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Chronic pain prevalence is high worldwide and increases at older ages. Signs of

premature aging have been associated with chronic pain, but few studies have

investigated aging biomarkers in pain-related conditions. A set of DNA methylation

(DNAm)-based estimates of age, called “epigenetic clocks,” has been proposed as

biological measures of age-related adverse processes, morbidity, and mortality. The

aim of this study is to assess if different pain-related phenotypes show alterations in

DNAm age. In our analysis, we considered three cohorts for which whole-blood DNAm

data were available: heat pain sensitivity (HPS), including 20 monozygotic twin pairs

discordant for heat pain temperature threshold; fibromyalgia (FM), including 24 cases

and 20 controls; and headache, including 22 chronic migraine and medication overuse

headache patients (MOH), 18 episodic migraineurs (EM), and 13 healthy subjects.

We used the Horvath’s epigenetic age calculator to obtain DNAm-based estimates of

epigenetic age, telomere length, levels of 7 proteins in plasma, number of smoked packs

of cigarettes per year, and blood cell counts. We did not find differences in epigenetic

age acceleration, calculated using five different epigenetic clocks, between subjects

discordant for pain-related phenotypes. Twins with high HPS had increased CD8+ T cell

counts (nominal p = 0.028). HPS thresholds were negatively associated with estimated

levels of GDF15 (nominal p = 0.008). FM patients showed decreased naive CD4+ T cell

counts compared with controls (nominal p = 0.015). The severity of FM manifestations

expressed through various evaluation tests was associated with decreased levels of

leptin, shorter length of telomeres, and reduced CD8+ T and natural killer cell counts

(nominal p < 0.05), while the duration of painful symptoms was positively associated

with telomere length (nominal p = 0.034). No differences in DNAm-based estimates

were detected for MOH or EM compared with controls. In summary, our study suggests
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that HPS, FM, and MOH/EM do not show signs of epigenetic age acceleration in whole

blood, while HPS and FM are associated with DNAm-based estimates of immunological

parameters, plasma proteins, and telomere length. Future studies should extend these

observations in larger cohorts.

Keywords: epigenetic aging, aging biomarker, epigenetic clock, chronic pain, pain sensitivity, fibromyalgia, Q12

headache, DNA methylation

INTRODUCTION
Q7

Q1 Chronic pain is defined as a “pain which has persisted beyond
normal tissue healing time” (1), a process that, in the absenceQ13

of additional unfavorable factors, is expected to not exceed
a period of 3 months. Chronic pain is common in both
developed and developing countries (2, 3). In 2006, a large
computer-assisted telephone survey reported that in European
countries, the prevalence of chronic pain varied from 12 to
30%, with Spain, Ireland, and UK among the countries with
the lowest prevalence, and Italy, Poland, and Norway among
those with the highest prevalence (4). These country-dependent
differences are probably triggered by multiple factors, including
differences in pain perception and treatment, lifestyle, and age of
the participants.

Accordingly, the etiology of chronic pain is multifactorial
and embraces a broad range of factors that can be grouped
in demographic, clinical, psychological, and lifestyle domains.
Risk factors for chronic pain may not only trigger the
onset of a persistent syndrome, but may also influence its

eventual manifestation, having impact on different chronic pain

dimensions like duration, localization, intensity, interference in

daily life activities, or influence on emotional state. Advanced

chronological age, female biological sex, feminine gender
identity, deprived socio-economic status, unemployment, and
adverse and unsatisfactory occupational situation are among
the demographic positive risk factors for chronic pain (5–
8). Although the reported prevalence rates tend to be higher
in developing countries, the correlation between ethnicity and
chronic pain is complex and the driving mechanisms are
not clearly determined yet (9). In addition, cultural heritage
and tradition with its practices and rituals are additional
risk agents that modulate the attitudes toward the painful
experience influencing the manifestation and/or perception of
chronic condition (10). Among the clinical risk factors, the most
pronounced one is the coexistence of another acute or chronic
pain (11). Co-morbid physical and mental disorders, surgical,
and medical interventions that have been undergone, increased
BMI, and sleep disorders are the risk agents favoring persistent
painful phenotypes (12–15). Also, several DNA variants that
may be responsible for the genetic pre-disposition to develop
pain have been identified (16). More than 150 genes have been
already associated with pain-related conditions, among which
are COMT, OPRM, SNC9A, IL6, or TNFA. The personal attitude
and beliefs, concerns, and fears stimulate the development of
the chronic pain conditions and can restrain or totally impede
the recovery, as in the case of fear-avoidance model behavior

in musculoskeletal pain disorders (17). Finally, the risk factors
connected to lifestyle are smoking, alcohol use disorders, limited
physical activity, and painogenic modern urban environment
with, for example, low sun exposure or high air pollution (18–
21). Additionally, the individual alimentary habits plausibly
contribute to development and prevention of long-lasting pain
disorders but the mechanism remains unclear (22).

As mentioned above, advanced age is a risk factor for chronic
pain and often phenotypes of pre-mature aging are observed in
patients. These manifestations of accelerated aging involve not
only structural changes in the brain, like a total and regional
decrease of gray matter (23–25), but also more systemic changes
like a decrease in peripheral blood leukocyte telomere length (26)
and increased inflammation (27–29).

Advances in recent research have led to the identification of a
limited set of biomarkers that are considered potential biological
age predictors (30), i.e., that are informative of the discrepancy
between chronological age and biological age in conditions
associated with successful (biological age deceleration) or
unsuccessful (biological age acceleration) conditions. Potential
markers of biological age include the analysis of telomere length,
a brain age predictor based on structural neuroimaging [T1-
weighted magnetic resonance imaging (MRI)], and different
types of epigenetic clocks based on the DNA methylation
(DNAm) values of specific CpG sites. In particular, epigenetic
clocks have been extensively analyzed in physiological and
pathological conditions (31) and an increase in predicted
epigenetic age compared with chronological age has been
associated to multiple conditions including neurological diseases
(32, 33), progeroid syndromes (34–36) and, although in a
less straightforward way, morbidity, and mortality (37, 38).
Epigenetic clock measurements in whole blood have been
associated with socio-cultural aspects, including education,
lifestyle, and socio-economic status (38–41) and with exposure
to stress and trauma (42, 43).

