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Self-adapting confidence estimation for stereo

Matteo Poggi Filippo Aleotti Fabio Tosi
Giulio Zaccaroni Stefano Mattoccia

University of Bologna, Viale del Risorgimento 2, Bologna, Italy

Abstract. Estimating the confidence of disparity maps inferred by a
stereo algorithm has become a very relevant task in the years, due to the
increasing number of applications leveraging such cue. Although self-
supervised learning has recently spread across many computer vision
tasks, it has been barely considered in the field of confidence estimation.
In this paper, we propose a flexible and lightweight solution enabling
self-adapting confidence estimation agnostic to the stereo algorithm or
network. Our approach relies on the minimum information available in
any stereo setup (i.e., the input stereo pair and the output disparity map)
to learn an effective confidence measure. This strategy allows us not only
a seamless integration with any stereo system, including consumer and
industrial devices equipped with undisclosed stereo perception methods,
but also, due to its self-adapting capability, for its out-of-the-box deploy-
ment in the field. Exhaustive experimental results with different standard
datasets support our claims, showing how our solution is the first-ever
enabling online learning of accurate confidence estimation for any stereo
system and without any requirement for the end-user.

Keywords: stereo matching, confidence, online adaptation

1 Introduction

Stereo is one of the most popular strategies to accurately perceive the 3D struc-
ture of the scene through two synchronized cameras and several algorithms,
either hand-designed or based on deep neural networks, exist. In many prac-
tical applications, alongside with disparity inference, confidence estimation is
often performed as well. Purposely, a wide range of methods based either on
hand-crafted measures [17] or learning-based strategies [39] have been proposed.
Recent works [57, 20, 12] showed how state-of-the-art networks processing cues
available from any stereo setup, i.e. the input stereo pair and the output dispar-
ity map, are substantially equivalent to those processing the entire cost volume
[20], further supporting the evidence that the disparity map itself contains suffi-
cient clues to identify outliers as initially proposed in [34, 35]. Such a feature is
highly desirable since it potentially paves the way for learning confidence esti-
mation for any stereo camera even without any knowledge about the stereo al-
gorithm/network deployed. This fact is very appealing since it frequently occurs
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Fig. 1. Self-supervised confidence estimation. From left, reference image, dispar-
ity from various algorithms and confidence estimated by self-supervised frameworks
[58], [28] and ours. From top to bottom: Census-CBCA, MCCNN-fst-CBCA, Census-
SGM and MCCNN-fst-SGM. Color encoding details in the supplementary material.

with most industrial/off-the-shelf (e.g. Stereolabs ZED 2) or consumer devices
(e.g. smartphones). Nonetheless, this opportunity was investigated only partially
in the literature. Moreover, all these methods are strongly constrained to the need
for ground truth depth labels acquired in the target domain. However, since
achieving such labels is cumbersome and time-consuming, two self-supervised
paradigms have been proposed in the literature [28, 58]. Although these meth-
ods proved that confidence estimation could be learned without needing active
sensors, they have severe constraints. Individually, [28] requires static stereo se-
quences while [58] needs access to the cost volume, rarely exposed in the case
of off-the-shelf stereo sensors or not defined at all in most modern neural net-
works [26, 22, 56]. As a consequence, both are not thought to handle adaptation,
required to soften domain-shift issues.

Thus, a solution for out-of-the-box deployment of self-adaptive confidence es-
timation would be highly desirable for many practical applications. A notable ex-
ample concerns smartphone (e.g. Apple iPhone) nowadays equipped with multi-
ple cameras and undisclosed stereo algorithms/networks deployed for augmented
reality or other applications in unpredictable environments.

Therefore in this paper, inspired by recent works performing continuous
learning [56, 2] for depth estimation, we propose the first-ever solution for self-
adapting a confidence measure unconstrained to the target stereo system. For
this purpose, we deploy a novel loss function built upon cues available from the
input stereo pair and the output disparity only, needing no additional informa-
tion to learn/adapt to the sensed environment. Our solution is comparable, and
often better, w.r.t known strategies requiring full access to the cost volume [58]
or static scenes for training [28], as shown in Fig. 1 on a variety of algorithms.

Extensive experimental results on KITTI, Middlebury 2014, ETH3D and
DrivingStereo datasets support the following main claims of our novel confi-
dence estimation paradigm: 1) competitive (often, better) with state-of-the-art
when trained in a conventional, offline manner and tested on KITTI; 2) supe-
rior generalization capability on other datasets (e.g., Middlebury and ETH3D)
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compared to known self-supervised methods; 3) capable of online adaptation,
outperforming competitors in unseen environments (e.g., DrivingStereo).

2 Related work

In this section, we review the literature concerning confidence measures and
recent trends in stereo matching.

