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INFERENCE UNDER RANDOM LIMIT BOOTSTRAP MEASURES
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Asymptotic bootstrap validity is usually understood as consistency of the distribution
of a bootstrap statistic, conditional on the data, for the unconditional limit distribution
of a statistic of interest. From this perspective, randomness of the limit bootstrap mea-
sure is regarded as a failure of the bootstrap. We show that such limiting randomness
does not necessarily invalidate bootstrap inference if validity is understood as control
over the frequency of correct inferences in large samples. We first establish sufficient
conditions for asymptotic bootstrap validity in cases where the unconditional limit dis-
tribution of a statistic can be obtained by averaging a (random) limiting bootstrap dis-
tribution. Further, we provide results ensuring the asymptotic validity of the bootstrap
as a tool for conditional inference, the leading case being that where a bootstrap dis-
tribution estimates consistently a conditional (and thus, random) limit distribution of
a statistic. We apply our framework to several inference problems in econometrics,
including linear models with possibly nonstationary regressors, CUSUM statistics, con-
ditional Kolmogorov–Smirnov specification tests and tests for constancy of parameters
in dynamic econometric models.

KEYWORDS: Bootstrap, random measures, weak convergence in distribution, asymp-
totic inference.

1. INTRODUCTION

CONSIDER A DATA SAMPLE Dn of size n and a statistic τn := τn(Dn), say a test statistic or a
parameter estimator, possibly normalized. Interest is in a distributional approximation of
τn. Let a bootstrap procedure generate a bootstrap analogue τ∗

n of τn; that is, computed
on a bootstrap sample. Assume that τn converges in distribution to a nondegenerate ran-
dom variable [r.v.], say τ. In classic bootstrap inference, asymptotic bootstrap validity is
understood and established as convergence in probability (or almost surely) of the cumu-
lative distribution function [c.d.f.] of the bootstrap statistic τ∗

n conditional on the data Dn,
say F∗

n , to the unconditional c.d.f. of τ, say F . This convergence, along with continuity of
F , implies by Polya’s theorem that supx∈R |F∗

n (x) − F(x)| → 0, in probability (or almost
surely).
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In many applications, however, the bootstrap statistic τ∗
n may possess, conditionally on

the data, a random limit distribution. Cases of random bootstrap limit distributions ap-
pear in various areas of econometrics and statistics; for instance, they are documented for
infinite-variance processes (Athreya (1987), Aue, Berkes, and Horváth (2008), Knight
(1989)), time series with unit roots (Basawa, Mallik, McCormick, Reeves, and Taylor
(1991), Cavaliere, Nielsen, and Rahbek (2015)), parameters on the boundary of the pa-
rameter space (Andrews (2000)), block resampling methods under fixed-b asymptotics
(Lahiri (2001), Shao and Politis (2013)), cube-root consistent estimators (Sen, Banerjee,
and Woodroofe (2010), Cattaneo, Jansson, and Nagasawa (2020)), Hodges–LeCam su-
perefficient estimators (Beran (1997)). In most of these cases, the occurrence of a random
limit distribution for the bootstrap statistic τ∗

n given the data—in contrast to a non-random
limit of the unconditional distribution of the original statistic τn—is taken as evidence of
bootstrap failure.1

In this paper, we show that randomness in the limit distribution of a bootstrap statis-
tic need not invalidate bootstrap inference. On the contrary, although the bootstrap no
longer estimates the limiting unconditional distribution of the statistic of interest, it may
still deliver hypothesis tests (or confidence intervals) with the desired null rejection prob-
ability (or coverage probability) when the sample size diverges. This happens because
asymptotic control over the frequency of wrong inferences can be guaranteed by the
asymptotic distributional uniformity of the bootstrap p-values, which in its turn can oc-
cur without the convergence in probability (or almost surely) of the bootstrap c.d.f. F∗

n of
τ∗
n to the asymptotic c.d.f. F of τ.
Therefore, in cases where the limit bootstrap distribution is random, our analysis fo-

cuses on the asymptotics of the bootstrap p-value p∗
n := F∗

n (τn). We define “(uncondi-
tional) bootstrap validity” as the fact that

P
(
p∗
n ≤ q) → q (1.1)

for all q ∈ (0�1). Interest in this property is not new in the literature (see, e.g., Hansen
(1996) and Lockhart (2012), among others). When the limit bootstrap distribution is ran-
dom, however, the existing research provides mostly counterexamples to property (1.1)
(e.g., Shao and Politis (2013)), whereas general sufficient conditions for bootstrap validity
in the sense of (1.1) have not been studied.

Our first set of results provides such sufficient conditions. Classic results for bootstrap
validity when the limit bootstrap measure is not random can be obtained as special cases.
The main requirement in our results is that the unconditional limit distribution of τn
should be an average of the random limit distribution of τ∗

n given the data.
It is often the case that bootstrap validity can be addressed through the lens of a con-

ditioning argument. In this regard, our second set of results concerns the possibility that,
for a sequence of random elements Xn, it holds that the bootstrap p-value is uniformly
distributed in large sample conditionally on Xn:

P
(
p∗
n ≤ q|Xn

) p→ q (1.2)

1For instance, Athreya (1987) writes: “If the bootstrap were to be successful here, then F∗
n [our notation]

should converge to F [our notation] in distribution. However, this is not the case. There is a random limit.”
(p. 725) and “constructing confidence intervals on the basis of a Monte Carlo simulation of the bootstrap could
lead to misleading results” (p. 728). Similar considerations appear in, inter alia, Basawa et al. (1991), Lahiri
(2001), Aue, Berkes, and Horváth (2008).
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for all q ∈ (0�1). This property, that we call “bootstrap validity conditional on Xn,” im-
plies unconditional validity in the sense of (1.1). Moreover, conditional bootstrap validity
given Xn implies that the bootstrap replicates asymptotically the property of conditional
tests and confidence intervals to have, conditionally on Xn, constant null rejection proba-
bility and coverage probability, respectively (for further roles of conditioning in inference,
like the relevance of the drawn inferences and information recovery, see Reid (1995) and
the references therein). The leading case where we show (1.2) to hold—under regular-
ity conditions that will be discussed in the paper—is that where the (random) limit of
the conditional distribution of τn given Xn matches the (random) limit distribution of
the bootstrap statistic. The idea of comparing the limit bootstrap distribution with the
limit of a conditional distribution of a statistic of interest was put forward by LePage and
Podgórsky (1996), but was not recast in terms of bootstrap p-values as in equation (1.2).
The use of a conditioning argument to establish (1.1) and (1.2) can be found in Cava-
liere, Georgiev, and Taylor (2013) and Georgiev, Harvey, Leybourne, and Taylor (2019),
respectively. Their results follow as special cases of those provided in this paper.

When dealing with random limit distributions, the usual convergence concept employed
to establish bootstrap validity, that is, weak convergence in probability, can only be used
in some very special cases. Instead, our formal discussion makes extensive use of the prob-
abilistic concept of weak convergence of random measures; see, for example, Kallenberg
(2017, Chapter 4). To our knowledge, in the bootstrap context this concept has so far
been mostly used to obtain negative results of lack of validity for specific bootstrap proce-
dures (see above), rather than positive validity results, as we do here. As an ingredient of
our analysis, we also present some novel results on the weak convergence of conditional
expectations.

To provide motivation for the practical relevance of our results, we initially illustrate
them by using a simple linear model with either stationary or nonstationary regressors,
and later we analyze three well-known cases in the econometric literature where the boot-
strap features a random limit distribution. The first is a standard CUSUM-type test of the
i.i.d. property for a random sequence with infinite variance. This is a case where the limit
distribution of the CUSUM statistic depends on unknown nuisance parameters (e.g., the
tail index) and bootstrap or permutation tests fail to estimate this distribution consis-
tently. We argue that a simple bootstrap based on permutations, albeit having a random
limit distribution, and hence being invalid in the usual sense, provides exact conditional
inference, and hence is also unconditionally valid in the sense of (1.1).

The second application considers a Kolmogorov–Smirnov-type test for correct specifi-
cation of the conditional distribution of a response variable given a vector of covariates.
Andrews (1997) considered a parametric bootstrap implementation where the covariates
are kept fixed across bootstrap samples. While in the independent case the limit of the
bootstrap distribution is nonrandom, this is not the case in general. Using our theory, we
discuss conditions for validity of the bootstrap within this framework.

Finally, we consider the well-known and widely applied case of bootstrap implementa-
tions of “supF” tests for parameter constancy in regressions models where the regressors
could be nonstationary, with the latter including the case of regressors subject to (possi-
bly random) structural change. As in Hansen (2000) (see also Hall (1992, p. 170)), in the
resampling process forming the bootstrap sample, it appears natural to take the design
matrix as fixed across the bootstrap repetitions. Under a set of assumptions proposed by
Hansen (2000), we argue that the fixed-regressor bootstrap “supF” statistic has a random
limit distribution, thus invalidating previous claims in the literature that the bootstrap is
consistent for the unconditional limit distribution of the original “supF” test statistic. We
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then provide conditions under which the fixed-regressor bootstrap is valid, uncondition-
ally and conditionally on the chosen set of regressors.

Structure of the Paper

The paper is organized as follows. In Section 2, we outline the central concepts and
ideas using a simple linear regression model. The main theoretical results are presented
in Section 3. Section 4 contains the three applications of the theory, whereas Section 5
concludes. The paper has two Appendices. In Appendix A, we collect some results on
weak convergence in distribution which are useful to prove the main theorems and de-
velop the applications. Appendix B contains the proofs of the main theorems. Additional
material and proofs are given in the accompanying Supplementary Material (Cavaliere
and Georgiev (2020)). Sections, equations, etc., numbered S.x can be found there.

Notation and Definitions

We use the following notation throughout. The spaces of càdlàg functions [0�1] → R
n,

[0�1] → R
m×n and R → R (all equipped with the respective Skorokhod J1-topologies;

see Kallenberg (1997, Appendix A2)), are denoted by Dn, Dm×n, and D(R), respectively;
for the first one, when n = 1 the subscript is suppressed. Integrals are over [0�1] unless
otherwise stated, � is the standard Gaussian c.d.f., U(0�1) is the uniform distribution on
[0�1] and I{·} is the indicator function. If F is a (random) c.d.f., F−1 stands for the right-
continuous generalized inverse, that is, F−1(u) := sup{v ∈ R : F(v) ≤ u}, u ∈ R. Unless
differently specified, limits are for n→ ∞.

Polish (i.e., complete and separable metric) spaces are always equipped with their Borel
σ-algebras. Throughout, we assume that all the considered random elements are Polish-
space valued. For random elements of a Polish space, the existence of regular conditional
distributions is guaranteed and we assume without loss of generality that conditional
probabilities are regular (Kallenberg (1997, Theorem 5.3)). Equality of conditional dis-
tributions is understood in the almost sure [a.s.] sense and, for random c.d.f.’s as random
elements of D(R), equalities are up to indistinguishability.

Let Cb(S) be the set of all continuous and bounded real-valued functions on a met-
ric space S . For random elements Z�Zn (n ∈ N) of a metric space SZ , we employ the
usual notation Zn

w→ Z for the property that the distribution of Zn weakly converges
to the distribution of Z, defined by the convergence E{g(Zn)}→E{g(Z)} for all g ∈
Cb(SZ). For random elements (Z�X), (Zn�Xn) of the metric spaces SZ × S and SZ × Sn
(n ∈ N), and defined on a common probability space, we denote by Zn|Xn

w→p Z|X (resp.
Zn|Xn

w→a.s. Z|X) the fact that E{g(Zn)|Xn}→E{g(Z)|X} in probability (resp., a.s.) for
all g ∈ Cb(SZ). In the special case where E{g(Zn)|Xn} w→ E{g(Z)} in probability (resp.,
a.s.) for all g ∈ Cb(SZ), we write Zn|Xn

w→p Z (resp., Zn|Xn
w→a.s. Z). In such a case, the

weak limit (in probability or a.s.) of the random conditional distribution Zn|Xn is the non-
random distribution of Z, thus reducing our definition to the one of weak convergence in
probability (resp., a.s.) usually employed in the bootstrap literature.

