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Abstract: Hemp seed flour represents a potential ingredient for protein enrichment of gluten-free
bakery products, the nutritional value of which could be further increased by fermentation with
sourdough or with beneficial lactic acid bacteria strains. In this study, a metabolomic approach
was used to evaluate the effect of hemp seed flour addition and sourdough fermentation on the
production of flavoring and health-related volatile organic compounds (VOCs) in a gluten-free
bread. Multivariate analysis of VOCs provided an in-depth description of the effects of hemp seed
flour addition and sourdough fermentation on flavoring and bioactive compounds. In particular,
an increased concentration of antimicrobial compounds, a larger spectrum of bioactive VOCs and
a typical flavoring profile was evidenced in comparison to standard products. Furthermore, an increase
of fermentation metabolites was observed in comparison to a standard dough, relating to abundances
of 2-butanone-3-hydroxy, acetic acid, ethanol, and 1,4-butanediol. This study provides new insights on
the evolution of flavoring and bioactive hemp seed flour constituents during sourdough fermentation,
evidencing their retention in baked goods, and describes a new approach that could guide the
formulation of innovative, fermented food with enhanced nutritional value.

Keywords: SPME-GC-MS; sourdough; hemp; flavoring compounds; bioactive compounds;
multivariate analysis; gluten free

1. Introduction

Celiac disease (CD) is a chronic systemic autoimmune disorder caused by a permanent intolerance
to gluten proteins in genetically susceptible individuals. It affects 1% of the population in Europe [1],
and its management requires exclusion of dietary gluten and the substitution of gluten-containing
products with gluten-free (GF) products. The manufacturing of GF products is challenging not only
from an organoleptic but also from a nutritional point of view. GF products are often nutritionally less
adequate than standard products for the low protein and high fat, sugar, and salt content [2].

Hemp seed flour (HSF) represents a potential ingredient for GF bakery products. Beside its high
protein content (33% w/w), HSF is characterized by a low content of saturated fats (4.5% w/w) and
a good percentage of polyunsaturated fatty acids (PUFA) (38% w/w), includingω3 (8% w/w) andω6
(27% w/w). Hemp seed flour is naturally free of cholesterol, it has a low glycemic index, 4% (w/w)
of dietary fibers, and it is rich in magnesium (0.7% w/w) [3]. Furthermore, HSF contains around
300 mg/kg of polyphenols and a broad range of bioactive molecules such as flavonoids, terpenes,
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and cannabinoids [4] that have striking in vitro and ex vivo antioxidant activity [5]. Recently, 20% (w/w)
HSF was used to enrich GF bread [6].

Fermentation with sourdough or with beneficial lactic acid bacteria (LAB) strains could further
increase the nutritional value of HSF-enriched GF products since it provides direct (ingestion of
beneficial bacteria) and indirect (ingestion of microbial metabolites) health benefits to consumers [7].
During fermentation, volatile organic compounds (VOCs) are synthesized naturally by microorganisms
(as secondary metabolites) interacting with the food matrix. VOCs are organic molecules that include
esters, alcohols, aldehydes, ketones, phenols, organic acids, terpenes, etc. Beyond their flavoring
properties, various reports have shown the potential role of VOCs in human health, including their
antioxidant, anti-inflammatory, anti-cancer, and anti-obesity activities [8,9]. Metabolomics is
a promising tool to assess the safety, traceability, and quality of foods. In fermented foods, the metabolite
profiling was applied to observe metabolite modifications during fermentation and to predict the
sensorial and nutritional quality in different food matrices including dairy [10], bakery [11], tomato [12],
and traditional fermented foods [13].

In this study, a metabolomic approach was used to evaluate VOCs production in
a sourdough-fermented, GF bread enriched with HSF and to relate it to flavoring and health properties
of the final product.

2. Materials and Methods

2.1. Microbial Strains and Culture Conditions

Microbial strains belonged to the microbial collection of the Department of Agricultural and
Food Sciences, University of Bologna (Italy) [11,14,15]. Lactobacillus plantarum 98a, Lb. sanfrancisciensis
Bb12 and Saccharomyces cerevisiae LBS were obtained from 30% (v/v) glycerol stocks stored at -80 ◦C.
Bacteria were propagated in de Man–Rogosa–Sharpe (MRS) (Oxoid, Thermo Scientific, Waltham, MA,
USA) broth at 37 ◦C for at least 48 h and yeasts in Sabouraud broth (Oxoid, Thermo Scientific, USA) at
30 ◦C for 24 h.

2.2. Doughs and Bread Preparation

Flours were commercial organic certified products (Table S1). Experimental doughs (approximately
700 g) were prepared according to the formulation reported in Table S2. Maize and rice were partially
substituted with 5.3 % (w/w) HSF to obtain a GF formulation suitable to be considered as a protein
source. The list of samples and their codes are described in Table 1. Two types of doughs formulations
were used: a standard type (S) including maize and rice flours and an HSF type (H) where HSF
(5.3% w/w) replaced standard flours. The percentage of HSF to be used for enrichment was set based
on the sensory characteristics of the final products. Both types were used for direct fermentations
and for sourdough fermentations. Direct fermentations were as follows: (i) not inoculated (X); (ii)
inoculated with Log10 6 CFU/mL of an equal LAB mix of L. sanfrancisciensis Bb12 and L. plantarum
98a (L); (iii) inoculated with Log10 7 CFU/mL of S. cerevisiae LBS (Y), and it was conducted for 18 h
at 31 ◦C. Additionally, a direct fermentation with Y was conducted for 6 h at 31 ◦C. The sourdough
fermentations were made by replacing 20% of H and S dough formulations with 140 g of direct L
fermented doughs and inoculated with Log10 7 CFU/mL of Y. The sourdoughs were then fermented for
6 h at 31 ◦C. All fermented doughs were baked at 180 ◦C for 20 min to produce breads (B). All samples
were produced in triplicates in two independent experiments.
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Table 1. Description of samples codes.

