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Abstract— Human-enabled Edge Computing (HEC) is a recent 

smart city technology designed to combine the advantages of 

massive Mobile CrowdSensing (MCS) techniques with the 

potential of Multi-access Edge Computing (MEC). In this context, 

the architectural hierarchy of the network shifts the management 

of sensing information close to terminal nodes through the use of 

intermediate entities (edges) bridging the direct Cloud-Device 

communication channel. Recent proposals suggest the 

implementation of those edges, not only employing fixed MEC 

nodes, but also opportunistically using as edge nodes mobile 

devices selected among the terminal ones. However, inappropriate 

selection techniques may lead to an overestimation or an 

underestimation of the number of nodes to be used in such a layer. 

In this work, we propose a probabilistic model for the estimation 

of the number of mobile nodes to be selected as substitutes of fixed 

ones. The effectiveness of our model is verified with tests 

performed on real-world mobility traces. 

Keywords—Mobile CrowdSensing, Multi-access Edge 

Computing, Human-enabled Edge Computing, Social Mobility 

I. INTRODUCTION  

Multi-access Edge Computing (MEC) is a 5G key enabling 
technology introduced by European Telecommunications 
Standards Institute (ETSI) as an evolution of the Cloud 
Computing (CC) paradigm. MEC is an architecture that 
interposes between the direct cloud-device communication 
channel a middleware layer made up of edge nodes with data 
aggregation, storage, processing, and analytics capabilities. 
MEC edges bring the computation closer to the network 
terminal nodes as mobile and wearables; that enables low-
latency, high-bandwidth, and real-time access to network 
analytics. For this reason, they are synergic with Internet of 
Things (IoT) applications since they allow an efficient 
partitioning of the functions. That saves IoT devices from 
performing complex functions that may affect their 
performance or energy efficiency [1]. We are interested in the 
use of MEC technologies in a massive sensing scenario, where 
many sensors produce data that are collected in the cloud for 
their subsequent processing with data analytics engines. A 
notable example of such scenario is Mobile CrowdSensing 
(MCS), that exploits sensors embedded in the personal 

smartphones of the MCS users to collect large masses of data 
covering wide regions.  

In a typical MEC architecture supporting MCS, a limited 
number of edges, called in this paper Fixed MEC nodes 
(FMECs), are placed at fixed, strategic places, where they can 
easily intercept most of the data [2]. In this work, however, we 
consider a possible extension of this architecture, called 
Human-driven Edge Computing (HEC) where the edges can 
also be mobile and operated by the personal devices of the users 
themselves, called Mobile MEC nodes (M2ECs) [3]. In 
particular, M2ECs have the same mobility of their users and can 
collect data opportunistically from other devices by using short-
range communication interfaces (like Bluetooth of direct Wi-Fi 
interfaces). The advantages of this approach are manifold: it 
reduces the costs for the maintenance of the infrastructure; it 
can be easily dynamically reconfigured; and the users may use 
free-cost short-range communications. The main drawback is 
in terms of higher data collection latencies, but they are 
typically acceptable for off-line and long-term data processing.  

In this context, our work concerns the algorithms for the 
identification of the mobile devices that can act as M2EC. Since 
the opportunity to collect data of the M2EC depends on the 
frequency with which devices meet, we consider a selection 
strategy that operates according to the social relationships 
among the users of the MCS platform [4, 5], and we provide a 
probabilistic model and a close expression that can be used to 
estimate the expected contribution that a M2EC can give to the 
data collection capability of the MCS platform. To the best of 
our knowledge, in the literature there are no theoretical models 
able to estimate such contribution. In particular, this paper 
presents a probabilistic model that, with a closed-form 
expression, can determine the number of M2ECs to be selected 
in the plethora of MCS devices. The fine tuning of the model 
includes few parameters that can be easily distilled from the 
history of the users’ behaviour considering the centrality of the 
potential M2ECs within their respective communities. What 
makes our model unique is the possibility of estimating the 
contribution of the umpteenth M2EC to be used in support of or 
in place of MEC middleware proxies. To the best of our 
knowledge in literature there are no theoretical models to 

Page 1 of 22

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



estimate such contribution. The proposed probabilistic model 
has been validated through tests performed over the ParticipAct 
living lab dataset, a real-world MCS experiment realized with 
the contribution of approximately 170 university students of the 
Emilia Romagna region (Italy). The evidence demonstrates the 
effectiveness of our model in estimating the number of M2ECs 
able to guarantee the same performances of a deployment 
realized with FMECs as in a standard MEC deployment. 

The rest of the article is structured as follows. Section II 
presents an overview of the main studies in the areas of MCS, 
MEC, and HEC technologies. Section III introduces our MEC-
based MCS architecture and the M2EC’s selection strategy. 
Section IV formalises the M2EC selection method and the 
adopted probabilistic model. Section V describes the dataset 
adopted in the trial and the metrics used to validate our model. 
Section VI shows the experimental results obtained when the 
theoretical model is compared with the real-world one. The 
paper ends with Section VII in which are drawn conclusions 
and possible future developments of our research. 

II. RELATED WORK 

Without claiming exhaustiveness, we survey in this section 
the MEC paradigm and the most recent massive application 
scenarios. More precisely, in Section II-A we review the main 
characteristics and limitations of the MEC paradigm. Section 
II-B describes the relationship between MEC and Mobile 
CrowdSensing (MCS), with particular attention to efficient 
device selection strategies for increasing the amount of data that 
can be gathered. 

A. The MEC paradigm  

MEC provides a new ecosystem based on radio access 
network edges with computational and storage capabilities. The 
MEC model aims at supporting peripheral nodes of the network 
by reducing latency for mobile users, optimizing mobile 
backhaul and middleware layer nodes performance. Such 
decentralized cloud technology makes the MEC one of the 
cornerstones of the new 5G systems [6], easing the convergence 
between telecommunication and information technology 
services [7-8]. Traditional MEC implementations are made up 
of software platforms which provide local services without 
considering the user mobility. Differently, advanced MEC 
implementations also consider aspects like traffic [9, 10], 
mobility [11] and account, introducing a heterogeneous type of 
networking to support both commercial and non-commercial 
applications, both in indoor and outdoor [12, 13, 14, 15]. 
Concerning the use of MEC with the Internet of Things (IoT) 
applications, recent studies focused on the development of 
platforms that ensure management and interoperability between 
large-scale devices without loss of bandwidth or increased 
latency [16]. With a plethora of devices interacting with 
intermediate MEC nodes, computation offloading techniques 
became valuable methods to save energy, battery lifetime and 
calculations. As the production of computation offloading is 
vast, we limit to mention a comprehensive study on these 
techniques over 5G heterogeneous networks [17]. Other major 
use cases of the MEC paradigm include optimization 
techniques for distributed content discovery and delivery [18, 
19] and caching [20], big data storage and computation [21] 
and, notably, services for smart cities as localization [22], 

emergency and public safety [23, 24, 25]. It worth to notice that 
in MEC scenarios the problem of resource constraints cannot 
be avoided. In particular, the battery drain is the main concern 
for mobile users. In recent years, however, user recruitment 
policies leveraging profiles and current battery level of devices 
for task assignments have been devised, allowing a reasonable 
energy saving for those devices with limited resources [26, 27]. 
Alongside cost-saving energy solutions, there is also bandwidth 
wastage. Some propositions based on local data mining by 
mobile devices, with production of intermediate results, 
refined, from raw sensing data, have shown a real energy and 
bandwidth saving in data transmission to remote servers [28]. 

B.  Device Selection Strategies 

 We are interested in combining the MEC paradigm with the 
Mobile CrowdSensing (MCS) [29], an approach for massive 
sensing in mobile scenarios. Nowadays, almost all mobile and 
wearable devices are equipped with multi-modal sensing 
capabilities which are able to collect data in a seamless way. 
The idea of MCS is to exploit the ubiquity of such devices in 
order to increase the amount and quality of data that can be 
gathered from the crowd [30]. Examples of data that can be 
collected (also referred to as tasks) include: media contents, 
recordings of audio tracks, sensor readings such as noise/light 
intensity etc. Strategies for task assignment include the study of 
recruitment areas considering the population density at 
different time of the day and the user’s activity as the 
willingness in performing tasks and the time spent in city 
hotspots [31]. Under this respect, several studies also address 
privacy issue while collecting personal information [32, 33]. 
The MCS paradigm offers the possibility of gathering data from 
the crowd, while the MEC paradigm provides a scalable and 
dynamic architecture enabling such a massive collection of 
information. Recently, in the context of smart cities [34], hybrid 
solutions of MEC and MCS include models for optimizing 
content sharing by leveraging the sociality and mobility of the 
MCS nodes [4], MEC-based architectures for massive scale 
MCS services and privacy preserving citizens’ data control 
flow [35, 36], and social-driven edge computing architectures 
based on incentives and centrality measures to reduce 
installation and maintenance costs for MEC intermediate layer 
nodes [3].  

