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ABSTRACT Nowadays there is a growing research interest on the possibility of enriching small flying robots
with autonomous sensing and online navigation capabilities. This will enable a large number of applications
spanning from remote surveillance to logistics, smarter cities and emergency aid in hazardous environments.
In this context, an emerging problem is to track unauthorized small unmanned aerial vehicles (UAVs) hiding
behind buildings or concealing in large UAV networks. In contrast with current solutions mainly based on
static and on-ground radars, this paper proposes the idea of a dynamic radar network of UAVs for real-time
and high-accuracy tracking of malicious targets. To this end, we describe a solution for real-time navigation
of UAVs to track a dynamic target using heterogeneously sensed information. Such information is shared
by the UAVs with their neighbors via multi-hops, allowing tracking the target by a local Bayesian estimator
running at each agent. Since not all the paths are equal in terms of information gathering point-of-view, the
UAVs plan their own trajectory by minimizing the posterior covariance matrix of the target state under UAV
kinematic and anti-collision constraints. Our results show how a dynamic network of radars attains better
localization results compared to a fixed configuration and how the on-board sensor technology impacts
the accuracy in tracking a target with different radar cross sections, especially in non line-of-sight (NLOS)

situations.

INDEX TERMS Unmanned aerial vehicles, radar, navigation, target tracking, information gathering.

I. INTRODUCTION

The use of UAVs in densely inhabited areas like cities is
expected to open an unimaginable set of new applications
thanks to their low-cost and high flexibility for deployment.
They can be useful in response to specific events, like for
instance in natural disasters or terrorist attacks as an emer-
gency network for assisting rescuers [1], or for extended
coverage and capacity of mobile radio networks [2]. In fact,
UAVs have been proposed as flying base stations for future
wireless networks [3]-[6] because 5G and Beyond will be
characterized by a massive density of nodes requiring high
data rates and supporting huge data traffic [7]. This will
require a much higher degree of network flexibility than in
the past in order to smoothly and autonomously react to
fast temporal and spatial variations of traffic demand. At
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the same time, the idea of having swarms of UAVs being
accepted by the wide public might be challenging because
of the possibility of their malicious use [8], [9]. In fact,
an important problem is the possible presence of sinister
UAVs that can hide behind buildings for illegal activities, e.g.,
terrorist attacks, or can blind UAV swarms to inhibit their
functionality. The problem of fast, reliable, and autonomous
detection and tracking of malicious UAVs is challenging and
still an unsolved issue because most solutions would require
the deployment of ad-hoc aerial or terrestrial radar or vision-
based infrastructures that might not be economically sustain-
able or acceptable [10], [11].

Today, current technological solutions are mainly based
on surface-sited (terrestrial) and fixed radars, as battlefield
radars, bird detection radars, perimeter surveillance radars, or
high-resolution short-range radars, adopted in critical areas
(e.g., airports) (see [8]-[10], [12]-[14] and the references
therein). The possibility of monitoring the movement of
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FIGURE 1. Pictorial representation of a DRN considered in this paper.

small-sized UAVs using a multi-functional airfield radar is
considered in [13]. In [15]-[17], the detection and localiza-
tion performance of frequency-modulated continuous-wave
(FMCW) radar systems is discussed. In [14], a joint connec-
tivity and navigation problem is considered when the radar
receiver is mounted on UAVs while the transmitter is on the
ground in a multi-static configuration. In [18], a network of
UAVs is used to track ground vehicles.

Nevertheless, the tracking of a malicious UAV with con-
ventional terrestrial radars poses some difficulties because
the UAVs might be of small size and concealed within the
UAV swarm, implying a low probability of being detected and
tracked. Similar shortcomings are present with camera-based
solutions, as in [11]. There a shortest path planning problem
is considered for a group of UAVs, organized in a hierarchical
network guided by a global planner, that should localize
active emitters while simultaneously minimizing the distance
from them. Vision systems also fail in NLOS conditions, for
example when the target is hidden between buildings and is
not directly “visible” by the swarm.

For these reasons, differently from the literature and from
our previous works [19], [20], where usually radar sensor
networks and UAVs are treated separately, this paper aims
at introducing the concept of a monostatic dynamic radar
network (DRN) consisting of UAVs carrying scanning radars
of small sizes and weights, able to track a target and, simul-
taneously, adapt their formation-navigation control based on
the quality of the signals backscattered by a non-cooperative
(passive) flying target present in the environment. The con-
sidered network interrogates the surrounding via echoing
signals, estimates and exchanges some target position-related
information (e.g., ranging, bearing, and/or Doppler shifts),
and jointly infers the target’s current position and velocity.
The proposed scenario is displayed in Fig. 1 where each
UAV individually exchanges measurements with neighboring
UAVs and takes navigation decisions on-the-fly in order to
reduce the uncertainty on target tracking.

In order to realize the aforementioned UAV-DRN, on-
board radar technology should be chosen according to the
UAV size and maximum payload. To this end, a promising
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solution might be to use millimeter wave (mm-wave) radar
technology because of the possibility to miniaturize it for an
on-board system and for its ranging accuracy and precision
thanks to its larger available bandwidth [21]-[23]. Further-
more, a MIMO solution can be employed due to its small
size, which will result in a highly directional radiation pat-
tern (up to 1-degree angular accuracy [21]). For example, in
[22], FMCW radar sensors working at 77 GHz are proposed
for automotive applications. Moreover, when considering a
target whose size is comparable to that of a mini/micro-UAYV,
FMCW scanning radars are usually preferred compared to
pulse radars that perform poorly in localizing small radar
cross sections (RCSs) [13]. For this reason, some research
activities have focused on the assessment of the RCS values of
UAVs and their impact on the detection performance [8], [24],
[25]. However, how the target RCS affects tracking accuracy
and navigation performance is an open issue.

Another challenge in the realization of a UAV-DRN is the
design of optimized paths for the UAVs to track malicious
targets in the best possible way. The optimization of UAV
trajectories has been the subject of numerous research studies
[26]-[38]. In regard to control design, many works in the liter-
ature have focused on optimal sensor/anchor placement [26],
[38], while others tackle the problem from an optimal control
point-of-view [37]. Among other approaches, information-
seeking optimal control (e.g., strategies driven by Shannon
or Fisher information measures) has been extensively inves-
tigated for localization and tracking applications [29]-[31],
[33]-[36], [38], [39]. For example, an analysis of the best
network geometry was performed in [38], The analysis was
based on a Fisher information metric for a team of collab-
orative UAVs used to track on-ground targets, but, in this
solution, the target estimation algorithm and the trajectory
design were not optimized together with the swarm forma-
tion. Moreover, the Fisher Information Matrix (FIM) derived
in this work did not consider prior information or motion
models. Further, these approaches usually do not account for
the dynamics of the environment (they define the entire paths
a priori), and they do not consider NLOS biases or the effect
of the target’s RCS in the measurement model. Thus, they
are not suitable for our scenario where the UAVs have to
adjust their trajectories in real-time and in accordance to the
movements of the unauthorized flying target that can be of
small dimension (mini/micro UAV).