The “first generation” epigenetic clocks were developed on
the basis of the association between DNAm and chronological
age. The most used predictors were built using different training
sets, which included large datasets of multiple tissues (44), whole
blood (45), or human cell types used in ex vivo studies (35).
Recently, more sophisticated epigenetic clocks have been built
using not only chronological age but also clinical biomarkers
that are informative of the quality of aging or associated with
mortality more than age itself. The PhenoAge clock includes 10
variables (albumin, creatinine, serum glucose, C-reactive protein,
lymphocyte percent, mean cell volume, red cell distribution
width, alkaline phosphatase, white blood cell count, and age)
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(38), while the GrimAge is a composite biomarker based on the
DNAm surrogates of seven plasma proteins and of smoking pack-
years (40). Both PhenoAge and GrimAge outperformed previous
epigenetic clocks in their associations with age-related conditions
and mortality.

To the best of our knowledge, only one study investigated
epigenetic age acceleration in chronic pain (46). The authors
analyzed 20 individuals with chronic pain between 60 and 83
years and 9 age-matched controls and evaluated biological age
acceleration by calculating the difference between Horvath’s
DNAm age and chronological age. A younger epigenome
was observed in subjects that did not experience chronic
pain in the past 3 months. Individuals characterized as
emotionally stable, conscientious, and extrovert demonstrated
lower epigenetic age. Epigenetic age acceleration was shown to
be positively associated with higher experimental pain sensitivity
and negatively associated with fluid cognition and memory,
globally supporting an association between epigenetic age and
chronic pain.

The aim of the present work is to further explore the
association between epigenetic age and chronic pain, by
investigating first- and second-generation epigenetic clocks and
DNAm surrogates of plasma proteins, blood cell counts, and
telomere length in different pain-related conditions for which
methylation data are available.

MATERIALS AND METHODS
Q9

Datasets
Our work involves DNAm data from three epigenome-wide
studies investigating methylation patterns in pain-related
phenotypes: heat pain sensitivity (HPS), fibromyalgia (FM),
and headache syndromes comprising medication-overuse
headache and episodic migraine. The characteristics of the
datasets are provided in Table S1 and are summarized in the
following paragraphs.

Heat Pain Sensitivity
The HPS dataset was acquired through Gene Expression
Omnibus (GEO) NCBI repository (http://www.ncbi.nlm.nih.
gov/geo/) under accession number GSE53128 (47). It includes
DNAm data generated using the Infinium Human Methylation
450K BeadChip on whole blood from female monozygotic
twins discordant for HPS, belonging to the British TwinsUK
collection (48). Methylation data were available for 43 whole-
blood samples. Three subjects were not considered in the
analysis due to missing data and unfeasibility to assign them
unequivocally to one of the phenotypic classes, thus leaving 20
twin pairs. The individuals ranged in age between 47 and 76 years
old. The heat pain suprathreshold (HPST) scores were obtained
with quantitative sensory testing (QST) and discordance was
defined as a minimum difference of 2◦C within the twin pairs.
On the basis of HPST values, we assigned each participant to
one of two phenotypic groups: high pain sensitivity (H), i.e.,
siblings with lower HPST values compared with their co-twin;
low pain sensitivity (L), i.e., siblings with higher HPST values
compared with their co-twin. The analysis of the HPS dataset

was performed considering the entire cohort or dividing it into
two subsets, including subjects younger than 60 years old (8 twin
pairs) or older than 60 years old (12 twin pairs).

Fimbromyalgia
The FM dataset was retrieved from GEO NCBI repository under
accession number GSE85506 (49). This pilot study assessed
whole-blood DNAm in female patients with FM using the
Infinium Human Methylation 450K BeadChip. It includes 24
cases and 23 age- and sex-matched controls recruited from
the Brazilian population. The age range of the cohort was
19–80 years old. One healthy subject was not included in
the analysis due to missing information on chronological
age. Patients were classified as cases after neurological and
psychiatric evaluation, verifying differential diagnosis according
to current gold standard guidelines. In addition, FM-positive
individuals were clinically characterized with a battery of
tests and questionnaires: McGill Pain Questionnaire assessing
sensory, affective, evaluative dimension of pain (MPQ_sensory,
MPQ_affective, and MPQ_evaluative); Visual Analog Scale
(VAS) reflecting the pain intensity; Brief Pain Inventory (BPI)
evaluating the interference of painful experience with daily
activities (total score) and registering the dosage and efficacy
of pharmaceutical treatment (7th item of BPI questionnaire);
FM Impact Questionnaire (FIQ) examining the impact of pain
on different health domains; Pain Catastrophizing Scale (PCS)
measuring a tendency to exaggerated negative attitudes in
response to noxious stimuli. Three cases had missing values for
the duration time of painful symptoms.

Headache
The Headache dataset is part of an exploratory GWAS
longitudinal study on Italian subjects with painful cephalic
phenotypes (50). According to the criteria defined by the
International Headache Society 3rd edition (beta version), during
the clinical examination, all participants were assigned to one
of the following phenotypic groups: (i) chronic migraine and
medication overuse headache patients (MOH), (ii) episodic
migraine patients (EM), and (iii) healthy controls (HC). In this
work, we focused on DNAm data collected at baseline time point
(T0), which included 22 MOH (20 females, 2 males), 18 EM (17
females, 1 male), and 13 HC (8 females, 5 males). The age range
of the subjects was between 24 and 69 years old. Whole-blood
DNAm patterns were assessed by the Illumina Infinium Human
Methylation EPIC BeadChip.

Data Pre-processing
Raw data files (.idat format) from the three studies were
downloaded and separately pre-processed using minfi package
within Rstudio software (version 3.5.1) in Linux environment.
minfi package provides tools for the analysis of Infinium DNA
Methylation microarrays and can handle both 450k and EPIC
arrays (Aryee et al., 2014; Fortin et al., 2017). The pre-processing, Q14

quality control, and normalization steps were implemented as
recommended by Maksimovic et al. (51). Probes with a detection
p-value higher than 0.05 were recognized as failed. Only samples
with at least 95% of successfully assessed probes were retained
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and probes that did not reach significant detection p-values in at
least 99% of samples were filtered out. According to these filtering
criteria, all the samples from the three cohorts were retained,
while 3,493, 2,034, and 4,773 probes were removed in HPS, FM,
and MOH/EM datasets, respectively.