In order to deal with random limit measures, we need a further convergence concept.
For (Z�X), (Zn�Xn) (n ∈ N) defined on possibly different probability spaces, we denote
by Zn|Xn

w→w Z|X the fact that E{g(Zn)|Xn} w→ E{g(Z)|X} for all g ∈ Cb(SZ) and label
it “weak convergence in distribution.” It coincides with the probabilistic concept of weak
convergence of random measures (here, of the random conditional distributions Zn|Xn;
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see Kallenberg (2017, Chapter 4)). Whenever Zn and Z are r.v.’s and the conditional
distribution of Z given X is diffuse (nonatomic), this is equivalent to the weak conver-
gence P(Zn ≤ ·|Xn)

w→ P(Z ≤ ·|X) of the random c.d.f.’s as random elements of D(R)
(see Kallenberg (2017, Theorem 4.20)). Finally, on probability spaces where both the data
Dn and the auxiliary variates used in the construction of the bootstrap data are defined,

we use Zn
w∗→p Z|X (resp.,

w∗→a.s.,
w∗→w) interchangeably with Zn|Dn

w→p Z|X (resp.,
w→a.s.,

w→w), and write P∗(·) for P(·|Dn).

2. A LINEAR REGRESSION EXAMPLE

In this section, we provide an overview of the main results established in the sections
to follow, and the concepts employed, by using a simple linear regression model. Further
applications will be given in Section 4. We observe that even for this basic model bootstrap
statistics may have a random limit distribution. Then we show that convergence of the
bootstrap statistic to a random limit may imply bootstrap validity in the unconditional
sense of equation (1.1). Finally, we illustrate the possibility that bootstrap inference may
have a conditional interpretation.

2.1. Model, Bootstrap, and Random Limit Bootstrap Measures

Assume that the data are given by Dn := {yt� xt}nt=1 and consider the linear model

yt = βxt + εt (t = 1�2� � � � � n)� (2.1)

where xt� yt are scalar r.v.’s and εt are unobservable zero-mean errors with ωε :=
Var(εt) ∈ (0�∞), t = 1� � � � � n. Assume that Mn := ∑n

t=1 x
2
t > 0 a.s. for all n; further as-

sumptions will be introduced gradually. Interest is in inference on β based on Tn := β̂−β,
with β̂ the OLS estimator of β; for instance, a confidence interval or a test of a null hy-
pothesis of the form H0 : β= 0.

The classic (parametric) fixed-design bootstrap (see, e.g., Hall (1992)), entails generat-
ing a bootstrap sample {y∗

t � xt}nt=1 as

y∗
t = β̂xt + ω̂1/2

ε ε
∗
t (t = 1�2� � � � � n)� (2.2)

where {ε∗
t }nt=1 are i.i.d. N(0�1), independent of the original data, and ω̂ε is an estimator

of ωε, for example, the residual variance n−1
∑n

t=1(yt − β̂xt)
2. The OLS estimator of β

from the bootstrap sample is denoted by β̂∗ and, conditionally on the original data, T ∗
n :=

β̂∗ − β̂∼N(0� ω̂εM
−1
n )|Mn. As is standard, the distribution of Tn is approximated by the

distribution of T ∗
n conditional on the data. With F∗

n denoting the c.d.f. of T ∗
n under P∗, the

bootstrap p-value is given by p∗
n := F∗

n (Tn).

REMARK 2.1: A special case where the ensuing bootstrap inference is exact in finite
samples, such that p∗

n is uniformly distributed for finite n, obtains when the original εt ’s
are i.i.d. N(0�ωε), independent of Xn := {xt}nt=1, and ωε is known to the econometrician
(hence ω̂ε =ωε). Then the conditional distribution of T ∗

n given the data Dn and the dis-
tribution of the original statistic Tn conditional on the regressor Xn (equivalently, on the
ancillary statistic Mn), are a.s. equal to each other and to the conditional distribution
N(0�ωεM

−1
n )|Mn. Put differently,

F∗
n (u) := P(

T ∗
n ≤ u|Dn

) = P(Tn ≤ u|Xn)=�(
ω−1/2
ε M1/2

n u
)
, u ∈ R.
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Then, asω−1/2
ε M1/2

n Tn|Mn ∼N(0�1), it is straightforward that in this special case bootstrap
inference is exact: p∗

n = F∗
n (Tn)=�(ω−1/2

ε M1/2
n Tn)

d=�(N(0�1))∼ U(0�1), and that this
result also holds conditionally on Mn: p∗

n|Mn ∼U(0�1).

Although bootstrap inference is not exact in general, it may still be asymptotically valid.
To show this, we distinguish between the cases of a stationary and a nonstationary regres-
sor xt . It is the second case that anticipates the main results of the paper. We assume
ω̂ε

p→ωε throughout.

2.1.1. Classic Bootstrap Validity When the Regressor Is Stationary

Suppose initially that {xt}t∈N is weakly stationary and n−1Mn

p→M := Ex2
1 > 0. Define

τn := n1/2(β̂ − β) and τ∗
n := n1/2(β̂∗ − β̂); the bootstrap p-values based on (τn� τ∗

n) and
(Tn�T

∗
n ) are identical. The distribution of the bootstrap statistic τ∗

n conditional on the
original data Dn satisfies

P∗(τ∗
n ≤ u) =�(

n−1/2ω̂−1/2
ε M1/2

n u
) p→�

(
ω−1/2
ε M1/2u

)
� u ∈R� (2.3)

Hence, τ∗
n

w∗→p τ ∼N(0�ωεM
−1) and the limit distribution is nonrandom.

If the initial assumptions are strengthened such that a central limit theorem [CLT] holds
for {xtεt}t∈N; that is, n−1/2

∑n

t=1 xtεt
w→ N(0�ωεM), then it further holds that τn

w→ τ ∼
N(0�ωεM

−1). Hence, the bootstrap distribution of τ∗
n consistently estimates the uncondi-

tional limit distribution of τn in the usual sense that supu∈R |P∗(τ∗
n ≤ u)− P(τ ≤ u)| p→ 0,

by Polya’s theorem. As the limit c.d.f. is continuous, the p-value p∗
n associated with (τn� τ∗

n)
is asymptotically uniformly distributed and (1.1) holds.

2.1.2. Random Limit Bootstrap Measures When the Regressor Is Nonstationary

Suppose now that {xt}t∈N is such that, for some constant α, n−αMn
w→M , with M > 0

a.s. having a nondegenerate distribution. A well-known special case is that where xt is a
finite-variance random walk and α= 2. Redefine τn := nα/2(β̂−β) and τ∗

n := nα/2(β̂∗ − β̂);
bootstrap p-values remain unchanged. Now the bootstrap distribution of τ∗

n, conditional
on the data, remains random in the limit. Specifically, by the continuous mapping theorem
[CMT],

P∗(τ∗
n ≤ u) =�(

n−α/2ω̂−1/2
ε M1/2

n u
) w→�

(
ω−1/2
ε M1/2u

)
, u ∈ R� (2.4)

which is a random c.d.f. In terms of weak convergence in distribution, this amounts to

τ∗
n

w∗→w N
(
0�ωεM

−1
)|M . (2.5)

As a result, with τ∗
n andM generally defined on different probability spaces, weak conver-

gence in probability of τ∗
n does not occur. Moreover, whatever the (unconditional) limit

distribution of τn is, provided that it exists, P(τn ≤ u), u ∈ R, will tend to a deterministic
c.d.f. Therefore, the bootstrap cannot estimate consistently the limit distribution of τn and
it cannot hold that supu∈R |P∗(τ∗

n ≤ u)−P(τ ≤ u)| p→ 0. Nevertheless, bootstrap inference
need not become meaningless, as it may even be exact (see Remark 2.1). We proceed,
therefore, to identify in what sense bootstrap inference could remain meaningful.
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2.2. Bootstrap Validity

Within the framework of the linear regression model, we discuss two concepts of boot-
strap validity in the case of a random limit bootstrap measure. These are employed to
interpret the bootstrap as a tool for unconditional or conditional inference.

2.2.1. Unconditional Bootstrap Validity

Under the assumption in Section 2.1.2, consider the random-walk special case,
where xt := ∑t

s=1ηs with et := (εt�ηt)
′ forming a stationary, ergodic and condition-

ally homoskedastic martingale difference sequence [mds] with p.d. variance matrix Ω :=
diag{ωε�ωη}.2 Then, for β 	= 0 equation (2.1) is an instance of a cointegration regres-
sion. It holds that (n−1/2

∑
n·�
t=1 e

′
t � n

−1
∑n

t=1 xt−1εt)
w→ (Bε�Bη�

∫
BηdBε) in D2 × R, where

(Bε�Bη)
′ is a bivariate Brownian motion with covariance matrix Ω; see Theorem 2.4 of

Chan and Wei (1988). Moreover, n−2Mn
w→M := ∫

B2
η by the CMT, jointly with the con-

vergence to a stochastic integral above, so that the assumption in Section 2.1.2 holds with
α= 2 and

τn := n(β̂−β) w→
(∫

B2
η

)−1 ∫
Bη dBε ∼N(

0�ωεM
−1

)
, (2.6)

the limit being (by independence of Bη and Bε) a variance mixture of normals, with mixing
variable M−1 and c.d.f.

∫
R
�(ω−1/2

ε M1/2u)dP(M).
A comparison between the limit distributions of τ∗

n and τn, respectively, in (2.5) and
(2.6), shows that the bootstrap mimics a component of the mixture limit distribution of
τn, since the limit distribution of τn can be recovered by integrating over M the condi-
tional limit distribution of τ∗

n given the data. This turns out to be sufficient for uncondi-
tional bootstrap validity in the sense of equation (1.1). A direct argument is as follows:
the bootstrap p-value p∗

n := P∗(τ∗
n ≤ τn) satisfies, by the CMT,

p∗
n =�

(
ω̂−1/2
ε M1/2

n (β̂−β)) w→�

((
ωε

∫
B2
η

)−1/2 ∫
Bη dBε

)
d=�

(
N(0�1)

) ∼U(0�1). (2.7)

Thus, when inference on β is based on the distribution of τ∗
n conditional on the data, the

large-sample frequency of wrong inferences can be controlled.

2.2.2. Conditional Bootstrap Validity

In the case of unconditional bootstrap validity, it may be possible to find an interpre-
tation of bootstrap inference as also valid in the sense of (1.2), that is, conditionally on
some Xn defined on the probability space of the original data Dn (for instance, but not
necessarily, the regressor Xn := {xt}nt=1).

In the linear regression case considered here, conditional bootstrap validity with respect
to the regressor Xn can be obtained under a tightening of our previous assumptions such
that the invariance principle n−1/2

∑
n·�
t=1 et

w→ (Bε�Bη)
′ holds conditionally (onXn for finite

n and on Bη in the limit, in the sense of weak convergence in distribution). A sufficient

2Nondiagonal Ω could be handled by augmenting the estimated regression with xt , leading to no qualita-
tive differences from the case of diagonal Ω.
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condition for the conditional invariance principle is that, additionally to the assumptions
on et in Section 2.2.1, εt is an mds with respect to Gt = σ({εs}ts=−∞ ∪ {ηs}s∈Z), and that
n−1

∑n

t=1E(ε
2
t |{ηs}s∈Z)→ωε a.s. (see the proof of Theorem 2 in Rubshtein (1996)). Then,

by using Theorem 3 of Georgiev, Harvey, Leybourne, and Taylor (2019), it follows that

τn|Xn
w→w N

(
0�ωεM

−1
)|M ,

which compared to (2.5) shows that the distribution of τ∗
n conditional on the data esti-

mates consistently the random limit distribution of τn conditional on the regressor Xn.
This fact is stated more precisely in Remark 3.9 where it is concluded that p∗

n|Xn
w→p

U(0�1), that is, the bootstrap is valid conditionally on the regressor.