Given this background, the aim of this paper is to study
a UAV DRN as a cooperative radar sensing network for
jointly tracking a non-authorized UAV in real-time and with
high-accuracy and for smartly navigating the environment in
order to reduce the correspondent tracking error (via multi-
hop exchange of information). The design of DRNs, where
the sensors and the target are flying (hence, mobile) poses
new challenging issues because of their reconfigurability
and mobility, but also offers an unprecedented level of flex-
ibility for target tracking systems thanks to an increased
degrees of freedom. Since not all the paths are the same
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FIGURE 2. A UAV network, where different groups of UAVs acquire radar
measurements. On the left, starting from the environment echo, the red
UAVs measure ranging information, the magenta the direction of arrival,
and the green has full sensing capabilities (including the possibilities of
inferring Doppler shifts). On the right, there is the used coordinate system.

from an information gathering point-of-view, the navigation
will be formulated as a 3D optimization problem where an
information-theoretic cost function permits to combine the a
priori information given by the history of measurements and
the contributions brought by the currently acquired data, that
can be delayed by the number of hops (and, hence, they can
be aged). The impact of the RCS of small target (e.g., micro-
UAV) will be taken into consideration in the measurement
noise model, and in assessing the estimation accuracy.

The rest of the paper is organized as follows: Sec. II
describes the problem, Sec. III reports details about the radar
signal model and the tracking of a non-cooperative UAV,
Sec. IV derives the cost function for optimizing the UAV
navigation, Sec. V provides a possible solution for the opti-
mization problem, and Sec. VI describes some simulations
results.

Notation: Vectors and matrices are denoted by bold low-
ercase and uppercase letters, respectively; [X]; denotes the
(i, H)th entry of the matrix X; f(x) symbolizes a probabil-
ity density function (pdf) of a continuous random variable
x; f(x|z) is the conditional distribution of x given z; x ~
N (e, X) means that x is distributed according to a Gaussian
pdf with mean g and covariance matrix X; x ~ U [a, b]
denotes that x is a uniform random variable with support
[a, b]; E {-} represents the expectation of the argument; [~]T
denotes transposition of the argument. Finally, I, and
0,,x,» indicate the identity and zero matrices of n x m size,
respectively.

Il. PROBLEM STATEMENT

We consider a DRN of N UAVs acting as mobile reference
nodes (that is, with a priori known positions') that navigate
through an outdoor environment in order to optimize the

accuracy in tracking the position, p(()k), and the velocity, Vg(),

IThe UAV positions are considered known with centimeter accuracy, for
instance, provided by visual aided GNSS/INS sensors, so that the UAV local-
ization error can be considered negligible with respect to the one associated
to the target [40].
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of a moving non-cooperative target.” The time is discrete and
indexed with the symbol k.

The mobility model of UAVs can be considered determin-
istic as the UAVs are flying outdoors (and, hence, they access
the GPS signal with a high degree of accuracy) and, at each
time instant, the next position of the ith UAV is given by

pfkﬂ) (pfk), u; ) where ¢ () is the transition function,

pfk) [ .(k),yfk) ,z(k)] is the position of the ith UAV at time
(k) (k) “gk,)] g( (k) \Il(k) ®(k))

x,i Wy, i
is the control signal that the ith UAV computes on its own
for accurate tracking of the target [27]. The magnitude of the
speed, the heading and the tilt angles are denoted by vl(.k), \IJI.(k),
and @Sk), respectively. In particular, the update of the position
is given by

instant k, and ul. = [u

(k+1) (k) +u(k)
(k+l) _ (k) n ;k)
(k+]) (k) (k)
Z; L% tuy;

xgk) + v(.k) cos <\If.(k)) sin <®(k)) At

= | 7+ sin (W) sin (0/) ar |1
zgk) + ng) cos (@Ek)) At

with At being the time interval between k and k + 1. To
make the model more realistic, three constraints are added to

impose the minimum and maximum speed and a maximum
turn rate in both azimuthal and elevation planes [29], that are

k
Vmin = Vl(< ) = Vmax,
k k—1
W — V] < Wiay, 0
k k—1
|®§)—®E )| < Omax,

where vmin and vmax are the minimum and maximum UAV
speeds, respectively, and Wmax and ®max are the turn rate
limits, respectively. The geometry of the system in depicted
in Fig. 2.

On the other hand, the target state vector at time instant k

T 7
is defined as s®) = [(pg{)) , (Vg() ) i| , where the target

position expressed in relation to the ith UAV position at time
instant k is

MO x(k)—}-d.(k) sin (9.(]()> cos (¢~(k))
0
N 1 o
2 Zl(.k)—}—di(k) cos (Qi(k))
k k
o — pl

where dl.(k) Py is the distance
between the ith UAV and the target at time instant k,

2In the sequel, we only consider a single-target tracking problem. A pos-
sible extension to a multitarget scenario would require a clustering process
for assigning the target to respective sub-teams of UAVs as, for example,
proposed in [41].
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FIGURE 3. A block-diagram for decentralized joint tracking and navigation at the ith UAV.

and V(k) [ ;kz), v%, ;k()) is its velocity. The state evolves
accordmg to the following dynamic model,
kD = A0 g 4 q®) ()

where A®) is the transition matrix, which is assumed known,
and ¢© ~ A (0, QW) is the process noise.

All UAVs perform radar measurements with respect to
the target, and starting from the acquired data, they can
estimate Doppler shifts, ranging and/or bearing from which
the position and the velocity of the target can finally be
estimated at each time step (two-step localization) through
cooperation [42]. In fact, starting from the radar received
signals, the Doppler shift and ranging information can be
inferred given the beat frequency estimation [17]; whereas
the direction-of-arrival (DOA) can be associated with the
antenna steering direction. More specifically, UAV rotations
might be exploited to point the on-board radar antenna in
different angular directions and to form a received signal
strength (RSS) pattern after each rotation as in [43]. As an
alternative, one may consider a MIMO radar system with
electronic beamforming capabilities [12]. Hence, each UAV
can process the collected measurements in different ways:
We indicate with N; the set of UAVs that exclusively acquire
ranging estimates, with ANy the group that only works with
Doppler shifts, with Ny the set operating on bearing-only
data, and with AV the set that has access to all the types of
measurements. The network composed of UAVs with hetero-
geneous capabilities is indicated with NV = NUNGUN UM,
where U is the union operator.