Calculation of DNAm Estimates
DNAm estimates were calculated using the New DNA
Methylation Age Calculator, an open access tool available
at https://dnamage.genetics.ucla.edu/ (44). Pre-processed
methylation data were first normalized by the preprocessQuantile
function implemented in minfi R package, as suggested in the
Horvath’s tutorial. Then, beta values matrixes were uploaded in
the online tool, selecting the options “Advanced Analysis” and
“Normalize Data,” as recommended in the software tutorial.
Horvath’s epigenetic age calculator returned as output a set
of variables including different measures of biological age in
blood and of epigenetic age acceleration in blood, DNAm-based
surrogate biomarkers of seven plasma proteins, an estimate
of smoking cigarette pack per year (these eight measures are
components of GrimAge prediction), and an estimate of telomere

length and predictions of blood cell counts. Table 1 provides
a detailed list and description of DNAm-based measures that
were used for statistical analysis in our work. Two subjects
were filtered out in FM dataset as they had outlier values
for DNAmAge estimate (values below Q1 – 1.5IQR or above
Q3 + 1.5IQR, where Q1 and Q3 are first and third quartile,
respectively, and IQR refers to interquartile range), reducing
the total number of analyzed samples to 44 (24 cases and 20
controls). No outlier was found in the case of HPS andMOH/EM
cohorts and all samples were retained.

Statistical Analysis
Different methods of calculating biological age acceleration have
been applied so far (El Khoury et al., 2019). Multiple linear Q14

regression (MLR) has been used to examine the influence of the
disease status on DNAm age, correcting for chronological age
and additional potential confounders. Alternatively, comparison
of residuals of DNAm age regressed on chronological age (two-
stage residual-outcome regression analysis, 2SR) has been largely
used, although in genetic association studies, it has been shown

TABLE 1 | List of variables calculated by the new DNA methylation age calculator available online at https://dnamage.genetics.ucla.edu/.Q6

Variable name Variable description

DNAmAge DNAm age estimate based on methylation of 353 CpG sites described by Horvath (44)

DNAmAgeHannum DNAm age estimate based on methylation of 71 CpG sites described by Hannum et al. (45)

DNAmAgeSkinBloodClock DNAm age estimate (based on methylation of 391 CpG sites) for human fibroblasts, keratinocytes, buccal cells, endothelial

cells, lymphoblastoid cells, skin, blood, and saliva samples; developed by Horvath (44)

DNAmPhenoAge DNAm-based estimate of phenotypic age (38)

DNAmGrimAge DNA methylation age model build on eight DNAm based measures (DNAmADM, DNAmB2M, DNAmCystatinC,

DNAmGDF15, DNAmLeptin, DNAmPACKYRS, DNAmPAI1, DNAmTIMP1), chronological age and sex (52)

DNAmTL DNAm-based estimate of telomere length (53)

DNAmADM DNAm-based prediction of plasma levels of adrenomedullin—a vasodilator peptide hormone (53)

DNAmB2M DNAm-based prediction of plasma levels of beta-2 microglobulin—a component of major histocompatibility complex class

1 (MHC I) molecular (52)

DNAmCystatinC DNAm-based prediction of plasma levels of cystatin C or (cystatin 3)—formerly called gamma trace, post-gamma-globulin,

or neuroendocrine basic polypeptide (52)

DNAmGDF15 DNAm-based prediction of plasma levels of GDF-15—growth differentiation factor 15 (52)

DNAmLeptin DNAm-based prediction of plasma levels of leptin—a hormone pre-dominantly present in adipose cells (52)

DNAmPAI1 DNAm-based prediction of plasma levels of plasminogen activator inhibitor antigen type 1 (PAI-1)—the major inhibitor of

tissue-type plasminogen activator and unokinase plasminogen activator (52)

DNAmTIMP1 DNAm-based prediction of plasma levels of TIMP-1 or TIMP metallopeptidase inhibitor 1—a tissue inhibitor of

metallo-proteinases (52)

DNAmPACKYRS DNAm-based prediction of a number of pack of cigarettes during year (52)

CD8T DNAm-based estimate of CD8T cells, expressed as ordinal abundance measures (54)

CD4T DNAm-based estimate of CD4T cells, expressed as ordinal abundance measures (54)

CD8.naive DNAm-based estimate of naive CD8T cells, expressed as ordinal abundance measures (55, 56)

CD4.naive DNAm-based estimate of naive CD4T cells, expressed as ordinal abundance measures (55, 56)

CD8pCD28nCD45RAn DNAm-based estimate of exhausted cytotoxic T defined as CD8+, CD28–, and CD45R– cells, expressed as ordinal

abundance measures (55, 56)

NK DNAm-based estimate of natural killer cells, expressed as ordinal abundance measures (54)

Bcell DNAm-based estimate of B cells, expressed as ordinal abundance measures (54)

Mono DNAm-based estimate of monocytes, expressed as ordinal abundance measures (54)

Gran DNAm-based estimate of granulocytes, expressed as ordinal abundance measures (54)

PlasmaBlast DNAm-based estimate of plasma blasts, expressed as ordinal abundance measures (55, 56)
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that this method can lead to bias (Demissie and Cupples, 2011),Q14

and this could be true also in the case of epigenetics. To achieve
consistent results, in this work, we have conducted parallel
analyses and, for each of the epigenetic estimates listed inTable 1,
we have compared the phenotypic groups using MLR or 2SR.

More specifically, in the first approach (MLR), the differences
in each epigenetic variable among the phenotypic groups were
examined building a linear regression model correcting for
chronological age: lm(Epigenetic_variable ∼ Group + Age). For
HPS twin cohort, the lmer function from the lmerTest R package
was used to build a linear mixed model, including family
as a random effect: lmer(Epigenetic_variable ∼ Group + Age
+ (1/Family)).

In the second approach (2SR), each of the variables
was adjusted for chronological age by building a linear
regression model on the control group (healthy subjects
in FM and MOH/EM cohorts, siblings with lower HPS
in the HPS cohort)): lm(Epigenetic_variable[control_group] ∼

Age[control_group]. This regression model was then applied

TABLE 2 | Results of statistical hypothesis testing comparing discordant MZ twins

with high and low heat pain sensitivity, using the MLR approach correcting for

chronological age, and including family as a random effect.