2.2.3. A Numerical Illustration

The result in Section 2.2.2 implies that unconditional bootstrap validity can sometimes
be established by means of a conditioning argument; for example, by showing validity
conditional on the regressor Xn. To illustrate, in Figure 1, panels (i) and (ii), we sum-
marize for two different data generating processes [DGPs] the c.d.f.’s of p∗

n|Xn across
M = 1000 independent realizations of Xn for samples of size n= 10 (upper panels) and
n= 1000 (lower panels). Specifically, the DGP used for panel (i) is based on i.i.d. shocks,
while the one for (ii) features ARCH-type shocks (details are reported in Section S.5). In
both cases, the conditions of Section 2.2.2 are satisfied. For both DGPs, the conditional
c.d.f.’s of p∗

n given Xn are, as expected, close to the 45◦ line, which corresponds to the
implied asymptotic U(0�1) distribution. Unconditional validity follows accordingly. Nev-
ertheless, unconditional validity may also hold without validity conditional on an appar-
ently “natural” conditioning variable Xn, like the regressor in a fixed-regressor bootstrap
design. For instance, suppose that for the DGP in Sections 2.2.1 and 2.2.2 it holds that

FIGURE 1.—Fan chart of the simulated cdfs (conditional on Xn) of the bootstrap p-values for the three
DGPs (i)–(iii) and n= 10 (upper panels), 1000 (lower panels).
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ηt = ξt(1 + I{εt<0}), with {εt} and {ξt} two independent i.i.d. sequences of zero-mean, unit-
variance r.v.’s. Since ηt is informative about the sign of εt , the εt ’s conditionally on their
own past and the regressor Xn do not form an mds. It is shown in Section S.3, equation
(S.9), that this endogeneity fact, not replicated in the bootstrap world, induces the original
statistic τn to satisfy

τn|Xn
w→w M

−1/2
(
ω1/2
ε|ηξ1 + (1 −ωε|η)1/2ξ2

)|(M�ξ2), (2.8)

where ωε|η := E{Var(εs|ηs)} ∈ (0�1), and M , ξ1, ξ2 are jointly independent with ξi ∼
N(0�1), i= 1�2. The limit in (2.8) contains more randomness (through ξ2) than the boot-
strap limit in equation (2.5), thus resulting in a random limit for the distribution of the
bootstrap p-value p∗

n conditional on Xn; see panel (iii) of Figure 1, where for this DGP
the c.d.f.’s of p∗

n|Xn are reported for 1000 realizations of Xn. These c.d.f.’s display sub-
stantial dispersion around the 45◦ line, and this feature does not vanish as n increases.
However, and in agreement with the earlier discussion, their unconditional average (plot-
ted in black) is very close to the 45◦ line, showing indeed unconditional validity of the
bootstrap. This follows because et := (εt�ηt)′ is a zero-mean i.i.d. sequence with a diago-
nal covariance matrix and p∗

n

w→U(0�1) as derived in Section 2.2.1.

REMARK 2.2: Although not valid conditionally on the regressor Xn, in the previous
example the bootstrap may be valid conditionally on a nontrivial function of the regressor.
See, in particular, Section 3.3 and Remark 3.10 therein.

3. MAIN RESULTS

We provide general conditions for bootstrap validity in cases where a bootstrap statis-
tic conditionally on the data possesses a random limit distribution. Before all else, we
formally distinguish between two concepts of bootstrap validity.

3.1. Definitions

The following definition employs the bootstrap p-value as a summary indicator of the
accuracy of bootstrap inferences (see also Remarks 3.2 and 3.3 below). The original and
the bootstrap statistic are denoted by τn and τ∗

n, respectively.

DEFINITION 1: Let τn := τn(Dn) and τ∗
n := τ∗

n(Dn�W
∗
n ), n ∈ N, where Dn denotes the

data whereas W ∗
n are auxiliary variates defined jointly with Dn on a possibly extended

probability space. Let p∗
n := P(τ∗

n ≤ τn|Dn) be the bootstrap p-value.
We say that the bootstrap based on τn and τ∗

n is valid unconditionally if p∗
n is asymptot-

ically U(0�1) distributed:

P
(
p∗
n ≤ q) → q for all q ∈ (0�1)� (3.1)

where P(·) denotes probability w.r.t. the distribution of Dn.
Let furtherXn be a random element defined on the probability space ofDn andW ∗

n . We
say that the bootstrap based on τn and τ∗

n is valid conditionally onXn if p∗
n is asymptotically

U(0�1) distributed conditionally on Xn:

P
(
p∗
n ≤ q|Xn

) p→ q for all q ∈ (0�1)� (3.2)

where P(·|Xn) is determined up to a.s. equivalence by the distribution of (Dn�Xn).
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REMARK 3.1: Bootstrap validity conditionally on someXn implies unconditional valid-
ity, by the dominated convergence theorem. In applications, therefore, the discussion of
conditional validity may represent an intermediate step to assess unconditional validity.

REMARK 3.2: The validity properties in Definition 1 ensure correct asymptotic null
rejection probability, unconditionally or conditionally on some Xn, for bootstrap hypoth-
esis tests which reject the null when the bootstrap p-value p∗

n does not exceed a chosen
nominal level, say α ∈ (0�1). If P(τ∗

n ≤ ·|Dn) converges weakly in D(R) to a sample-path
continuous random c.d.f., then correct asymptotic null rejection probability is ensured
also for bootstrap tests rejecting the null hypothesis when p̃∗

n := P(τ∗
n ≥ τn|Dn) ≤ α (for

an application, see Section 4.3).

REMARK 3.3: Validity as in Definition 1 has also implications on the properties of boot-
strap (percentile) confidence sets. Suppose, for instance, that Tn is an estimator of a popu-
lation (scalar) parameter, whose true value is denoted by θ0, and assume for simplicity that
τn is of the form τn = ρ(n)(Tn − θ0), where ρ(n) is a normalizing factor such that τn has a
nondegenerate limiting distribution (see Horowitz (2001, p. 3174)). Its bootstrap analog
is denoted by τ∗

n, and we assume that the bootstrap is valid in the sense of (3.1). Inter-
est is in constructing a right-sided confidence interval for θ0, with (asymptotic) coverage
1 − α ∈ (0�1), using a simple bootstrap percentile method. With F∗

n (x) := P(τ∗
n ≤ x|Dn),

let q∗
n(1 − α) := inf{x ∈ R : F∗

n (x)≥ 1 − α} be the (1 − α) quantile of the bootstrap distri-
bution F∗

n . Then it is straightforward to show that, if F∗
n converges weakly to a sample-path

continuous random c.d.f., then

P
(
τn ≤ q∗

n(1 − α)) = P(
p∗
n ≤ 1 − α) + o(1)→ 1 − α�

This implies that a confidence interval of the form [Tn − ρ(n)−1q∗
n(1 − α)�+∞) has (un-

conditional) asymptotic coverage probability of 1 − α. If the bootstrap is valid condition-
ally on some Xn, as in (3.2), then the (asymptotic) coverage is 1 − α also conditionally on
this Xn.

Our main results make extensive use of joint weak convergence in distribution. Should
the notation not be self-explanatory, we refer to Appendix A for the formal definitions.

3.2. Unconditional Bootstrap Validity

The unconditional validity results in this section have in common the requirement, ex-
plicit or implicit, that the unconditional limit distribution of τn should be an average of
the random limit distribution of τ∗

n given the data. Applications of Theorem 3.1 below do
not require a conditional analysis of τn, in contrast to applications of Theorem 3.2.

THEOREM 3.1: Let there exist a r.v. τ and a random element X , both defined on the same
probability space, such that (τn�F∗

n )
w→ (τ�F) in R× D(R) for F∗

n (u) := P(τ∗
n ≤ u|Dn) and

F(u) := P(τ ≤ u|X)�u ∈ R. If the (possibly) random c.d.f. F is sample-path continuous,
then the bootstrap based on τn and τ∗

n is valid unconditionally.

A trivial special case of Theorem 3.1 is obtained for independent τ and X . In this case
the bootstrap c.d.f. of τ∗

n estimates consistently the limiting unconditional c.d.f. of τn and
the bootstrap is valid in the usual sense.
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In contrast, where the limit of the bootstrap c.d.f. F∗
n is random (and even if it is

continuous), the separate convergence facts τn
w→ τ and F∗

n (·) w→ F(·) = P(τ ≤ ·|X) (or

τ∗
n

w∗→w τ|X) are not sufficient for unconditional bootstrap validity. Some remarks on the
joint convergence (τn�F∗

n )
w→ (τ�F) are hence in order. A further strategy for proving it

is outlined in Section 4.2.

REMARK 3.4: An important special case of Theorem 3.1 involves stable convergence
of the original statistic τn (see Häusler and Luschgy (2015, p. 33), for a definition). With
the notation of Theorem 3.1, let the data Dn and the random element X be defined
on the same probability space, whereas the r.v. τ be defined on an extension of this
probability space. Assume that τn → τ σ(X)-stably and F∗

n

p→ F := P(τ ≤ ·|X). Then
(τn�F

∗
n )

w→ (τ�F) by Theorem 3.7(b) of Häusler and Luschgy (2015). For instance, in the
statistical literature on integrated volatility, a result of the form τn → τ stably is con-
tained in Theorem 3.1 of Jacod et al. (2009) for τn defined as a t-type statistic for inte-
grated volatility, whereas the corresponding F∗

n

p→ F result is established in Theorem 3.1
of Hounyo, Gonçalves, and Meddahi (2017) for a combined wild and blocks-of-blocks
bootstrap introduced in the latter paper.

REMARK 3.5: More generally, if τ∗
n

w∗→w τ
∗|X and (τ∗

n� τn�Xn)
w→ (τ∗� τ�X) for some

Dn-measurable Xn (n ∈ N), where the conditional distributions τ∗|X and τ|X are equal
a.s. and have a sample-path continuous conditional c.d.f. F , then (τn�F∗

n )
w→ (τ�F); see

Appendix B for additional details.

Alternatively, unconditional bootstrap validity could be established by means of an aux-
iliary conditional analysis of the original statistic τn. In the next theorem, the conditioning
sequenceXn is chosen such that the bootstrap statistic τ∗

n depends on the dataDn approx-
imately through Xn (condition (†)). Then the main requirement for bootstrap validity is
that the limit bootstrap distribution should be a conditional average of the limit distribu-
tion of τn given Xn.

THEOREM 3.2: With the notation of Definition 1, let Xn be Dn-measurable (n ∈ N). Let it
hold that (

P(τn ≤ ·|Xn)�P
(
τ∗
n ≤ ·|Dn)

) w→ (
F�F∗) (3.3)

in D(R)× D(R), where F and F∗ are sample-path continuous random c.d.f.’s, and let
(†) there exist random elements X ′�X ′

n such that F∗ is X ′-measurable, X ′
n are Xn-

measurable and X ′
n

w→X ′ jointly with (3.3).
Then, if E{F(·)|F∗} = F∗(·), the bootstrap based on τn and τ∗

n is valid unconditionally.

REMARK 3.6: Under condition (†) of Theorem 3.2, P(τ∗
n ≤ ·|Xn) and P(τ∗

n ≤ ·|Dn)
are both close to P(τ∗

n ≤ ·|X ′
n), and in this sense τ∗

n depends on the data Dn approxi-
mately through Xn. Condition (†) is trivially satisfied in the case F = F∗ with the choice
X ′
n = P(τn ≤ ·|Xn). It is also satisfied with X ′

n = P(τ̃∗
n ≤ ·|Xn) if τ̃∗

n is some measurable
transformation of Xn and W ∗

n such that τ∗
n = τ̃∗

n + op(1) w.r.t. the probability measure on
the space where Dn and W ∗

n are jointly defined; see Appendix B.