Sample Description

FH Hemp seed flour
FM Maize flour
FR Rice flour
HX Hemp seed dough not inoculated (direct)
HL Hemp seed dough LAB inoculated (direct)
HY Hemp seed dough S. cerevisiae LBS inoculated (direct)
SX Standard dough not inoculated (direct)
SL Standard dough LAB inoculated (direct)
SY Standard dough S. cerevisiae LBS inoculated (direct)

YH+ Hemp seed dough added with sourdough
YS+ Standard dough added with sourdough

HX18 HX fermented 18 h
HL18 HL fermented 18 h
HY18 HY fermented 18 h
SX18 SX fermented 18 h
SL18 SL fermented 18 h
SY18 SY fermented 18 h
YH+6 YH+ fermented 6 h
YS+6 YS+ fermented 6 h
YH6 YH * fermented 6 h
YS6 YS * fermented 6 h

YH+B Bread from YH+6
YS+B Bread from YS+6
YHB Bread from YH6
YSB Bread from YS6
HLB Bread from HL18
HYB Bread from HY18
SLB Bread from SL18
SYB Bread from SY18

* same formulations of HY and SY, respectively.

2.3. Microbial Quantification during the Process

Microbial quantification was obtained by both culture-dependent and culture-independent
protocols. The culture-dependent quantification was done by plating serial dilutions of the
samples in physiological solution (0.9% NaCl). LAB were plated on MRS (de Man–Rogosa–Sharpe)
(Oxoid, Thermo Fisher Scientific, Waltham, MA, USA) agar and cycloheximide (0.1 g/L) (Sigma,
Saint Louis, MO, USA) and incubated aerobically for 24 h at 37 ◦C. Yeasts were plated on
Sabouraud dextrose agar (Oxoid, Thermo Fisher Scientific, USA) and chloramphenicol (0.4 g/L)
(Sigma, Saint Louis, MO, USA) and incubated aerobically for 48 h at 30 ◦C. Quantification was
calculated as Log10 CFU/mL (Colony Forming Units/mL). Culture independent protocol was
performed by qPCR with the SYBR Green I chemistry, applying genus specific primers as Lac1
for Lactobacillus spp., then named LAB, (forward:5’-GCAGCAGTAGGGAATCTTCCA-3’ and reverse:
5’-GCATTYCACCGCTACACATG-3’) [16] and ITS 23S for S. cerevisiae LBS, then named yeasts, (forward:
5’-GTTTCCGTAGGTGAACCTGC-3’and reverse: 5’-ATATGCTTAAGTTCAGCGGGT-3’) [17].
Extraction of bacterial DNA was obtained with Nucleo Spin Food DNA Extraction Kit (Macherey
Naegel, Duren, Germany) prior a pre-treatment of 10 min at 20 Hz of ultra-pure water diluted doughs
in a sonication bath. Genetic standards were prepared from relative PCR amplicons from pure cultures
of the target bacterial species as described previously [18]. For both the targets, qPCR reaction on
a RotorGene 6000 (Qiagen, Hilden, Germany) was set as previously described [18]. Sample reactions
were conducted in triplicate, with positive, negative, and background control. Quantification was
calculated as GCN/mL (Gene Copy Number/mL) and the value divided by three (the presumptive
copies of a ribosome per cells), expressed as Log10 cells/mL [18,19].
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2.4. pH Changes during the Process

The pH was determined at 20 ◦C with a pH meter (Crison, Alella, Spain) appropriately calibrated
with three standard buffer solutions at pH 9.21, pH 4.00, and pH 2.00. The pH values were measured
in duplicate at three different times to monitor the fermentation (Table S3).

2.5. Solid-Phase Microextraction-Gas Chromatography-Mass Spectrometry (SPME-GC-MS)

Evaluation of volatile organic compounds (VOCs) was carried out on an Agilent 7890A Gas
Chromatograph (Agilent Technologies, Santa Clara, CA, USA) coupled to an Agilent Technologies 5975
mass spectrometer operating in the electron impact mode (ionization voltage of 70 eV), equipped with
a Chrompack CP-Wax 52 CB capillary column (50 m length, 0.32 mm ID) (Chrompack, Middelburg,
The Netherlands). The SPME-GC-MS (solid phase micro-extraction gas chromatography–mass
spectrometry) protocol and the identification of volatile compounds were done according to previous
reports, with minor modifications [11,15]. Briefly, before each head space sampling, the fiber was
exposed to the GC inlet for 10 min for thermal desorption at 250 ◦C in a blank sample. The samples
were then equilibrated for 10 min at 40 ◦C. The SPME fiber was exposed to each sample for 40 min
and finally the fiber was inserted into the injection port of the GC for a 10 min sample desorption.
The temperature program was: 50 ◦C for 0 min, then programmed at 1.5 ◦C/min to 65 ◦C, and finally at
3.5 ◦C/min to 220 ◦C, which was maintained for 20 min. Injector, interface, and ion source temperatures
were 250, 250, and 230 ◦C, respectively. Injections were carried out in splitless mode, and helium
(3 mL/min) was used as carrier gas. Identification of molecules was carried out by comparing their
retention times with those of pure compounds (Sigma, USA) and confirmed by searching mass spectra
in the available databases (NIST version 2005 and Wiley version 1996) and literature [11,15,18,19].
Ethyl alcohol, 1,4-butandiol, acetic acid, and 2-butanone-3-hydroxy were absolutely quantified in
mg/kg, while all other VOCs were relatively quantified in percentage.