In this context, one of the main challenges is the selection 
of those devices acting as edge of the cloud, namely those 
devices collecting data from others and uploading data to the 
backend [37, 38, 39]. An efficient selection of the devices can 
result with high spatial and temporal coverage (as discussed in 
[40, 41]). Spatial coverage considers the number of areas of a 
region that can be monitored with a certain accuracy, such as 
the districts of a city. While temporal coverage refers to the time 
required in order to collect data from all the regions. In [42] 
authors propose a selection strategy based on the dimension of 
the region to cover. Authors consider a deterministic node 
mobility and propose several heuristics for the selection of 
devices, in order to minimize an objective function. Other 
recent works [43-45] consider incentive mechanisms for the 
users in order to increase the probability of collecting data from 
specific locations. In [46] authors adopt a selection strategy 
based on the quality of data the user can produce. The authors 
adopt a Compressive Sensing technique in order to predict the 
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expected quality of data from the user and, in turn, they select 
appropriately the best candidates. Authors of [47] also adopt a 
method to select devices based on the quality of data they 
provide. Authors adopt a trust model called experience-
reputation (ER) which evaluated the “trust relationships” 
between any two mobile device users. Authors test the ER 
model on several MCS testbed in which regular and malicious 
users are present. 

A different approach for the selection of devices is based on 
the analysis of sociality of users. Since devices are mainly 
carried by humans, it is possible to adopt strategies based on the 
analysis of features of the human sociality and mobility. The 
main idea is to measure how much a user encounters or clusters 
with other users and, in turn, to select those with maximizing 
the contact probability. In fact, the more a user interacts with 
others, the more likely its device can collect data from 
neighbours through short range network interfaces (such as 
Bluetooth, Wi-Fi Direct or the upcoming LTE direct). The 
contact probability can be measured with metrics typical of 
graph theory such as clustering coefficient, betweenness or 
eigenvector centrality that all measure the centrality of a node 
in a graph. The device selection strategy presented in this work 
is also based on the analysis of sociality among users (see 
Section III-A). Our approach consists in first detecting the 
communities and then in selecting a representative for each of 
them. The selection of the representative is based by measuring 
a centrality score. 

III. EXTENDING A MOBILE CROWDSENSING ARCHITECTURE 

WITH MOBILE EDGES 

A. System model for Mobile CrowdSensing  

In our system model, the mobile CrowdSensing architecture 

comprises three tiers: a client-tier, an edge-tier, and a server 

cloud-tier. The client-tier includes mobile terminal nodes. The 

edge-tier hosts MEC edges, namely, M2EC operating as 

conventional edges to serve other terminal devices. The server 

cloud-tier deals with aggregation, storage, remote analytics, and 

processing of sensed data. We assume that the CrowdSensing 

platform is administered by an entity (typically allocated in the 

cloud tier) that coordinates the clients by injecting the sensing 

tasks and that implements the storage and analytics on the 

received data. Differently than conventional architectures, in 

which the MEC are fixed and part of the infrastructure, in our 

model we assume that also mobile devices in the client tier can 

take the role of M2EC and thus act as data aggregation points 

for other clients, on the base of localized data exchange based 

on short range wireless interfaces (like Bluetooth, Wi-Fi direct 

or LTE direct). To this purpose, the administration entity of the 

MCS platform periodically selects, with a suitable algorithm, 

the client devices more suitable to act as M2EC. 
Considering that a M2EC is a mobile device that uses its 

short-range communication interface(s) to collect data from 
other CrowdSensing devices, follows that each M2EC 
guarantees a limited spatial coverage that varies continuously 
over time according to its mobility. For this reason, it behaves 
opportunistically and receives collected data from the other 
devices that come close enough to it for a sufficient period of 
time. The M2EC can then aggregate all collected data and 
transfer them (even later) to the cloud servers, possibly using 
broadband links. On the other hand, a device that did not have 
the opportunity to upload its collected data to a M2EC may, 
after a time, use itself broadband links to transfer the data to the 
cloud servers, even if these links are usually more expensive in 
terms of battery and costs. 

Since the opportunities of communication between the 
devices and the M2EC depend on the mobility of the devices 
(and thus of the mobility and sociality of the user that carry 
them), several recent works already suggested to select M2EC 
on the basis of “social” relationship among the devices [4, 36]. 
The idea here is to consider the dynamic network induced by 
the contacts among devices as a social network (which, in fact, 
represents the physical social network of their users) where ties 
between nodes model the contacts (and their quality like 
frequency, duration, inter-contact time etc.) between devices, 
and to identify in this network the devices that are better 
connected (that have frequent encounters) with a larger number 
of other devices. Following this idea, these algorithms operate 
by identifying the communities to which the devices belong and 
by choosing in these communities the devices that are central 
to them according to some metric (for example betweenness 
centrality or others). Being well connected to the respective 
communities the devices selected as M2EC are then expected to 
serve well as “hubs” for their communities. 

B. Selection Strategy for M2EC 

In this work we are not interested in assessing any specific 
algorithm for the selection of M2EC, but rather to present a 
framework and a thorough assessment the strengths and the 
limits of our HEC approach. For this reason, we consider an 
abstract M2EC selection algorithms that well represents those 
approaches. The algorithm operates at discrete intervals 
(periods). When it is executed, it analyses the social network 
resulting from the devices in the previous period and it 
identifies the devices that will act as M2EC for the next period. 
For the sake of simplicity, we assume that the set of nodes in a 
period remains stable (this is reasonable if the periods are short 
enough, e.g. one day or so, anyway we will remove this 
assumption in the simulations). However, the links between 
devices in the network will vary over time. Without loss of 
generality, let us consider the period [𝑇′, 𝑇′′] in which is active 
a set of 𝑁 devices of cardinality 𝜂. In general, at a given time 
𝑡 ∈ [𝑇′, 𝑇′′] a device 𝑢 ∈ 𝑁 is connected to a set 𝑁𝑢

𝑡 (possibly 

Algorithm 1 – an abstract M²EC selection algorithm 

Let 𝑇′′ be the current time and [𝑇′, 𝑇′′] be the past period 
Let 𝐺(𝑡), ∀𝑡 ∈ [𝑇′, 𝑇′′] be the dynamic graph representing 

the social network and let 𝐶 be the set of communities 
{𝐶1, … , 𝐶𝑛} identified in 𝐺(𝑡)  

w.l.g. let |𝐶𝑖| ≥ |𝐶𝑗|  ⟺ 𝑖 ≤ 𝑗 (i.e. the set of communities is 
sorted in decreasing order according to their size) 

Let 𝑘 ∈ [1, 𝑛] such that: 
- |⋃ 𝐶𝑖𝑖≤𝑘 |/ 𝜂 ≥ 𝜙 
- |⋃ 𝐶𝑖𝑖≤𝑘+1 ∖ ⋃ 𝐶𝑖𝑖≤𝑘 | ≤ 𝛿; 

For all 𝐶𝑖 ∈ 𝐶 with 𝑖 ≤ 𝑘 do 
select 𝑢𝑗 ∈ 𝐶𝑖 according to some centrality measure to act 
as M2EC   
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empty) of other devices, which are within the transmission 
range of  𝑢. This transmission range depends on the short-range 
radio interface used for the communications between devices, 
can be around 100 meters if Wi-Fi is used, for example. Hence 
the “social” network of the devices in this period can be 

represented by the dynamic graph 𝐺(𝑡) = (𝑁, 𝐸(𝑡)) where the 

set of edges 𝐸(𝑡) is time varying and (𝑢, 𝑣) ∈ 𝐸(𝑡)  ⟺  𝑢, 𝑣 ∈
𝑁 ∧  𝑣 ∈ 𝑁𝑢

𝑡  ∧  𝑢 ∈ 𝑁𝑣
𝑡. At time 𝑇′′ (at the end of the period) 

the system runs the algorithm for the selection of M²EC that 
will be active in the next period. To this purpose, the algorithm 
identifies first the set of communities 𝐶1, … , 𝐶𝑛 in 𝐺(𝑡) (w.l.g. 
the communities are sorted in decreasing order of size) and then 
selects a representative for each of these communities starting 
from the largest one. The rationale for this behavior is that it is 
more convenient to select a node well connected in a large 
community because it will presumably behave as hub for a 
larger number of devices, thus requiring a smaller number of 
nodes selected as M2EC. However, not all representatives of all 
communities will be selected as M2EC. The reason is twofold:  

• Some communities may be so small to make the M2EC 
selection poorly effective. 