Convergence (3.3) could be deduced from the weak convergence of the conditional
distributions of τn and τ∗

n, as in the next corollary.
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COROLLARY 3.1: Let Dn and Xn (n ∈ N) be as in Theorem 3.2. Let the r.v. τ and the
random elements X , X ′ be defined on a single probability space and

(
τn

∣∣Xn�τ
∗
n

∣∣Dn

) w→w

(
τ|X�τ|X ′) (3.4)

in the sense of equation (A.1). Let further F(u) := P(τ ≤ u|X) and F∗(u) := P(τ ≤ u|X ′),
u ∈ R, define sample-path continuous random c.d.f.’s. Then convergence (3.3) holds. More-
over, the bootstrap based on τn and τ∗

n is valid unconditionally provided that one of the fol-
lowing extra conditions holds:

(a) X ′ =X;
(b) X = (X ′�X ′′) and X ′

n

w→X ′ jointly with (3.4) for some Xn-measurable random ele-
ments X ′

n.

REMARK 3.7: An instance of (3.3) where F and F∗ are not a.s. equal is provided by
DGP (iii) of Section 2.2.3. There (3.4) holds with τ := M−1/2(ω1/2

ε|ηξ1 + (1 − ωε|η)1/2ξ2)

and X = (X ′�X ′′) = (M�(1 − ωε|η)1/2ξ2). Moreover, (3.4) is joint with the convergence
X ′
n

w→ X ′ for X ′
n = n−2Mn (see Appendix B). Hence, Corollary 3.1(b) implies that the

bootstrap is unconditionally valid, as was already concluded in Section 2.2.1.

3.3. Conditional Bootstrap Validity

Theorem 3.3 below states the asymptotic behavior of the bootstrap p-value conditional
on an Xn chosen to satisfy condition (†) of Theorem 3.2. It also characterizes the cases
where the bootstrap is valid conditionally on such an Xn. Should validity conditional on
such an Xn fail, in Corollary 3.2(b) we provide a result for validity conditional on a trans-
formation of it.

THEOREM 3.3: Under the conditions of Theorem 3.2, the bootstrap p-value p∗
n satisfies

P
(
p∗
n ≤ q|Xn

) w→ F
(
F∗−1(q)

)
(3.5)

for almost all q ∈ (0�1), and the bootstrap based on τn and τ∗
n is valid conditionally on Xn if

and only if F = F∗, such that

sup
u∈R

∣∣P(τn ≤ u|Xn)− P(
τ∗
n ≤ u|Dn

)∣∣ p→ 0� (3.6)

REMARK 3.8: Convergence (3.6) means that the bootstrap distribution of τ∗
n consis-

tently estimates the limit of the conditional distribution of τn given Xn. Although under
condition (†) the proximity of P(τn ≤ ·|Xn) and P(τ∗

n ≤ ·|Dn) is necessary for bootstrap
validity conditional on Xn, no such proximity is necessary for conditional validity in the
general case. In fact, validity conditional on some Xn implies validity conditional on any
measurable transformation X ′

n =ψn(Xn) and an analogue of (3.6) with X ′
n in place of Xn

cannot generally hold for all ψn, unless F∗ is nonrandom. This is similar to what happens
with unconditional bootstrap validity which, according to Theorem 3.1, may occur even if
P(τn ≤ ·) and P(τ∗

n ≤ ·|Dn) are not close to each other.

A corollary in the terms of weak convergence in distribution is given next.
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COROLLARY 3.2: Let Dn�Xn (n ∈ N), τ�F�F∗ be as in Corollary 3.1. Let (3.4) hold and
F�F∗ be sample-path continuous random c.d.f.’s. Then:

(a) If X ′ = X , the bootstrap based on τn and τ∗
n is valid conditionally on Xn and (3.6)

holds.
(b) If X = (X ′�X ′′), (X ′

n�X
′′
n)

w→ (X ′�X ′′) jointly with (3.4) for some Xn-measurable
random elements (X ′

n�X
′′
n), and X ′′

n |X ′
n

w→w X
′′|X ′, then the bootstrap is valid condi-

tionally on X ′
n and (3.6) holds with Xn replaced by X ′

n.

REMARK 3.9: Consider the linear regression example under the extra assumptions of
Section 2.2.2 and set τ = (∫ B2

η)
−1

∫
Bη dBε, X =M . It then follows (by using Theorem 3

of Georgiev, Harvey, Leybourne, and Taylor (2019)) that condition (3.4) holds in the form

(
τn|Xn�τ

∗
n|Dn

) w→w

(
τ|Bη�τ|Bη

) = (1�1)N
(
0�ωεM

−1
)|M a.s., (3.7)

where Xn := {xt}nt=1; equivalently, (3.3) holds with F = F∗ =�(ω−1/2
ε M1/2(·)). Hence, the

bootstrap is consistent for the limit distribution of τn conditional on the regressor and, by
Corollary 3.2(a), the bootstrap is valid conditionally on the regressor.

REMARK 3.10: For DGP (iii) of Section 2.2.3, (3.4) holds with τ and X = (X ′�X ′′)
given in Remark 3.7. Moreover, (3.4) is joint with the convergence (X ′

n�X
′′
n)

w→ (X ′�X ′′)
for X ′

n = n−2Mn and X ′′
n =M−1/2

n

∑n

t=1 xtE(εt|ηt) (see Appendix B). By Corollary 3.2(b),
the bootstrap would be valid conditionally on Mn if it additionally holds that X ′′

n |Mn
w→w

(1 −ωε|η)1/2ξ2|M =N(0�1 −ωε|η) a.s.

Strategies for checking the convergence in (3.4) are outlined in Sections 4.2 and 4.3.

4. APPLICATIONS

4.1. A Permutation CUSUM Test Under Infinite Variance

Consider a standard CUSUM test for the null hypothesis (say, H0) that {εt}nt=1 is a se-
quence of i.i.d. random variables. The test statistic is of the form

τn := ν−1
n max

t=1�����n

∣∣∣∣∣
t∑
i=1

(εi − εn)
∣∣∣∣∣, εn := n−1

n∑
t=1

εt�

where νn is a permutation-invariant normalization sequence. Standard choices are ν2
n =∑n

t=1(εt − εn)
2 in the case where Eε2

t <∞, and νn = maxt=1�����n |εt | when Eε2
t = ∞. If εt

is in the domain of attraction of a strictly α-stable law with α ∈ (0�2), such that Eε2
t = ∞,

the asymptotic distribution of τn depends on unknown parameters (e.g., the characteristic
exponent α), which makes the test difficult to apply (see also Politis, Romano, and Wolf
(1999), and the references therein). To overcome this problem, Aue, Berkes, and Horváth
(2008) consider a permutation analogue of τn, defined as

τ∗
n := ν−1

n max
t=1�����n

∣∣∣∣∣
t∑
i=1

(επ(i) − εn)
∣∣∣∣∣�
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where π is a (uniformly distributed) random permutation of {1�2� � � � � n}, independent of
the data.3 In terms of Definition 1, the data is Dn := {εt}nt=1 and the auxiliary “bootstrap”
variate is W ∗

n := π. With Xn := {ε(t)}nt=1 denoting the vector of order statistics of {εt}nt=1,
there exists a random permutation� of {1� � � � � n} (under H0, uniformly distributed condi-
tionally on Xn) for which it holds that εt = ε(�(t)) (t = 1� � � � � n), whereas the “bootstrap”
sample is {επ(t)}nt=1 . The results in Aue, Berkes, and Horváth (2008, Corollary 2.1, Theo-
rem 2.4) imply that, if H0 holds and εt is in the domain of attraction of a strictly α-stable

law with α ∈ (0�2), then τn
w→ ρα(S) and τ∗

n

w∗→w ρα(S)|S for a certain random function
ρα(·) and S = (S1� S2)

′, with Si = {Sij}∞
j=1 (i= 1�2) being partial sums of sequences of i.i.d.

standard exponential r.v.’s, and with the function ρα(·) independent of S.4
Aue, Berkes, and Horváth (2008) do not report the fact that inference is not invalidated

by the failure of the permutation procedure to estimate consistently the distribution of
ρα(S). In fact, the situation is similar to that of Remark 2.1, as the conditional distribu-
tions τn|Xn and τ∗

n|Dn coincide a.s. under H0. As a consequence, under H0 the permuta-
tion test implements exact5 finite-sample inference conditional on Xn and, additionally,
the distribution of τ∗

n given the data estimates consistently the limit of the conditional
distribution τn|Xn, in the sense of joint weak convergence in distribution (see equation
(A.1)): (

τn|Xn�τ
∗
n|Dn

)′ w→w

(
ρα(S)|S�ρα(S)|S

)
. (4.1)

CUSUM tests can also be applied to residuals from an estimated model in order to
test for correct model specification or stability of the parameters (see e.g., Ploberger and
Krämer (1992)). Consider thus the case where {εt}nt=1 are the disturbances in a statistical
model (e.g., the regression model of Section 2), and we observe residuals ε̂t obtained upon
estimation of the model using a sample Dn not containing the unobservable {εt}nt=1. The
residual-based CUSUM statistic is τ̂n := ν̂−1

n maxt=1�����n |∑t

i=1(ε̂i− ε̂n)|, where ν̂n and ε̂n are
the analogues of νn and ε̄n computed from ε̂t instead of εt . The bootstrap statistic could
be defined as τ̂∗

n := ν̂−1
n maxt=1�����n |∑t

i=1(ε̂π(i) − ε̂n)|. If τ̂n − τn p→ 0 and (τ̂∗
n − τ∗

n)|Dn
w→p 0

under H0 (e.g., due to consistent parameter estimation), then also (τ̂n − τn)|Xn
w→p 0,

such that the (Lévy) distances between the pairs of conditional distributions τ̂n|Xn and
τn|Xn on the one hand, and τ̂∗

n|Dn and τ∗
n|Dn on the other hand, converge in probability

to zero. Hence, in view of (4.1), and under the conjecture that P(ρα(S) ≤ ·|S) defines a
sample-path continuous c.d.f., the residual-based permutation procedure is consistent in
the sense that (

τ̂n|Xn� τ̂
∗
n|Dn

) w→w

(
ρα(S)|S�ρα(S)|S

)
(4.2)

for Xn := {ε(t)}nt=1 again. It follows that: (i) the permutation residual-based test is valid
conditionally on Xn, by Corollary 3.2(a) with condition (3.4) taking the form (4.2); (ii)

3The normalization of νn is only of theoretical importance for obtaining nondegenerate limit distributions.
In practice, any bootstrap procedure comparing τn to the quantiles of τ∗

n is invariant to the choice of νn and
can be implemented by setting νn = 1.

4To avoid centering terms, Aue, Berkes, and Horváth (2008) assumed additionally that the location param-
eter of the limit stable law is zero when α ∈ [1�2). Moreover, although they provide conditional convergence
results only for the finite-dimensional distributions of the CUSUM process, these could be strengthened to
conditional functional convergence as in Proposition 1 of LePage, Podgórsky, and Ryznar (1997) in order to
obtain the conditional convergence of τ∗

n.
5By “exact” we mean inference with respect to the true finite-sample (conditional) distribution of the test

statistic.
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this test is valid unconditionally, as a results of either the validity conditional on Xn, or by
Corollary 3.1.

4.2. A Parametric Bootstrap Goodness-of-Fit Test

The parametric bootstrap is a standard technique for the approximation of a condi-
tional distribution of goodness-of-fit test statistics (Andrews (1997), Lockhart (2012)).
When these are discussed in the i.i.d. finite-variance setting, the limit of the bootstrap
distribution is nonrandom. However, if we return to the relation (2.1), there exist rel-
evant settings where a random limit of the normalized Mn implies that parametrically
bootstrapped goodness-of-fit test statistics have random limit distributions.