Epigenetic

Variable

Coefficient P-value P-value

LocAdjBH

P-value

GlobAdjBH

DNAmAge 0.862 0.376 0.571 0.958

DNAmAgeHannum 1.779 0.163 0.449 0.942

DNAmAgeSkinBloodClock 0.789 0.381 0.571 0.958

DNAmPhenoAge 1.925 0.153 0.449 0.942

DNAmGrimAge 0.611 0.318 0.571 0.958

DNAmTL −0.020 0.331 0.571 0.958

DNAmADM 4.194 0.168 0.449 0.942

DNAmB2M 14611.748 0.410 0.579 0.967

DNAmCystatinC 3930.380 0.377 0.571 0.958

DNAmGDF15 −43.823 0.150 0.449 0.942

DNAmLeptin 1124.843 0.313 0.571 0.958

DNAmPAI1 733.414 0.189 0.455 0.942

DNAmTIMP1 20.035 0.877 0.915 0.995

DNAmPACKYRS 0.710 0.613 0.736 0.995

CD8T −0.022 0.028 0.449 0.942

CD4T −0.002 0.902 0.915 0.995

CD8.naive −0.612 0.915 0.915 0.995

CD4.naive −29.158 0.072 0.449 0.942

CD8pCD28nCD45RAn −0.592 0.451 0.601 0.967

NK −0.006 0.597 0.736 0.995

Bcell −0.009 0.118 0.449 0.942

Mono 0.002 0.703 0.803 0.995

Gran 0.033 0.098 0.449 0.942

PlasmaBlast 0.068 0.074 0.449 0.942

The columns report the value of MLR coefficient (“Coefficient”), the corresponding nominal

p-value (“P-value”), the p-value corrected with Benjamini–Hochberg procedure for multiple

tests locally—within a single cohort (“P-value LocAdjBH”), and globally—within all the

cohorts included in the study (“P-value GlobAdjBH”). Significant p-values are reported

in bold.

to both cases and controls to predict the epigenetic variable
under investigation and calculate the chronological age-
corrected residuals. Finally, residuals were compared among the
phenotypic groups using parametric Student’s t-test, or paired
Student’s t-test in the case of HPS twin cohort.

Prior to hypothesis testing, the distribution of epigenetic
variables was tested using the ggqqplot function in the ggpubr
R package. According to visual inspection of the plots (data
not shown), none of the variables violated the assumption
of normality.

Power calculation for MLR and 2SR approaches was
performed using the pwr.t.test function from the pwr R package
(the powerSim function from simr R package was used for linear
mixed models in the HPS cohort). As expected, given the small
size of the cohorts, power tended to be low for most of the
epigenetic variables; this was true especially for the 2SR approach,
as previously reported (Che et al., 2012). Q14

Finally, we calculated the association between DNAm-
based estimates and continuous clinical variables related to

TABLE 3 | Results of association analysis between epigenetic measurements and

HPST values in the HPS cohort, correcting for chronological age, and including

family as a random effect.

Epigenetic

variable

Coefficient P-value P-value

LocAdjBH

P-value

GlobAdjBH

DNAmAge 0.038 0.872 0.947 0.995

DNAmAgeHannum 0.231 0.452 0.947 0.967

DNAmPhenoAge 0.135 0.677 0.947 0.995

DNAmAgeSkinBloodClock 0.093 0.671 0.947 0.995

DNAmGrimAge 0.143 0.332 0.947 0.958

DNAmADM 0.874 0.182 0.947 0.942

DNAmB2M −882.527 0.831 0.947 0.995

DNAmCystatinC 452.914 0.648 0.947 0.995

DNAmGDF15 −16.463 0.007 0.159 0.757

DNAmLeptin 394.685 0.113 0.947 0.942

DNAmPAI1 190.268 0.126 0.947 0.942

DNAmTIMP1 −7.918 0.777 0.947 0.995

DNAmPACKYRS 0.243 0.483 0.947 0.991

DNAmTL 0.000 0.985 0.985 0.995

CD8T −0.001 0.646 0.947 0.995

CD4T 0.001 0.807 0.947 0.995

CD8.naive −0.163 0.908 0.947 0.995

CD4.naive −4.764 0.246 0.947 0.958

CD8pCD28nCD45RAn −0.153 0.417 0.947 0.967

NK −0.001 0.750 0.947 0.995

Bcell 0.000 0.725 0.947 0.995

Mono 0.000 0.781 0.947 0.995

Gran 0.002 0.630 0.947 0.995

PlasmaBlast 0.007 0.389 0.947 0.958

The columns report the value of regression coefficient (“Coefficient”), the corresponding

nominal p-value (“P-value”), the p-value corrected with Benjamini–Hochberg procedure

for multiple tests locally—within a single cohort (“P-value LocAdjBH”), and globally—

within all the cohorts included in the study (“P-value GlobAdjBH”). Significant p-values

are reported in bold.
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FIGURE 1 | Epigenetic age difference (Horvath’s DNAmAge – chronological age) adjusted for chronological age in the phenotypic groups in (A) HPS, (B) FM, and (C)Q5

Q6 MOH/EM cohorts. Reported p-values are from MLR analysis, as described in the Materials and Methods section.

painful phenotypes, correcting for chronological age. In the
HPS cohort, HPST values were considered and a linear
mixed model was built, including family as a random effect:
lmer(Epigenetic_variable∼HPST+Age+ (1/Family)). In the FM
cohort, several clinical variables (duration of painful symptoms,
MPQ, VAS, BPI FIQ, and PCS scores) were considered as follows:
lm(Epigenetic_variable∼ Clinical_variable+ Age).

The results from all the analyses described above were
corrected with Benjamini–Hochberg procedure for multiple
tests: “locally”—within a single cohort and “globally”—within all
the cohorts included in the study. The statistical significance level
in all hypothesis tests was defined as α = 0.05.

All the analyses were conducted using R software (version
3.6.0 in Linux environment).