• Communities generally are not disjoint, hence there 
may be the case in which a community is already 
covered by the representatives of another one. 

We model this by using two parameters, that is, 𝜙 which 
represents the fraction of nodes that are covered (i.e. that belong 
to a community for which we select a M2EC), and 𝛿  that 
represents the individual contribution given by the smallest 
community for which a M2EC is selected to the union of the 
communities selected. The abstract algorithm the selection of 
M2ECs is summarized in Algorithm 1 (as presented in [4]). 

IV. THE ANALYTICAL MODEL 

M2ECs are devices acting as edges of the MEC architecture 
that can be selected with the algorithm described in Section III-
B. However, selecting the number of M2EC for a HEC 
architecture is not easy task. In relation to this, we want to 
answer to the following question: given k M2EC already 
selected, which is contribution on each of them in terms of 
number of new nodes that each M2EC can connect with? 

 To this end, we describe in this section a probabilistic 
model which estimates the contribution of a M2EC. More 
specifically, given 𝑘 different M2EC selected, we measure the 
number of unique nodes connected only to the 𝑘–th M2EC with 
respect to the previous 𝑘 − 1  M2ECs. We assume that the 
devices forms n communities denoted with 𝐶𝑖, 𝑖 ∈ [1 … 𝑛] and 
each community can contribute with at most one single M2EC. 
In other words, we assume that in each community we can 
assign one and only one M2EC as representative. The 
cardinality of the population is given by 𝜂 = |𝐶1⋃ … ⋃ 𝐶𝑛|.  

For the sake of simplicity, we assume that |𝐶𝑖| = 𝑔, ∀ 𝑖 ∈
[1, 𝑛], and for any pair of communities 𝐶𝑖  and 𝐶𝑗 , 𝑖 ≠ 𝑗, we 

define the conditional probability that, given a device 𝑐 joins 
𝐶𝑖, it also belongs to 𝐶𝑗: 

                            𝑝 = 𝑃(𝑐 ∈ 𝐶𝑗|𝑐 ∈ 𝐶𝑖)                                  (1) 

Note that, given the events 𝑃(𝑐 ∈ 𝐶𝑗|𝑐 ∈ 𝐶𝑖)  and 𝑄(𝑐 ∈
𝐶𝑘|𝑐 ∈ 𝐶𝑖), ∀ 𝑖, 𝑗, 𝑘 ∈ [1 … 𝑛] , we consider P and Q as 
independent events. 

The probability 𝛾0 that 𝑐 ∈ 𝐶𝑛 belongs only to 𝐶𝑛 is given 
by the inverse of 𝑝. More specifically, this is the probability 
that, since 𝑐 joins 𝐶𝑖  it does not belong to any other of the 𝑛 −
1 communities: 

 

Fig. 1.  Number of users and amount of traces available in 2014. 
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𝛾0 = (1 − 𝑝)𝑛−1 

The probability 𝛾ℎ that since 𝑐 ∈ 𝐶𝑛 it also belongs exactly 
to ℎ other communities among 𝐶1, … , 𝐶𝑛−1(and thus to ℎ + 1 
communities in total, including 𝐶𝑛) is: 

 

                       𝛾ℎ =  (𝑛−1
ℎ

)𝑝ℎ(1 − 𝑝)𝑛−ℎ−1                           (2) 

Where 𝑝ℎ  is the probability that 𝑐  belongs to exactly ℎ 

other communities, and (1 − 𝑝)𝑛−ℎ−1 is the probability that 𝑐 
does not belong to 𝑛 − ℎ − 1 communities.  

From equation (1), we can now derive the probability that 
since 𝑐 ∈ 𝐶𝑛, it also belongs to 𝐶1⋃ … ⋃ 𝐶𝑛−1 is: 

𝛾 =  ∑ 𝛾ℎ

𝑛−1

ℎ=1
 

𝛾 =  
1 − (1 − 𝑝)𝑛 − 𝑝

1 − 𝑝
 

Note that the probability that 𝑐 ∈ 𝐶𝑛  belongs only to 𝐶𝑛 , 
namely 𝛾0 is the inverse of 𝛾.  

We now assess the contribution of the k-th M2EC, which is 
the number of devices in 𝐶𝑘  but not in 𝐶1, … , 𝐶𝑘−1  that are 
connected only to the k-th M2EC. The contribution Ƞ𝑘 is given 
by: 

Ƞ𝑘 =  ∑ 𝑖 (
𝑔

𝑖
) 𝛾0

𝑖 𝛾𝑔−𝑖
𝑔

𝑖=0
 

           Ƞ𝑘 =  𝑔(1 − 𝑝)𝑘−1                              (3) 

V. THE EXPERIMENTAL DATASET  

The model presented in Section IV is validated with a real-
world MCS dataset named ParticipAct [48]. We first describe 
the quality of the dataset, by showing the number of users and 
the traces collected during the experiment. Then, we present a 
strategy for detecting the communities, specifically those 
devices sharing the same position with a specific time frame. 
To this purpose, we present several settings used the 
community detection. 

ParticipAct provides a mobility dataset from students of the 
University of Bologna, Italy. The dataset has been collected 
from December 2013 to February 2015. The volunteer students 
were equipped with an Android smartphone provisioned with 
an MCS application able to track the location through the 
Google location APIs. For each participant, the location is 
obtained by merging information from Wi-Fi Hot Spot 
coordinates, GPS and cell phone base station. For the purpose 
of our analysis, we extract from ParticipAct a subset of mobility 
traces, from January 2014 to December 2014. 

One of the main problems with MCS campaigns is related 
to the process of recruiting users. Recruitment means involving 
volunteers in data acquisition campaign. The difficulty in the 
recruitment process is mostly due to the scepticism of users 
towards the technology and their reluctance to share sensible 
information through their devices [49]. Besides, small 
afflictions such as fast battery consumption or the excessive use 

of computational resources due to intensive sensing activity are 
further aspects that limit the wide acceptance of this paradigm. 

The recruitment process of the ParticipAct users aimed at 
involving interested students. To this end, the organizers 
offered economic incentives including free smartphones and 
flat data plans. The recruitment process never stopped for the 
whole duration of the project. Therefore, the number of users 
varies along with the time. We show in Fig. 1, the number of 
users providing useful data in the considered sub-period 
(January 2014 to December 2014). The number of users varies 
along the time and this depends on two main factors. Firstly, 
students were free to switch off their smartphone, to disable the 
localization features or to uninstall the mobile app used to 
gather the location. All of these events prevent from the 
collection of data, and therefore the number of users decreases 
as well.  Secondly, the ParticipAct architecture encountered few 
technical issues, such as shutdown and system crash of the 
backend. During the whole 2014, we observed 4 main 
interruptions: early February, March, early June and early 
November. They had a limited duration of approximately 1 to 
7 days. The March event last about 18 days. On the low part of 
Fig. 1, we show a heatmap with the number of users providing 
data, the heatmap is aggregated on a daily basis for every week 
of the year (52 weeks in total). The heatmap reflects the 
interruption events previously described. In particular, the 
event on early February happed the Sunday of the 4th week, the 
March event during weeks 9th to 10th, the early June event 
between the weeks 21st and 22nd, and the early November on 
week 23rd.  

The number of users affects the amount of GPS traces 
collected. Fig. 1 also shows the percentage of the traces 
collected. We estimate that each user can provide at maximum 
576 points every 24 hours (one each 2.5 minutes). The 
percentage is therefore given by dividing the amount of traces 
collected in a day, with respect to the maximum amount of 
traces that could be gathered. We measure an average of 75% 
of traces collected during the whole 2014, reflecting the good 
quality of the dataset that we analyze. The ratio varies 
according to the number of available users, as expected the 
fewer the users, the fewer the traces collected.  