4.2.1. Set up and a Random Limit Bootstrap Measure

Let the null hypothesis of interest, say H0, be that the standardized errors ω−1/2
ε εt in

(2.1) have a certain known density f with mean 0 and variance 1. For expositional ease, we
assume that ωε = 1 and is known to the econometrician. Then, the Kolmogorov–Smirnov
statistic based on OLS residuals ε̂t is

τn := n1/2 sup
s∈R

∣∣∣∣∣n−1
n∑
t=1

I{ε̂t≤s} −
∫ s

−∞
f

∣∣∣∣∣.
A (parametric) bootstrap counterpart, τ∗

n, of τn could be constructed under H0 by (i) draw-
ing {ε∗

t }nt=1 as i.i.d. from f , independent of the data; (ii) regressing them on xt , thus
obtaining an estimator β̂∗ and associated residuals ε̂∗

t ; and (iii) calculating τ∗
n as τ∗

n :=
n1/2 sups∈R |n−1

∑n

t=1 I{ε̂∗
t ≤s} − ∫ s

−∞ f |.
To see that the distribution of the bootstrap statistic τ∗

n conditional on the data
Dn := {xt� yt}nt=1 may have a random limit, consider the Gaussian case, f = �′. Under
the assumptions of Johansen and Nielsen (2016, Sections 4.1–4.2), it holds (ibidem) that
τ∗
n = τ̃∗

n +op(1) under the product probability on the product probability space where the
data and {ε∗

t } are jointly defined, with

τ̃∗
n := sup

s∈[0�1]

∣∣∣∣∣n−1/2
n∑
t=1

(I{ε∗
t ≤q(s)} − s)+�′(q(s))β̂∗n−1/2

n∑
t=1

xt

∣∣∣∣∣, (4.3)

where q(s) = �−1(s) is the sth quantile of �. The expansion of τ∗
n holds also condition-

ally on the data, that is, τ∗
n − τ̃∗

n

w∗→p 0, since convergence in probability to a constant is
preserved upon such conditioning. Hence, if τ̃∗

n|Dn converges to a random limit, so does
τ∗
n|Dn for the same limit. Assume that Xn := n−α/2x
n·�

w→U in D for some α > 0 and that
M := ∫

U2 > 0 a.s. (e.g.,U = Bη if xt = ∑t−1
s=1ηs with {ηt} introduced in Section 2.2). Then

(Mn�ξn) := (∑n

t=1 x
2
t �

∑n

t=1 xt) satisfies (n−α−1Mn�n
−α/2−1ξn)

w→ (M�ξ), ξ := ∫
U . Further-

more, if W ∗
n (s) := n−1

∑n

t=1(I{ε∗
t ≤q(s)} − s), s ∈ [0�1], is the bootstrap empirical process in

probability scale, then W ∗
n and M1/2

n β̂∗ are independent of the data individually (the sec-
ond one being conditionally standard Gaussian), but not jointly independent of the data,
because

Cov∗(n1/2W ∗
n (s)�M

1/2
n β̂∗) = (

n−α−1Mn

)−1/2
n−α/2−1ξnψ(s)

w→M−1/2ξψ(s),
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s ∈ [0�1], where ψ(·) := E∗[ε∗
1I{ε∗

1≤q(·)}] = −�′(q(·)) is a trimmed mean function, with
Cov∗(·) and E∗(·) calculated under P∗. It is shown in Section S.4 that, more strongly,

(
n1/2W ∗

n � n
(α+1)/2β̂∗� n−α/2−1ξn

) w∗→w

(
W�M−1/2b�ξ

)|(M�ξ) (4.4)

on D × R
2, where (W �b) is a pair of a standard Brownian bridge and a standard Gaus-

sian r.v. individually independent of U (and thus, of M�ξ), but with Gaussian joint con-
ditional (on U) distributions having covariance Cov(W (s)�b|U)=M−1/2ξψ(s), s ∈ [0�1].
Combining the expansion of τ∗

n, (4.3) and (4.4) with an extended CMT (Theorem A.1 in
Appendix A) yields

τ∗
n

w∗→w

{
sup
s∈[0�1]

∣∣W (s)+�′(q(s))M−1/2bξ
∣∣}∣∣(M�ξ)= τ|(M�ξ) a.s., (4.5)

where τ := sups∈[0�1] |W̃ (s)| for a process W̃ which conditionally on U (and thus, onM�ξ),
is a zero-mean Gaussian process with W̃ (0) = W̃ (1) = 0 a.s. and conditional covariance
function K(s� v) = s(1 − v) −M−1ξ2ψ(s)ψ(v) for 0 ≤ s ≤ v ≤ 1. In summary, the limit
bootstrap distribution is random because the latter conditional covariance is random
whenever M or ξ are such.

4.2.2. Bootstrap Validity

We now discuss in what sense τ∗
n can provide a distributional approximation of τn and

whether the bootstrap can be valid in the sense of Definition 1.

Unconditional Validity. Under H0 that εt ∼ i.i.d. N(0�1), the bootstrap could be shown
to be unconditionally valid using Theorem 3.1. Specifically, under H0, the assumptions
and results of Johansen and Nielsen (2016, Sections 4.1–4.2) guarantee that τn has the
expansion τn = τ̃n + op(1), with τ̃n := sups∈[0�1] |n−1/2

∑n

t=1(I{εt≤q(s)} − s) + �′(q(s))(β̂ −
β)n−1/2

∑n

t=1 xt | defined similarly to τ̃∗
n. Assume that β̂ is asymptotically mixed Gaussian,

such that jointly with n−α/2x
n·�
w→U it holds that(

n−1/2
n∑
t=1

(I{εt≤q(s)} − s)�n(α+1)/2(β̂−β)�n−α/2−1ξn

)
w→ (
W�M−1/2b�ξ

)
;

then τn = τ̃n + op(1)
w→ τ = sups∈[0�1] |W̃ (s)|. Thus, the unconditional limit of τn obtains

by averaging (over M�ξ) the conditional limit of τ∗
n. This is the main prerequisite for

establishing unconditional bootstrap validity via Theorem 3.1. More precisely, it is proved
in Section S.4 that(

τn�F
∗
n

) w→ (τ�F), F∗
n (·) := P∗(τ∗

n ≤ ·), F(·) := P(τ ≤ ·|M�ξ)� (4.6)

As F is sample-path continuous (e.g., by Proposition 3.2 of Linde (1989), applied condi-
tionally on M�ξ), Theorem 3.1 with X := (M�ξ) guarantees unconditional validity.

REMARK 4.1: We outline here our approach to the proof of (4.6), which is of inter-
est also in other applications. The main ingredients are (a) the convergence (τn�Xn)

w→
(τ�U); (b) the fact that its strong version (τn�Xn)

a.s.→ (τ�U) can be shown to imply τ∗
n

w∗→p
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τ|U ; and (c) the fact that the conditional distribution τ|U , which is a.s. equal to τ|(M�ξ),
is diffuse. The proof proceeds in two steps: (i) prove that (τn�Xn)

w→ (τ�U); (ii) consider,
by extended Skorokhod coupling (Corollary 5.12 of Kallenberg (1997)), a representation
ofDn and (τ�U) such that, with an abuse of notation, (τn�Xn)

a.s.→ (τ�U) and, on a product

extension of the Skorokhod-representation space, prove that τ∗
n

w∗→p τ|U . The latter con-
ditional assertion, due to the product structure of the probability space, can be proved as
a collection of unconditional assertions by fixing the outcomes in the factor-space of the
data. As F is sample-path continuous, (τn�F∗

n )
p→ (τ�F) on the Skorokhod-representation

space, whereas (τn�F∗
n )

w→ (τ�F) on a general probability space. In other applications, the
idea of a similar proof would be to choose Xn as Dn-measurable random elements such
that τ∗

n depends on the data essentially through Xn.

Conditional Validity. As τn = τ̃n + op(1) under H0, with τ̃n related to (Mn�ξn) through
the same functional form as τ̃∗

n, it is possible for τn|Xn to have the same random limit
distribution under H0 as τ∗

n given the data, that is, τn|Xn
w→w τ|(M�ξ). For instance, this

occurs if {εt} is an i.i.d. sequence independent of Xn, by the same argument as for τ̃∗
n.

Conditional validity can then be established through Corollary 3.2 by using the following
fact.

REMARK 4.2: The convergence in (3.4), required in Corollary 3.2, follows from the

separate convergence facts τn|Xn
w→w τ|X , τ∗

n

w∗→w τ
∗|X ′ and (τn� τ∗

n�φn(Xn)�ψn(Dn))
w→

(τ� τ∗�X�X ′) for some measurable functionsφn�ψn, provided thatXn areDn-measurable
and the conditional distributions τ|X ′ and τ∗|X ′ are equal a.s.; see Section S.4.

Let φn(Xn) :=ψn(Xn) := (n−α−1Mn�n
−α/2−1ξn) and X :=X ′ := (M�ξ). By Remark 4.2,

the convergence τn|Xn
w→w τ|X ′, equation (4.5) and the convergence (τn� τ∗

n�φn(Xn))
w→

(τ� τ∗�X ′) with the distributions τ∗|X ′ and τ|X ′ equal a.s. (shown in the proof of (4.6),
see Section S.4) are sufficient for equation (3.4) to hold in the form

(
τn|Xn�τ

∗
n|Dn

) w→w

(
τ|X ′� τ|X ′).

As the random c.d.f. F of the conditional distribution τ|X ′ is sample-path continuous, the
bootstrap is valid conditionally on Xn by Corollary 3.2(a).

4.3. Bootstrap Tests of Parameter Constancy

4.3.1. General Set-Up

Here, we apply the results of Section 3 to the classic problem of parameter constancy
testing in regression models (see Andrews (1993) and the references therein). Specifically,
we deal with bootstrap implementations when the moments of the regressors may be
unstable over time; see, e.g., Hansen (2000) and Zhang and Wu (2012).

Consider a linear regression model for ynt ∈ R given xnt ∈ R
m, in triangular array nota-

tion:

ynt = β′
txnt + εnt (t = 1�2� � � � � n)� (4.7)

The null hypothesis of parameter constancy is H0 : βt = β1 (t = 2� � � � � n), which is tested
here against the alternative H1 : βt = β1 + θI{t≥n�} (t = 2� � � � � n), where n� := 
r�n� and
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θ 	= 0, respectively, denote the timing and the magnitude of the possible break,6 both
assumed unknown to the econometrician. The so-called break fraction r� belongs to a
known closed interval [r� r] in (0�1). In order to test H0 against H1, it is customary to
consider the “supF” (or “sup Wald”) test (Andrews (1993)), based on the statistic Fn :=
maxr∈[r�r] F
nr�, where F
nr� is the usual F statistic for testing the auxiliary null hypothesis
that θ= 0 in the regression

ynt = β′xnt + θ′xntI{t≥
rn�} + εnt .
We make the following assumption, allowing for nonstationarity in the regressors (see

also Hansen (2000, Assumptions 1 and 2)).

ASSUMPTION H: The following conditions on {xnt� εnt} hold:
(i) (m.d.a.) εnt is a martingale difference array with respect to the current value of xnt and

the lagged values of (xnt� εnt);
(ii) (w.l.l.n.) ε2

nt satisfies the law of large numbers n−1
∑
nr�

t=1 ε
2
nt

p→ r(Eε2
nt)= rσ2 > 0, for

all r ∈ (0�1];
(iii) (nonstationarity) (Mn�Vn�Nn)

w→ (M�V �N) in Dm×m × Dm×m × Dm for

(Mn�Vn�Nn) :=
(

1
n


n·�∑
t=1

xntx
′
nt�

1
nσ2


n·�∑
t=1

xntx
′
ntε

2
nt�

1
n1/2σ


n·�∑
t=1

xntεnt

)

and where M and V are a.s. continuous and (except at 0) strictly positive-definite val-
ued processes, whereas N , conditionally on {V �M}, is a zero-mean Gaussian process
with covariance kernel E{N(r1)N(r2)′} = V (r1) (0 ≤ r1 ≤ r2 ≤ 1).

REMARK 4.3: A special case of Assumption H is obtained when the regressors satisfy
the weak convergence xn
n·�

w→ U in Dm, such that M = ∫ ·
0 UU

′. Under extra conditions
(e.g., if supn supt=1�����n E|E(ε2

nt − σ2|Fn�t−i)| → 0 as i→ ∞ for some filtrations Fn�t , n ∈N,
to which {ε2

nt} is adapted), also V = ∫ ·
0 UU

′ (see Theorem A.1 of Cavaliere and Taylor
(2009)).