Confidence measures for stereo. Confidence measures have been, at first,
reviewed and evaluated in [17] and, more recently, in [39] highlighting that two
broad categories exist: hand-made and learned measures. The former class con-
sists of conventional method computed typically from cost volume analysis such
as the ratio between two minima, as in PKR [15], or, as more recently pro-
posed, determining local properties of the disparity map like the number of
pixels with the same disparity hypothesis (DA [34]). Concerning learned mea-
sures [39], hand-made cues are usually combined and fed as input to a random
forest classifier [13, 50, 29, 30, 21, 34, 40] or to a CNN [48, 35, 36, 38, 7, 57, 20, 12]
appropriately trained deploying depth labels. Learned methods may require 1)
full access to the cost volume to extract hand-made features [13, 50, 29, 30, 21,
38, 36] or process the volume itself [20, 12], 2) disparity maps for both left and
right viewpoint [48] or 3) only the input image and its corresponding disparity
map [34, 40, 35, 7, 57]. These three requirements translate into harder to softer
constraints at deployment, most of them usually not met by off-the-shelf stereo
cameras since exposing only the input stereo pair and the output disparity map
to the user. Latest works [20, 12] showed that, although a CNN with access to
the full cost volume can perform better than networks processing disparity and
reference image only, the margin between the two approaches is small and in
most cases negligible, at the cost of a much minor versatility of the former.

Applications of confidence measures. In addition to the traditional out-
liers filtering task, many higher-level applications exploit such cue for different
purposes. Again, two main categories exist, acting inside a stereo algorithm
or outside it. Belonging to the former, Spyropoulos and Mordohai [50, 52] esti-
mate confidence and detect ground control points to improve global optimization.
Park and Yoon [29, 30] proposed a confidence-based modulation of the cost vol-
ume applied before SGM optimization, Poggi and Mattoccia [34, 40] reduced
the streaking effects of the SGM [14] stereo algorithm by using a weighted sum
of the scanlines according to a confidence measure. Schonberger et al. [46] act
similarly, fusing multiple scanlines of SGM using a random forest classifier. Seki
and Pollefeys [48] changed P1 and P2 penalties of SGM dynamically according
to the estimated confidence. Methods acting outside the stereo algorithms have
been proposed for stereo algorithm fusion [51, 33], sensor fusion [24, 31], and
unsupervised adaptation of deep models for stereo matching [53, 54].

Self-supervised confidence estimation. Self-supervised learning has been
barely investigated for confidence estimation. Mostegel et al. [28] leverage stereo
videos looking at consistencies and contradictions between the different view-
points of a static scene in order to obtain correct and wrong candidates from
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a given stereo algorithm. Tosi et al. [58] instead rely on traditional confidence
measures to obtain these two sets according to a consensus among them.

Deep stereo and self-adaptation. At first, CNNs have replaced single
steps in the stereo pipeline [44], such as cost computation [63, 4, 23], rapidly
converging towards end-to-end solutions estimating dense disparity maps by
means of 2D [26, 22, 18, 62, 49, 61, 62] or 3D networks [19, 64, 3, 37, 6]. The latest
trend consists of casting disparity estimation as a continuous learning problem,
thanks to the self-supervision enabled by image reprojection. First works in this
direction are [67, 68], while more recent ones further moved in the direction of
real-time continuous adaptation [56, 55] to new environments.

3 Learning a confidence measure out-of-the-box

This work aims at proposing a self-supervised paradigm suited for learning a
confidence measure, unconstrained from the specific stereo method deployed
and capable of self-adaptation. We first classify stereo systems into different
categories according to the data they make available, and then we introduce a
novel strategy compatible with all of them.

3.1 Taxonomy of stereo matching systems

In this section, we define three main broad categories of stereo matching solu-
tions, each one characterized by different data made available during deployment.
From now on, we will refer to a generic rectified stereo pair as (IL,IR), respec-
tively made of left and right images, and to a generic stereo algorithm or deep
network as S. In the remainder, to simplify notation, we omit (x, y) coordinates
if not strictly necessary.

Black-box models. Given any stereo algorithm processing a stereo pair
(IL,IR), we define the output disparity map, computed assuming IL as the ref-
erence image, as DL = S(IL, IR). This image triplet is the minimum amount
of data available out of any stereo method, and we define as black-box all the
systems making available only such cues. Such systems are highly representative
of off-the-shelf stereo cameras (e.g., Stereolabs ZED 2) or stereo methods imple-
mented in consumer devices (e.g., Apple iPhones). They, neither allow end-users
to access the implementation nor provide explicit ways (APIs) to call for it. For
each (IL,IR) acquired in the field by the device, they provide the corresponding
disparity map typically with undisclosed approaches based either on conven-
tional stereo algorithms or deep networks. Hence, learning confidence measures
for these systems is particularly challenging, yet appealing.

Gray-box models. Although black-box systems provide cues available in
any stereo system, when explicit calls to the algorithm APIs are exposed, ad-
ditional cues can be retrieved. Hence, we define a second family of systems for
which, although it is given no access to the algorithm implementation or its
intermediate data, explicit calls to the method itself are possible (e.g. stereo al-
gorithms provided by pre-compiled libraries). Most deep stereo networks prevent
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the deployment of their internal representation since too abstract and substan-
tially unintelligible, e.g. 2D architectures [26, 22, 18, 62, 49, 61]. We define systems
belonging to this class as gray-box, since multiple calls to S allow for retriev-
ing additional cues. For instance, it is straightforward to compute the Left to
Right Consistency (LRC) of the disparity maps, a popular strategy to obtain a
confidence estimator, even if not explicitly provided by S itself in its original im-
plementation. Given the possibility to call S two times, consistency checking can
be performed analyzing DL and a second disparity map, namely DR obtained
by assuming IR as the reference images. Defining ← the horizontal flipping
operator, DR is obtained as follows:

DR =
←−−−−−−
S(
←−
IR,
←−
IL) (1)

Once obtained DR, the consistency between the two can be checked as

LRC = |DL − π(DL,DR)| < δ (2)

with π(a, b) a sampling operator, collecting values at coordinate a from b, and δ a
threshold value (usually 1) above which DL and DR are considered inconsistent.
Although less effective than other measures [17], it comes at a lower price.