We now present the way we detect communities in 
ParticipAct. The goal is to identify groups of users sharing 
similar locations, so that to measure the contribution of each of 
the M2ECs as explained in Section III. For the purpose of this 
work, a community is defined as a set of distinct users with 
similar locations during a time period. Communities are not 
static in ParticipAct, rather they evolve over time. For example, 
communities detected on day x might differ remarkably from 
communities detected the day after. In order to capture such 
behavior, we run at regular intervals a spatial algorithm for 
detecting communities. We refer to each interval as a layer, 
whose output is a set of communities. As a representative 
example, we show in Fig. 2 the process we follow for detecting 
the communities. We first build the aggregate network by 
selecting a starting and an ending period (i.e. January 2014 to 
October 2014). Then, we detect the communities by running the 
DBSCAN [50] algorithm periodically, the time distance among 
layer is defined by Δ. DBSCAN analyzes all the GPS points 
available from the previous to the current layer, as for example 
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from L1 to L2, from L2 to L3 and from L3 to L4 (i.e. in this case 
Δ = 2 days). The output after each run of the algorithm is a set 
of communities in the form of a list of user’s IDs. DBSCAN 
works by clustering together GPS points with similar positions. 
More specifically, every cluster is composed by GPS points 
whose distance is at most ε and with at least ω points. We set a 

distance ε = 100 meters in order to cluster those users laying in 
a range typical of ad-hoc connections among devices 
(Bluetooth or Wi-Fi Direct interfaces). For what concerns the 
minimum number of points, we set ω = u × t. It is given by u = 
3, the minimum cardinality of a community (at least 3 people 
inside a community), and t which is the 50% of the expected 
GPS points that each user can provide. More specifically, the 
sampling rate of the locations is set to 2.5 minutes, therefore 
every user can provide at most 576 points in 24 hours. For the 
purpose of the community detection, we require that a 

community is composed by 3 distinct nodes each of which must 
provide at least ω = 3 × 288 points. 

The parameter Δ determines the temporal distance between 
layers, therefore how frequently DBSCAN runs. Δ affects the 
communities detected, in fact by lowering Δ we increase the 
frequency of DBSCAN (e.g. daily), but every run is completed 
by using only the GPS points available during the layer. As for 
example, with Δ = 1-day DBSCAN is executed once per day 
with all points available from all the users in 1 day. Differently, 
setting Δ = 7 days, DBSCAN is executed once per week by 
using all the GPS points provided in 7 days. As results, 
communities detected with few GPS points might result not 
representative of the clusters of users during the layer.  

We now present our strategy for selecting the value Δ. To 
this purpose we define the features that we expect from the 
communities, the similarity (S) and stability (St). The selection 
strategy described in Section III-B is designed to assign to each 
community a M2EC in charge of collecting/sharing data from/to 
the members of its community. The more communities are 
found, the higher the number of M2EC that should be selected. 
Therefore, a first objective is to detect non-overlapping 
communities, they are communities that don’t share users. In 
this way, each of the M2ECs selected can interact with distinct 
users, by avoiding replication of information collected/shared, 
this property is referred to as similarity. Similarity is computed 
by averaging the Jaccard index computed between all the 
communities detected in layers L1 … Lh, as follows: 

Fig. 3 Similarity (S) and Stability (St) of communities in 4 scenarios. 

Fig. 4 Mean and std. deviation of the cardinality of the communities in 4 
Scenarios. 

 

Fig. 2.  Clustering with one layer every 2 days. 
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𝑆 =  
1

𝑘
∑ 𝐽(𝐶𝑥, 𝐶𝑦)

∀(𝐶𝑥,𝐶𝑦)∈𝐿𝑖

, ∀ 𝐿𝑖 …  𝐿ℎ 

Where k = (𝑛
2

) is the number of combinations of n distinct 

communities found at layer Li and J is the Jaccard index 
computed between 𝐶𝑥  and 𝐶𝑦 . The similarity S is therefore 

bound between [0,1], the higher S the more the communities 
are similar inside each layer. Conversely the lower S, the more 
the communities differ inside each layer. 

Moreover, our selection strategy should be run rarely so that 
to select only once the M2ECs. Our second goal is therefore to 
detect communities stable over the time. In other words, the 
members of the communities found at layer L1 should remain 
similar over the time. This second property is referred to as 
stability. Stability (St) is computed by averaging the Jaccard 
index among the distinct users found in each layer, as follows: 

𝑆𝑡 =  
1

𝑚
∑ 𝐽(𝑈𝑖 , 𝑈𝑗)

∀(𝑖,𝑗)
 

where m = (ℎ
2
) is the number of combinations of h layers, J is 

the Jaccard index between Ui and Uj, the list of users found at 

layers 𝐿𝑖 and 𝐿𝑗 and (𝑖, 𝑗) are all the pairwise combinations of 

layers (e.g. [𝐿1, 𝐿2], [𝐿2, 𝐿3], … ,[Lh-1, Lh]). The higher St the 
more the communities are stable over the time. We analyze S 
and St by varying three key parameters:  

1) the value of Δ 

2) the duration of the dataset  

3) the time period used to compute similarity and stability. 

  
Δ ranges from: 1, 2 and 7 days. The duration of the dataset 

varies in the range: 1 month, 2 months, 6 months to 10 months. 
The time period we used depends on the duration. In particular, 
for 1 month duration, we analyzed the communities during the 
months: January 2014 to October 2014; for duration 2 months 
we considered the month pairs: January–February, February–
March, March–April,  April–May, May–June, June –July, 
July–August, August–September and September–October. 
Differently, for duration 6 months we considered the single 
period January–June, and for the duration 10 months the single 
period January–October.  

Fig. 3 reports the results for S and St. As a general 
observation, we note that by increasing the duration of the layer 
Δ (1 to 7 days), similarity and stability increase as well. In fact, 
the duration of the layer has the effect of increasing/ decreasing 
the amount of points used by DBSCAN to detect clusters. 
Clusters detected with few GPS points, i.e. Δ = 1 day (24 hours) 
result too weak to capture any routinely movement of users of 
ParticipAct. Differently, with Δ = 7 days, clusters are more 
robust remaining more stable week after week. Moreover, we 
observe that S and St do not significantly change by setting a 
specific value of Δ across different durations (1 month to 10 
months).  As for example, fixing duration 1 month and varying 
Δ = 1 to 7 days, the standard deviation of S ranges from 0.03 to 
0.02. Similarly, fixing duration 2 months and ranging Δ from 1 

TABLE I 
SCENARIOS SELECTED FOR EVALUATING THE MODEL 

Scenario Period Duration 
Similari

ty/ 

Stability 

Mean/std 

dev 

Δ 

value 

S1 Jan-Oct 
10 

months 

0.15/0.4

2 
16.62/12.38 7 

S2 Jan-Jun 
6 

months 

0.09/0.3

2 
9.9/6.9 2 

S3 
Jan-Oct 
(2-by-2) 

2 
months 

0.09/0.3 
10.4/6.93 

 
2 

S4 
Jan-Oct 

(1-by-1) 

1  

month 

0.12/0.4

1 
10.2/5.9 2 

 

 

 

Fig. 5 Trends of g and p in scenarios S1 to S4. 
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to 7 days, 𝜎𝑆  ranges from 0.02 to 0.009. The same 
considerations also apply for the values of stability. 

Finally, we measure mean μ and standard deviation σ of the 
cardinality of the communities detected, as shown in Fig. 4. As 
expected by increasing Δ, communities also increase since 
more GPS points from different users are considered in order to 
detect the clusters. We observe also higher values of σ when Δ 
varies from 1 day to 7 days.  

In order to evaluate the model presented in Section IV, we 
select 4 representative scenarios. The idea is to select very 
different conditions in which test our model. To this purpose, 
we consider very long, long, medium and a short-range 
duration, and we chose a value of Δ accordingly. We consider 
that such settings well reflect the different conditions of the user 
mobility in ParticipAct. The settings of such scenarios are 
summarized in Table I.          

VI. EXPERIMENTAL RESULTS 

The goal of our experimentation is to configure the model 
parameter and to assess how much it fits the results obtained 
from the ParticipAct. To this purpose, we adopt the following 
methodology: 

1) calibration of the model 

2) contribution of M2EC in ParticipAct 

3) comparison of the models. 

A. Model Calibration 

Recall that, from Section III, Ƞ𝑘  defined in Equation (3) 
models the expected contribution of each of the M2ECs 
selected, and it depends on parameters g and p that are the 
average cardinality of the communities detected and the 
probability defined in Equation (1), respectively. The number k 
of the selected M2EC is computed with the strategy defined in 
Section III-B. For example, with k = 5 we select 5 M2EC each 
of which covers a distinct community. We calibrate parameters 
g and p for each of the scenarios in Table I. In particular, g is 
calibrated by averaging the cardinality of the communities 
detected with DBSCAN, layer per layer, while p is calibrated 
by averaging the probability of all communities’ nodes, without 
repetitions, in each layer. Fig. 5 shows how g and p vary in the 
4 scenarios. From the figure, we observe that for both values 
long-term tests (S1 and S2) show a more fluctuating trends than 
medium-term tests (S3 and S4). The period in which g and p 
have the more stable trend corresponds to the setting S4. 
Although on different scales, the range in which both values 
fluctuate is comparable: g ranges from 0 up to 25 community’s 

members while the probability p is always bound between 0 and 
0.25. 