In accordance with Fig. 3, the ith UAV performs the fol-
lowing steps at time instant &:

Measurement step: The first task is to retrieve state-related
information from radar measurements, i.e., from the signal
backscattered by the environment where the malicious target
navigates. In Fig. 3, we indicate with ng) the measurements
inferred by the ith UAV at time instant k;

Communication step: The ith UAV communicates this
information to the neighbors together with its own position
<def1ned as I(k) gk)’ pl(k)
data from neighboring UAVs via multi-hop propagation, i.e.,

ij(.z") = [ 2\ pl(z")] where ¢ is a time index accounting

), and it receives back the same
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for the delay due to multi-hops [19], [44], [45]. Each node
can directly communicate with its neighbors within a radius
of length rmax, whlle for greater distances, the information
is delayed by h ) time slots, equal to the number of hops
between the ith and jth UAV at instant k. We indicate with
Néﬁ) the set of neighbors of the ith UAV at time instant k.
Due to multi-hop propagation, the information obtained at
each UAV can be aged, preventing an updated view of the
network. Finally, we gather all the acquired data in igk), which
is the vector that contains the measurements and locations of
the ith UAV and its neighbors.

Target Tracking: Given the measurements and the positions
of the other UAVs, the presence of a malicious target can be
detected and its state can be tracked by each UAV. A Bayesian
estimator can be used to compute the a-posteriori probability
distribution of the target state given the acquired information

the belief is denoted with bgk) (s(k)) in Fig. 3). In our case,
we adopt an Extended Kalman Filter (EKF) algorithm to
compute the Gaussian belief of the state as b(k (s®)
f (s(k)|i§1:k)> EKF N(mgk), Pl(.k)), where m ( ) and ng) are
the conditional mean vector and the covariance matrix of the
state and iglzk) is the acquired information by the ith UAV up
to time instant k. The EKF filter algorithm produces estimates
that minimize the mean-squared estimation error conditioned
on the history of acquired information. Consequently, the esti-
mate of the state at time k, §§k), is defined as the conditional

mean §l(.k) = m(k‘k) E {s(k)|il('1:k)].3 With reference to

Fig. 3, we can write
gl(_k) — SE ( j® b(k D (S(kfl)))
EKF o ( i (k 1)’ ng—l)) ’ (5)

with SE (-) being a function describing the state estimator.
Subsequently, an approach based on diffusion of information
[47] can follow to further enhance the estimation accuracy.
UAV control step The last step is the control signal esti-
mation by the ith agent that will allow the UAV to reach its

3The notation in the superscript (nlm) refers to the estimate at the nth time
instant conditioned to information acquired until time instant m [46].
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next pOSlthH p< +) accordlng to a glVCIl command, ll( )

Since the quality of the measurements depends on the DRN
geometry and target position, the control law should properly
change the UAV formation and position in order to maximize
the quality of the tracking process and, at the same time, take
into account physical constraints (e.g., obstacles). For this
reason, at each time step, each UAV searches for the next
UAV formation that minimizes an information-theoretic cost
function at the next time instant, that can be written as

(L§k+l)) = argmin, 1 C<J(k)< 51160 L(k+1))>’(6)

T
where Lgk) = [ ..,p](m ] sz’ is the vector

containing the locations of UAVs that are neighbors of the

ith UAV at time instant k (those belonging to the set N rglg) l),

by = k — hgjlf) + 1 is the time instant associated with the
exchanged information due to multi-hops, C (-) is a function
that will be defined in the sequel, J(k) is the cost function

(k+l\k) [§Ek+”k):|1.3 is the

predicted target position where §; is derived during the
prediction step of (5), i.e., using a transition model.

Then, recalling (1), the control signal of the ith UAV that
® _ Lng) : ' p(k) where [-];
is an operator that picks the ith entry of the opt1mal formation
in (6).

According to the D-optimality criterion described in [33],
we choose the following cost function:

c (Jl@ (p(()k), L§k>)) — —Indet (Jl‘.k) (pff), LE"))) )

where det (-) is the determinant operator, and J Ek) (p(ok), Lgk))
is the information matrix of the target’s location as a func-
tion of the current and previous locations of the neighboring
UAVs. Following the same principle as in [29], we consider
the posterior covariance matrix in its inverse (information)

form as
Jlgk)< (k). L(k)) [(P(klk>> } , 3)

11
where the operator [-];; picks the sub-matrix relative to the
target position, and with the covariance matrix defined as

p&lo) pkix)

also defined in the next, and Py,
(k+1\k)

satisfies (6) is given by u;

P('k\k) — pp.t ~ pv.: (9)
(kk) p(klk)
Pvp i va i

whose diagonal contains the variances of the position and the
velocity estimates. The cost function defined in (7) requires
knowledge of the actual target position which is the unknown
parameter to be estimated, and for this reason (6) is evaluated
at the predicted position estimate for time instant k& + 1
computed by the ith UAV at time instant k.

4Here we suppose that the connectivity between nodes is unaltered from
time instant k to k + 1, meaning that the ith UAV solves the optimization
problem by assuming that, at k + 1, it will communicate with the same
neighbors.
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Finally, we consider that the problem is subjected to the
following set of constraints:

df > df. d¥ > d¥, TnO =0,

k
Vmin = VE ) = Vmax, (10)
k+1 k
WD ) < Wiay,
k+1 k
0 Y — 0| < Omax.
fori,j=1,...,N, and where dl;.k) is the inter-UAV distance,

d}y is the anti-collision safety distance among UAVs, dy is
the safety distance with respect to the target, 7; is the set of
feasible position points of the trajectory of the ith UAV, and O
is the set of obstacles present in the environment from which
the UAVs should keep a safety distance equal to dgj.

llIl. UAV-TARGET TRACKING

The target tracking aims to estimate the state of the target
(e.g., its position and velocity) starting from the received echo
signals. In this section, we briefly recall the signal model
used by a FMCW radar that might be integrated in the UAV
payload and, then, we focus on a Bayesian filtering method
for target tracking. More specifically, we adopt an EKF as a
tool to solve the tracking problem thanks to its capability of
dealing with heterogeneous measurements, statistical charac-
terization of uncertainties, and UAV mobility models.