White-box models. Finally, if the implementation of S is accessible, ad-
ditional cues can be sourced by processing intermediate data structures, if mean-
ingful. The preferred one is the cost volume V, containing matching costs V(x, y, d)
for pixels at coordinates (x, y) and any disparity hypothesis d ∈ [0, dmax]. This
class of systems, referred to as white-boxes, enables computation of any con-
fidence measure, either conventional [17] or learning-based [39, 20, 12]. Popular
traditional confidence measures obtained from V are the Peak-Ratio (PKR) and
Left-Right Difference (LRD) defined, respectively, as

PKR =
V(d2m)

V(d1)
and LRD =

V(d2)− V(d1)

V(d1)−mind VR(x− d1, y, d)
(3)

with d1, d2 and d2m, respectively, the disparity hypotheses corresponding to the
minimum cost, the second minimum and the second local minima [17]. Regard-
ing LRD, given the cost volume VR computed assuming IR as the reference
image, for any pixel (x, y) we sample costs at (x−d1, y), i.e., from the estimated
matching pixel.

Motivations and challenges. Indeed, for the reasons outlined so far, black-
box models represent the most challenging, yet general and appealing target
when dealing with confidence estimation since their constraints prevent the de-
ployment of most state-of-the-art measures [20, 12], as well as self-supervised
strategy existing in the literature [28, 58]. Hence, first and foremost, we aim
at devising a general-purpose strategy enabling self-supervised confidence esti-
mation in such constrained settings. As a notable consequence, this fact paves
the way to tackle the same task even for state-of-the-art CNNs. Finally, hav-
ing achieved this goal, out-of-the-box learning of confidence estimation with any
stereo setup and self-adaptation in any environment is at hand.
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3.2 Self-supervision cues for black-box models

In order to develop a self-supervised strategy suited for any stereo system, it is
crucial to identify cues that are effective to source a robust supervision signal.
According to the previous discussion, in the case of black-box models, we can rely
on (IL, IR) and DL only. In this circumstance, although relevant information is
not available compared to other models, we introduce three terms to obtain the
desired self-supervised signal from the meagre cues available.

Image reprojection error. In recent literature, several works proved how
the reprojection across the two viewpoints available in a rectified stereo pair
could be a powerful source of supervision, either for monocular [10, 32, 11] or
stereo [66, 56] depth estimation. Specifically, we can reproject IR on the reference
image coordinates as ĨR = π(DL, IR) Then, the difference between IL and
warped right view ĨR appearance encodes how correct the reprojection is. To this
aim, the most popular choice is a weighted sum between two terms, respectively
SSIM [59] and absolute difference.

∆(IL,ĨR) = α · (1− SSIM(IL, ĨR)) + (1− α)|IL − ĨR| (4)

with α usually tuned to 0.85. The higher it is, the more likely DL is wrong.
By definition, matching pixels is particularly challenging in ambiguous regions,
such as textureless portions of the image. To this aim, we first aim at detecting
regions with rich texture, being more likely to be correctly estimated by S,
by comparing ∆ computed between (IL, IR) with the one after reprojection as
T = ∆(IL,IR) > ∆(IL,ĨR). In large ambiguous regions, ∆(IL,IR) will result equal

(or even minor) than the reprojection error [11], thus identifying pixels on which
stereo is prone to errors.

Agreement among neighboring matches. Since most regions of a dis-
parity map should be smooth, variations in nearby pixels should be small except
at depth boundaries. As highlighted in [34, 40], DL itself allows for the extraction
of meaningful cues to assess the quality of disparity assignments. Purposely, we
rely on the disparity agreement between neighbouring pixels, defined as

DA =
HN×N (d1)

N ×N
(5)

HN×N is an histogram encoding, for each pixel (x, y), the number of neighbours
in a N ×N window having the same disparity d (in case of subpixel precision,
within 1 pixel). In the absence of depth discontinuities, the majority of pixels in
the neighbourhood should share the same, or very similar, disparity hypothesis.
Hence, we define a second criterion to identify reliable stereo correspondences as
A = DA > 0.5, assuming that more than half of the pixels in the neighbourhood
share the same disparity. It is worth noting that this criterion is often not met
in the presence of depth boundaries, even in case of correct disparities.