B. Computing the Contribution of M2EC in ParticipAct 

For every scenario described Table I, we detect the 
communities at each layer by using DBSCAN properly 
configured. Each community detected is represented by a 
M2EC according to the selection strategy defined in Section III-
B. For example, given the layer 𝐿𝑗, DBSCAN identifies a set 

{𝐶1, … , 𝐶𝑛} of n communities (ordered for decreasing size), and 
the algorithm selects, for each community, a representative 

M2EC according to some centrality measure. Let  𝑣𝑖
𝑗
 be the 

contribution of the M2EC for 𝐶𝑖 at 𝐿𝑗. It is immediate that 𝑣1
1 =

|𝐶1| and, in general, 𝑣𝑖
𝑗

= 𝐶𝑖\ ⋃ 𝐶𝑙𝑙<𝑖 . As a result, we obtain h 

vectors of contribution values, one for each layer 𝐿1, … , 𝐿ℎ, as 
shown in Fig. 6. We are interested in measuring the distribution 
of the contribution values over the h layers. In other words, we 
study how the vector of contributions varies from the widest 

community computed over h layers ( 𝐶 1), to the vector of 

contribution of the smallest community computed over h layers 

(𝐶n), as shown in Fig. 6.  

C. Comparison of the model prediction with experimental 

results  

We present here the comparison of Equation (3) with data 
obtained from the ParticipAct real-world dataset. Specifically, 
we show the distribution of the contribution values as boxplots, 
one for each dimension community (from the widest to the 
smallest), the trend of the model is shown with a super-imposed 
solid line. The boxplots show median, 25th and 75th percentile 
in the body, and minimum and maximum points of the 

 

 

Fig. 6.  Communities contribution. 

 

Fig. 7. Comparison of the probabilistic model in Scenario 1. 
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contribution values in the whiskers. The outliers are shown as 
black diamonds. Fig. 7 shows a comparison of our model with 
respect to results we obtain from ParticipAct only in Scenario 
1 (see Table I). We observe that our model underestimates the 
contribution of the first M2EC, while it overestimates the 
contribution of the subsequent ones. In particular, the grey line 
is always below the median value of the boxplots for M2EC #1 
and above the median for all the others. This behavior depends 
on the fact that our model assumes that the communities have 
all the same cardinality 𝑔 (see Section IV). Such assumption is 
acceptable since the number of users of a CrowdSensing 
platform is higher than the maximum size of the user’s 
communities (which are necessarily bounded) and becomes too 
restrictive when the number of users considered is limited. 
Consequently, the variation in the size of the communities 
becomes non-negligible (as discussed in Fig. 4). 

In order to overcome this limitation, we determine 
empirically a correction factor, that we apply to Equation (3). 
Such factor considers the variable size of the communities 
considered by introducing a correction related to the standard 
deviation 𝜎 of the size of the communities and the value of 𝑘. 
According to this correction, the model in (3) becomes: 

                            Ƞ𝑘 =  √
𝜎

𝛼∗𝑘
𝑔(1 − 𝑝)𝑘−1                     (4) 

where 𝛼 is a smoothing factor for a fine-grained tuning. 

We are now able to compare the model described in (4) with 
respect to the 4 scenarios S1 to S4. The scenarios reproduce 
different settings on the way we detect community and on the 
duration of the dataset. We span from 10 months (S1) to 1 month 
(S4). Fig. 8 reports the performance of the models proposed in 
(3) and (4) with respect to the contribution of the M2EC 
computed in ParticipAct as described in Section VI-B. The 
figure shows in grey the original model without the correction 

factor, and in orange the model with the correction factor. We 
restrict the comparison to the first 10 M2EC, after which we 
observe that their contribution is negligible.  

We observe that the model in (4) well reproduces the trend 
of the M2EC contribution in all the scenarios, both in the long 
ones (S1 and S2) and in the short ones (S3 and S4). As a general 
trend, the model provides high contribution for the first M2ECs, 
after which the contribution rapidly decreases. In particular, the 
model in (4) estimates correctly the contribution of M2EC #1 
which is generally higher with respect to the others, this can be 
observed in Fig. 8, since the orange dots always fit close to the 
median values of the boxplots. 

D. Quantitative Measurement of the Statistical Data Fitting 

Technique  

In order to assess the adaptability of the adjusted model to 

the real community data set, we applied the Kolmogorov-

Smirnov (K-S) test on both distributions. The K-S test is well 

suited to our case study because it allows to compare the shape 

of two sample distributions by assessing the adaptability of 

each other. Specifically, the result of the K-S test accepts or 

rejects the hypothesis of the adaptability of the real data 

distribution with the adjusted theoretical sample distribution. 

Tests have been performed on the four proposed scenarios with 

a critical value of 𝐾𝛼 =  1.36 (𝑖. 𝑒, 𝛼 = 0.05). 

 

Table II shows the p-values returned for each of the 4 scenarios, 
e.g. S1 to S4. We observe that the hypothesis of the adaptability 
of the theoretical model to the real data distribution can be 

TABLE II 

RESULTS OF K-S TESTS FOR THE DIFFERENT SCENARIOS. 

S1 S2 S3 S4 

0.110 0.974 0.974 0.974 

 

Fig. 8.  Comparison of models with the 4 Scenarios. 
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accepted for three out of four scenarios. As reported in Table I, 
S2, S3, and S4 last respectively 6, 2, and 1 months. In such 
scenarios, mobility and sociality of users tend to remain more 
stable with minor fluctuations. Differently, scenario S1 
corresponds to a very long period (10 months, from January to 
October 2014). During such long period, users cross very 
different conditions: lessons, test period, lessons, Eastern break, 
summer holidays, test period, and back to lessons. Therefore, 
mobility and sociality are also affected by such variation. 
Moreover, during that period we observed some technical 
issues along the data collection that reduced drastically the 
amount of data collected. Figure 1 reports a graphical 
representation of users and traces collected during the whole 
2014. As a result, the K-S test on scenario S1 returns a p-value 
lower than the others, below the level of acceptability of our 
hypothesis. We still include scenario S1 for the purpose of 
completeness; however, our model has been designed to exploit 
routine of user mobility in order to select M2EC. Therefore, it 
is a case not particularly relevant for our algorithm that can be 
configured to select the M2EC devices more frequently. 

VII. CONCLUSIONS AND FUTURE WORK 

The HEC model implements MEC technologies in massive 
sensing application scenarios such as in MCS [51]. Commonly, 
these architectures are characterized by edges supporting data 
collection operations of terminal nodes. Some recent proposals 
explored the possibility of implementing such edges with 
mobile devices belonging to the users of the MCS platform 
itself. This enables a dynamic selection of edge nodes (called 
M2EC), that should, however, consider the social relationships 
among the plethora of MCS users, to reduce platform costs and 
ensure a good spatial coverage. In this work, we addressed the 
problem of selecting the number of mobile nodes to promote as 
M2EC by proposing a probabilistic model. 

In order to devise the selection algorithm and to reduce our 
model to a closed-form expression, we conducted a qualitative 
analysis of real-world mobility traces dataset, that have been 
also used for the validation of the model itself. Specifically, 
based on the analysis of the traces in the dataset we designed 
the algorithm in a way to select first the representative nodes of 
the larger communities. Secondly, the limited difference in size 
between the communities and the fact that the intersection 
among communities is not empty suggested to approximate the 
size of the communities with a constant and to model with 
Equation 1 the probability that the same device belongs to 
different communities. Finally, the analysis of the dataset 
proved also useful to determine the correction factor for the 
calibration of the model to achieve a good fitting (also 
confirmed by the K-S test) of the model with the experimental 
results.  

These encouraging results are leading us to reflect on some 
future research opportunities. Since the proposed probabilistic 
model focuses only on M2EC, a first step forward could be the 
implementation of such model into an architecture made up of 
both fixed and mobile MEC. Moreover, the model is sensitive 
to community size, and based on the community detection 
algorithm in use the result may vary significantly. For this 
reason, as a further advancement of the present work we are 
considering a longitudinal comparison of the main community 

detection algorithms designed to capture dynamics of the 
human mobility in MEC-based MCS systems. 
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AE: Associated Editor 
Comment 1 
The contributions with respect to the literature have to be better highlighted.  