2.6. Statistical Analyses

All statistical analyses were performed using TIBCO Statistica 8.0 (Tibco Inc., Palo Alto, CA,
USA). Normality was checked with the Shapiro–Wilk test, while homoscedasticity was evaluated with
the Levene’s test [20]. Differences between all samples were evaluated with untargeted Analysis of
Variance (ANOVA) set at p < 0.05. Multivariate analysis was conducted with principal component
analysis (PCA), K-mean clustering, and MANOVA (p < 0.01). Pearson correlations were used to
generate the heatmap of VOCs prior fermentation. For post hoc test, an HSD Tukey’s test was employed
(p < 0.05). Except for the quantification in mg/kg of major metabolites, independently normalized data
set was proposed for each chemical class of molecules. The data were normalized using the mean
centering method [18,19]. All results are expressed as mean values obtained at least from duplicate
batches in two independent experiments.

3. Results

3.1. Microbial Quantification and pH Values during the Process

Quantification of LAB and yeasts obtained by plate count and qPCR are shown in Table 2.
Results expressed as Log10 cell/g and represent the mean value of the two methods since they give
similar results when are applied to quantify the evolution of a known and standardize inoculum in
an essential food prototype made in a research laboratory [18,19]. In HSF sourdoughs, the microbial
load resulted higher than in standard samples (p < 0.05). In all conditions, direct inoculation of LAB
was the starter that mostly reduced pH during fermentation (Table S3). In particular, the strongest
acidification was achieved in standard doughs after 18 h (SL18), attaining pH 3.60 ± 0.08. After 24 h of
sourdough fermentation, the most acidified dough was the HSF-enriched one (YH+6), accounting for
pH 4.11 ± 0.11. Acidification was faster in HSF doughs even after 6 h of direct fermentation with
S. cerevisiae LBS (pH 5.81 ± 0.11).
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Table 2. Mean values of lactic acid bacteria (LAB) and yeast growth (Log10 cells/g).

Sample LAB S. cerevisiae LBS

SX 2.60 ± 0.04 a 3.90 ± 0.05 b

SL 7.02 ± 0.26 c 2.30 ± 0.09 a

SY 5.30 ± 0.06 b 6.60 ± 0.07 c

HX 3.78 ± 0.08 b 4.48 ± 0.04 b

HL 7.15 ± 0.25 c 3.48 ± 0.05 a

HY 3.30 ± 0.08 a 6.60 ± 0.09 c

SX18 6.32 ± 0.10 b 5.90 ± 0.11 b

SL18 9.58 ± 0.34 d 5.00 ± 0.11 b

SY18 6.45 ± 0.14 c 7.84 ± 0.04 c

HX18 7.31 ± 0.29 c 6.23 ± 0.04 c

HL18 9.74 ± 0.19 d 6.90 ± 0.14 c

HY18 6.60 ± 0.15 c 8.72 ± 0.16 d

YS+ 9.86 ± 0.24 d 6.92 ± 0.07 c

YH+ 9.81 ± 0.21 d 6.99 ± 0.13 c

YS 5.71 ± 0.22 c 6.33 ± 0.14 b

YH 4.31 ± 0.15 b 6.20 ± 0.07 b

YS+6 10.97 ± 0.31 d 7.27 ± 0.11 c

YH+6 11.16 ± 0.23 d 8.23 ± 0.19 c

YS6 6.53 ± 0.19 c 7.14 ± 0.14 c

YH6 5.42 ± 0.09 b 6.89 ± 0.14 c

Different letters in the same column indicate statistical significance (at least p < 0.05). For samples abbreviations
see Table 1.

3.2. Analysis of the Volatilome

Volatilome analysis identified more than 200 molecules and relatively quantified approximately
140. For a landscape description of the volatilome, two datasets normalized with the mean centering
method were proposed: (i) one including not fermented cases and 126 significant molecules (p < 0.05)
(Section 3.2.1) and (ii) one including all experimental cases and the sums of relative abundances of
molecules grouped by chemical class, employed to compare the not fermented cases to the means of
fermented cases (Section 3.2.2). Afterward, for a more specific investigation and to generate robust data
trainings for multivariate analysis, two other options were chosen: (iii) the most abundant compounds
(ethyl alcohol, acetic acid, 2-butanone-3-hydroxy, and 1,4-butandiol) were set apart and independently
quantified in mg/kg using an internal standard as described previously [18,19] (Section 3.2.3); (iv) all
other compounds for multivariate analyses (PCA, K-Means, and MANOVA) were obtained from five
super-normalized data sets organized by different VOCs chemical class (Section 3.2.4).

3.2.1. Quantification of VOCs before fermentation

One-hundred-twenty-six VOCs, including 34 alcohols, 23 aldehydes, 29 ketones, 22 organic acids,
and 18 alkenes, were detected in flours and in not fermented doughs. The data set was clustered by
Pearson analysis in two major groups, the first including HSF samples and HSF not fermented doughs
and the second including standard flour samples and related not fermented doughs. A higher quantity
and a wider speciation of compounds was identified in HSF samples (HSF: 57 VOCs vs. 49 VOCs in
standard flours; HSF doughs: 107 VOCs vs. 69 VOCs in standard doughs). In most cases, hexanal was
one of the most abundant compounds, reaching the top level in HSF and HSF doughs. In these samples,
octanone and ethylcyclopentanone were the second most abundant compounds. Of note, these ketones
were not identified in standard samples. As well, 1-octen-3-ol and caryophyllene oxide were detected
in significant amount only in HSF samples. The heatmap of relative quantification of VOCs in the
different samples is reported in Figure S1.
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3.2.2. Effect of Fermentation

In HSF samples, fermentation caused a significant increase of VOCs in all chemical classes, while in
standard samples only alcohols and organic acids significantly increased (p < 0.05). After baking,
in HSF bread, the concentration of aldehydes, ketones, and organic acids was double compared to the
standard breads, and that of alkenes was triple (Figure 1).