RESULTS

In our analysis, we considered three datasets of pain-related
conditions: HPS, FM, and headache (MOH/EM). The
characteristics of each dataset are summarized in Table S1.
In each dataset, we analyzed a series of variables returned by
the Horvath’s epigenetic age calculator, including (1) different
measures of epigenetic age (DNAmAge, DNAmAgeHannum,
DNAmAgeSkinBloodClock, DNAmPhenoAge, GrimAge); (2)
a DNAm-based estimate of telomere length (DNAmTL); (3)
DNAm surrogates of components that contribute to GrimAge
(abundance of adrenomedullin, DNAmADM; abundance of
beta-2 microglobulin, DNAmB2M; abundance of cystatin
C, DNAmCystatinC; abundance of growth differentiation
factor 15, DNAmGDF15; abundance of leptin, DNAmLeptin;
abundance of plasminogen activator inhibitor antigen type
1, DNAmPAI1; abundance of metallopeptidase inhibitor 1,
DNAmTIMP1; predicted number of pack of cigarettes during

FIGURE 2 | Association of HPST value and DNAmGDF15 in HPS cohort (L,

twins with lower heat pain sensitivity; H, with higher heat pain sensitivity). The

p-value of a mixed linear model correcting for age and using family as a

random effect is reported.

year, DNAmPACKYRS); and (4) DNAm-based predictions
of blood cell counts (CD8T cells, CD8T; CD4T cells,
CD4T; naive CD8T cells, CD8.naive; naive CD4T cells,
CD4.naive; joined estimation of CD8+, CD28–, and CD45RA–
T cells, CD8pCD28nCD45RAn; natural killer cells, NK; B
cells, Bcell; monocytes, Mono; granulocytes, Gran; plasma
blasts, PlasmaBlast).

As described in the section Materials and Methods, we used
two different approaches to compare the epigenetic variables
listed above among the phenotypic groups within each dataset.

Frontiers in Public Health | www.frontiersin.org 6 May 2020 | Volume 8 | Article 172

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles


685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

Kwiatkowska et al. Epigenetic Age in Pain

In the first approach (MLR), we performed a MLR analysis
correcting for chronological age. In the second approach (2SR),
we compared the residuals of the epigenetic variable regressed
on chronological age in control subjects within each dataset.
Although the latter method has been largely used in the analysis
of Horvath’s clocks results, it has been associated to bias and loss
of power in genetic association studies (Che et al., 2012; DemissieQ14

and Cupples, 2011). Accordingly, also in our datasets, the powerQ14

was higher for the MLR approach compared with 2SR. For this
reason, we provide the results of MLR in the main text and report
those of the 2SR in Supplementary Materials.

Heat Pain Sensitivity
Twenty monozygotic female twin pairs discordant for HPST
were analyzed. The scatterplots of epigenetic estimates of age,
DNAmGrimAge components, and blood cell counts against
chronological age are reported respectively in Figures S1–S3. The
results of the comparison between the twins with lower and
higher HPST (using the MLR approach and including family
as a random effect, see Materials and Methods) are reported

TABLE 4 | Results of statistical hypothesis testing comparing FM patients and

healthy individuals (HC), using the MLR approach correcting for chronological age.

Epigenetic variable Coefficient P-value P-value

LocAdjBH

P-value

GlobAdjBH

DNAmAge −2.168 0.449 0.963 0.967

DNAmAgeHannum 1.109 0.717 0.963 0.995

DNAmAgeSkinBloodClock −0.662 0.814 0.963 0.995

DNAmPhenoAge −0.971 0.736 0.963 0.995

DNAmGrimAge −0.449 0.692 0.963 0.995

DNAmTL 0.030 0.676 0.963 0.995

DNAmADM 4.512 0.280 0.963 0.958

DNAmB2M −4734.247 0.889 0.969 0.995

DNAmCystatinC −10037.097 0.180 0.963 0.942

DNAmGDF15 −1.171 0.979 0.979 0.995

DNAmLeptin −536.235 0.684 0.963 0.995

DNAmPAI1 −59.495 0.940 0.979 0.995

DNAmTIMP1 −47.894 0.843 0.963 0.995

DNAmPACKYRS −1.560 0.649 0.963 0.995

CD8T 0.010 0.422 0.963 0.967

CD4T 0.009 0.610 0.963 0.995

CD8.naive 13.099 0.360 0.963 0.958

CD4.naive 67.771 0.025 0.599 0.942

CD8pCD28nCD45RAn −0.330 0.753 0.963 0.995

NK −0.017 0.171 0.963 0.942

Bcell −0.006 0.415 0.963 0.967

Mono 0.002 0.750 0.963 0.995

Gran −0.007 0.788 0.963 0.995

PlasmaBlast 0.047 0.361 0.963 0.958

The columns report the value of MLR coefficient (“Coefficient”), the corresponding nominal

p-value (“P-value”), the p-value corrected with Benjamini–Hochberg procedure for multiple

tests locally—within a single cohort (“P-value LocAdjBH”), and globally—within all the

cohorts included in the study (“P-value GlobAdjBH”). Significant p-values are reported

in bold.

in Table 2. No differences in epigenetic age acceleration were
found between discordant twins (Figure 1A and Table 2). When
considering nominal p-values, we found significant differences
in estimates of CD8+ T blood cell counts (nominal p =

0.028; Table 2; Figure S3A): high pain sensitivity siblings showed
decreased levels of CD8+ T cells compared with their co-twin.
After correction for multiple tests, the difference in CD8+ T cells
did not remain significant.

We next considered the cohort as a whole, without dividing
the twins according to HPST, and calculated the associations
between HPST and epigenetic estimates using mixed model
adjusted on age and including family as a random effect (Table 3).
HPSTs were negatively associated with DNAmGDF15 (nominal p
= 0.007; Table 3; Figure 2A). After correction for multiple tests, Q15

Q22this association was no longer significant.
The subjects analyzed in the study by Cruz-Almeida et al.

were older than 60 years. Thus, in order to make our results
more comparable to those already published, we divided the HPS
cohort in two subsets: twin pairs younger and older than 60
years old.

Twin pairs with age above 60 years old (12 couples)
presented significant differences in DNAmAgeHannum age
estimates (nominal p= 0.021;Table S2), and subjects with higher
HPS were found to be epigenetically younger compared with
their siblings. In the same subset, discordant twins differed
in predicted CD8+ T and B cell counts (nominal p = 0.001
and 0.044, respectively; Table S2), with both estimates increased
in more sensitive individuals. Only the difference in predicted
CD8+ T cell counts was significant after correction for multiple
tests (BH adjusted p = 0.033). No significant associations
between epigenetic variables and HPST values were found in this
subset (Table S3).

In the subset with subjects younger than 60 years old,
DNAmGDF15 estimates were found to be significantly higher
among siblings with lower HPST (nominal p = 0.026; Table S2).
Association analysis confirmed negative relationship between

TABLE 5 | Results of association analysis between epigenetic measurements and

continuous clinical data related to phenotypes in FM cohort, correcting for

chronological age.

