i) successfully terminate because all the explored branches
reach a successful judgement Σ′ ` T ′ ≤a S

′ →ok, (ii) terminate with an error
in case at least one judgement Σ′ ` T ′ ≤a S

′ →err is reached, or (iii) diverge
because no branch terminates with an error and at least one branch never reaches
a succesful judgement. As we prove in [19] the procedure is sound with respect
to asynchronous subtyping ≤ and it can diverge only if the checked types are in
the ≤ relation.

If we consider types T and S of the example considered after Definition 4.5
the subtyping procedure in Figure 3 applied to ∅ ` T ≤a S does not terminate.
The problem is that the termination rule Asmp cannot be applied because the
term on the r.h.s. (i.e. the supertype) generates always new terms in the form
&{l : &{l : . . .&{l : S} . . . }}. Notice that, in this particular example, these
infinitely many distinct terms are obtained by adding single inputs (i.e. single-
choice input branchings) in front of the term in the r.h.s.: we call this linear
input accumulation. In general, however, input accumulation takes the form of
a tree (thus accounting for all possible alternative accumulated input behaviors
at the same time).

We now show how to decide asynchronous subtyping over single-out types,
i.e. when input accumulation can indeed be in the general form of a tree, but,
due to the absence of output selections with multiple choices, it gets accumulated
in a deterministic (i.e. unique) way. This will also allow us to deal with single-in
types by exploiting duality. As anticipated, it deals with general input accumu-
lation by representing it as a tree. We need to be able to extract the leaves from
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these trees: this is done by the leaf set function. The leaf set of a session type T
is the set of subterms reachable from its root through a path of inputs. For exam-
ple, the leaf set of the term &{l1 : µt.⊕{l2 : t}, l3 : &{l4 : ⊕{l2 : µt.⊕{l2 : t}}}}
is {µt.⊕ {l2 : t},⊕{l2 : µt.⊕ {l2 : t}}.

During the check of subtyping, according to Figure 3 (rule Out), when a
term in the r.h.s. having input accumulation has to mimic an output in front
of the l.h.s., such output must be present in front of all the leaves of the tree.
In this case, the checking continues by anticipating the output from all the
leaves. We make use of an auxiliary output anticipation function, called antOut,
that indicates the way a term changes after having anticipated a sequence of
outputs. antOut(T, l̃) yields the term obtained from T by anticipating all out-
puts occurring in the sequence l̃. For example, the function applied to the type
T = µt. ⊕

{
l1 : &{l : ⊕{l2 : t}, l′ : ⊕{l2 : t}

}
and the sequence (l1, l2) returns

&{l : T, l′ : T}, while it is undefined with the sequence (l1, l1). Moreover, we
say that T can infinitely anticipate outputs, written antOutInf(T ), if there ex-
ists an infinite sequence of labels li1 · · · lij · · · such that antOut(T, li1 · · · lin) is
defined for every n. The definition of antOutInf(T ) is not algorithmic in that
it quantifies on every possible natural number n. Nevertheless, it can be de-
cided by checking whether, for every session type obtained from T by means
of output anticipations, all the terms populating its leaf set can anticipate the
same output label. Although the types that can be obtained from T by means
of output anticipations may be infinite, the terms populating the leaf sets are
finite and are over-approximated by the function reach(T ) which is defined as
the minimal set of (single-out) session types such that:

1. T ∈ reach(T );

2. &{li : Ti}i∈I ∈ reach(T ) implies Ti ∈ reach(T ) for every i ∈ I;

3. µt.T ′ ∈ reach(T ) implies T ′{µt.T ′/t} ∈ reach(T );

4. ⊕{l : T ′} ∈ reach(T ) implies T ′ ∈ reach(T ).

Notice that reach(T ) contains the session types obtained by consuming initial
inputs and outputs, and by unfolding recursion when it is at the top level.

We now recall the decidability of antOutInf(T ) and the finiteness of reach(T )
that were proved in [19], and that will be used in the next subsection.

Proposition 4.1. Given a single-out session type T , reach(T ) is finite and it
is decidable whether antOutInf(T ).

Subtyping algorithm for single-out types. We are now ready to present an addi-
tional termination condition that, once included into the subtyping procedure in
Figure 3, makes it a valid algorithm for checking subtyping for single-out types.
The termination condition is defined as an additional rule, named Asmp2, that
complements the already defined Asmp rule by detecting those cases in which
the subtyping procedure in Figure 3 does not terminate (Asmp2, presented be-
low, is assumed to have the same priority as rule Asmp: both rules have highest
priority). The new rule is defined parametrically on the session type Z, which
is the type on the right-hand side of the initial pair of types to be checked (i.e.

46



the algorithm is intended to check V≤Z, for some type Z). We start from the
initial judgement ∅ ` V ≤t Z and then apply from bottom to top the rules in
Figure 3, where ≤a is replaced by ≤t , plus the following additional rule:

S ∈ reach(Z) antOutInf(S) |γ| < |β|
leafSet(antOut(S, γ)) = leafSet(antOut(S, β))

Σ, (T, antOut(S, γ)) ` T ≤t antOut(S, β)
Asmp2

Intuitively, we have that this additional termination rule guarantees to catch
all those cases where the term on the right grows indefinitely, by anticipating
outputs and accumulating inputs. These infinitely many distinct types are any-
way obtainable starting from the finite set reach(Z), by means of output an-
ticipations. Hence there exists S ∈ reach(Z) that can generate infinitely many
of these types: this guarantees antOutInf(S) to be true. As observed above,
the leaves of such infinitely many terms are themselves taken from the finite
set reach(Z); hence the leaf sets are always taken from the finite set of subsets
of reach(Z) (which is itself finite, see Proposition 4.1). In Section 2 we have
recalled the notion of wqo, and that equality on a finite set is a wqo (i.e., in an
infinite sequence of elements taken from a finite set, there are at least to equal
elements). The termination of our algorithm follows from this wqo: Asmp2,
besides checking conditions that are guaranteed to hold if the procedure ≤a

continues indefinitely, checks for the equality between the set of leaves of the
r.h.s. term in the current judgement and the r.h.s. in a previously checked one.
This is guaranteed to eventually happen as the set of leaves are taken from a
finite domain, and equality is a wqo on this finite domain.