A. EXAMPLE OF SIGNAL MODEL FOR ON-BOARD FMCW
RADAR

A widely used radar technology for UAVs is the FMCW
radar that, differently from pulse radars, interrogates the
environment with a signal linearly modulated in frequency
(namely, chirp). Sometimes, in order to increase the signal-
to-noise ratio (SNR) and infer Doppler shift measurements,
multiple chirps can be transmitted in a fixed time window
(chirp train). Once the signal is received back by the radar, it
is combined with a template of the transmitted waveform by a
mixer. As a result, different target-related parameters, such as
ranging and Doppler shifts, can be inferred by processing the
frequency and phase information of the signal at the output
of this mixer. In particular, to retrieve velocity information,
it is possible to rely on phase differences between different
received chirps, or, directly, on Doppler-shift estimates. If the
FMCW radar consists of multiple transmitting and receiving
antennas (MIMO radar), the angle-of-arrival can be estimated
through the measurement of phase differences between the
antennas. Another possibility is to exploit the UAV rotations:
by rotating the on-board antenna towards ad-hoc steering
directions, the direction of arrival can be inferred by consid-
ering the maximum power of the received echoes.

A promising solution for UAV integration is to operate at
millimeter-waves so that FMCW radars can be miniaturized
and equipped with multiple antennas. By working at high
frequencies, a resolution smaller than a millimeter can be
obtained thanks to the higher available bandwidth, up to
4 GHz at 77 GHz. Example of FMCW for UAVs can be found
in [12] and the references therein.
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For the following analysis and in order to derive a suitable
observation model for the tracking algorithm, it is important
to characterize the noise uncertainties of the ranging, bear-
ing, and Doppler shift estimates as inferred by the radar. To
this end, the Cramér-Rao lower bound (CRLB) expression,
which can be viewed as the minimum variance achievable
by an unbiased estimator, can be considered for ranging and
Doppler shift estimates, given by [48], [49]

3 (2¢)° 1
var (d") ( ) — . (1]
( ) 2 @ B)? SNR

Vr(f ) 2m)* 72 SNR®’ (12

where T; = t; M; is the observation time, t; is the time sweep
of a single sawtooth, B; is the frequency sweep, M; is the
number of chirps (processing gain), y = 4 is the path-loss
exponent for two-way (radar) channel, ¢ is the speed-of-light,
and the SNR is defined as

BPRG O P _o\p P
I P N P
(13)

where p is the target RCS, SNR is the SNR evaluated at dy =
1 mand pg = 1 m?, A is the wavelength, Py is the transmitted
power, G (®p) is the antenna gain pointing at @y = (6, ¢p),
Pn = Ny B; is the noise power with Ny = kp Ty F, kp is the
Boltzmann constant, Ty is the receiver temperature, and F is
the receiver noise figure.

On the other hand, for the bearing case, we suppose that the
noise uncertainty (in terms of standard deviation) is constant
in the azimuthal and elevation planes and coincides with the
Half Power Beamwidth (HPBW) of the on-board antenna.

SNRW =

B. OBSERVATION MODEL
As described in the previous section, starting from the
received signal echoes, each UAV estimates information
about the target state, e.g., the distance and angle from the
target or the Doppler shift. Subsequently, such information
is exchanged between UAVs via multi-hops together with
the UAV positions. At the end of this communication step,
each UAV puts together the gathered information, exploitable
) ]T
i
be the information available to the ith UAV at time instant

for target tracking in a vector. Let I( ) = [ ..

k, where the generic element I(Ek) = [ 2, p(ek)] , with

N nb. i’ contains the radar estimates and the position of the
]th neighboring UAV delayed due to the multi-hop connection
with the ith agent. The generic radar measurement can be

written as
®) _ k) (k) ®Y (k)
2 =100+ (1-10) Wb, (14)

where lgk) is a flag indicating the presence (if any) of a line-of-
sight (LOS) link between the ith UAV and the target, and w!"
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is an outlier term due to the presence of multipath components
or extremely noisy measurements [50]. The first term in (14)
contains information about the target state, that is

o) = h (s%) +n", (15)

where hl(.k) is a function that relates the data to the target
state and whose expression depends on the UAV sensing and
processing capabilities, i.e.,

rd® =y Hp(lo <_k>” Cifie NV
k k P
o _ ¢l§ ) — tan (yOz)/x( )> ifi e N\p VAN, 16)
o) =cos™! () /dV), ifie MoV,
S5 = (vl 2n). ifie Ngv g,

where d(k) ¢)(k) Q(k) and fy (k )are the actual distance, azimuth,
elevatlon and Doppler Shlft between the ith UAV and the
target, vﬁgg is the radial velocity, V is the or-operator, and

k) _ (k) (k) (k) (k) (k) (k) (k) (k)
Xoin =X —X; LYo =Yy —V; »andz 0 T

®

The measurement noise in (15) is modeled as n;

N (0 ( (k)) ), where, in accordance with the type of

measurement, the ranging and Doppler shift variances are
described by the CRLB as in (11), that can be reformulated
as

®)?2 _ sz \ )2 _ 2 \%
(o) = oo~ (m) =g ()

where or20 and ag o are the variances at the reference distance

dl.(k) = 1 m and with a target RCS of p = 1 m?. On the
contrary, the bearing noise variance is constant with respect
to the distance and the target RCS, and aé 0 is related to the
radar HPBW, as previously stated.

Eq. (14) can be written in vector form as

2 1(")@(11(") (S(k)> +n(k)) +(1—10) 0w
(18)

where © is the Hadamard product, and the noise can be
described as n(k) ~ N (0, ng)) with a covariance matrix

2
given by RE ) = diag ( . <O’j(£k)> ... )

C. UAV-TARGET TRACKING
Starting from the transition and measurement model previ-
ously described, each UAV can perform tracking to estimate
the state of the target. Within this framework, the main goal
of each UAV is to infer the full joint posterior probability of
the state at time instant k, s, given the available information
up to the current time instant, namely iglzk)

In this context, it is possible to define a probabilistic state-
space Markovian model by considering the following statis-
tical models:
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o Measurement model. Tt describes how the state is
related to the available information by the likelihood
f (iﬁ")|s<’<>) = £ (2")s®), defined by the statistical
measurement model in (18);

o State transition model. It describes how the state evolves
in time, in accordance with the dynamic model in (4) and
given by f (s®|s¢=D).

Given this state-space model, an EKF approach can be used
because the observation functions in (14) are non-linear and
the noises are Gaussian distributed. In this case, each UAV
performs the two main steps of the EKF algorithm: (i) A
prediction step within which each UAV computes the pre-
dictive information (mgklk_l), ng‘k_l)) given a model for

the target mobility as in (4); and (ii) An update step for
(klk) P(klk)
b

updating the mean and covariance (ml. ) once a new

measurement becomes available. The Jacobian matrix thk)
is given by

(k)
vh® = . (0)

0
(k) (k)
Vpgc) (hd,i) vao (hd,i) T

where the generic elements in (20) are the derivatives of the
measurement models in (14) with respect to the state, that is.