Clinical

variable

Epigenetic

variable

Coefficient P-value P-value

LocAdjBH

P-value

GlobAdjBH

BPI_interference DNAmLeptin −239.733 0.006 0.851 0.757

VAS DNAmLeptin −327.578 0.013 0.851 0.942

MPQ_evaluative DNAmTL −0.183 0.013 0.851 0.942

BPI_interference CD8T −0.002 0.016 0.851 0.942

Duration of painful

symptoms

DNAmTL 0.022 0.034 0.992 0.942

PCS NK −0.001 0.048 0.992 0.942

Only the associations with significant nominal p-values are reported. The columns report

the value of the regression coefficient (“Coefficient”), the corresponding nominal p-value

(“P-value”), the p-value corrected with Benjamini–Hochberg procedure for multiple tests

locally—within a single cohort (“P-value LocAdjBH”), and globally—within all the cohorts

included in the study (“P-value GlobAdjBH”).
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HPST and DNAmGDF15 in this data subset (rnominal p =

0.002; Table S3). The latter association remained significant after
multiple tests correction (BH adjusted p= 0.040).

The results obtained using 2SR approach were comparable to
those presented above and are reported in Table S4, S5.

The power analysis outcomes for MLR and 2SR approaches
are reported in Tables S6, S7, respectively.

Fibromyalgia
Twenty-four FM female cases and 20 sex- and age-matched
controls that passed the quality control steps were analyzed.
The scatterplots of epigenetic estimates of age, DNAmGrimAge
components, and blood cell counts against chronological age are
presented, respectively, in Figures S4–S6. In MLR analysis, we
did not find differences in epigenetic age acceleration comparing
FM patients and healthy subjects (Figure 1B and Table 4).
The two phenotypic groups differed, however, in the ordinal
abundance measure of naive CD4+ T cells adjusted by age,
which was significantly lower, at the nominal level, in the affected
individuals (nominal p= 0.025;Table 4; Figure S6D). The results
obtained with 2SR approach were comparable to those of the
MLR approach and are reported in Table S8.

Investigation of associations between a set of clinical data
and the epigenetic estimates, correcting for chronological age,
revealed significant negative association of BPI_interference
with DNAmLeptin (nominal p = 0.006; Table 5; Figure 3A)
and with predicted CD8+ T cell counts (nominal p = 0.016;
Table 5; Figure 3B). The VAS score was also negatively associated
with DNAmLeptin (nominal p = 0.013; Table 5; Figure 3C).
MPQ_evaluative score was negatively associated with DNAmTL
(nominal p = 0.013; Table 5; Figure 3D). Duration of painful
symptoms expressed in years and DNAmTL were found to be

positively associated (nominal p = 0.034; Table 5; Figure 3E).
Finally, a negative association was found between PCS and
abundance in NK cells (nominal p = 0.048; Table 5; Figure 3F).
None of these associations remained significant after correction
for multiple tests.

The outcomes of power calculation for FM dataset are
reported in Tables S9, S10.

Headache
Twenty-two MOH patients, 18 EM cases, and 13 HC controls
were analyzed. The scatterplots of epigenetic estimates of age,
DNAmGrimAge components, and blood cell counts against
chronological age are reported, respectively, in Figures S7–S9.
MLR did not reveal any significant difference in epigenetic
age acceleration, DNAm surrogates comprised in GrimAg, and
estimates of telomere length and blood cell counts, between
MOH and HC cases or between EM and HC cases (Figure 1C
and Table 6). 2SR provided comparable results (Table S11).

The outcomes of power calculation for MOH/EM dataset are
reported in Tables S12, S13.

DISCUSSION

In this study, we analyzed methylation-based estimates of
biological aging in three pain-related conditions, for which
genome-wide DNAm data were available: HPS, FM, and
medication overuse headache/episodic migraine (MOH/EM). In
none of the three cohorts did we find evidences of epigenetic age
acceleration associated to pain.

So far, only Cruz-Almeida et al. investigated the association
between Horvath’s epigenetic clock and chronic pain (46). The
authors reported higher epigenetic age acceleration, expressed as

FIGURE 3 | Significant associations between clinical data related to painful phenotype and epigenetic measurements in FM cohort: (A) BPI_interference score vs.

DNAmLeptin estimates, (B) VAS score vs. DNAmLeptin estimates, (C) MPQ_evaluative score vs. DNAmTL, (D) BPI_interference score vs. CD8T estimates, (E)

Duration of painful symptoms vs. DNAmTL estimates, (F) PCS score vs. NK cells estimates. p-values of a linear model correcting for age are reported.
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TABLE 6 | Results of statistical hypothesis testing comparing MOH patients, EM patients, and healthy individuals (HC), using the MLR approach correcting for chronological age.Q23

MOH vs. HC EM vs. HC MOH vs. EM

Epigenetic

variable

Coefficient P-value P-value

LocAdjBH

P-value

GlobAdjBH

Coefficient P-value P-value

LocAdjBH

P-value

GlobAdjBH

Coefficient P-value P-value

LocAdjBH

P-value

GlobAdjBH

DNAmAge 0.066 0.954 0.968 0.995 2.157 0.199 0.606 0.942 2.354 0.091 0.721 0.942

DNAmAgeHannum −1.708 0.378 0.824 0.958 1.975 0.313 0.751 0.958 0.701 0.712 0.912 0.995

DNAmAgeSkinBloodClock 0.539 0.610 0.915 0.995 0.023 0.986 0.986 0.995 1.009 0.331 0.721 0.958

DNAmPhenoAge 0.211 0.896 0.968 0.995 0.902 0.662 0.962 0.995 1.869 0.281 0.721 0.958

DNAmGrimAge −0.785 0.583 0.915 0.995 1.598 0.175 0.606 0.942 0.855 0.493 0.845 0.994

DNAmTL 0.031 0.531 0.915 0.995 −0.007 0.903 0.985 0.995 0.011 0.798 0.912 0.995

DNAmADM 0.155 0.968 0.968 0.995 −1.918 0.678 0.962 0.995 −0.166 0.956 0.956 0.995

DNAmB2M −35367.502 0.210 0.682 0.942 6664.817 0.832 0.962 0.995 −34406.624 0.195 0.721 0.942

DNAmCystatinC −6991.375 0.227 0.682 0.945 353.046 0.953 0.986 0.995 −4276.995 0.349 0.721 0.958