Figure 1. Relative quantification of total volatile organic compounds (VOCs) divided by
chemical classes. Different letters indicate different significance values by Tukey’s HSD test
(p < 0.05). Sample abbreviations: H = hemp seed enriched; S = standard; NF = not fermented;
F = fermented; B = breads. Box = mean value; Rectangles = mean ± Standard Deviation (SD);
Whiskers = mean + 1.96*SD. Black plots = alcohols; red plots = aldehydes; blue plots = ketones; green
plots = organic acids; fuchsia plot = alkenes.

3.2.3. Quantifications of the Main Fermentation Metabolites

Quantification of main fermentation metabolites (mg/kg of fermented matrix) is reported in
Table 3. Ethanol produced in yeast fermented HSF dough (HY18) scored higher than its control (SY18),
while an opposite trend was observed when the fermentation process was performed by sourdough.
Acetic acid in HSF-enriched doughs scored the highest concentration when directly fermented with
LAB (LAB) for 18 h (HL18) accounting for 1.88-folds more than the relative control (SL18) (p < 0.05).
The HSF-enriched sourdoughs (YH+6) produced 1.44-fold more acetic acid than the control, while in
the baked samples, those directly fermented by LAB (HLB) had 3.1-fold more acetic acid than the
control breads (SLB) (p < 0.05). In comparison to the control, HSF fermented doughs produced a similar
content (p>0.05) of 1,4-butanediol, but in the HSF sourdough breads (YH+B) this compound was
retained 1.6-folds more (p < 0.05) than in standard bread. S. cerevisiae LBS direct fermentation almost
doubled 2-butanone-3-hydroxy concentration in HSF samples (HY18) and breads (HYB) compared to
their controls.



Nutrients 2020, 12, 1050 7 of 19

Table 3. Quantification (mg/kg of fermented matrix) of the main fermentation metabolites.

Sample Ethyl alcohol Acetic acid 2-butanone-3-hydroxy 1,4-Butanediol

FR tr. * n.d. n.d. tr.
FM n.d.† n.d. n.d. n.d.
FH n.d. n.d. n.d. n.d.
HX n.d. n.d. n.d. n.d.
HL tr. 0.34 ± 0.03 a n.d. n.d.
HY tr. 0.13 ± 0.05 a n.d. n.d.
SX tr. n.d. n.d. n.d.
SL tr. n.d. n.d. tr.
SY tr. n.d. n.d. tr.

YH+ 6.79 ± 1.06 b 1.82 ± 0.82 a 0.42 ± 0.17 a 7.67 ± 1.02 c

YS+ 4.03 ± 0.72 b 0.33 ± 0.11 a 0.37 ± 0.09 a 6.46 ± 1.32 b

HX18 14.10 ± 0.79 c 11.98 ± 0.68 c 9.40 ± 0.69 c 3.33 ± 0.56 b

HL18 25.97 ± 0.69 c 25.18 ± 2.26 d 12.44 ± 1.69 c 8.85 ± 1.58 c

HY18 29.19 ± 3.00 c 8.53 ± 1.83 c 16.61 ± 1.99 c 9.64 ± 1.23 c

SX18 16.17 ± 2.08 c 2.94 ± 0.07 b 7.11 ± 2.02 b 2.02 ± 0.34 a

SL18 23.82 ± 1.54 c 13.33 ± 1.57 c 8.84 ± 0.99 c 7.86 ± 0.49 c

SY18 21.30 ± 2.65 c 6.31 ± 1.06 b 9.08 ± 0.85 c 9.90 ± 1.37 c

YH6 12.77 ± 1.90 c 7.94 ± 0.42 c 10.61 ± 1.44 c 7.98 ± 1.28 c

YS6 13.74 ± 2.32 c 6.44 ± 0.55 b 6.12 ± 0.55 b 8.40 ± 1.19 c

YH+6 15.03 ± 3.16 c 18.60 ± 3.32 d 10.14 ± 1.69 c 23.75 ± 3.21 d

YS+6 16.19 ± 2.13 c 13.26 ± 2.41 d 11.84 ± 1.05 c 18.93 ± 2.03 d

HLB 0.11 ± 0.04 a 8.04 ± 1.07 c 6.34 ± 0.18 b 3.13 ± 0.64 b

HYB 0.17 ± 0.02 a 4.10 ± 0.11 b 10.29 ± 1.54 c 3.56 ± 1.04 b

SLB 0.45 ± 0.09 a 2.73 ± 0.66 b 4.45 ± 0.44 b 2.22 ± 0.43 a

SYB 0.39 ± 0.08 a n.d. 6.77 ± 0.99 b 2.95 ± 0.78 b

YHB 0.63 ± 0.12 a 0.45 ± 0.28 a 6.76 ± 1.12 b 1.95 ± 0.32 a

YSB 0.14 ± 0.09 a tr. 5.45 ± 1.30 b 1.45 ± 0.78 a

YH+B 3.63 ± 0.98 b 7.99 ± 1.51 c 8.88 ± 0.87 c 6.99 ± 1.21c

YS+B 2.87 ± 0.34 b 5.33 ± 1.10 b 6.87 ± 0.55 b 4.33 ± 2.65 b

Values are means of two replicates and two different batches. * traces = values < 0.1 mg/kg; † n.d. = not determined.
Different letters in the same column indicate significant differences (at least p < 0.05). For samples abbreviations
see Table 1.