Vs d = 2 (¢, 6 1)
Vpg@d)j@k) = a](-ek) ((b}m—i—n/Z, n/2) / (dj(z") sin (9].(“))> ,
(22)
<4 ) ().
i)~ L (.4)
where a}ek ) = [Cgff‘j) sg}‘.), ngf‘j) sé‘i}‘.), Cé%)]-r is the direction

vector and where the following notation has been adopted:
C(k). = cos (agk)), S((Ikz = <k)) with ozl(k) being the

oy sin (ai
azimuth/elevation angle in the set {q&fk), Qi(k)}. Finally, we

have

) _ Y (i) (k) (6x)
Vx(()k)fd’j (—SM Sy @z +Cyj wy> ,

== (25)

) _ Y () () (€x)
vals = o (cm. st w; — ¢l a)x) , (26)
) _ Y (Cr) (k) (lr) otk)
Vzg‘>fd,j =25 (—cm Sy wy+S,; Sy wx) , (27)
where the 3D angular velocity is given by
©_ 0, (y©_®
Py —P; ) x(vy —V;
0 = [y, oy 0] = 0l PP

(dfk))z ’

where x indicates the cross product between the two vectors.
If a measurement is not available (e.g., when a drone collects
only ranging information), the correspondent row is elimi-
nated from (20).

IV. INFORMATION-THEORETIC COST FUNCTION

The autonomous control in (6) is designed to estimate the
next location of each UAV in order to maximize its capability
to best track the target, considering also the locations and
estimates of the neighboring UAVs. The tracking perfor-
mance mainly depends on the prior information acquired (if
present), on the UAV network formation (geometry) and on
the uncertainty of the collected measurements.

In this section, we aim at deriving the analytical expression
of the information matrix Jgk) (+) in (7). Starting from the
information model described in Sec. III-B and from the output
of the EKF, it is possible to write the information matrix for
the dynamic scenario as [26]

k k k
J§>(pg>;L§ >)=

-1
_[p-_p- vTh® (g® ® p-
_[Pi —p; vTh (V) vn'P; L :

(29)

where P, = nglk_l) is the predictive covariance,
VTh" is the Jacobian matrix defined in (20), S¥ =
thk) P VThgk) + ng), and ng) is the covariance matrix
that depends on the statistical characterization of the mea-
surement noise.

Then, according to the matrix inversion lemma [51], (29)
can be reformulated in a more convenient form as

o (), vk -1 k S
3 (s = @)+ T (RE) on |

(klk—1)
Pp.i

11
(k k) (30)

== J +Jpp,i’

where Jékp‘ﬁ_l) = [(Pi_)_l]11 is the sub-block matrix

corresponding to the predictive information matrix of the

k1K) (L 6). 1 () | K
T (P L) = 30 |

)

2
je{i,Néﬁ?i} ( rJ )

K. (¢ 1 ¢ o, (¢
p( ); p( k)) + G( k) <p(() ); pj( k)) i

! )
+8 Gyl (
’ (U(em)z &

®.J
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target position, while chplki) corresponds to the FIM for non-
random parameters, that is,

-1
M) ((®). 1O _ oT @ (&) ®
T (p: 1 >_Vp(0k)hl. (") voh. G

Equation (31) puts in evidence the relation of the informa-
tion model ( encapsulated in R(.k)) and of the UAV-target geo-

metric configuration (m the Jacobian matrix, V mh( )) on
the localization performance. The deterministic FIM depends
on the true target position and on the UAV locations as known
by each UAV. Because this information is not available, they
are substituted with their estimates. After some computation,
it is possible to write the FIM in (31) as in (19), as shown
at the bottom of the previous page, where «; is a flag equal
to 1 if the jth neighbor of the ith UAV exchanges ranging
information (j € N; vV Nj, with Vv being the or-operator),
otherwise «k; = 0; similarly B; equals to 1 if the jth node
can infer elevation and azimuth angles (j € Ny Vv J\fj), and,
finally, § = 1 if Doppler shift measurements are available
(i.e.,if j € Ng vV N)), otherwise & = 0. As we can see, (19) is
composed of four main terms, each one carrying the position-
related information from the corresponding measurements
(ranging/bearing/Doppler). In turn, each term has a geomet-
ric component dependent on the UAV-target positions (the
matrices G) weighted by the measurement uncertainty (the
factors 1/c2). The latter are the inverse of the diagonal entries
in the measurement covariance matrix ng), and are reported
in (17). Thanks to the possibility to discriminate LOS/NLOS
situations, we assume that the UAVs exactly know the values
of the coefficients in (17).°> The geometric matrices in (19)

are given by
2
) (K, (k) Yo oT () ()
G4 (p0 .| k) =L, (dj k)v o (dj k)

— 4 (ek) ( (lk)> (32)
(Z ) (&), (k) T (lk (Lx)
Gyl (6 0) = Vi (o) V0 ()

G <¢;Zk) Y2, m /2)

N ) @\\? &)
k . k
(@ a0 )
) (), () T (0 )
Gy (pfsp ™) = Vi (61) 7,0 (6°)
{4 £ g
Gi»jk) (¢J( Y, 9/'( U+ 71/2)
- — )
k
(4 )
2
G (p®). ) _ ¥V o) )
dj \Po > P; Y p(k> f f )
(35)

where the elements of (35) are reported in Appendix A.
When all the UAVs in A/ nb.; are collecting non-informative
or ambiguous measurements, for example when all the UAVs

SFor example, this is possible if an electromagnetic map of the environ-
ment is available [52].
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are in NLOS with the target (1](-@) = 0, Vj) or all have a
malfunction in their processing capabilities (x; = B; = §; =
0, Vj), they can rely on the previous state information to
compute (30) and to perform the control task. In fact, in (30),
when the measurement covariance matrix goes to zero (when
2in (17) — 00), the only surviving term is the predictive
1nf0rmat10n matrix Jppl ; . The elements of (30) are given
in Appendix B.
In the next section, a solution for the navigation problem in
(6) is proposed based on a non-linear programming approach.

V. NAVIGATION ALGORITHM
To solve the trajectory problem in (6), one can rely on
an approach based on optimization theory (e.g., non-linear
programming [53]) or on a more advanced approaches of
machine learning (e.g., reinforcement learning algorithms
[30], dynamic programming [54] or based on approaches
based on graph neural networks [55]).