The null asymptotic distribution of Fn under Assumption H is provided in Hansen
(2000, Theorem 2):

Fn
w→ sup

r∈[r�r]

{
Ñ(r)′M̃(r)−1Ñ(r)

}
(4.8)

with Ñ(u) :=N(u)−M(u)M(1)−1N(1) and M̃(r) :=M(r)−M(r)M(1)−1M(r). In the
case of (asymptotically) stationary regressors, Fn converges to the supremum of a squared
tied-down Bessel process; see Andrews (1993). In the general case, however, since the
asymptotic distribution in (4.8) depends on the joint distribution of the limiting processes
M�N�V , which is unspecified under Assumption H, asymptotic inference based on (4.8)
is unfeasible. Simulation methods as the bootstrap can therefore be appealing devices for
computing p-values associated with Fn.

6We suppress the possible dependence of βt = βnt on n with no risk of ambiguities.
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4.3.2. Bootstrap Test and Random Limit Bootstrap Distribution

Following Hansen (2000), we consider here a fixed-regressor wild bootstrap intended
to accommodate possible conditional heteroskedasticity of εnt . It is based on the residu-
als ẽnt from the OLS regression of ynt on xnt and xntI{t≥
r̃n�}, where r̃ := arg maxr∈[r�r] F
nr�
is the estimated break fraction for the original sample. The bootstrap statistic is F ∗

n :=
maxr∈[r�r] F∗


nr�, where F∗

nr� is the F statistic for θ∗ = 0 in the auxiliary regression

y∗
t = β∗′xnt + θ∗′xntI{t≥
rn�} + error∗

nt� (4.9)

with bootstrap data y∗
t := ẽntw

∗
t for an i.i.d. N(0�1) sequence of bootstrap multipliers w∗

t

independent of the data (as in Hansen (2000), we set without loss of generality β= 0 in
the bootstrap sample). The weak limit of F ∗

n given the data is stated next.

THEOREM 4.1: Under Assumption H and under H0 it holds that, with M̃� Ñ as in (4.8),

F ∗
n

w∗→w sup
r∈[r�r]

{
Ñ(r)′M̃(r)−1Ñ(r)

}∣∣(M�V ). (4.10)

REMARK 4.4: Theorem 4.1 establishes that, in general, the limit distribution of the
fixed-regressor bootstrap statistic is random. In particular, it is distinct from the limit in
equation (4.8) and, as a result, the bootstrap does not estimate consistently the uncondi-
tional limit distribution of the statistic Fn under H0 (contrary to the claim in Theorem 6
of Hansen (2000)). To illustrate the limiting randomness, consider the case M = V with
a scalar regressor xnt ∈ R. By a change of variable (as in Theorem 3 of Hansen (2000)),
convergence (4.10) reduces to

F ∗
n

w∗→w sup
u∈I(M�r�r̄)

{
W (u)2

u(1 − u)
}∣∣∣M for I(M� r� r̄) :=

[
M(r)

M(1)
�
M(r̄)

M(1)

]
�

whereW is a standard Brownian bridge on [0�1], independent ofM . As the maximization
interval I(M� r� r̄) depends on M , so does the supremum itself.

4.3.3. Bootstrap Validity

Although under Assumption H the bootstrap does not replicate the asymptotic (un-
conditional) distribution in (4.8), unconditional bootstrap validity can be established un-
der no further assumptions than Assumption H, by using the results in Section 3.2.
In contrast, if interest is in achieving bootstrap validity conditional on the regressors
Xn := {xnt}nt=1, as it may appear natural when the regressors are kept fixed across boot-
strap samples, further conditions are required; for example, the following Assumption C.

ASSUMPTION C: Assumption H holds and, jointly with the convergence in Assump-
tion H(iii), it holds that (Mn�Vn�Nn)|Xn

w→w (M�V �N)|(M�V ) as random measures on
Dm×m × Dm×m × Dm.

REMARK 4.5: Assumption C is stronger than Assumption H due to the fact that, dif-
ferently from the bootstrap variates w∗

t , the errors {εnt} need not be independent of {xnt}.
The third DGP of Section 2.2.3 could be used to construct an example, with xnt := n−1/2xt
and εnt := εt , where Assumption H(iii) holds but Assumption C does not.
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REMARK 4.6: The meaning of “jointly” in Assumption C is given in equation (A.2).
By Lemma A.1(b), the convergence in Assumption C will be joint with that in Assump-
tion H(iii) if n−1σ−2

∑
n·�
t=1 xntx

′
nt(ε

2
nt −E(ε2

nt |Xn))= op(1) in Dm×m, such that the process
n−1σ−2

∑
n·�
t=1 xntx

′
ntε

2
nt is asymptotically equivalent to an Xn-measurable process.

The results on the validity of the bootstrap parameter constancy tests are summarized
in the following theorem.

THEOREM 4.2: Let the parameter constancy hypothesis H0 hold for model (4.7). Then,
under Assumption H, the bootstrap based on τn = Fn and τ∗

n = F ∗
n is unconditionally valid.

If Assumption C holds, then the bootstrap based on Fn and F ∗
n is valid also conditionally

on Xn.

Theorem 4.2 under Assumption H is proved along the lines of Remark 4.1. Under
Assumption C the proof could be recast in terms of the following general strategy to
check condition (3.4) of Corollary 3.2(a), with φn(Xn) := ψn(Dn) := (Mn�Vn) and X :=
X ′ := (M�V ).

REMARK 4.7: With the notation of Remark 4.2, convergence (3.4) follows from τn|Xn
w→w τ|X and (τn�φn(Xn)�ψn(Dn))

w→ (τ�X�X ′) together with the implication (when it

holds) from ψn(Dn)
a.s.→X ′ to τ∗

n

w∗→p τ|X ′, provided that Xn are Dn-measurable. The con-
vergence τn|Xn

w→w τ|X is the new ingredient compared to Remark 4.1. An implemen-
tation strategy is: (i) prove that τn|Xn

w→w τ|X and (τn�φn(Xn)�ψn(Dn))
w→ (τ�X�X ′);

(ii) consider a Skorokhod representation of Dn and (τ�X�X ′) such that, maintaining the
notation, (τn�φn(Xn)�ψn(Dn))

a.s.→ (τ�X�X ′) and, as a result, τn|Xn
w→w τ|X strength-

ens to τn|Xn
w→p τ|X (see Lemma A.1 in Appendix A); (iii) redefine the bootstrap vari-

ates W ∗
n on a product extension of the Skorokhod-representation space and prove there

that τ∗
n

w∗→p τ|X ′. Then (3.4) holds on a general probability space. Notice also that if
φn(Xn) = (X ′

n�X
′′
n) and ψn(Dn) = X ′

n, then the convergence (X ′
n�X

′′
n)

w→ (X ′�X ′′) in
Corollary 3.2(b) is joint with (3.4).

5. CONCLUSIONS

When the distribution of a bootstrap statistic conditional on the data is random in the
limit, the bootstrap fails to estimate consistently the asymptotic distribution of the orig-
inal statistic. Renormalization of the statistic of interest cannot always be used as a way
to eliminate the limiting bootstrap randomness (e.g., it cannot be used in any of the ap-
plications in Section 4). Nevertheless, we have shown that if bootstrap validity is defined
as (large sample) control over the frequency of correct inferences, then randomness of
the limit bootstrap distribution does not imply invalidity of the bootstrap, even without
renormalizing the original statistic. A bootstrap scheme, therefore, need not be discarded
for the sole reason of giving rise to a random limit bootstrap measure.

For the asymptotic validity of bootstrap inference, in an unconditional or a conditional
sense, we have established sufficient conditions and strategies to verify these conditions
in specific applications. The conditions differ mainly in their demands on the dependence
structure of the data, and are more restrictive for conditional validity to hold.
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We have provided three applications to well-known econometric inference problems,
which feature randomness of the limit bootstrap distribution. As usual, alternative boot-
strap schemes giving rise to nonrandom bootstrap measures could also be put forward
and in practice the choice of a bootstrap scheme to use would have to be made on a
case-by-case basis. For instance, in the CUSUM application of Section 4.1, them out of n
bootstrap could be consistent for the unconditional asymptotic distribution of the statis-
tic of interest; however, differently to the permutation test of Aue, Berkes, and Horváth
(2008), which gives rise to a random limit measure, it would not be exact in finite samples.
For the structural break test of Section 4.3, the use of the fixed regressor bootstrap (and,
consequently, the randomness of the limit bootstrap measure) cannot be avoided, given
the level of generality assumed on the regressors and on the error terms. However, if the
regressors were known to be I(1), then a recursive bootstrap (with unit roots imposed)
could in principle be implemented and it would mimic the unconditional limit distribu-
tion of the statistic of interest, rather than a conditional limit. Which of the two bootstraps
would be preferable in terms of size and power requires additional investigation.

Among the further applications that could be analyzed using our approach are boot-
strap inference in weakly or partially identified models, inference in time series models
with time-varying (stochastic) volatility, inference after model selection, and the boot-
strap in high-dimensional models. In addition, the methods we propose could be useful
in problems involving nuisance parameters that are not consistently estimable under the
null hypothesis but where sufficient statistics are available (with the bootstrap being po-
tentially valid conditionally on such statistics). In these problems, it could be of further
interest to study conservative inferential procedures satisfying a weaker condition than
(3.1), for example, lim infP(p∗

n ≥ q)≥ 1 − q for all q ∈ (0�1) in the case of tests rejecting
for small values of p∗

n.
An important issue not analyzed in the paper is whether the bootstrap can deliver re-

finements over standard asymptotics in cases where the limit bootstrap measure is ran-
dom. We have seen in Sections 2 and 4.1 that bootstrap inference in such cases could
be exact or close to exact. This seems to suggest that a potential for refinements exists.
Moreover, there is also a potential for the bootstrap to inherit the finite-sample refine-
ments offered by conditional asymptotic expansions (in line with Barndorff-Nielsen’s p∗-
formula, see Barndorff-Nielsen and Cox (1994, Section 6.2)), as has been established for
some bootstrap procedures (DiCiccio and Young (2008)) in the special case of correctly
specified parametric models. The study of such questions requires mathematical tools
different from those employed here and is left for further research.

APPENDIX A: WEAK CONVERGENCE IN DISTRIBUTION

In this section, we establish some properties of weak convergence in distribution for
random elements of Polish spaces. They are useful in applications, in order to verify the
high-level conditions of our main theorems, as well as to prove these very theorems. Recall
the convention that, throughout, Polish spaces are equipped with their Borel sets. Finite
k-tuples of random elements defined on the same probability space are considered as
random elements of a product space with the product topology and σ-algebra.

Let (Zn�Xn) and (Z�X) be random elements such thatZn = (Z′
n�Z

′′
n) andZ = (Z′�Z′′)

are S ′
Z×S ′′

Z-valued, whereasXn = (X ′
n�X

′′
n) andX = (X ′�X ′′) are resp. S ′

Xn×S ′′
Xn-valued

and S ′
X × S ′′

X-valued (n ∈ N). We say that Z′
n|X ′

n

w→w Z
′|X ′ and Z′′

n|X ′′
n

w→w Z
′′|X ′′ jointly

(denoted by (Z′
n|X ′

n�Z
′′
n|X ′′

n)
w→w (Z

′|X ′�Z′′|X ′′)) if(
E

{
h′(Z′

n

)|X ′
n

}
�E

{
h′′(Z′′

n

)|X ′′
n

}) w→ (
E

{
h′(Z′)|X ′}�E{

h′′(Z′′)|X ′′}) (A.1)
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for all h′ ∈ Cb(S ′
Z) and h′′ ∈ Cb(S ′′

Z). Even for X ′
n =X ′′

n , this property is weaker than the
convergence (Z′

n�Z
′′
n)|X ′

n

w→w (Z
′�Z′′)|X defined by E{g(Z′

n�Z
′′
n)|X ′

n} w→E{g(Z′�Z′′)|X}
for all g ∈ Cb(S ′

Z × S ′′
Z). We notice that for Z′

n =X ′
n, (A.1) reduces to

(
Z′
n�E

{
h′′(Z′′

n

)|X ′′
n

}) w→ (
Z′�E

{
h′′(Z′′)|X ′′}) (A.2)

for all h′′ ∈ Cb(S ′′
Z) and in this case we write (Z′

n� (Z
′′
n|X ′′

n))
w→w (Z

′′� (Z′|X ′)) (see Corol-
lary S.1 in Section S.2).