Uniqueness constraint. In an ideal frontal-parallel scene observed by a
stereo camera in standard form, for each pixel in IL exists at most one match
in IR and vice-versa. Leveraging this property, known as uniqueness, is partic-
ularly useful [5] to detect outliers in occluded regions and represents a reliable
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a)             b)            c)             d)            e) a)             b)            c)             d)            e)

Census-CBMCA Census-SGM

Reference image

Fig. 2. Effects of different criteria. Given the highlighted region, we show
inliers (green) and outliers (red) guesses by using the following cues in multi-
modal binary cross-entropy: a) T p, T q b) Ap,Aq c) Up,Uq d) T p,Ap,Up, T q e)
T p,Ap,Up, T q,Aq,Uq. For black pixels, the considered configuration gives no guesses.

alternative to LRC and LRD measures, not usable when dealing with black-box
models. Uniqueness Constraint (UC) is encoded as

UC = [x−DL(x, y)] /∈
⋃
k

[(x+ k)−DL(x+ k, y)] (6)

with k ∈ [−d∗max,−1]∪[1, d∗max] and d∗max = dmax−DL(x, y). In other words, the
uniqueness for any pixel in IL holds if it does not collide in the target image with
any other pixel, i.e., not matching the same pixel in IR matched by any other.
We exploit this property to define our third criterion as U =UC. We conclude
observing that, although effective at detecting mostly occlusions, the uniqueness
constraint is often violated in the presence of slanted surfaces.

3.3 Multi-modal Binary Cross Entropy

Given the three criteria outlined above, we revise the traditional binary cross
entropy loss to take into account multiple label hypotheses. We refer to this
variant as Multi-modal Binary Cross Entropy (MBCE), defined as

LMBCE = −

∏
p∈P

p

 · log(o) +

∏
q∈Q

q

 · log(1− o)

 (7)

with o the output of the neural network ∈ [0, 1], i.e. passed through a sigmoid
activation, P and Q two sets of proxy labels derived respectively by a crite-
rion being met or not. For instance, pixels satisfying the first criterion on image
reprojection will have labels T p = 1, T q = 0 and vice versa when they do not.
Unlike traditional binary cross entropy, where a single label y and its counter-
part (1 − y) are used, we define disjoint sets of proxies allowing for a flexible
configuration of the loss function according to the three criteria described so far.
For instance, by setting P = [T p,Ap] and Q = [T q] we will train the network to
detect good matches using image reprojection plus agreement and outliers using
the former only. Adding elements to the sets P and Q reduces progressively the
number of pixels considered correct or wrong, respectively. Fig. 2 shows this,
highlighting how combining multiple guesses as in d) and e) for some pixels no
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supervision is given when criteria do not match. We will report the impact of
this and the different configurations in a thorough ablation study.

4 Experimental results

In this section, we report an exhaustive evaluation to assess the effectiveness of
our strategy, referred to as Out-of-The-Box (OTB), by conducting three main
experiments, respectively: 1) ablation study on the MBCE loss, 2) comparison
with self-supervised approaches [28, 58] in a conventional offline training and 3)
an evaluation concerning online adaptation of OTB.

4.1 Implementation details

We now report all the details to understand and reproduce our experiments fully.
The source code will be made publicly available at the end of the review process.

Evaluation Protocol. To measure the effectiveness of the learned confi-
dence measures, we compute the Area Under Curve (AUC) of the sparsification
plots [17, 39, 57, 20]. Given a disparity map, pixels are sorted in increasing order
of confidence and gradually removed (e.g., 5% each time) from the disparity
map. At each iteration, the error rate is computed over the sparse disparity map
as the percentage of pixels having absolute error larger than τ . Plotting the
error rate results in a sparsification curve, whose AUC quantitatively assesses
the confidence effectiveness (the lower, the better). Optimal AUC is obtained by
sampling the pixels in decreasing order of absolute error.

Confidence networks. Since the goal of this work is to define an effec-
tive self-supervised strategy suited for online learning rather than proposing a
novel architecture, in our experiments, we test our proposal to train existing
networks. Purposely, we consider three architectures: CCNN [35], ConfNet and
LGC [57] to carry out our experiments because 1) since they process only dis-
parity map and reference image are suited to all methods, from white-box to
black-box, 2) according to recent works [20, 12], the most accurate one (LGC)
is on par with state-of-the-art networks processing the cost volume and 3) the
source code is fully available, conversely to [21, 12]. Moreover, in ConfNet we
replaced deconvolutions with bilinear upsampling followed by 3×3 convolutions
and processing DL only, significantly improving its performance and thus filling
most of the gap with CCNN and LGC. We defined a training schedule for each
network, kept constant in all experiments. For CCNN, we use batches of 128
patches for 1M iterations, for ConfNet batches of single, full-resolution images
for 25K iterations, finally for LGC batches of 128 patches for 300K iterations,
starting from pre-trained CCNN and ConfNet models. We trained all networks
with SGD optimizer and a constant learning rate of 0.001.