One possibility to solve the minimization problem in (6) is
to use a numerical approach. In the case study, we adopted
the projection gradient method [39], [53]

ul(k+l) UMV (k)C (J(k)< E)kf’ L(k)))

N (NTN) g, (36)

where v represents the spatial step, Vpgk) (+) is the gradient
operator with respect to the UAV positions which, taken
with the negative sign, represents the direction of decrease
of the cost function. The control signal computations are
reported in Appendix C. The projection matrix is denoted
with M = I—N (NTN) ™'
and N =

NT with I being the identity matrix
(V * g) being the gradient of the constraints in

T
g = [g}' g;— gl'] , where
g =dy—dj. dy= {d}j.") Ll < d(j} NEY)
g = dS — d;, dS = {d'(k) : d.(k) < d—it} s (38)

<dp}. (9

Finally, we limit the UAV speed, altitude and the maximum
turning rates according to (10).

The implemented tracking and navigation algorithms have
a cubic complexity over the number of measurements avail-
able to a UAV at each time step. This number is the sum of the
measurements from the neighbors and its own measurements.
If the number of measurements surpasses the computational
capacity of a UAYV, it can decide to process only the most
informative measurements or to select a subset of neighbors
to collaborate with [41], [56]-[58]. A sketch on the compu-
tation complexity is reported in Appendix D.

g3 =dp —dé, do = {d(k) (k)

VI. CASE STUDY
In this section, we analyze the performance of a DRN in
different conditions: by changing the number of UAVs; by
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TABLE 1. RMSE [m] on target position for the configurations of Fig.4.

N=4 N=6 N=10
Ranging-Only, or0 = 10~%m 0.53 0.33 0.15
Ranging-Only, o0 = 1072 m 1.55 0.82 0.64
Bearing-Only, oy, o = 5 deg 1.38 0.85 0.82
Bearing-Only, op o = 20 deg 3.85 2.27 1.55

varying their sensing capabilities; by dealing with different
RCS; by varying the number of communication hops; and
by operating in LOS-NLOS channel conditions. The investi-
gated scenarios are displayed in Figs. 4-9, with environments
covering more than one square kilometer.

In the simulations, the target mobility in (4) was modeled
according to a constant velocity model with random acceler-
ations [46], with

AB A2
A:|:I3><3 At13x3]Q= W AW

. (40)
ACW AIW

03x3 I3x3

where W = diag (wx, wy, wz) = (107>, 107>, 0) is a
diagonal matrix containing the variances of the process noise
in each direction. The number of UAVs and the target RCS
were set to 6 and 0.1 m2, if not otherwise indicated. The
safety distances, i.e., dfj, d-]f and dg, were all fixed at 5m,
the number of Monte Carlo iterations and the trajectory
time steps at 100 and 3000 (each time step lasts 1 second),
respectively. A communication range of 900 m between the
UAVs and a single hop were considered [30], [59], if not
otherwise indicated. We initialized the EKF as mgo) = Ogx1
and P\ = diag (202 - L33, 0.52 - I3x3). The UAV minimum
and maximum speed was set to vipin = 0.5 m/s, vjmax = 1 m/s,
respectively, and the maximum turning rate on azimuth and
elevation planes as Wmax = Omax = 50° [29].
To compare the results, the success rate was evaluated as

K N Nwc

SR(eth)—KN szzl(eth_e )

=1 i=1 m=1
(41)

where Nyc is the number of Monte Carlo iterations, K is the
number of time steps, 1 (x) is the unit step function that is
equal to 1 if x > 0 and O otherwise, eg;) is the estimation
error of the target position at the ith UAV for the mth Monte
Carlo iteration, where e ||f)g(3m - Pé)k)“z, and ey, is a
localization threshold.

In the simulations of Fig. 4, the initial positions of
UAVs were at the vertexes of a square lying on the
XY-plane with x'” = [=50, =50, 500, 500]"m, y =
[—=50, 500, —50, 500]T m, and zgo) ~ U [80, 150] m, while
the target initial position and velocity were [0, O, 90]" m and
[—0.3,0.4,0]" mys.

In Fig. 4, we present qualitative examples of estimated
UAV trajectories for different sensing capabilities (ranging
and bearing) and considering N = 4. The trajectories of
UAVs are reported as blue lines and the positions are dis-
played with blue square markers for the initial and last time
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FIGURE 4. Simulated scenarios in LOS conditions with 4 UAVs estimating
ranging information (top) with an accuracy o, 0=10" —4m, and bearing
information with an accuracy o}, o = 10° deg. The initial positions and
trajectory of the target and UAVs are indicated with black and blue lines,
respectively. The estimated target trajectory is a dashed red line.

instants. The initial target position is drawn with a black
triangle and its actual trajectory with a continuous black line.
The estimated trajectory of the target is marked with a red
dotted line. As can be seen, after an initial transient, the UAVs
of the DRN jointly surround the target.

Given this scenario, in Table 1, we show the tracking
performance in terms of average root mean squared error
(RMSE) by varying the measurement accuracy and con-
sidering different number of UAVs. The RMSE on posi-
tion and velocity was averaged over the number of discrete
time instants and over the number of UAVs. A group of
four radars with only ranging capability and accuracy of
oro = 1072m obtains approximately the same tracking
performance of four radars with only bearing capability and
accuracy of about 5° degrees. Instead, when considering a
better performing radar, such as the FMCW radar in [60]
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FIGURE 5. Success rate as a function of the number of UAVs for ranging
(top) and bearing (bottom) measurements and different sensing accuracy.

(i.e., with oy o & 10~* m), the average localization accuracy
is below 1 m.

In Fig. 5, we provide the success rate evaluated as in (41)
by varying the number of UAVs and the sensing capabili-
ties. A localization error lower than 1 m can be achieved in
nearly 80% of the cases with N = 4 UAVs with either a
reference ranging accuracy of 1072 m or a bearing accuracy
of 5° degrees. This is also confirmed by Fig. 6 where several
ranging and bearing errors were tested.

We now investigate the impact of the Doppler shifts and
target RCS on the tracking performance with a fixed number
of UAVs (N = 6). In Fig. 7-top, we show the success rate
by considering ranging measurements and the presence of
Doppler shifts with different chirp gains (i.e., M; = 64-256)
and different ranging accuracies. It can be observed that
relying on Doppler shifts in addition to ranging measure-
ments is beneficial especially when ranging is not sufficiently
accurate: by fixing the desired localization error to 1 meter,
the percentage increase experienced by adding Doppler shifts
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FIGURE 6. Success rate as a function of the ranging and bearing errors.

in the measurement vector is approximately of 100% with
a ranging error of oy = 10~!'m (with M; = 256, Vi =
1,...,N) whereas there are no evident improvements for
or.0 = 107> m. Finally, in Fig. 7-bottom, we plot the success
rate as a function of the target RCS. It is interesting to notice
that a UAV with a RCS of 0.01 m can be localized in the
90% of cases with an error lower than 1 meter provided that
a sensor with a ranging accuracy of 1073 m is adopted.