3.2.4. Multivariate Analysis of VOCs Organized by Different Chemical Classes

Alcohols

To better evidence differences in the alcohol class, normalization of the dataset and statistical
analysis were performed after exclusion of the most abundant compounds, ethanol and 1,4-butandiol.
Moreover, flours and not fermented doughs were not included (n = 28) in the dataset due to the scarce
abundance of alcohols. PCA grouped samples in three clusters (Figure 2). HSF samples were grouped in
two clusters. Cluster 1 (all HSF doughs regardless fermentation) was described by higher concentration
of almost every alcohol and by a typical signature made by thymol, borneol, and terpineol. Cluster 3 (all
HSF breads) was described by top amounts of 1-heptanol, 1-nonen-3-ol, and 1,2,4-butanetriol, with the
former as a distinct sign. The speciation of alcohols was comparable to HSF doughs, but alcohol
concentrations were strongly decreased. Indigenous fermentation significantly fostered the production
of butanol, methyl acetate, 1-nonanol, and hexadecanol, while sourdough fermentation promoted that
of 1-octen-3-ol, octanol, 2-butyl, and 2-undecanol (Figure S2A,B).
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Figure 2. (A) Principle component analysis (PCA) of cases and variables on alcohols (p < 0.05);
(B) K-means clustering analysis (at least p < 0.05).

Direct fermentation performed by S. cerevisiae LBS was marked by higher cyclohexanol abundance,
while LAB fermentation generated more 1,2,4-butanetriol. Thymol, borneol, and terpineol were robust
descriptors of HSF enriched goods. Lastly, furanmethanol resulted 83% lower in the HSF fermented
doughs and in the HSF breads in comparison to the control samples.

Aldehydes

From analysis of variance of all samples (n = 58), 10 aldehydes resulted significantly different
(p < 0.05). PCA loadings (Figure 3A) were clustered in three sets by K-means analysis (Figure 3B).
HSF samples were grouped in two clusters. Cluster 1 was the largest set (n = 41), including standard
and HSF doughs prior to and after the fermentation. This cluster was described by high concentration
just of 2,4-nonadienal (E,E), which accounted for about 50% of total aldehydes. Cluster 3 included
all HSF breads and was characterized by a large speciation of aldehydes and by top abundance of
2-hexenal (E), 2-decenal (E), 2-heptenal (Z), 2-methyl-2-butenal, and 2,4-decadienal (E,E) compared
to other clusters. In comparison to the cluster grouping standard breads, cluster 3 had a unique
signature made of the aforementioned first three compounds. Results from MANOVA (p < 0.01)
(Figure S2C,D) indicated that samples obtained by indigenous fermentation (HX18) had a major
quantity of acetaldehyde and furfural, while samples made with sourdough had more 2-hexenal
(E) and 2-octenal (Z). Samples directly fermented by S. cerevisiae LBS generated typical aldehydes,
such as octadienal dimethyl (Z) and tetradecanal, while those fermented by LAB were characterized
by 2,4-nonadienal (E,E). Interestingly, this analysis evidenced that HSF breads accounted for the top
proportion in production of 2-heptenal (Z), octadienal dimethyl (Z), 2,4-decadienal (E,E), and dodecanal.
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Since these compounds were not found in the raw material it is conceivable that they were a result of
bread making. On the contrary, 2-decenal (E) diminished drastically with bread making.

Figure 3. (A) PCA of cases and variables on aldehydes (p < 0.05); (B) K-means clustering analysis (at
least p < 0.05).

Ketones

Analysis of variance including all samples (n = 58) evidenced 18 significantly different ketones
(p < 0.05). PCA loadings (Figure 4A) were clustered in four sets by K-means analysis (Figure 4B).
HSF samples were contained in three clusters. Cluster 1 comprised all the HSF breads regardless
of the type of fermentation. It was described by all ketones except 2-undecanone, with top
concentration of ethylcyclopentanone, 2-pentanone-3-hydroxy, 2,4-octandienone (E,E), 2-pentanone,
and (R)-bornane dione. Ethylcyclopentanone was the most abundant ketone among all variables
and was quantified 7.52-folds more than in the runner-up cluster. Along with 2-pentanone and
2-pentanone-3-hydroxy, it represented the unique signature of HSF breads. All fermented HSF
doughs except YH6 were grouped in cluster 3, which was described by 2-nonanone, 2,3-pentanedione,
2-cyclopentenone-3-hydroxy, and 2-propanone cyclopropyl. Lastly, cluster 4 comprised ten cases
related to HSF not fermented doughs and was described by 12 different ketones, oct-3-en-2-one and
(E)-6,10-dimethyl-undec-3-en-2-one being the best markers. From MANOVA (p < 0.01) (Figure S2E,F)
emerged that the indigenous fermentation fostered the production of 2-pentanone-3-hydroxy and
2-pentadecanone, the sourdough that of 2-butanone and 2,10-undecadione 6-6-dimethyl (E), while direct
fermentation was marked by higher 2-haxanone and hex-3-en-2-one abundances by S. cerevisiae LBS
and LAB, respectively. In HSF-enriched products, concentration of significant ketones was 7.2-times
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higher than in standard samples. In addition, HSF products were described by ten ketones compared
to eight, 2-cyclopentenone-3-hydroxy and (R)-bornane dione being evidenced only in HSF fermented
doughs and breads.

Figure 4. (A) PCA of cases and variables on ketones (p < 0.05); (B) K-means clustering analysis (at least
p < 0.05).