Datasets. We consider five standard datasets: KITTI 2012 [9], KITTI 2015
[27], Middlebury 20141 [43], ETH3D [47] and DrivingStereo [60], setting τ re-
spectively to 3, 3, 1, 1 and 3. Being ground truth required to assess performance,

1 We use the quarter resolution split as in previous works [39, 57, 20]
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we refer to the training set of such datasets. To train confidence estimation net-
works, we select the first 20 images from KITTI 2012 as in [39, 57] for supervised
training and the 400 images from the first 20 sequences of the KITTI 2012 mul-
tiview extension used in [28, 58] for self-supervised ones. To evaluate the trained
confidence networks, we use the remaining 174 images from KITTI 2012 as the
validation set and the totality of images available from KITTI 2015 for exper-
iments on environments similar to the training set. Moreover, we also assess
their generalization performance on the whole Middlebury 2014 and ETH3D
datasets. In these experiments, only the KITTI 2012 images listed above are
used for training. Thus, in the evaluation, the networks are transferred without
any fine-tuning or adaptation. Finally, to test self-adaptation peculiar of OTB we
use a sequence from the DrivingStereo dataset, namely 2018-10-25-07-37, made
of about 7K frames.

Stereo algorithms. Following the recent literature [39, 57, 20], we evaluate
the effectiveness of our strategy on a variety of stereo algorithms with differ-
ent degrees of accuracy, in order to highlight how strong is our self-supervised
paradigm in the presence of heterogenous disparity maps. We consider four main
stereo algorithms deploying the code provided Zbontar and LeCun [63] under
different settings. Specifically: Census-CBCA, Census-SGM, MCCNN-fst-CBCA
and MCCNN-fst-SGM. The first two rely on a census-based matching cost com-
putation, respectively, optimized by a Cross Based Cost Aggregation (CBCA)
strategy [65] and SGM [14]. The latter two replace the census-based matching
costs with predictions obtained by MCCNN-fst, for which we use pre-trained
weights on KITTI 2012, 2015 and Middlebury provided by the authors and
tested on the same datasets. For ETH3D, Middlebury weights have been used.
Furthermore, to evaluate the impact of self-adaptation made possible by OTB
with a real black-box method, we also consider two recent deep stereo network.
We choose MADNet [56] and GANet [64], both trained on synthetic images [26]
and then fine-tuned with ground truth on KITTI 2015, because of the availabil-
ity of trained model and its accuracy-speed trade-off. Since fine-tuned on KITTI,
we conduct experiments with MADNet and GANet on DrivingStereo only.

Competitors. We compare the proposed OTB strategy with existing meth-
ods proposed by Mostegel et al. [28] (named SELF) and by Tosi et al. [58] (named
WILD). The former reasons about contradictions on observations from multiple
viewpoints: given a stereo sequence framing a static scene with a moving camera,
DL and DR are computed for each pair, registered and checked for inconsisten-
cies. Since it requires both DL and DR disparity maps, SELF is suited only
for systems belonging to gray-box and white-box categories. Concerning WILD,
it requires a pool of six confidence measures extracted from the cost volume
to identify inliers and outliers according to heuristic thresholding on the mea-
sures. Since it requires access to the cost volume, WILD is suited for white-box
algorithms only. In contrast, among other advantages discussed next, it worth
stressing that our OTB approach is suited for black-box systems and agnostic
to the scene content, in contrast to SELF that requires static scenes.
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KITTI 2012

Match cost Census MCCNN-fst Census MCCNN-fst Census MCCNN-fst

Aggregation CBCA SGM CBCA SGM CBCA SGM CBCA SGM CBCA SGM CBCA SGM

∆I(IL, ĨR) 0.210 0.086 0.165 0.044 0.210 0.086 0.165 0.044 0.210 0.086 0.165 0.044
DA 0.112 0.047 0.063 0.023 0.112 0.047 0.063 0.023 0.112 0.047 0.063 0.023
UC 0.165 0.063 0.123 0.034 0.165 0.063 0.123 0.034 0.165 0.063 0.123 0.034

T p Ap Up T q Aq Uq CCNN ConfNet LGC

X X 0.080 0.045 0.047 0.018 0.077 0.033 0.045 0.014 0.082 0.058 0.046 0.026
X X 0.105 0.045 0.073 0.023 0.087 0.035 0.049 0.017 0.110 0.040 0.074 0.022

X X 0.111 0.035 0.087 0.022 0.101 0.038 0.065 0.020 0.114 0.035 0.077 0.020

X X X 0.078 0.033 0.050 0.019 0.072 0.030 0.038 0.014 0.075 0.034 0.049 0.023
X X X X 0.089 0.035 0.059 0.023 0.071 0.027 0.038 0.014 0.082 0.031 0.066 0.020

X X X 0.072 0.038 0.053 0.019 0.074 0.028 0.040 0.013 0.070 0.036 0.042 0.016
X X X X 0.088 0.032 0.075 0.020 0.076 0.030 0.041 0.013 0.084 0.031 0.071 0.017

X X X X 0.068 0.034 0.046 0.018 0.070 0.028 0.037 0.013 0.068 0.032 0.041 0.016
X X X X X X 0.085 0.029 0.057 0.017 0.071 0.026 0.038 0.012 0.081 0.028 0.050 0.015