The first lemma given here is divided in two parts. In the first part, we provide condi-
tions for strengthening weak convergence in distribution to weak convergence in prob-
ability. The second part, in its simplest form, provides conditions such that the two
convergence facts (Zn�Xn)

w→ (Z�X) and Zn|Xn
w→w Z|X imply the joint convergence

((Zn|Xn)�Zn�Xn)
w→w ((Z|X)�Z�X).

LEMMA A.1: Let SZ , S ′
Z�SX , and S ′

X be Polish spaces. Consider the random elements
Zn�Z (SZ-valued), Z′

n�Z
′ (S ′

Z-valued), Xn (SX-valued), and X ′
n, X (S ′

X-valued) for n ∈ N.
Assume that X ′

n are Xn-measurable and Zn|Xn
w→w Z|X .

(a) If all the considered random elements are defined on the same probability space,
(Zn�X

′
n)

w→ (Z�X) and X ′
n

p→X , then Zn|Xn
w→p Z|X .

(b) If (Zn�X ′
n�Z

′
n)

w→ (Z�X�Z′), then the joint convergence ((Zn|Xn)�Zn�X
′
n�Z

′
n)

w→w

((Z|X)�Z�X�Z′) holds in the sense that, for all h ∈ Cb(SZ),(
E

{
h(Zn)|Xn

}
�Zn�X

′
n�Z

′
n

) w→ (
E

{
h(Z)|X}

�Z�X�Z′). (A.3)

Notice that, by choosing Z′
n = Z′ = 1, a corollary of Lemma A.1(b) not involving Z′

n

and Z′ is obtained. It states that Zn|Xn
w→w Z|X and (Zn�X ′

n)
w→ (Z�X) together imply

the joint convergence ((Zn|Xn)�Zn�X
′
n)

w→w ((Z|X)�Z�X), provided that X ′
n are Xn-

measurable.
By means of equation (A.1), we defined joint weak convergence in distribution and

denoted it by (Z′
n|X ′

n�Z
′′
n|X ′′

n)
w→w (Z

′|X ′�Z′′|X ′′). We now extend it to

((
Z′
n|X ′

n

)
�
(
Z′′
n|X ′′

n

)
�Z′′′

n

) w→w

((
Z′|X ′)� (Z′′|X ′′)�Z′′′), (A.4)

defined to mean that(
E

{
h′(Z′

n

)|X ′
n

}
�E

{
h′′(Z′′

n

)|X ′′
n

}
�Z′′′

n

) w→ (
E

{
h′(Z′)|X ′}�E{

h′′(Z′′)|X ′′}�Z′′′) (A.5)

for all h′ ∈ Cb(S ′
Z) and h′′ ∈ Cb(S ′′

Z). The natural equivalence of ((Z′
n|X ′

n)� (Z
′
n|X ′

n)�

Z′′′
n )

w→w ((Z
′|X ′)� (Z′|X ′)�Z′′′) and ((Z′

n|X ′
n)�Z

′′′
n )

w→w ((Z
′|X ′)�Z′′′) holds under sep-

arability of the space S ′′′
Z where Z′′′

n �Z
′′′ take values (see Remark S.1).

In Lemma A.2(b) below, we relate (A.4) to the joint weak convergence of the respective
conditional c.d.f.’s in the case of r.v.’s Z′

n�Z
′′
n�Z

′, and Z′′. Before that, in Lemma A.2(a)
we show how joint weak convergence in distribution can be strengthened to a.s. weak con-
vergence on a special probability space. For a single convergence Z′

n|X ′
n

w→w Z
′|X ′, part

(a) implies that there exists a Skorokhod representation (Z̃′
n� X̃

′
n)

d= (Z′
n�X

′
n), (Z̃

′� X̃ ′) d=
(Z′�X ′) such that Z̃′

n|X̃ ′
n

w→a.s. Z̃
′|X̃ ′.
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LEMMA A.2: Let (Z′
n�Z

′′
n�Z

′′′
n �X

′
n�X

′′
n) and (Z′�Z′′�Z′′′�X ′�X ′′) be random elements of

the same Polish product space, defined on possibly different probability spaces (n ∈N).
(a) If (A.4)–(A.5) hold, then there exist a probability space (Ω̃� F̃� P̃) and random

elements (X̃ ′
n� X̃

′′
n� Z̃

′
n� Z̃

′′
n� Z̃

′′′
n )

d= (X ′
n�X

′′
n�Z

′
n�Z

′′
n�Z

′′′
n ), (X̃ ′� X̃ ′′� Z̃′� Z̃′′� Z̃′′′) d=

(X ′�X ′′�Z′�Z′′�Z′′′) defined on this space such that Z̃′
n|X̃ ′

n

w→a.s. Z̃
′|X̃ ′� Z̃′′

n|X̃ ′′
n

w→a.s.

Z̃′′|X̃ ′′and Z̃′′′
n

a.s.→ Z̃′′′.
(b) Let Z′�Z′′ be r.v.’s and Z′′′ be S ′′′

Z -valued. If the conditional distributions Z′|X ′ and
Z′′|X ′′ are diffuse, then (A.4)–(A.5) are equivalent to the weak convergence of the
associated random c.d.f.’s:(

P
(
Z′
n ≤ ·|X ′

n

)
�P

(
Z′′
n ≤ ·|X ′′

n

)
�Z′′′

n

) w→ (
P

(
Z′ ≤ ·|X ′)�P(

Z′′ ≤ ·|X ′′)�Z′′′) (A.6)

as random elements of D(R)× D(R)× S ′′′
Z .

The definition of the convergence Zn|Xn
w→w Z|X implies that h(Zn)|Xn

w→w h(Z)|X
for any continuous h : SZ → S ′

Z between Polish spaces. A generalization for functions h
with a negligible set of discontinuities is provided in the following CMT (for weak con-
vergence a.s. and weak convergence in probability, see Theorem 10 of Sweeting (1989)).

THEOREM A.1: Let SZ�S ′
Z�SX , and S ′

X be Polish spaces and the random elements Zn�Z
be SZ-valued, Xn be SX -valued, and X be S ′

X -valued. If Zn|Xn
w→w Z|X and h : SZ →

S ′
Z has its set of discontinuity points Dh with P(Z ∈ Dh|X) = 0 a.s., then h(Zn)|Xn

w→w

h(Z)|X .

Next, we prove in Theorem A.2 a weak convergence result for iterated conditional ex-
pectations. The theorem provides conditions under which the convergence E(zn|Xn)

w→
E(z|X ′�X ′′) implies, upon iteration of the expectations, that E{E(zn|Xn)|X ′

n} w→
E{E(z|X ′�X ′′)|X ′} for r.v.’s zn� z and for Xn-measurable X ′

n. In terms of weak conver-
gence in distribution, the result allows to pass from Zn|Xn

w→w Z|(X ′�X ′′) to Zn|X ′
n

w→w

Z|X ′. We need, however, a more elaborate version for joint weak convergence.

THEOREM A.2: For n ∈ N, let zn be uniformly integrable r.v.’s, Xn, Yn, and (X ′
n�X

′′
n) be

random elements of Polish spaces (say, SX , SY , and S ′
X), defined on the probability spaces

(Ωn�Fn�Pn) and such that (X ′
n�X

′′
n) areXn-measurable (n ∈ N). Let also z be an integrable

r.v. and Y�(X ′�X ′′) be random elements of the Polish spaces SY , S ′
X defined on a probability

space (Ω�F�P). If(
E(zn|Xn)�X

′
n�X

′′
n�Yn

) w→ (
E

(
z|X ′�X ′′)�X ′�X ′′�Y

)
(A.7)

and X ′′
n |X ′

n

w→w X
′′|X ′, then E(zn|X ′

n)
w→E(z|X ′) jointly with (A.7).

Moreover, let Zn, Z be random elements of a Polish space SZ defined, respectively, on
(Ωn�Fn�Pn) and (Ω�F�P). If(

(Zn|Xn)�X
′
n�X

′′
n�Yn

) w→w

((
Z|(X ′�X ′′))�X ′�X ′′�Y

)
(A.8)

and X ′′
n |X ′

n

w→w X
′′|X ′, then((

Zn|X ′
n

)
� (Zn|Xn)�X

′
n�X

′′
n�Yn

) w→w

((
Z|X ′)� (Z|(X ′�X ′′))�X ′�X ′′�Y

)
� (A.9)
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REMARK A.1: A special case with X ′′
n = X ′′ = 1 and Yn = Y = 1 is that where

(E(zn|Xn)�X
′
n)

w→ (E(z|X ′)�X ′) such that X ′′
n |X ′

n

w→w X
′′|X ′ is trivial, and hence,

E(zn|X ′
n)

w→ E(z|X ′) if X ′
n are Xn-measurable. In terms of conditional distributions, the

joint convergence ((Zn|Xn)�X
′
n)

w→ ((Z|X ′)�X ′) implies that Zn|X ′
n

w→w Z|X ′ (or more
strongly, ((Zn|X ′

n)� (Zn|Xn)�X
′
n)

w→ ((Z|X ′)� (Z|X ′)�X ′)) for Xn-measurable X ′
n. An-

other special case, clarifying the importance of the uniform integrability requirement, is
zn = Xn = X ′′

n , z = X ′′ and X ′
n = X ′ = Yn = Y = 1, where Theorem A.2 reduces to the

fact that zn
w→ z implies Ezn →Ez for uniformly integrable r.v.’s zn� z.

REMARK A.2: Theorem A.2 can be applied to the bootstrap p-value. Let (A.7) hold for
zn = p∗

n and Yn = Y = 1, and let G∗ be the conditional c.d.f. of p∗|(X ′�X ′′). If E(G∗|X ′)
equals pointwise the c.d.f. of the U(0�1) distribution, then the convergence p∗

n|X ′
n

w→w

p∗|X ′ implied by Theorem A.2 under the conditionX ′′
n |X ′

n

w→w X
′′|X ′ becomes p∗

n|X ′
n

w→p

U(0�1).

We conclude the section with a result that is used for establishing the joint convergence
of original and bootstrap quantities as an implication of a marginal and a conditional
convergence.

LEMMA A.3: Let (Ω×Ω∗�F ×F ∗�P×Pb) be a product probability space. LetDn :Ω→
SD, W ∗

n :Ω∗ → SW , X :Ω→ SX and Z∗ :Ω×Ω∗ → SZ (n ∈ N) be random elements of the
Polish spaces SD, SW , SX = S ′

X × S ′′
X , and SZ . Assume further that Xn are Dn-measurable

random elements of SX and Z∗
n are (Dn�W

∗
n )-measurable random elements of SZ (n ∈ N). If

Xn

p→X = (X ′�X ′′) and Z∗
n|Dn

w→p Z
∗|X ′, then (Z∗

n�Xn)
w→ (Z�X) and (Z∗

n�Xn)|Dn
w→p

(Z�X)|X , where Z is a random element of SZ such that the conditional distributions Z∗|X ′,
Z|X ′ and Z|X are equal a.s.

The existence of a random element Z with the specified properties, possibly on an
extension of the original probability space, is ensured by Lemma 5.9 of Kallenberg (1997).
A well-known special case of Lemma A.3 is that where Xn = (1�X ′′

n), X = (1�X ′′), X ′′
n

p→
X ′′ and Z∗

n|X ′′
n

w→p X
′′ (such that Dn = X ′′

n). Then (Z∗
n�X

′′
n)

w→ (Z�X ′′) with X ′′ d= Z
d=

Z|X ′′ reducing to the condition that X ′′ and Z are independent and distributed like X ′′

(DasGupta (2008, p. 475)).