Alkenes

From analysis of variance including all samples (n = 58), 16 alkenes, notably, 9 terpenes and 7
α-olefins resulted significantly different (p < 0.05). PCA loadings (Figure 5A) were clustered in four
sets by K-means analysis (Figure 5B). HSF samples were contained in three clusters, mainly described
by terpenes, while standard samples were clustered separately and mainly described by α-olefins.
Cluster 1 and 2 included HSF fermented doughs and HSF breads, respectively. HSF fermented doughs
were described by nine terpenes and two α-olefins, with top abundance of β-phellandrene, ∆-3-carene,
caryophillene oxide, and eicosene (E). ∆-3-carene was the most abundant alkene among all variables
of the dataset. The HSF breads were described by a similar compound speciation but with a slightly
minor abundance; in particular, ∆-3-carene and (R)-α-pinene were found in traces. Octadecene (Z) was
the most abundant α-olefin in all HSF samples. Cluster 4 grouped only hemp seed flour and four not
fermented HSF samples. It was described by all nine terpenes abundantly quantified and by traces of
threeα-olefins and minor load of hexadecene (Z). The most abundant terpenes were in order ∆-3-carene,
(R)-α-pinene, camphene, and α-farnesene. Moreover, 84.3% of total (R)-α-pinene and more than 47.7%
of total camphene were members of this cluster. From MANOVA (p < 0.01) (Figure S2G,H), it emerged
that S. cerevisiae LBS generated larger production of α-bergamotene, while LAB fermentation induced
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a higher concentration of β-phellandrene and ∆-3-carene. Sourdough was the starter most influencing
the alkene abundances; indeed, α-farnesene and four out of six α-olefins, including hexadecene (Z)
and eicosene (E), were augmented by this type of fermentation. Independently from fermentation,
β-phellandrene, ∆-3-carene, and caryophyllene were robust descriptors of HSF-enriched doughs
or breads.

Figure 5. (A) PCA of cases and variables on alkenes (p < 0.05); (B) K-means clustering analysis (at least
p < 0.05).

Organic Acids

From analysis of variance including all samples (n = 58), 18 organic acids (4 short chain, 9 medium
chain, and 5 long chain) resulted significantly different (p < 0.05). PCA loadings (Figure 6A) were
clustered in four sets by K-means analysis (Figure 6B). HSF samples were grouped in two clusters.
Cluster 1 consisted of several HSF samples, from the flour to the breads. It was described by a large
speciation of organic acids contributing to a profile made of 17 different compounds, otherwise not
plentifully quantified. The main VOCs were: pentadecanoic, n-decanoic, nonadecanoic, heptanoic,
and heptadecanoic acids. Cluster 3 comprised most of the fermented HSF samples and was described
by a generally higher abundance of organic acids but with a remarkably higher quantity of hexanoic,
propanoic, lactic, tetradecanoic, n-hexadecanoic, octanoic, and heptanoic acids. Likely, in cluster 1,
samples directly fermented with S. cerevisiae LBS were up in quadrant II, while those directly fermented
with LAB and the sourdough were down in quadrant III. This latter distinction emerged when MANOVA
was performed (p < 0.01) (Figure S2I,J). For example, LAB fostered the production of propanoic acid,
accounting for 46.4% of the total, while the sourdough fostered that of lactic (51.5%), hexanoic (43.5%),
heptanoic (43.4%), and octanoic (55%) acids. The indigenous flora pushed the production of nonanoic
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acid (50.1%), while S. cerevisiae LBS pushed that of pentadecanoic acid (49%). Interestingly, 32.84%
of n-hexadecanoic acid was not derived from fermentation. In fact, its abundance was related to
the 33.9% and 63.9% in HSF doughs and HSF flour, respectively. Besides, while medium-chain
organic acids, such as heptanoic and nonanoic acids, were mainly present in HSF goods (91.1% and
92.7%, respectively), the long-chain organic acids, such as heptadecanoic and nonadecanoic acids,
were majorly derived from FH, accounting for 62.7% and 60.2% of total values.

Figure 6. (A) PCA of cases and variables on organic acids (p < 0.05); (B) K-means clustering analysis
(p < 0.05).

4. Discussion

4.1. Microbial Growth and Major Fermentation Metabolites

In all HSF fermented samples, microbial growth was massive and higher than in the standard
samples. Microbial growth after sourdough fermentation was higher than in the recent study by
Nionelli et al., [21], probably due to the high adaptation ability of the strains we used as they were
isolated from a sourdough ecosystem (wheat sourdough). The optimal performance of the strains
was confirmed by the better acidification observed in this study than in the previous study [21].
An efficient dough acidification is an important characteristic of fermentation, since it inhibits spoilage
microbes and increases bread loaf homogeneity and flavor. Moreover, HSF addition to the dough
directly fermented with S. cereviase LBS provided the maximum production of ethanol, the most
important descriptor for an efficient leavening process. The lower acetic acid loads observed in our
study compared to the previous one [21] were probably due to the shorter fermentation time and the
use of GF flours, which are generally considered less fermentable than wheat. Although the content
of 2-butanone-3-hydroxy, which is essential for the structure and a pleasant aroma of the bakery
product [22] decreased in HSF bread due to baking loss, it was still higher than in standard breads.

4.2. Multivariate Analysis of VOCs Sorted by Chemical Class

Flavoring characteristics and putative bioactivity of the main VOCs in HSF-enriched GF doughs
and breads are summarized in Table 4.
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Table 4. Flavoring and bioactivity of discriminant VOCs of hemp seed flour (HSF) fermented doughs
and breads.

Compounds Flavoring Bioactivity References

1-heptanol musty, pungent, leafy
green [18,23]

1-octen-3-ol antimicrobial activity against spoilage and
opportunistic microbes [24]

borneol pine, wood, camphor

contrast spoilage microorganism bacterial
foodborne and entero-pathogens;

anti-inflammatory and antioxidant capacities for
the treatment of ulcerative colitis; added to

drinking water of rats for 7 days lowered the level
of oxidative DNA lesions induced in

their hepatocytes.