Middlebury

Match cost Census MCCNN-fst Census MCCNN-fst Census MCCNN-fst

Aggregation CBCA SGM CBCA SGM CBCA SGM CBCA SGM CBCA SGM CBCA SGM

∆I(IL, IR) 0.190 0.180 0.179 0.134 0.190 0.180 0.179 0.134 0.190 0.180 0.179 0.134
DA 0.161 0.168 0.099 0.087 0.161 0.168 0.099 0.087 0.161 0.168 0.099 0.087
U 0.193 0.188 0.192 0.145 0.193 0.188 0.192 0.145 0.193 0.188 0.192 0.145

T p Ap Up T q Aq Uq CCNN ConfNet LGC

X X X X 0.116 0.123 0.087 0.077 0.133 0.112 0.087 0.067 0.127 0.111 0.090 0.064
X X X X X X 0.153 0.146 0.095 0.081 0.134 0.122 0.095 0.069 0.138 0.142 0.099 0.080

Table 1. Ablation study on the proposed multi-modal binary cross entropy.
We report AUC scores for networks trained on KITTI 2012 (20 or 400 images) and
tested on KITTI 2012 (174 images, top) and Middlebury (15 images, bottom).

4.2 Ablation study

At first, we study the impact of the different terms in the proposed self-supervised
loss function. To this aim, on KITTI 2012 and as for other experiments, we train 9
variants of each network for each of the four stereo algorithms. Then, we evaluate
confidences on the KITTI 2012 dataset and, without retraining, on Middlebury
2014. Table 1 collects the outcome of this evaluation, reporting on top results
on KITTI 2012 and, at the bottom, on Middlebury. We report as baselines the
performance of ∆

(IL, ˜IR)
, DA and UC. DA is computed on 5× 5 windows.

On KITTI (top of the table), we first report the results achieved by train-
ing the three networks selecting only one of the three cues used to distinguish
between correct and wrong matches, i.e. [T p, T q], [Ap,Aq] and [Up,Uq] config-
urations. We can notice that each of them outperforms the performance of the
corresponding baseline used for supervision. This trend occurs on all the al-
gorithms and for each network, showing the surprisingly robust capacity of the
networks to learn how to estimate confidence better than a noisy supervision sig-
nal used for training. In general, the models trained on [T p, T q] outperforms the
others, except rare cases (i.e. CCNN and LGC on Census-SGM, outperformed
by [Up,Uq] setting). Although effective at detecting textureless and ambiguous
regions, the reprojection fails at filtering outliers due to slanted surfaces and
occlusions. Thus, we incrementally add a single criterion, i.e. Ap or Up to filter
out false positives obtained by [T p, T q] configuration. We incrementally add,
on another configuration, the corresponding negative criterion to remove pixels
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Match cost Census MCCNN-fst

Aggregation CBCA SGM CBCA SGM

KITTI split 2012 2015 2012 2015 2012 2015 2012 2015

Badτ % 27.193 22.281 10.330 8.998 18.875 16.926 6.084 6.028

T
ra

d
it

io
n
a
l LRD 0.096 0.080 0.033 0.032 0.080 0.077 0.017 0.023

PKR 0.106 0.089 0.028 0.029 0.065 0.062 0.010 0.017
LRC 0.142 0.113 0.062 0.056 0.103 0.092 0.036 0.041
∆(IL,ĨR) 0.210 0.175 0.086 0.079 0.165 0.150 0.044 0.041

DA 0.112 0.090 0.047 0.046 0.063 0.059 0.023 0.028
UC 0.165 0.131 0.063 0.058 0.123 0.111 0.034 0.037

C
C

N
N

Supervised 0.059 0.046 0.018 0.017 0.031 0.032 0.009 0.012
WILD [58] 0.076 0.065 0.026 0.026 0.052 0.047 0.012 0.017
SELF [28] 0.076 0.065 0.047 0.046 0.038 0.041 0.012 0.018
OTB (Ours) 0.068 0.055 0.029 0.031 0.046 0.048 0.017 0.022

C
o
n
fN

et Supervised 0.061 0.049 0.017 0.016 0.033 0.034 0.006 0.010
WILD [58] 0.089 0.067 0.024 0.020 0.054 0.050 0.010 0.016
SELF [28] 0.075 0.066 0.024 0.024 0.041 0.044 0.014 0.016
OTB (Ours) 0.070 0.058 0.026 0.028 0.037 0.040 0.012 0.017

L
G

C

Supervised 0.056 0.044 0.016 0.016 0.029 0.030 0.007 0.010
WILD [58] 0.089 0.065 0.026 0.025 0.049 0.045 0.011 0.017
SELF [28] 0.089 0.081 0.026 0.026 0.056 0.057 0.020 0.021
OTB (Ours) 0.068 0.055 0.028 0.032 0.041 0.044 0.015 0.019

Optimal 0.047 0.034 0.008 0.008 0.024 0.022 0.003 0.005

Table 2. Evaluation on KITTI. We report AUC scores for networks trained on
KITTI 2012 (20 or 400 images) and tested on 2012 (174 images) and 2015 (200 images).

wrongly categorized as outliers by T q. In most cases, adding a single criterion to
P is beneficial, while we can notice how introducing negative criteria degrades
the performance on CBCA algorithms. This occurs because adding Aq or Uq

makes textureless regions no longer labelled as outliers, as shown in Fig. 2 left
comparing patches d) and e). Finally, adding both Ap and Up produces the best
overall results for CBCA methods. By introducing Aq and Uq too we obtain
better results only on SGM methods, since much more accurate than CBCA
ones and thus more false outliers are introduced if Aq and Uq are not used, as
shown in Fig. 2 right, comparing d) and e).