 

Answer 1 
In order to better highlight the contributions of our work with respect to the present literature, we 

have re-structured Section II (Related Work). Section II is now organized in two subsections: II-A 

and II-B. Section II-A covers the MEC paradigm and the main application scenarios. We report in 

such section state-of-the-art solutions that exploit edge nodes in a cloud environment. Section II-B 

describes the MEC paradigm combined with the Mobile CrowdSensing (MCS) and describes those 

strategies for selecting devices in an efficient way. We describe some selection strategies based on 

the amount of data and the quality of data that the devices can provide, as well as strategies based on 

the sociality of users. Under this respect, we clarify the approach followed by the solution presented 

in this work. We report below the changes applied to the original paper: 

 

“ 
II Related Work 

Without claiming exhaustiveness, we survey in this section the MEC paradigm and the most recent 
massive application scenarios. More precisely, in Section II-A we review the main characteristics and 
limitations of the MEC paradigm. Section II-B describes the relationship between MEC and Mobile 
CrowdSensing (MCS), with particular attention to efficient device selection strategies for increasing 
the amount of data that can be gathered. 

A The MEC paradigm  

MEC provides a new ecosystem based on radio access network edges with computational and 
storage capabilities. The MEC model aims at supporting peripheral nodes of the network by reducing 
latency for mobile users, optimizing mobile backhaul and middleware layer nodes performance. Such 
decentralized cloud technology makes the MEC one of the cornerstones of the new 5G systems [6], 
easing the convergence between telecommunication and information technology services [7-8]. 
Traditional MEC implementations are made up of software platforms which provide local services 
without considering the user mobility. Differently, advanced MEC implementations also consider 
aspects like traffic [9, 10], mobility [31] and account, introducing a heterogeneous type of networking 
to support both commercial and non-commercial applications, both in indoor and outdoor [12, 13, 14, 
15]. Concerning the use of MEC with the Internet of Things (IoT) applications, recent studies focused 
on the development of platforms that ensure management and interoperability between large-scale 
devices without loss of bandwidth or increased latency [16]. With a plethora of devices interacting 
with intermediate MEC nodes, computation offloading techniques became valuable methods to save 
energy, battery lifetime and calculations. As the production of computation offloading is vast, we 
limit to mention a comprehensive study on these techniques over 5G heterogeneous networks [17]. 
Other major use cases of the MEC paradigm include optimization techniques for distributed content 
discovery and delivery [18, 19] and caching [20], big data storage and computation [21] and, notably, 
services for smart cities as localization [22], emergency and public safety [23, 24, 25]. It worth to 
notice that in MEC scenarios the problem of resource constraints cannot be avoided. In particular, the 
battery drain is the main concern for mobile users. In recent years, however, user recruitment policies 
leveraging profiles and current battery level of devices for task assignments have been devised, 
allowing a reasonable energy saving for those devices with limited resources [26, 27]. Alongside 
cost-saving energy solutions, there is also bandwidth wastage. Some propositions based on local data 
mining by mobile devices, with production of intermediate results, refined, from raw sensing data, 
have shown a real energy and bandwidth saving in data transmission to remote servers [28]. 

 B Device Selection Strategies 
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 We are interested in combining the MEC paradigm with the Mobile CrowdSensing (MCS) [29], 
an approach for massive sensing in mobile scenarios. Nowadays, almost all mobile and wearable 
devices are equipped with multi-modal sensing capabilities which are able to collect data in a 
seamless way. The idea of MCS is to exploit the ubiquity of such devices in order to increase the 
amount and quality of data that can be gathered from the crowd [30]. Examples of data that can be 
collected (also referred to as tasks) include: media contents, recordings of audio tracks, sensor 
readings such as noise/light intensity etc. Strategies for task assignment include the study of 
recruitment areas considering the population density at different time of the day and the user’s activity 
as the willingness in performing tasks and the time spent in city hotspots [31]. Under this respect, 
several studies also address privacy issue while collecting personal information [32, 33]. The MCS 
paradigm offers the possibility of gathering data from the crowd, while the MEC paradigm provides 
a scalable and dynamic architecture enabling such a massive collection of information. Recently, in 
the context of smart cities [34], hybrid solutions of MEC and MCS include models for optimizing 
content sharing by leveraging the sociality and mobility of the MCS nodes [4], MEC-based 
architectures for massive scale MCS services and privacy preserving citizens’ data control flow 
[35,36], and social-driven edge computing architectures based on incentives and centrality measures 
to reduce installation and maintenance costs for MEC intermediate layer nodes [3].  

In this context, one of the main challenges is the selection of those devices acting as edge of the 
cloud, namely those devices collecting data from others and uploading data to the backend [37, 38, 
39]. An efficient selection of the devices can result with high spatial and temporal coverage (as 
discussed in [40, 41]). Spatial coverage considers the number of areas of a region that can be 
monitored with a certain accuracy, such as the districts of a city. While temporal coverage refers to 
the time required in order to collect data from all the regions. In [42] authors propose a selection 
strategy based on the dimension of the region to cover. Authors consider a deterministic node mobility 
and propose several heuristics for the selection of devices, in order to minimize an objective function. 
Other recent works [43-45] consider incentive mechanisms for the users in order to increase the 
probability of collecting data from specific locations. In [46] authors adopt a selection strategy based 
on the quality of data the user can produce. The authors adopt a Compressive Sensing technique in 
order to predict the expected quality of data from the user and, in turn, they select appropriately the 
best candidates. Authors of [47] also adopt a method to select devices based on the quality of data 
they provide. Authors adopt a trust model called experience-reputation (ER) which evaluated the 
“trust relationships” between any two mobile device users. Authors test the ER model on several 
MCS testbed in which regular and malicious users are present. 

A different approach for the selection of devices is based on the analysis of sociality of users. 
Since devices are mainly carried by humans, it is possible to adopt strategies based on the analysis of 
features of the human sociality and mobility. The main idea is to measure how much a user encounters 
or clusters with other users and, in turn, to select those with maximizing the contact probability. In 
fact, the more a user interacts with others, the more likely its device can collect data from neighbours 
through short range network interfaces (such as Bluetooth, Wi-Fi Direct or the upcoming LTE direct). 
The contact probability can be measured with metrics typical of graph theory such as clustering 
coefficient, betweenness or eigenvector centrality that all measure the centrality of a node in a graph. 
The device selection strategy presented in this work is also based on the analysis of sociality among 
users (see Section III-A). Our approach consists in first detecting the communities and then in 
selecting a representative for each of them. The selection of the representative is based by measuring 
a centrality score.” 

 

Comment 2 
The authors should explain in detail the used statistical data fitting technique. How the qualitative 

analysis of real-world datasets is used to derive the model's close form, should be explained in detail 

and motivated. 
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Answer 2 
This point was also raised by Reviewer 2, who also suggested to use the Kolmogorov-Smirnov test 

(K-S test). We appreciated the comment from the reviewers and we decided to measure how our 

model fits with the observation from the ParticipAct dataset. To this purpose, we measure the K-S in 

order to accept or reject the null hypothesis that our model fits with the observation.  

More specifically, we have carried out a measurement of how much our theoretical model presented 

in Section IV adapts to the observations of the ParticipAct dataset. To this end, we used the 

Kolmogorov-Smirnov test. All the tests have been performed with a critical value of 𝐾𝛼 =  1.36 

(𝑖. 𝑒. 𝛼 = 0.05). The results led to acceptance of the null hypothesis (i.e. the adaptability of the 

theoretical model to the real distribution) on three out of the four scenarios proposed. Let us note that  

the scenario in which the fitting is worse is the one less relevant for our algorithm and can be avoided 

by configuring the algorithm for a more frequent selection of the M2EC. The presentation of the K-S 

test and its evaluation are presented as a new subsection of Section VI: 

 

“ 

D. Quantitative Measurement of the Statistical Data Fitting Technique 

In order to assess the adaptability of the adjusted model to the real community data set, we applied 

the Kolmogorov-Smirnov (K-S) test on both distributions. The K-S test is well suited to our case 

study because it allows to compare the shape of two sample distributions by assessing the adaptability 

of each other. Specifically, the result of the K-S test accepts or rejects the hypothesis of the 

adaptability of the real data distribution with the adjusted theoretical sample distribution. Tests have 

been performed on the four proposed scenarios with a critical value of 𝐾𝛼 =  1.36 (𝑖. 𝑒, 𝛼 = 0.05). 