APPENDIX B: PROOFS OF THE MAIN RESULTS

PROOF OF THEOREM 3.1: The random element (τ�F) of R × D(R) is a measurable
function of (τ�X) determined up to indistinguishability by the joint distribution of (τ�X).
By extended Skorokhod coupling (Corollary 5.12 of Kallenberg (1997)), we can regard the
data and (τ�X) as defined on a special probability space where (τn�F∗

n )→ (τ�F) a.s. in
R × D(R) and F(·) = P(τ ≤ ·|X) still holds. We can also replace the redefined F by a
sample-path continuous random c.d.f. that is indistinguishable from it (and maintain the
notation F).

Since F is sample-path continuous and F∗
n �F are (random) c.d.f.’s, F∗

n

a.s.→ F in D(R)

implies that supu∈R |F∗
n (u)−F(u)| a.s.→ 0. Therefore, F∗

n (τn)−F(τn) a.s.→ 0. Since τn
a.s.→ τ and

F is sample-path continuous, it holds further that F(τn)
a.s.→ F(τ), so also F∗

n (τn)
a.s.→ F(τ)

on the special probability space. Hence, in general, F∗
n (τn)

w→ F(τ).
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Finally, we notice that F(τ) ∼ U(0�1). In fact, by the choice of F−1 as the right-
continuous inverse and by the continuity of F , the equality of events {F(u) ≤ q} = {u ≤
F−1(q)}, q ∈ (0�1), holds and implies that

P
(
F(u)|u=τ ≤ q|X) = P(

τ ≤ F−1(q)|X) = F(
F−1(q)

) = q
as asserted, the penultimate equality because F−1(q) is X-measurable. Q.E.D.

DETAILS OF REMARK 3.5: If τ∗
n

w∗→w τ
∗|X and (τ∗

n� τn�Xn)
w→ (τ∗� τ�X) with Dn-

measurable Xn (n ∈ N), then the joint convergence ((τ∗
n|Dn)�τn�Xn)

w→w ((τ
∗|X)�τ�X)

follows by Lemma A.1(b). If the conditional distributions τ∗|X and τ|X are equal a.s. and
F is sample-path continuous, then (τn�F∗

n )
w→ (τ�F) by Lemma A.2(b).

PROOF OF THEOREM 3.2: The result (as well as Corollary 3.1) follows from Theo-
rem 3.3, which is proved below in an independent manner. Specifically, as the con-
ditions of Theorem 3.3 are satisfied, it holds that P(p∗

n ≤ q|Xn)
w→ F(F∗−1(q)). Let

g(·)= min{·�1}I{·≥0}. By the definition of weak convergence and by the continuity of F∗,

P
(
p∗
n ≤ q) = E

{
g
(
P

(
p∗
n ≤ q|Xn

))} w→E
{
g
(
F

(
F∗−1(q)

))}
= E

{
F

(
F∗−1(q)

)} =E{
E

[
F

(
F∗−1(q)

)|F∗]} =E{
F∗(F∗−1(q)

)} = q
using for the penultimate equality the F∗-measurability of F∗−1(q) and the relation
E(F(γ)|F∗) = F∗(γ) for F∗-measurable r.v.’s γ. Thus, P(p∗

n ≤ q) → q for almost all
q ∈ (0�1), which proves that p∗

n

w→U(0�1). Q.E.D.

DETAILS OF REMARK 3.6: We justify an assertion of Remark 3.6 regarding condi-
tion (†). Let τ̃∗

n be a measurable transformation of Xn and W ∗
n such that the expansion

τ∗
n = τ̃∗

n + op(1) holds w.r.t. the probability measure on the space where Dn and W ∗
n are

jointly defined. Then it holds that (τ∗
n − τ̃∗

n)|Dn
w→p 0 because convergence in probabil-

ity to zero is preserved upon conditioning. As the conditional distributions τ̃∗
n|Dn and

τ̃∗
n|Xn are equal a.s., it follows that the Lévy distance between F∗

n (·) := P(τ∗
n ≤ ·|Dn) and

X ′
n := P(τ̃∗

n ≤ ·|Xn) is op(1), and since the weak limit F∗ of F∗
n is sample-path continu-

ous, it holds that F∗
n =X ′

n + op(1) in the uniform distance. Thus, also X ′
n

w→ F∗, such that
condition (†) is satisfied with X ′

n = P(τ̃∗
n ≤ ·|Xn) ∈ D(R) and X = F∗.

PROOF OF COROLLARY 3.1: Convergence (3.4) implies condition (3.3) with the speci-
fied F , F∗ by Lemma A.2, since the limit random measures are diffuse. Part (a) follows
from Theorem 3.2 with F = F∗ (see Remark 3.6), and part (b) from Theorem 3.2 with
F∗(u)= E(F(u)|X ′), u ∈R. Q.E.D.

PROOF OF THEOREM 3.3: Introduce Fn(·) := P(τn ≤ ·|Xn), F∗
n (·) := P(τ∗

n ≤ ·|Dn) and
F̃∗
n (·) := P(τ∗

n ≤ ·|Xn) as random elements of D(R). On the probability space of X ′

(where X ′ is as in Theorem 3.2), possibly upon extending it, define τ∗ := F∗−1(ζ) for a
r.v. ζ ∼U(0�1) which is independent of X ′. Then the convergence (F∗

n �X
′
n)

w→ (F∗�X ′),
where F∗ is X ′-measurable and sample-path continuous, implies that ((τ∗

n|Dn)�X
′
n)

w→w

((τ∗|X ′)�X ′) by Lemma A.2(b). Since X ′
n is Dn-measurable, by Theorem A.2 (see also
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Remark A.1) it follows that (τ∗
n|Dn�τ

∗
n|X ′

n)
w→w (τ

∗|X ′� τ∗|X ′). Since the conditional c.d.f.
F∗ of τ∗|X ′ is sample-path continuous, for rn(·) := F∗

n (·) − P(τ∗
n ≤ ·|X ′

n) it follows that
supx∈R |rn(x)| p→ 0, by using Lemma A.2(b). Then the Dn-measurability of Xn, the Xn-
measurability of X ′

n and Jensen’s inequality yield

∣∣F̃∗
n (u)− P(

τ∗
n ≤ u|X ′

n

)∣∣ = ∣∣E{
rn(u)|Xn

}∣∣ ≤E{∣∣rn(u)∣∣|Xn

} ≤E
{

sup
x∈R

∣∣rn(x)∣∣|Xn

}

for every u ∈R, and further,

sup
R

∣∣F̃∗
n − P(

τ∗
n ≤ ·|X ′

n

)∣∣ ≤E
{

sup
x∈R

∣∣rn(x)∣∣|Xn

}
p→ 0

because the op(1) property of supx∈R |rn(x)| is preserved upon conditioning and because
supx∈R |rn(x)| is bounded. Therefore, F∗

n = P(τ∗
n ≤ ·|X ′

n)+rn = F̃∗
n +op(1) uniformly. Then

the convergence (Fn�F∗
n )

w→ (F�F∗) in D(R)×2 extends to (Fn�F∗
n � F̃

∗
n )

w→ (F�F∗�F∗) in
D(R)×3.

Fix a q ∈ (0�1) at which F∗−1 is a.s. continuous; such q are all but countably many be-
cause F∗−1 is càdlàg. Here, F∗−1 stands for the right-continuous generalized inverse of
F∗, and similarly for other c.d.f.’s. It follows from the CMT that (Fn�F∗−1

n (q)� F̃∗−1
n (q))

w→
(F�F∗−1(q)�F∗−1(q)) in D(R) × R

2. Hence, F∗−1
n (q) = F̃∗−1

n (q) + op(1) such that
P(|F∗−1

n (q)− F̃∗−1
n (q)|< ε)→ 1 for all ε > 0. With In�ε := I{|F∗−1

n (q)−F̃∗−1
n (q)|<ε} = 1 + op(1), it

holds that∣∣P(
τn ≤ F∗−1

n (q)|Xn

) − P(
τn ≤ F̃∗−1

n (q)+ ε|Xn

)∣∣
≤ In�ε

∣∣P(
τn ≤ F̃∗−1

n (q)+ ε|Xn

) − P(
τn ≤ F̃∗−1

n (q)− ε|Xn

)∣∣ + (1 − In�ε)

= In�ε

∣∣Fn(F̃∗−1
n (q)+ ε) − Fn

(
F̃∗−1
n (q)− ε)∣∣ + (1 − In�ε)�

the equality because F̃∗−1
n (q)± ε are Xn-measurable. Using the continuity of F and the

CMT, we conclude that the upper bound in the previous display converges weakly to
|F(F∗−1(q) + ε)− F(F∗−1(q) − ε)|, which in its turn converges in probability to zero as
ε→ 0+ again by the sample-path continuity of F . Therefore,

lim
ε→0+ lim sup

n→∞
P

(∣∣P(
τn ≤ F∗−1

n (q)|Xn

) − P(
τn ≤ F̃∗−1

n (q)+ ε|Xn

)∣∣>η) = 0

for every η > 0. On the other hand, as it was already used, by the Xn measurability of
F̃∗−1
n (q)+ ε and the CMT,

P
(
τn ≤ F̃∗−1

n (q)+ ε|Xn

) = Fn
(
F̃∗−1
n (q)+ ε) w−→

n→∞
F

(
F∗−1(q)+ ε) a.s.−→

ε→0+ F
(
F∗−1(q)

)
�

Theorem 4.2 of Billingsley (1968) thus yields P(τn ≤ F∗−1
n (q)|Xn)

w→ F(F∗−1(q)). The
proof of (3.5) is concluded by noting that P(p∗

n ≤ q|Xn) differs from P(τn ≤ F∗−1
n (q)|Xn)

by no more than the largest jump of F∗
n , which tends in probability to zero because the

weak limit of F∗
n is sample-path continuous.

Asymptotic validity of the bootstrap conditional on Xn requires that F(F∗−1(q)) = q
for almost all q ∈ (0�1), which by the continuity of F and F∗ reduces to F = F∗. Q.E.D.
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PROOF OF COROLLARY 3.2: Part (a) follows from Theorem 3.3 with F = F∗ and Polya’s
theorem. Regarding part (b), ((τn|Xn)� (τ

∗
n|Dn)�X

′
n�X

′′
n)

w→w (τ|(X ′�X ′′)� (τ|X ′)�X ′�X ′′)
and X ′′

n |X ′
n

w→w X
′′|X ′ imply, by Theorem A.2 with Yn = E{g(τ∗

n)|Dn}, Y = E{g(τ)|X ′}
and an arbitrary g ∈ Cb(R), that (τn|X ′

n� τ
∗
n|Dn)

w→w (τ|X ′� τ|X ′). As the conditional dis-
tribution τ|X ′ is diffuse, the proof is completed as in part (a). Q.E.D.

DETAILS OF REMARK 3.10: With (X ′
n�X

′′
n) and (X ′�X ′′) as in Remark 3.10, and with

the notation of Section S.3, we argue next that the weak convergence of τn|Xn, τ∗
n|Dn

and (X ′
n�X

′′
n) is joint. Consider a Skorokhod representation of Dn and (M�ξ1� ξ2) on a

probability space where convergence (S.8) is strengthened to (τn�X ′
n� (X

′
n)

1/2X ′′
n)|Xn

w→a.s.

(τ�M�(1 −ωε|η)M1/2ξ2)|(M�ξ2) (by Lemma A.2(a)), and ω̂ε
a.s.→ωε. Thus, on this space,

τn|Xn
w→a.s. τ|(M�ξ2), (X ′

n�X
′′
n)

a.s.→ (M�(1 − ωε|η)ξ2), and by (2.4), also P∗(τ∗
n ≤ u)

a.s.→
�(ω−1/2

ε M1/2u), u ∈ R, such that τ∗
n|Dn

w→a.s. τ|M . It follows that on a general probability
space ((τn|Xn)� (τ

∗
n|Dn)�X

′
n�X

′′
n)

w→w (τ|(M�ξ2)� (τ|M)�M�(1 −ωε|η)ξ2).
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