On the other hand, by testing the best configurations on Middlebury 2014,
enabling all the positive criteria and only T q for negative allows for better gen-
eralization to unseen environments.

4.3 Comparison with offline methods

Having found the best configuration for the LMBCE loss, we compare our super-
vision paradigm with known self-supervised approaches [28, 58]. In our experi-
ments, we obtain proxy labels for SELF and WILD using the code provided by
the respective authors. We collect the outcome of these experiments in Tables 2
and 3. We label with different colors methods ranging from stronger constraints
(need for ground truth) to weaker (ours). For each architecture, stereo algorithm
and evaluation set triplet we label in bold the best self-supervision approach,
while in red the couple architecture/self-supervision on an entire evaluation set.

KITTI datasets. Table 2 collects evaluations on the KITTI 2012 and 2015
datasets, respectively, using the 174 validation set from 2012 and the full 2015 set.
We point out that all self-supervised strategies outperform traditional measures,
reported on top as baselines, such as LRD, PKR, LRC and the cues used in our
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Match cost Census MCCNN-fst

Aggregation CBCA SGM CBCA SGM

Dataset Midd ETH Midd ETH Midd ETH Midd ETH

Bad1 % 28.701 21.270 26.682 15.471 29.7999 34.279 21.799 12.594

T
ra

d
it

io
n
a
l LRD 0.117 0.082 0.113 0.059 0.107 0.185 0.075 0.051

PKR 0.124 0.086 0.112 0.056 0.095 0.181 0.059 0.042
LRC 0.189 0.135 0.197 0.114 0.188 0.239 0.149 0.091
∆(IL,ĨR) 0.190 0.162 0.180 0.119 0.179 0.257 0.134 0.097

DA 0.161 0.119 0.168 0.093 0.099 0.159 0.087 0.047
UC 0.193 0.148 0.188 0.114 0.192 0.264 0.145 0.096

C
C

N
N

Supervised 0.110 0.096 0.118 0.076 0.079 0.138 0.068 0.046
WILD [58] 0.136 0.114 0.140 0.086 0.095 0.154 0.081 0.046
SELF [28] 0.163 0.174 0.217 0.174 0.090 0.147 0.081 0.076
OTB (Ours) 0.116 0.084 0.123 0.070 0.087 0.137 0.077 0.042

C
o
n
fN

et Supervised 0.121 0.086 0.104 0.063 0.086 0.138 0.062 0.036
WILD [58] 0.122 0.101 0.117 0.063 0.091 0.160 0.073 0.037
SELF [28] 0.154 0.120 0.121 0.067 0.096 0.172 0.084 0.048
OTB (Ours) 0.133 0.093 0.112 0.067 0.087 0.138 0.067 0.035

L
G

C

Supervised 0.111 0.080 0.111 0.061 0.083 0.136 0.065 0.040
WILD [58] 0.136 0.104 0.133 0.082 0.098 0.156 0.084 0.050
SELF [28] 0.128 0.105 0.117 0.066 0.091 0.154 0.086 0.060
OTB (Ours) 0.127 0.084 0.111 0.056 0.090 0.139 0.064 0.035

Optimal 0.053 0.041 0.046 0.022 0.057 0.103 0.030 0.014

Table 3. Generalization on Middlebury and ETH3D. We report AUC scores
for networks trained on KITTI 2012 (20 or 400 images) and tested on Middlebury (15
images) and ETH3D (27 images) without retraining or adaptation.

Fig. 3. Qualitative results for generalization. From left: reference image, disparity
by MCCNN-fst-SGM, ConfNet trained with [58], [28], our method and ground-truth.
On top, Adirondack (Middlebury), at the bottom, Playground 3l (ETH3D).

LMBCE loss, struggling only when dealing with the very accurate MCCNN-fst-
SGM algorithm. Comparing the different architectures, we can notice how the
self-supervised paradigms break the hierarchy (i.e., self-supervised LGC is often
outperformed by ConfNet). On Census-CBCA, our strategy always outperforms
SELF and WILD when used to train any architecture. The same behaviour is
confirmed on MCCNN-fst-CBCA, except for CCNN resulting better with SELF
but with the best performance achieved by ConfNet trained with OTB. This
outcome highlights the outstanding performance of OTB with noisy algorithms
(about 27 and 19% error rates on the validation set), close to full supervision.
On SGM algorithms, OTB results comparable with SELF and WILD, although
sourcing supervision only from images and DL, thus in a much weaker form
compared to the competitors. On three out of four algorithms, ConfNet results
to be the most effective architecture when trained in a self-supervised manner.