In Fig. 8, we study the impact of a multi-hop exchange
of measurements by limiting the number of temporal steps
to K = 500 because the impact of multi-hops is more
evident at the beginning of the trajectory. The ranging accu-
racy was or,) = 10~3 m, the number of UAVs to N = 4,
and a communication range of rmax = 505 m was consid-
ered. In Fig. 8-(top-left), the centralized case (the network
is fully connected for all time instants, rmax = 00) is
reported as a benchmark. Fig. 8-(top-right) displays the single
hop case with links depicted with grey lines, whereas in
Fig. 8-(middle) the maximum number of hops was hmax = 2
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FIGURE 7. Success rate as a function of the positioning error when
ranging measurements are collected. On the top, the case with and
without Doppler shifts is considered for a ranging error of 0, o = 103m

(dashed lines) and o, g = 10~! m (diamond markers); on the bottom, the
performance is compared as a function of the RCS.

(magenta lines) and 3 (cyan lines), respectively. For example,
in Fig. 8-(top-right), UAV 1 is only connected with UAV 4 at
time instant k = 30 because imax = 1 and by having rmax =
505 m only UAV 4 is in the neighboring set of UAV 1. Con-
trarily, when hmax = 2, as in Fig. 8-(middle-left), it is also
connected with UAV 3 through UAV 4. This means that the
ranging information collected by UAV 3 will be available at
UAV 1 after two time instants. Apart from an initial transient
when the multi-hop propagation can be helpful as it allows to
connect nodes otherwise unreachable, for the majority of the
navigation time, a single-hop is sufficient thanks to the fact
that the navigation control is conceived for minimizing the
tracking error and, consequently, for minimizing the UAV-
target and inter-UAVs distances. This is also confirmed from
the results plotted in Fig. 8-(bottom) in terms of success rate.

At this point, we aim at comparing the performance of
a DRN in presence of obstacles in order to assess the
advantages of DRNs with respect to terrestrial fixed radar

116464

~ UAV 1 UAV 2

g UAV 1 UAV 2

00 100

0.8+
g
o L
£ 06
g
<
-+
w
2 04r
&
5]
&
02t /o IR !
// — Nmax = 3, Tmax = 505 m
Rmax = 2, Tmax = 505 m
/ —hmax = 1, Tmax = 505 m
0 1 1 T

0 0.5 1 1.5 2 2.5 3

Positioning Error, e, [m]

FIGURE 8. Plot of the first K = 500 instants of the trajectories with
highlighted multi-hop connections. Top-left: Centralized case ryax =
with links between UAVs depicted with grey lines. Top-right: Single-hop
scenario (hmax = 1). Middle-left: Double-hop scenario (hmax = 2) with
links reported with grey and magenta lines when a 1- or 2-hop is
established, respectively. Middle-right: Triple-hop scenario (hnax = 3)
with links reported with grey, magenta and cyan lines when a 1- or 2- or
3-hop is established, respectively. Bottom: Success rate as a function of
the maximum number of hops.

TABLE 2. RMSE for the configurations of Fig.9.

RMSE on position [m] RMSE on velocity [m/s]

Terr. Rad.  FlyingRad.  Terr. Rad.  Flying Rad.
Ranging-Only 65.17 5.07 0.12 0.05
Bearing-Only 17.43 5.70 0.071 0.063

networks. To this purpose, we consider the scenario of Fig. 9
where obstacles are depicted with grey parallelepipeds, the
UAVs composing the DRN with squared markers of differ-
ent colors (every 500 time steps), and the terrestrial radars
with squared blue markers. The ranging and bearing errors
were 10™* m and 5° degrees, respectively. In the DRN, the
UAV initial positions were x'”’ = [100, 100, 800, 800]" m,
Y = [=1000, 300, 300, —1000]" m, and with a UAV
height zgo) ~ UT90, 150] m. The target altitude was set
to 30m, and its trajectory followed the dynamics described
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FIGURE 9. Simulated scenarios in NLOS conditions and success rate as a
function of radar network configuration: comparison between
terrestrial/fixed (top) and flying/dynamic (middle) radars for ranging
(left) and bearing (right) processing capabilities, and success rate results
(bottom).

by (40). For a better comparison, two situations with a fixed
deployment of radar sensors were considered: one with a
single terrestrial radar with full sensing capabilities (capable
of retrieving ranging, bearing and Doppler shift information)
represented with a red diamond in Fig. 9-top, and another
where, for fairness of comparison, the fixed radar network
is with the same number (N = 4) and sensing capabili-
ties of UAVs. These radar configurations are compared in
Fig. 9-bottom showing the superiority of a dynamic radar
configuration over terrestrial networks in terms of success
rate. Moreover, the RMSE results on position and velocity are
reported in Table 2. In the case of a single terrestrial radar with
full sensing capabilities, the RMSE on position and velocities
is of 11.36 m and 0.06 m/s, respectively.

VIi. CONCLUSION

In this paper, the idea of a UAV dynamic radar network for
the tracking of a non-cooperative (e.g., unauthorized) UAV
has been described. In contrast with current on-ground radar
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systems, the UAV network provides new degrees of freedom
thanks to its reconfigurability and flexibility. Moreover, the
UAVs are considered autonomous in navigating and esti-
mating their best trajectory to minimize the tracking error
of the dynamic target. The proposed network has heteroge-
neous sensing capabilities and estimates are shared among the
UAVs. In this sense, the UAV cooperation can significantly
increase the tracking accuracy without impacting the com-
munication latency. The proposed control law aimed at min-
imizing an information-driven cost function derived starting
from measurements and estimates exchanged by the UAVs at
each time instant.

Results have demonstrated that having a flexible network
instead of a terrestrial deployment of radars helps in pre-
venting NLOS conditions and, thus, in better tracking a non-
cooperative target. Moreover, even if the intruder is a small
UAV (a target with RCS of 0.1 m? or less), the positioning
performance is below 1 m most of the time, provided that
a radar sensor with a millimeter ranging accuracy is avail-
able on-board, as for example a FMCW radar operating at
77 GHz. The same performance can be obtained with bearing
measurements given an angular accuracy of about 5° degrees.
Finally the use of Doppler shift estimates is beneficial to
retrieve the velocity of the target instead of inferring it from
position estimates. For this reason, the impact of the Doppler
shift estimates is more valuable in the case where the ranging
error is larger.