Table II shows the p-values returned for each of the 4 scenarios, e.g. S1 to S4. We observe that the 

hypothesis of the adaptability of the theoretical model to the real data distribution can be accepted for 

three out of four scenarios. As reported in Table I, S2, S3, and S4 last respectively 6, 2, and 1 months. 

In such scenarios, mobility and sociality of users tend to remain more stable with minor fluctuations. 

Differently, scenario S1 corresponds to a very long period (10 months, from January to October 2014). 

During such long period, users cross very different conditions: lessons, test period, lessons, Eastern 

break, summer holidays, test period, and back to lessons. Therefore, mobility and sociality are also 

affected by such variation. Moreover, during that period we observed some technical issues along the 

data collection that reduced drastically the amount of data collected. Figure 1 reports a graphical 

representation of users and traces collected during the whole 2014. As a result, the K-S test on 

scenario S1 returns a p-value lower than the others, below the level of acceptability of our hypothesis. 

We still include scenario S1 for the purpose of completeness; however, our model has been designed 

to exploit routine of user mobility in order to select M2EC. Therefore, it is a case not particularly 

relevant for our algorithm that can be configured to select the M2EC devices more frequently. 

 

TABLE II 

RESULTS OF K-S TESTS FOR THE DIFFERENT SCENARIOS. 

S1 S2 S3 S4 

0.110 0.974 0.974 0.974 

 

R1: Review 1  
Comment 1 
The idea of probabilistic estimation of the number of MMEC seems to be relatively interesting. 

However, the paper is oddly written and difficult to follow.  
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Answer 1 
We have revised the whole manuscript, simplifying the most problematic part and streamlining the 

sentences difficult to understand, making them more concise and direct. We also revised the English 

form; we are now confident that such corrections have considerably improved its readability.  

 

Comment 2 
There is no clear contributions or story of the paper i.e., what the authors carried out as compared to 

the literature 

 

Answer 2 
In Section I (Introduction), we better clarified the contribution of our paper by guiding the reader 

across the story of our work. Besides, we completely re-arranged the related work session so to 

highlight the contribution of our work with respect to the literature in the area (see also the reply to 

the 1st comment of the Associate Editor). Concerning the story of the paper, we modified the 

introduction as follows: 

 
“In this context, our work concerns the algorithms for the identification of the mobile devices that 

can act as M2EC. Since the opportunity to collect data of the M2EC depends on the frequency with 
which devices meet, we consider a selection strategy that operates according to the social 
relationships among the users of the MCS platform [4, 5], and we provide a probabilistic model and 
a close expression that can be used to estimate the expected contribution that a M2EC can give to the 
data collection capability of the MCS platform. To the best of our knowledge, in the literature there 
are no theoretical models able to estimate such contribution. In particular, this paper presents a 
probabilistic model that, with a closed-form expression, can determine the number of M2ECs to be 
selected in the plethora of MCS devices. The fine tuning of the model includes few parameters that 
can be easily distilled from the history of the users’ behaviour considering the centrality of the 
potential M2ECs within their respective communities. The proposed probabilistic model has been 
validated through tests performed over the ParticipAct living lab dataset, a real-world MCS 
experiment realized with the contribution of approximately 170 university students of the Emilia 
Romagna region (Italy). The evidence demonstrates the effectiveness of our model in estimating the 
number of M2ECs able to guarantee the same performances of a deployment realized with FMECs as 
in a standard MEC deployment.” 

 

Comment 3 
Moreover, the related work is introduced in a separate section and there is no clear system model 

 

Answer 3 
As introduced in the response to comment 1 of the Associate Editor and to the previous comment 

from Reviewer 1, we have reorganized the related work section into two subsections, II-A and II-B, 

also in accordance with the reply to comment 1 of the Associate Editor. Moreover, we have rephrased 

the entire introductive period of section III-A, so to clarify the system model we are dealing with. 

The new introduction is as follows: 

 

“In our system model, the mobile CrowdSensing architecture comprises three tiers: a client-tier, an 

edge-tier, and a server cloud-tier. The client-tier includes mobile terminal nodes. The edge-tier hosts 

MEC edges, namely, M2EC operating as conventional edges to serve other terminal devices. The 

server cloud-tier deals with aggregation, storage, remote analytics, and processing of sensed data. We 

assume that the CrowdSensing platform is administered by an entity (typically allocated in the cloud 

tier) that coordinates the clients by injecting the sensing tasks and that implements the storage and 

analytics on the received data. Differently than conventional architectures, in which the MEC are 
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fixed and part of the infrastructure, in our model we assume that also mobile devices in the client tier 

can take the role of M2EC and thus act as data aggregation points for other clients, on the base of 

localized data exchange based on short range wireless interfaces (like Bluetooth, Wi-Fi direct or LTE 

direct). To this purpose, the administration entity of the MCS platform periodically selects, with a 

suitable algorithm, the client devices more suitable to act as M2EC.” 

 

Comment 4 
The paper has very long and convoluted sentences. It is quite difficult to understand sentences that 

span 7-8 lines as frequently appeared in the paper. 

 

Answer 4 
We have carried out a thorough review of the text, making the longer periods more concise. As an 

example, below we report a couple of examples of the indicative periods that we have adjusted so to 

improve the understanding of the concepts presented. 

 

In Section II the sentence “MEC provides a new ecosystem based on radio access network edges with 

computational and storage, aiming at supporting peripheral nodes of the network by reducing latency 

for mobile users, optimizing mobile backhaul and middleware layer nodes” has been rearranged as 

follows: “MEC provides a new ecosystem based on radio access network edges with computational 

and storage capabilities. The MEC model aims at supporting peripheral nodes of the network by 

reducing latency for mobile users, optimizing mobile backhaul and middleware layer nodes 

performance.” 

 
In Section III-B the sentence “This because of two reasons: (i) some communities may be too small 

and it may be not worth to select a M2EC for them, and (ii) in general the communities are not disjoint, 

hence there may be the case in which a community is already covered by the representatives of other 

communities.” has been rearranged in “The reason is twofold:  

• Some communities may be so small to make the M2EC selection poorly effective. 
• Communities generally are not disjoint, hence there may be the case in which a community is 

already covered by the representatives of another one.” 

 

Comment 5 
In Section IV, the title is not reasonable, and it is not clear what the authors meant by "contribution 

of Mobile MECs". Similarly, what is meant by "the recruitment process of the ParticipAct users" 

in Section V is unclear. 

 

Answer 5 
We agree with the reviewer’s comment and we changed the title of Section IV in “The Analytical 

Model”. We confidently believe that it is now more concise and understandable. Moreover, in order 

to clarify the meaning of what we intend for “user recruitment process”, we added in Section V the 

following period: 

 

“One of the main problems with MCS campaigns is related to the process of recruiting users. 

Recruitment means involving volunteers in data acquisition campaign. The difficulty in the 

recruitment process is mostly due to the scepticism of users towards the technology and their 

reluctance to share sensible information through their devices [49]. Besides, small afflictions such as 

fast battery consumption or the excessive use of computational resources due to intensive sensing 

activity are further aspects that limit the wide acceptance of this paradigm.” 

 

Page 17 of 22

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Comment 6 
In Section V, what is the relevance or significance of mentioning "pre-payed data traffic plan so that 

to avoid students to use their personal smartphones and credit" 

 

Answer 6 
We rephrase the sentence "pre-payed data traffic plan so that to avoid students to use their personal 

smartphones and credit" with “economic incentives including free smartphones and flat data plans.” 

 

Comment 7 
The paper has many weird expressions such as: "under this respect" 

 

Answer 7 
We have re-arranged all the unusual expressions to improve the readability of the paper, in line with 

the above comments 1 and 4. 
 

Comment 8 
The paper has many typos, e.g., “also sows”, “dynamism” 

 

Answer 8 
We double-checked the entire manuscript fixing errors/inaccuracies such as plurals, misleading 

words, punctuation, and so on. We are confident that the paper writing style has been improved. 

 

Comment 9 
Most of the figures are without sub-captions or captions 

 

Answer 9 
We are concerned about a compatibility problem in the PDF, as we assure that all figures had the 

caption. If the problem persists, we may need technical support from the editor. 