DNAmGDF15 −8.906 0.860 0.968 0.995 10.909 0.842 0.962 0.995 −5.230 0.905 0.945 0.995

DNAmLeptin −2140.873 0.297 0.771 0.958 2859.149 0.199 0.606 0.942 1191.950 0.361 0.721 0.958

DNAmPAI1 −1622.909 0.101 0.682 0.942 1178.540 0.389 0.847 0.958 −266.931 0.755 0.912 0.995

DNAmTIMP1 −79.089 0.542 0.915 0.995 −43.855 0.741 0.962 0.995 −57.791 0.672 0.912 0.995

DNAmPACKYRS 1.707 0.681 0.961 0.995 4.488 0.189 0.606 0.942 4.935 0.188 0.721 0.942

CD8T −0.015 0.123 0.682 0.942 0.014 0.220 0.606 0.945 −0.002 0.845 0.922 0.995

CD4T −0.003 0.792 0.968 0.995 0.023 0.206 0.606 0.942 0.014 0.337 0.721 0.958

CD8.naive 1.768 0.862 0.968 0.995 2.456 0.823 0.962 0.995 2.767 0.768 0.912 0.995

CD4.naive 43.989 0.146 0.682 0.942 13.125 0.680 0.962 0.995 45.008 0.105 0.721 0.942

CD8pCD28nCD45RAn 0.901 0.198 0.682 0.942 −1.173 0.117 0.606 0.942 −0.182 0.789 0.912 0.995

NK −0.014 0.152 0.682 0.942 0.003 0.823 0.962 0.995 −0.009 0.309 0.721 0.958

Bcell 0.007 0.321 0.771 0.958 0.003 0.630 0.962 0.995 0.012 0.048 0.721 0.942

Mono −0.004 0.427 0.853 0.967 −0.008 0.227 0.606 0.945 −0.008 0.120 0.721 0.942

Gran 0.030 0.106 0.682 0.942 −0.036 0.210 0.606 0.942 −0.008 0.723 0.912 0.995

PlasmaBlast 0.002 0.964 0.968 0.995 −0.039 0.424 0.847 0.967 −0.036 0.431 0.796 0.967

The columns report the value of MLR coefficient (“Coefficient”), the corresponding nominal p-value (“P-value”), the p-value corrected with Benjamini–Hochberg procedure for multiple tests locally—within a single cohort (“P-value

LocAdjBH”), and globally—within all the cohorts included in the study (“P-value GlobAdjBH”). Significant p-values are reported in bold.
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difference between DNAmAge and chronological age, among 20
participants (age range: 60–83 years old) with persistent painful
symptoms during the past 3 months compared with healthy age-
matched controls. The study also showed significant negative
partial correlations, accounting for age, sex, and race, between
heat pain thresholds and epigenetic age. In a subsequent study,
authors reported in the same cohort an association between
brain age acceleration, predicted by structural neuroimaging,
and chronic pain, but not with heat pain thresholds (57).
It is worth to be noted that brain age acceleration was not
observed in a similar group of chronic pain patients using
any kind of pain remedies (58). This result suggests that the
association between biomarkers of biological age and pain-
related conditions is not obvious and that it can be modulated
by several factors, including, for example, the use of medications
(59). Thus, the differences between our results and those reported
by Cruz-Almeida et al. (46) could be at least in part due to
the different pain-related conditions evaluated. Furthermore,
it should be noted that most of the subjects included in
the FM and in the MOH/EM cohorts were younger than 60
years old, the lowest age in the cohort assessed by Cruz-
Almeida et al. The HPS study included a larger number of
subjects older than 60 years, but also when we considered this
subset of twins, no age acceleration was observed in high pain
sensitivity subjects.

It is worth to be noted that the HPS cohort does not involve a
pathological phenotype, but is rather representative of differences
naturally occurring within a population of individuals of different
ages. Nevertheless, this cohort has been successfully used to
identify epigenetic changes in the pain gene TRPA1 [(47), p. 1],
which have been confirmed in independent studies involving
chronic pain patients (60). Several studies investigated if and
how heat pain perception changes throughout the life (61–68),
but they did not converge to consistent conclusions (62, 69, 70).
In our analysis of HPS cohort, we observed a non-significant
trend toward lower epigenetic ages in the high pain sensitivity
twins. This trend was more marked after 60 years old, when
age acceleration calculated by the DNAmAgeHannum predictor
was significantly lower in the high pain sensitivity group. At the
same time, when considering the cohort as a whole, we observed
a non-significant trend toward an inverse association between
epigenetic age acceleration (concordantly for all the five clocks)
and HPST, similarly to what was observed by Cruz-Almeida
et al. (57).

The second cohort that we considered includes female patients
suffering from FM, one of the best-studied centralized pain
conditions. As firstly proposed and summarized by Hassett et al.
(71), FM patients show signs of premature aging, including
a decrease in cognitive (72) and physical (73) condition,
gray matter atrophy (74, 75) and a trend toward telomere
shortening in leukocytes (76). In the latter study, subjects
with higher pain intensities and more severe depression had
shorter telomeres compared to milder phenotypes. In our
cohort, on the contrary, no differences in DNAmTL were
found between FM patients and healthy controls, and on the
contrary, the duration of painful symptoms was positively
associated with DNAmTL. One explanation for this observation

is that patients experiencing painful symptoms for a longer
time have also a longer history of medication use that can have
attenuated age-associated telomere shortening, as previously
suggested (77).

Finally, the third cohort that we considered in our study
includes patients with MOH and EM. Also in this case, evidences
in literature suggest the presence of age-related biological
manifestations in the disease. Migraine patients tend to display
thinner brain cortex compared with control subjects and this
abnormal process seems to become more prominent with
advanced chronological age (78, 79). Ren and colleagues reported
significantly reduced telomere length among patients suffering
from migraine compared with healthy controls (80), while a
relationship between migraine and mitochondrial dysfunction
has been largely described (81, 82).

Although our results do not provide evidence on acceleration
of biological age expressed by epigenetic clocks, we identified a
number of additional DNAm-based measures that are associated
(mainly at the nominal level of significance) with pain-related
phenotypes and that could reflect other alterations that are not
captured by the clocks.