Generalization on Middlebury and ETH3D. Table 3 reports results on
the Middlebury 2014 and ETH3D datasets. We point out that the same net-
works evaluated so far (trained on KITTI 2012 images) are transferred here
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Traditional Supervision

Algorithm ∆(IL,ĨR) DA UC Supervised WILD [58] SELF [28] OTB OTB (online) Opt. Badτ %

Census-SGM 0.179 0.106 0.161 0.061 0.067 0.074 0.072 0.061 0.029 21.007

MADNet [56] 0.134 0.147 0.152 0.116 - 0.135 0.146 0.125 0.021 16.226

GANet [64] 0.046 0.071 0.061 0.044 - 0.050 0.050 0.046 0.007 7.247

Table 4. Self-adaptation. We report AUC scores for networks trained on KITTI
2012 (20 or 400 images) and tested on a DrivingStereo sequence (6905 frames).

Fig. 4. Qualitative results on DrivingStereo. From left: reference image, disparity
by Census-SGM, ConfNet trained with [58], [28], OTB and online-adapted OTB.

without retraining or adaptation, enabling to assess the generalization prop-
erties of each network/supervision configuration. We point out how the margin
between learned and traditional measures is much smaller because of the domain
shift. Nonetheless, in many cases the performance is still in favor of learned ap-
proaches, with some exceptions. We point out that networks trained with OTB
self-supervision always outperform SELF and WILD, except for ConfNet with
Census-SGM on ETH3D. Moreover, networks trained with OTB generalize bet-
ter than their fully supervised counterparts in some cases, mostly on the ETH3D
dataset (e.g., CCNN with all algorithms, ConfNet with MCCNN-fst-SGM and
LGC with both SGM methods). This supports the better generalization achieved
when training with OTB. Finally, Fig. 3 shows qualitative examples of this test.

4.4 Self-adapting in-the-wild

Finally, we conduct experiments aimed at assessing how effective our strategy is
for self-adaptation of a confidence measure in unseen environments. Purposely,
we simulate deployment in an autonomous driving scenario, selecting a sequence
from the DrivingStereo dataset [60]. We use sequence 2018-10-25-07-37, contain-
ing 6905 stereo pairs acquired in unconstrained (i.e., dynamic) environment. For
this evaluation, we choose Census-SGM, MADNet and GANet. The former be-
cause it represents the preferred choice for hardware implementation on custom
stereo cameras [1, 8, 45, 16, 25, 42, 41]. The remaining two because well represent-
ing modern end-to-end CNNs that are fast (MADNet) or yield state-of-the-art
accuracy (GANet). For confidence networks, we select ConfNet since it yielded
excellent performance in the previous experiments, especially with accurate al-
gorithms, and well-suited for online adaptation.

In this experiment, we assume to have pre-trained versions of ConfNet with
the different self-supervision paradigms, again on KITTI 2012. For OTB, we use
[T p,Ap,Up, T q] for SGM, [T p,Ap,Up, T q,Aq,Uq] offline and [T p,Ap,Up, T q]
online for MADNet, [T p,Ap,Up, T q] for GANet. When performing online adap-
tation (online entry), for each stereo pair the confidence is estimated and eval-
uated before loss computation (thus, supervision only acts on the upcoming
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Fig. 5. Qualitative results with Apple iPhone XS. We show two examples of
reference image and disparity map acquired with the iPhone XS, followed by estimated
confidence map after few iterations of on-the-fly learning.

frames as in [56]). This way, ConfNet runs at 0.08 seconds (12 FPS) against the
0.02 (50 FPS) without adaptation on Titan Xp. Table 4 collects the outcome
of this evaluation. We point out that WILD can not be deployed for MADNet
and GANet since a meaningful cost volume is not available for the former or
cannot used straightforwardly for the latter. On the other hand, SELF would
require (DL,DR) for supervision, while MADNet and GANet provide only the
former. Assuming networks as a gray-box, we get rid of this issue at training time
obtaining DR as shown in Eq. 1. Concerning SGM, OTB performs in between
WILD and SELF. Nevertheless, keeping continuous adaptation active on the
whole sequence makes it outperform both by a good margin. Concerning MAD-
Net, SELF results more effective than OTB. Again, performing online adaptation
makes OTB the best solution in this case as well. Finally, concerning GANet,
SELF and OTB result equivalent, with online adaptation resulting crucial for
this latter to achieve the best results. Anyway, such improvement saturates with
the performance of the reprojection error, shown in column 1. To conclude, Fig.
4 shows qualitative examples for the SGM algorithm.

On-the-fly learning with black-box sensors. Finally we report, as quali-
tative results, the outcome obtained by learning on-the-fly a confidence measure
on disparity map sourced by an Apple iPhone XS, without any pre-training.
Fig. 5 shows examples of acquired disparity and estimated confidence maps by
ConfNet adapted online. In particular, about 100 frames are sufficient to learn
how to detect gross errors like on turtle’s shell.

5 Conclusion

In this paper, we have introduced a novel self-supervised paradigm aimed at
learning from scratch a confidence measure for stereo. We leverage few, prin-
cipled cues from the input stereo pair and the estimated disparity in order to
source supervision signals in place of disparity ground truth labels. Being such
cues available during deployment in-the-wild, our solution is suited for continu-
ous online adaptation on any black-box framework. Experimental results proved
that our strategy is equivalent or superior to existing self-supervised approaches
and, conversely to them, allow to further improvements during deployment by
leveraging the online self-adaptation process.
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