Future directions of research include the development of a
control law able to maximize the expected information metric
over a longer horizon (non-myopic approach) in order to deal
better with complex and dynamic environments. Moreover,
the scalability of the approach as a function of the num-
ber of UAVs, and in terms of computation time per each
UAV, is important to investigate, especially for emergency
applications where low latency is a very strict requirements.
In this direction, clustering approaches can be adopted to
separate the swarms of UAVs in sub-teams and reduce the
“neighborhood of collaboration™ of each UAV at the expense
of reducing the accuracy of localization.

APPENDIX A
The elements in (35) provide the geometric matrix relative to
Doppler shift measurements, and they are given by

G(m( ®), (@)) _ v ( (z_w) v ( (ega)
d;j \Po P p® fd,] pl fd,j .

¥ \2 8xx 8xy 8xz
= (ﬁ) 8xy &yy &yz | » (42)
8xz 8yz 8zz
with s’ = §§k|k_l) and
2
4 4 4
e (8 o )

2
(o) g, o
gw—(%,j Sej @z~ Co, “’X) ’

2
_ (%) () ) o)
82z = (_C¢,j S@,j C()y + S¢,j S@,j 6!))() B
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APPENDIX B
In this appendix, the elements of the information matrix in
(30), that is,

k) (k). y (k) Jxxi Ixyi Ixzi
Ji (pO ) Li ) = ny,i Jyy,i Jyz,i ’ (43)
Sai yzio Jzzi

are expanded in scalar notation. In particular, we have
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APPENDIX C
In this appendix, we derive the analytical expressions for
control signals in (36). More specifically, we determine the

term Vp(k) C (Jgk) (f)gkz, Lgk))). According to (7), we have

¥ o (D2 (L
e o ) - D

where Dl(k) (Lgk)) = det (Jgk) (f)gkf, Lgk))) = Jxx,i Cxx +
Jxy,i Cyx + Jxz,i Czx is the determinant of the information
matrix, and Cxx = Jyy.iJ2z,i — ng, : Cxy = Cyx = Jxz,iJzy,i —
Ixy,iJzz,i» Cxz = Cx = Ixy,ilyz,i — Ixz,i yy,is ny =
Jxx,idzz,i — sz,,',
Jxx,i Jyy, i_‘])%y,i are the cofactors of the inverse. Consequently,
the derivatives of the cost functions are

Vp(_k) (Dl{k) (Lgk))> = (Vp(_k)]xx,i> Cxx
+ (Vpﬁk) Cxx) Jxx,i + (Vp(k)ny,i> Cyx

+ (Vp§k) ny) Jxy.i + (Vp§k)sz,i) Cax

Cyz = sz,i-]yx,i - ]XX,inZ,is sz =

+ (Vpgk) sz) Jzx.i s (51)
where
Vo Cxx = (vpgk)Jyy,i) Jozi+ (vpngzz,l-) Tyy.i
—2Jzy,i (Vpgk)-]zy,i) , (52)

Vp(k) ny == (Vp(k)sz,i> Jzy,i + -]xz,i (Vp(k)-]zy,i)

VOLUME 8, 2020



A. Guerra et al.: DRN of UAVs: A Joint Navigation and Tracking Approach

IEEE Access

- (Vpﬁk)ny,i> Jzz,i - ny,i (Vpﬁk)Jzz,i) s (53)
Voo Cxz = (Vp(k)ny,i> Jyz,i + JIxy.i (Vp§k)Jyz,i)
- <Vp§k)~]xz,i> Jyy.i = Ixz,i <Vp§k)-]yy,i) . (59

Starting from (49), it is straightforward to derive (54).

APPENDIX D

In this Appendix, we provide an analysis regarding the
computational complexity at each UAV as a function of
the number of neighboring UAVs for both the tracking and
navigation algorithms. Obviously, increasing the number of
sensing nodes is beneficial from a localization point-of-view.
This has also been verified in the numerical results (e.g.,
in Fig. 5). At the same time, having a larger number of
nodes implies a higher computational cost and time due to
the increased number of measurements to be processed by
each UAV and the number of safety constraints that can be
simultaneously active. In the following, we show how the
computational cost of each UAV at each time instant depends
on the number of collaborative UAVs.

Let us assume that at some step k, Ns is the number
of elements in the state vector and Nm is the number of
measurements available at the generic ith UAV. Denote with
Npp the number of neighbors interacting with the UAV (here
we drop the time index k and the UAV index i). The number
of available measurements is Nm = Zje N Nmj + Nm,o»
where Ny, j is the number of measurements provided by the jth
neighbor from the neighborhood Ay, and Ny, o the number of
own measurements. The maximum number of measurements
generated by each UAV at each time instant is 4, i.e., range,
Doppler shift and azimuth/elevation angles. Therefore, in this
case the UAV has to process Ny, = 4(Npp + 1) measurements.

We recall that each UAV runs two algorithms: (1) a target
tracking algorithm using an EKF; (2) a navigation/formation
algorithm using a projection gradient method. As described
in Sec. III-C, the tracking algorithm is composed of two steps:

o Prediction step: The operations required for this step
depend exclusively on the number of states (i.e., on Ns),
and they are independent of the number of UAVs.

o Update step: The largest contribution to the computa-
tional cost of this step is the computation of the Kalman
gain defined as

K=P V'hS, (55)
S = VhP V'h+R, (56)

where P~ is the predictive covariance matrix of the state,
Vh is the observation Jacobian matrix, and R is the
measurement noise covariance matrix. Therefore, the
inversion of the Ny X Ny innovation covariance matrix S
needs, in general, O(N:,) = O((4 Nyp + 4)3) operations
[61].

As regards the navigation control, the projection gradient

algorithm in (36) requires the evaluation of the active con-

straints in (37) to form the projection matrix given by
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M=I-N (NTN)_1 NT. Consequently, also in this case, the
most expensive operation in terms of sums and multiplica-
tions is the inversion of NTN, where the size of the constraint
gradient N depends on the number of states and of active
constraints in (37). In the worst case scenario, we have that
the size of g; (containing the distances from the neighboring
UAVs with which a collision can happen) is Ny, the size of
g> is 1, when the considered UAV is very close to the target,
and the size of g3 depends only on the number of obstacles
within the anti-collision sensors of the UAV. Therefore, the
complexity of the navigation algorithm is O ((Nnb + 1)3).

Consequently, the complexity of both algorithms depends
on the number of neighbors Ny, of the UAV. Because the
cost functions of the UAVs tend to keep the UAVs separated
as much as possible, Ny, will be, in general, relatively
small, and hence it is expected that the proposed distributed
system easily scales with the number of UAVs without
a significant increase of the computational complexity at
each UAV.
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