[23,25–27]

thymol herbal, thyme, phenolic,
medicinal, camphor

contrast spoilage microorganism bacterial
foodborne and entero-pathogens;

anti-inflammatory and antioxidant in human
preadipocytes and in neuroprotection of

rotenone-induced rat model of Parkinson’s disease.

[28–31]

terpineol pine, terpene, lilac, citrus,
woody, floral

contrast spoilage microorganism bacterial
foodborne and entero-pathogens;

anti-inflammatory and antioxidant in LPS-induced
cell line.

[32–34]

octadienal dimethyl nice aroma of lemon

counteract spoilage molds of breads; in vitro is
reported to have antimicrobial potential to food

borne and spoilage fungi; anti-inflammatory
activity in experimental infection with pathogenic
Staphylococcus aureus; anti-hyperalgesic effects in

combination with β-cyclodextrins in
animal models

[35–40]

2-heptenal (Z) pleasant almond flavor associated to different plant-based products with
anti-inflammatory and anti-oxidant activities. [23,41–43]

∆-3-carene harsh, terpene-like,
coniferous

active against spoilage microbes, food-borne
pathogens, and pathogenic E. coli. [31,44,45]

β-caryophillene oxide dry, wood, cedarwood,
carrot

anti-inflammatory and analgesic effects in different
mouse models of inflammatory pain; antibacterial

capacity versus Helicobacter pylori.
[31,46–48]

β-caryophillene woody-spicy, dry and
tenacious

known as “dietary cannabinoid”, it has been
shown to be orally bioavailable; C. sativa essential

oils bearing up to 13% of this compounds is
effective against several opportunistic and spoilage

microorganisms including Helicobacter pylori;
prevents structural alteration of the myocardium;

effective against LPS-induced oligodendrocyte
toxicity; prevention of lipid accumulation and

improvement of glucose uptake; insulinotropic and
antidiabetic effects

[31,34,48–53]

Eicosene (E)

is a part constituting ceramide (Sphingosine);
cardioprotective effects; on mouse model can be

effective on treating metabolic disorder; in human
plasma binds to high-density lipoprotein and

exhibit anti-atherogenic properties

[45,54,55]

1-pentanone-3-hydroxy caramel-sweet, buttery,
and hay-like

is converted during glycosylation of
toxic furanones [56]

propanoic acid typical sharp, acrid,
vinegar, sour taste

Inhibition of ubiquitous bacilli, spoilage microbes
and food-borne pathogens; prebiotics; fostering of

the selective growth of probiotics in the gut;
stimulation of epithelial immune function

[18,23,57,58]

lactic acid sharp, acrid, vinegar,
sour taste buttery nuance

inhibition of ubiquitous bacilli, spoilage microbes
and food-borne pathogens [18,23,57]

hexanoic acid rancid-like inhibition of molds in bread [23,59]
heptanoic acid rancid-like [23]

octanoic acid rancid-like

binding to -OH of serine residues of ghrelin
activate the hormone and regulate hunger; in

combination to antioxidant compounds produces
esters lipophenols that have stronger and more

stable host antioxidant activity;

[23,59–61]

nonanoic acid
fatty, waxy, and cheesy

with a mild sweet
creamy background

effective on excessive calorie burning, inducing
weight loss [18,23,59,62]

4.2.1. Alcohols

Among minor alcohols, 1-heptanol, 1-octen-3-ol, 1-nonen-3-ol, tetradecanol, borneol, thymol,
and terpineol better discriminated HSF containing samples. 1-heptanol, 1-nonen-3-ol, and 1-octen-3-ol
are associated to hemp drinks fermented with probiotics [18]. 1-heptanol is used as a flavoring agent
conferring a typical olfactory issue described as musty, pungent, leafy, green [23]. 1-octen-3-ol derives
from linoleic acid during oxidative breakdown, and it has antimicrobial activity against spoilage and
opportunistic microbes [24]. Borneol, thymol, and terpineol are considered bioactive molecules and
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are reported to modulate beneficially the gut microbiome [25,28,32] and to possess anti-inflammatory
and antioxidant activity [26,29,30,33]. Their exclusive presence in HSF products can be considered
an added value, particularly because they were retained in HSF breads, with borneol as the most
resistant (43% retained). The presence of theses alcohols could also have positive effects on shelf life
due to their ability to contrast spoilage microorganisms [63–65]; of note, HSF samples evidenced the
lowest concentration of 2-furanmethanol, which is considered a toxic compound [66,67]. A reduction
of its content was recently observed also in hemp/wheat flour breads as the percent content of HSF
increased [68].

4.2.2. Aldehydes

HSF breads accounted for about 20% less furfural than standard breads. Furfural has
a leading role in the aroma of bakery products [23], but it was recently investigated as a potential
carcinogen [69,70]. The concentration of octadienal dimethyl (Z) naturally occurring in raw hemp seeds,
significantly increased in HSF bread as effect of S. cerevisiae fermentation. Octadienal dimethyl (Z) is
characterized by a nice aroma of lemon [35]. It has antimicrobial activity, mainly directed to food-borne
and spoilage fungi [36–38], anti-inflammatory activity in rat experimental infection with pathogenic
Staphylococcus aureus [39], and anti-hyperalgesic effects in combination with β-cyclodextrins in animal
models [40]. HSF breads were also characterized by 2-heptenal (Z), which has a pleasant almond flavor
and is recognized as an anti-inflammatory and anti-oxidant compound [41–43]. Our data evidenced
a positive correlation of 2-heptenal (Z) with LAB growth in hemp seed substrate similar to fermented
hemp drinks [18] and sourdough-fermented breads [23],

4.2.3. Alkenes

β-phellandrene, ∆-3-carene, α-farnesene, camphene, and β-caryophyllene increased in HSF
fermented dough and breads compared to HSF doughs prior fermentation. This effect, already observed
in hemp drinks [18,19], was more evident after LAB fermentation. Besides, just smaller amounts of
camphene and α-farnesene were quantified in standard samples. Due to the positive effects of this
compounds (Table 4), their increase after fermentation deserves consideration.