 

 

Comment 10 
The way of illustrating the time period used to compute similarity and stability in point 3 of Section 

V is ridiculous 

 

Answer 10 
We understand the comment of the reviewer and we realized that we did not explain well enough 

what Figure 3 in Section V represents. The x axis does not represent the time, rather the 4 different 

scenarios that we considered in the evaluation. These scenarios correspond to subsets of the 

PartcipacAct datasets of duration 1, 2, 6 and 10 months, respectively. Table I provides all the 

information characterizing the 4 scenarios. We have clarified such aspect in the figure caption. Note 

also that we have re-arranged Fig. 3 in two figures Fig. 3 and Fig. 4 so that to improve its readability. 

We report below the new figures and their captions. 
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Fig. 3 Similarity (S) and Stability (St) of communities in 4 Scenarios. 

 

 
Fig. 4 Mean and std. deviation of the cardinality of the communities in 4 Scenarios. 

 

Comment 11 
In Section VII, the explanatory paragraphs are appropriate as a conclusion of the paper 

 

Page 19 of 22

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Answer 11 
According to the reviewer’s comment, we have strongly modified the conclusive Section, adding a 

period summarizing the result obtained on the basis of the proposed model, and specifying in more 

detail the future work directions. Also, according to the comment 2 of Reviewer 2, we have condensed 

these observations in the conclusion section, as follows: 

 

“In order to devise the selection algorithm and to reduce our model to a closed-form expression, we 

conducted a qualitative analysis of real-world mobility traces dataset, that have been also used for the 

validation of the model itself. Specifically, based on the analysis of the traces in the dataset we 

designed the algorithm in a way to select first the representative nodes of the larger communities. 

Secondly, the limited difference in size between the communities and the fact that the intersection 

among communities is not empty suggested to approximate the size of the communities with a 

constant and to model with Equation 1 the probability that the same device belongs to different 

communities. Finally, the analysis of the dataset proved also useful to determine the correction factor 

for the calibration of the model to achieve a good fitting (also confirmed by the K-S test) of the model 

with the experimental results. 
These encouraging results are leading us to reflect on some future research opportunities. Since 

the proposed probabilistic model focuses only on M2EC, a first step forward could be the 
implementation of such model into an architecture made up of both fixed and mobile MEC. 
Moreover, the model is sensitive to community size, and based on the community detection algorithm 
in use the result may vary significantly. For this reason, as a further advancement of the present work 
we are considering a longitudinal comparison of the main community detection algorithms designed 
to capture dynamics of the human mobility in MEC-based MCS systems.” 

R2: Review 2  
Comment 1 
The authors should explain clearly what kind of statistical data fitting technique they use. They should 

also examine the goodness of fit using methods like K-S test etc. 

 

Answer 1 
This point was also raised by the Associated Editor comment 2, who also suggested to use the 

Kolmogorov-Smirnov test (K-S test). We appreciated the comment from the both of the reviewers, 

and we decided to measure how our model fits with the observation from the ParticipAct dataset. To 

this purpose, we measure the K-S in order to accept or reject the null hypothesis that our model fits 

with the observation.  

More specifically, we have carried out a measurement of how much our theoretical model presented 

in Section IV adapts to the observations of the ParticipAct dataset. To this end, we used the 

Kolmogorov-Smirnov test. All the tests have been performed with a critical value of 𝐾𝛼 =  1.36 

(𝑖. 𝑒. 𝛼 = 0.05). The results led to acceptance of the null hypothesis (i.e. the adaptability of the 

theoretical model to the real distribution) on three out of the four scenarios proposed. Let us note that  

the scenario in which the fitting is worse is the one less relevant for our algorithm and can be avoided 

by configuring the algorithm for a more frequent selection of the M2EC. The presentation of the K-S 

test and its evaluation are presented as a new subsection of Section VI: 

 

“ 

D. Quantitative Measurement of the Statistical Data Fitting Technique 

In order to assess the adaptability of the adjusted model to the real community data set, we applied 

the Kolmogorov-Smirnov (K-S) test on both distributions. The K-S test is well suited to our case 

study because it allows to compare the shape of two sample distributions by assessing the adaptability 

of each other. Specifically, the result of the K-S test accepts or rejects the hypothesis of the 
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adaptability of the real data distribution with the adjusted theoretical sample distribution. Tests have 

been performed on the four proposed scenarios with a critical value of 𝐾𝛼 =  1.36 (𝑖. 𝑒, 𝛼 = 0.05). 

Table II shows the p-values returned for each of the 4 scenarios, e.g. S1 to S4. We observe that the 

hypothesis of the adaptability of the theoretical model to the real data distribution can be accepted for 

three out of four scenarios. As reported in Table I, S2, S3, and S4 last respectively 6, 2, and 1 months. 

In such scenarios, mobility and sociality of users tend to remain more stable with minor fluctuations. 

Differently, scenario S1 corresponds to a very long period (10 months, from January to October 2014). 

During such long period, users cross very different conditions: lessons, test period, lessons, Eastern 

break, summer holidays, test period, and back to lessons. Therefore, mobility and sociality are also 

affected by such variation. Moreover, during that period we observed some technical issues along the 

data collection that reduced drastically the amount of data collected. Figure 1 reports a graphical 

representation of users and traces collected during the whole 2014. As a result, the K-S test on 

scenario S1 returns a p-value lower than the others, below the level of acceptability of our hypothesis. 

We still include scenario S1 for the purpose of completeness; however, our model has been designed 

to exploit routine of user mobility in order to select M2EC. Therefore, it is a case not particularly 

relevant for our algorithm that can be configured to select the M2EC devices more frequently. 

 

 

TABLE II 

RESULTS OF K-S TESTS FOR THE DIFFERENT SCENARIOS. 

S1 S2 S3 S4 

0.110 0.974 0.974 0.974 

 

  

Comment 2 
What is the basis of using qualitative analysis of real-world datasets is used to arrive at the close form 

for the model? 

 

Answer 2 
The analysis of the real-world dataset allowed us to identify and, to some extent, quantify four 

features that led us in the definition of the algorithm and of the model: 

1) at least one community larger than others for each layer considered. This led us to model the 

algorithm to sort first the communities according to their size and to start selecting the 

representative M2EC from the larger ones, in the effort of maximizing the coverage. 

2) Although the communities identified in each layer have different sizes, the difference in size 

observed in the dataset is not high (at least respect to the whole of the dataset members). This 

led us to approximate the size of communities with the constant g.  

3) The communities are usually not disjoint but have intersecting members. We modelled this 

fact with probability p in equation 1. 

4) The assumptions at points 2 and 3 were key to obtain a close form for the model, that, 

however, is necessarily approximated and requires calibration. The analysis of the dataset 

proved then useful to determine a correction factor to achieve a good fitting (also confirmed 

by the K-S test) of the model with the experimental data. 

  

We have summarized this all in the conclusion section, specifically we have rewritten the second 

paragraph of the conclusions as follows: 

 

“In order to devise the selection algorithm and to reduce our model to a closed-form expression, we 

conducted a qualitative analysis of real-world mobility traces dataset, that have been also used for the 

validation of the model itself. Specifically, based on the analysis of the traces in the dataset we 

designed the algorithm in a way to select first the representative nodes of the larger communities. 
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Secondly, the limited difference in size between the communities and the fact that the intersection 

among communities is not empty suggested to approximate the size of the communities with a 

constant and to model with Equation 1 the probability that the same device belongs to different 

communities. Finally, the analysis of the dataset proved also useful to determine the correction factor 

for the calibration of the model to achieve a good fitting (also confirmed by the K-S test) of the model 

with the experimental results. 
These encouraging results are leading us to reflect on some future research opportunities. Since 

the proposed probabilistic model focuses only on M2EC, a first step forward could be the 
implementation of such model into an architecture made up of both fixed and mobile MEC. 
Moreover, the model is sensitive to community size, and based on the community detection algorithm 
in use the result may vary significantly. For this reason, as a further advancement of the present work 
we are considering a longitudinal comparison of the main community detection algorithms designed 
to capture dynamics of the human mobility in MEC-based MCS systems.” 
 
 

Comment 3 
Is this method commonly used? Can the authors refer to literature where similar technique is followed 

for other applications? 

 

Answer 3 
To the best of our knowledge the proposed method based on an analytic model to select the M2EC is 

unique. There are in literature user devices recruitment techniques for MCS campaigns in MEC 

architecture in support or to compensate for the limitations of the MEC proxies, but none of these 

focuses on the estimation of the number of third-party devices to be used. In order to emphasise this 

aspect, we have added some references on similar works and enriched the introduction with the 

following period: 

 

“What makes our model unique is the possibility of estimating the contribution of the umpteenth 

M2EC to be used in support of or in place of MEC middleware proxies. To the best of our knowledge 

in literature there are no theoretical models to estimate such contribution.” 
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