We are finally ready to formally state the decidability results for single-out/
single-in session types proved in [19]. We start with the single-out case, for
which we have recalled the corresponding deciding algorithm.

Theorem 4.2 (Decidability for Single-out Types). Asynchronous subtyp-
ing ≤ over single-out session types is decidable.

Exploiting dual closeness of ≤, the algorithm presented for single-out types can
be applied also to single-in types (it is sufficient to check subtyping on the duals,
observing that the dual of a single-in type is single-out).

Corollary 4.1 (Decidability for Single-in Types). Asynchronous subtyp-
ing ≤ over single-in session types is decidable.

5. Conclusion

In this paper we have described the contribution of our research group in the
context of three areas of interest for the Coordination conference and its research
community: shared dataspace coordination languages, behavioural contracts
for service composition, and session types. The common denominator of the
presented research is the exploitation of techniques borrowed from concurrency
theory, in particular, process algebras and Petri nets.
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The paper is not intended to be a survey on the three considered areas of
research; survey papers already exists for coordination languages [49], for the
application of process algebras in the context of shared dataspace coordina-
tion [50], and for behavioural types [51, 52], that include both contracts and
session types. On the contrary, the objective of the paper is to present, fol-
lowing an original form of presentation, techniques developed during the early
years of formal study of coordination languages, that more recently turned out
to be successfully applicable also in other contexts.

More precisely, we started by presenting a novel Linda-based process calculus
based on the exchange of tuples of names through a shared dataspace. The
distinguishing feature of this calculus is that new names can be produced and
passed to other processes simply by placing them inside tuples. For this calculus
we have considered the reachability and coverability problems, two properties
dealing with the exploration of the reachable states: given a target dataspace,
reachability consists of checking whether such dataspace can be reached, while
for coverability it is sufficient to reach a state that includes at least the tuples
in the target dataspace. By using techniques that we already applied to other
shared dataspace process calculi, we have proved that (i) both properties are
undecidable in the proposed calculus, (ii) coverability becomes decidable if we
assume that processes can use the new names that they receive only inside
output operations, while (iii) reachability turns out to be decidable if we remove
from the calculus the possibility to generate new names. For undecidability
proofs we resort to Random Access Machines, a register based Turing complete
formalism, while for the decidability results we exploited Petri nets and Well
Structured Transition Systems, that are transition systems equipped with a well
quasi ordering on states.

In the second part of the paper we recall the main results in the context
of behavioural contracts applied to service oriented computing. We present a
language for services having essentially the same syntax of the Linda calculus in-
troduced in the first part of the paper, but with a different semantics: processes
(called services in this case) do not share a common message repository, but send
messages directly to operations offered by other services. On this language we
apply our contract theories by considering both synchronous and asynchronous
communication. Contracts describe the input-output communication behaviour
of services and can be used to reason about service composition and and service
replaceability; formally, we say that a service can be used in place of another one
if their behavioural contracts are in refinement relation. One of the open prob-
lems of behavioural contracts is an algorithmic characterization of refinement
in the case of asynchronous communication.

We have presented behavioural contracts because the interest in trying to
close the above open problem on contract refinement for asynchronous commu-
nication was the main justification for moving to the study of session types,
discussed in the third part of this paper. Session types can be seen as a sim-
plification of contracts that already had, besides a rich and well-established
theory, a wide application on concurrent programming languages such as, e.g.,
Haskell [42], Go [43] and Rust [44]. We have specifically focused on session sub-
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typing which is, for session types, a notion equivalent to the notion of refinement
in the context of contracts. We have recalled the well-known algorithm by Gay
and Hole [15] for synchronous session subtyping. For asynchronous communi-
cation, on the other hand, algorithms that were presented, like that in [16],
revealed wrong: in fact, it was proved that asynchronous session subtyping.
We have reported here our undecidability proof that, like those for Linda-like
process calculi, is by reduction from the halting problem in Turing complete
formalism. In this case we used Queue Machines instead of Random Access
Machines. Another recent contribution that we have reported here is an algo-
rithm for checking asynchronous session subtyping under the assumption that
output (or input) choices have only one branch. Our algorithm is inspired by the
one by Gay and Hole, but in order to deal with asynchronous communication we
need a more sophisticated termination condition that must check also messages
that have been buffered in the communication channels. The termination of this
algorithm is proved by exploiting techniques like those used for the decidability
proof in Linda-like calculi, namely, the application of well quasi orderings.

We expect two possible lines for future work: on the one hand, analyse
the impact on the theory of contracts of our results for session types (in fact,
very few results are present in the literature about contracts for asynchronous
communication) and, on the other hand, continue in the context of session
types by investigating novel techniques for sound algorithmic characterizations
of asynchronous session subtyping.
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