In the HPS dataset, we found higher age-adjusted estimates of
blood CD8+ T cells counts in twins with high HPS compared
with their siblings. This difference was more marked in the
subgroup of subjects older than 60 years, where an increase in
B cells was also observed. The reasons for this observation are
unclear, but possibly related to a different inflammatory status of
the co-twins. Changes in predicted blood cell counts were also
found in the FM dataset, in which we observed a decrease in
predicted CD4+ naive cells in patients and an inverse association
between CD8+T cells andNK cells and the severity of the disease
symptoms, assessed as BPI_interference and PCS. Collectively,
these results sustain the role of the immune system in pain-
related conditions (83).

In the HPS cohort, HPST was negatively associated with
DNAmGDF15 levels. Multiple reports showed that plasma
levels of GDF15 increase with age (84, 85). Interestingly,
GDF15 expression increased in dorsal spinal cord of rats
with neuropathic pain (86) and higher serum levels of this
protein were detected among myalgic encephalomyelitis/chronic
fatigue syndrome patients when compared with healthy subjects
(87). In the same study, GDF15 levels were shown to
be positively associated with severity of disorder symptoms
including fatigue and pain. Thus, our results support the
hypothesis that increased levels of GDF15 could contribute to
pain sensitivity.

Finally, increased DNAmLeptin levels were associated with
less severe FM symptoms. Current data on leptin levels in
pain-related conditions are controversial, possible due to high
fluctuations in day-to-day leptin measurements (88). One study
demonstrated that women with FM serum leptin levels are
positively associated with the experience of pain (88). On the
contrary, an independent study reported significantly reduced
leptin levels in serum of Egyptian FM women compared with
controls (89) and researches on animal models of nephropathies
suggested that leptinmay exert neuroprotective activity and bring
pain relief (90–92).
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In conclusion, in this paper, we investigated a set of DNAm
estimates informative of biological age and of age-related
parameters in different pain-related conditions. We did not find
evidences of pain-related acceleration in epigenetic age, while
we reported some changes in predicted blood cell counts and
plasma protein levels. The main strength of our work is that it
addresses a research question—the relationship between aging
and chronic pain—which has been poorly investigated so far. We
implemented a comprehensive approach to analyze age-related
DNAm variables in various types of pain-related conditions.
However, we are aware that our study has some limitations.
The analyzed cohorts had small sample sizes and the statistical
power tended to be low, possibly preventing to reach statistically
significant results. Furthermore, the study missed replication
datasets for each pain-related condition, on which the observed
outcomes could be validated. Therefore, additional studies in
independent cohorts are required to better characterize chronic
pain conditions by epigenetic biomarkers of age.
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Figure S1 | Associations between chronological age and DNAm-based biological

age estimates in MZ twins discordant on heat pain sensitivity (L, twins with lower;

H, with higher heat pain sensitivity): (A) DNAmAgeHorvath, (B)

DNAmAgeHannum, (C) DNAmPhenoAge, (D) DNAmAgeSkinBloodClock, (E)

DNAmGrimAge, (F) DNAmTL. P-values of linear regressions are reported for H

and L twins separately.

Figure S2 | Associations between chronological age and DNAm surrogates of

components contributing to DNAmGrimAge in MZ twins discordant on heat pain

sensitivity (L, twins with lower; H, with higher heat pain sensitivity): (A) DNAmADM,

(B) DNAmB2M, (C) DNAmCystatinC, (D) DNAmGDF15, (E) DNAmLeptin, (F)

DNAmPAI1, (G) DNAmTIMP1, (H) DNAmPACKYRS. P-values of linear regressions

are reported for H and L twins separately.

Figure S3 | Associations between chronological age and DNAm-based

predictions of blood cell counts in MZ twins discordant on heat pain sensitivity (L,

twins with lower; H with higher heat pain sensitivity): (A) CD8T, (B) CD4T, (C)

CD8.naive, (D) CD4.naive, (E) CD8pCD28nCD45RAn, (F) NK, (G) Bcell, (H)

Mono, (I) Gran, (J) PlasmaBlast. P-values of linear regressions are reported for H

and L twins separately.

Figure S4 | Associations between chronological age and DNAm-based biological

age estimates in FM and HC samples: (A) DNAmAgeHorvath, (B)

DNAmAgeHannum, (C) DNAmPhenoAge, (D) DNAmAgeSkinBloodClock, (E)

DNAmGrimAge, (F) DNAmTL. P-values of linear regressions are reported for FM

and HC samples.

Figure S5 | Associations between chronological age and DNAm surrogates of

components contributing to DNAmGrimAge in FM and HC samples: (A)

DNAmADM, (B) DNAmB2M, (C) DNAmCystatinC, (D) DNAmGDF15, (E)

DNAmLeptin, (F) DNAmPAI1, (G) DNAmTIMP1, (H) DNAmPACKYRS. P-values of

linear regressions are reported for FM and HC samples.

Figure S6 | Associations between chronological age and DNAm-based

predictions of blood cell counts in FM and HC samples: (A) CD8T, (B) CD4T, (C)

CD8.naive, (D) CD4.naive, (E) CD8pCD28nCD45RAn, (F) NK, (G) Bcell, (H)

Mono, (I) Gran, (J) PlasmaBlast in FM cohort. P-values of linear regressions are

reported for FM and HC samples.

Figure S7 | Associations between chronological age and DNAm-based biological

age estimates in MOH, EM and HC samples: (A) DNAmAgeHorvath, (B)

DNAmAgeHannum, (C) DNAmPhenoAge, (D) DNAmAgeSkinBloodClock, (E)

DNAmGrimAge, (F) DNAmTL. P-values of linear regressions are reported for

MOH, EM and HC samples.

Figure S8 | Associations between chronological age and DNAm surrogates of

components contributing to DNAmGrimAge in MOH, EM and HC samples: (A)

DNAmADM, (B) DNAmB2M, (C) DNAmCystatinC, (D) DNAmGDF15, (E)

DNAmLeptin, (F) DNAmPAI1, (G) DNAmTIMP1, (H) DNAmPACKYRS in MOH/EM

cohort. P-values of linear regressions are reported for MOH, EM and

HC samples.

Figure S9 | Associations between chronological age and DNAm-based

predictions of blood cell counts in MOH, EM and HC samples: (A) CD8T, (B)

CD4T, (C) CD8.naive, (D) CD4.naive, (E) CD8pCD28nCD45RAn, (F) NK, (G)

Bcell, (H) Mono, (I) Gran, (J) PlasmaBlast in MOH/EM cohort. P-values of linear

regressions are reported for MOH, EM and HC samples.
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