Among the α-olefins, eicosene (E) was found in higher concentration in HSF than standard
samples. Eicosene (E) is a part constituting ceramide, known as C20-sphingosine [54], and the increase
of its dietary intake could promote an efficient sphingolipid metabolism.

4.2.4. Ketones

HSF samples were described by a larger speciation of ketones than standard samples at all
stages of the process. Among ketones, 2-pentanone-3-hydroxy (2P3H) deserves attention. 2P3H is
biosynthesized by plants and bacteria, mainly by Bacillus species [22] and lactic acid bacteria [71].
Accordingly, in our study, the abundance of this compound was fostered mainly by fermentation with
the indigenous flora, which is realistically inhabited by species of Bacillus and in minor part by direct
fermentation with LAB. The odor of 2P3H is described as caramel-sweet, buttery, and hay-like [56].
Moreover, this compound may decrease the content of toxic furanones by glycosylation [72], resulting in
a less/not harmful product for human consumption.

4.2.5. Organic Acids

In our study, the profile of organic acids of HSF samples was quantitatively and qualitatively
superior to the standard one. Principally, a great amount of organic acids was discovered in the
fermented HSF sourdoughs. In agreement with previous study [3,18], the increased concentration
of propanoic, lactic, and medium-chain organic acids depended mainly on the fermentation process,
while the high concentration of long-chain organic acids was more related to the enrichment with
HSF. Nonanoic acid may represent a marker compound of hemp seed product [18]. Propanoic and
lactic acids are flavoring compounds but are also involved in the quality and safety of fermented
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food due to their antimicrobial activity [18,23,57]. Besides, propanoic acid fits the new definition of
prebiotics [58]. Since hexanoic and octanoic acids possess unpleasant flavoring traits (rancid-like) [23,59],
the modulation of their content should be necessary and deserves further studies.

4.2.6. Overall Considerations

The addition of HSF and the use of different fermentation types gave rise to specific VOCs
profile predicting the organoleptic characteristics of bread. In sourdough bread, pleasant almond-like
and lemon-like notes could be related to HSF addition or S. cerevisiae fermentation, respectively.
In addition, increased traits of herbal, fruity, and floral notes (minor alcohols) could be provided by
HSF addition both in yeast- and LAB-fermented bread, and sour and buttery nuances due to propanoic
acid could be predicted in sourdough bread. The organoleptic impact of the increased concentration of
medium and short-chain FA is difficult to predict since it greatly depends on the relative FA content.
Indeed, except for fatty and creamy background (nonanoic), an excess of rancid-like notes may be
ascribed to their unbalance.

The health potential of bioactive compounds delivered in the experimental breads is hardly
predictable for different reasons. First, although SPME-GC-MS is a quali/quantitative method,
bioactive absolute concentration must be handled very carefully in estimating bioactivity. At present,
the effective dose of most of the detected bioactive has been evaluated in specific experimental
conditions and cannot be generalized. Moreover, the food matrix delivering the bioactives still
represents a key parameter both for analysis and bioaccessibility.

The enrichment with HSF was based on the sensory characteristics and allowed to increase the
protein concentration in the final products, although not to the extent needed for the claim “source
of protein”, being about 11% instead of the 12% of the total energy required by the EU regulation
(Regulation (EC) No 1924/2006, lastly amended by Regulation (EU) No 1047/2012). Of note, we did not
add any flavoring or masking agents to avoid interference in the analyses. In the future, their addition
could allow to further increase the percentage of HSF maintaining good sensory characteristics.

5. Conclusions

In this work, HSF was used to formulate a GF bread enriched in proteins. The bread was
quantitatively and qualitatively analyzed throughout the process to evaluate fermentation performances
and volatilome composition. The metabolomic profiles of HSF-enriched GF breads were considered
to investigate the potential of hemp flour as a vehicle for the addition of flavoring and bioactive
compounds in bakery products. Multivariate analysis on VOCs provided a deeper description of the
effects of HSF addition and sourdough fermentation process on flavoring and bioactive compounds,
mainly evidencing an increased concentration of antimicrobial compounds, a larger spectrum of
bioactive VOCs, and a typical flavoring profile.

The herein reported study was not aimed to the demonstration of any biological activity of
the HSF-enriched bread, but it provided new insights on the modulation of flavoring and bioactive
constituents of HSF during sourdough fermentation and evidenced the retention or even increase of the
most of them in baked goods. Our approach allowed linking specific VOCs to different fermentation
types and could be useful to tune the formation of desirable compounds in the final products.
Although further studies coupling volatilome analysis to sensorial assessment are needed to meet
consumers’ acceptance, the evaluation of the shift of VOCs could represent a comprehensive, sensitive,
and reliable method guiding the formulation of innovative food with enhanced nutritional value.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/2072-6643/12/4/1050/
s1. Figure S1: Heatmap of relative quantification of means of VOCs of flour samples and not fermented dough
samples; Figure S2: MANOVA (p < 0.01) of VOCs on samples; Table S1: Proximate composition of flours (w/w);
Table S2: Dough formulations; Table S3: pH values.
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