
04 August 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

D'Ambrosio C., Martello S., Monaci M. (2020). Lower and upper bounds for the non-linear generalized
assignment problem. COMPUTERS & OPERATIONS RESEARCH, 120(August), 1-10
[10.1016/j.cor.2020.104933].

Published Version:

Lower and upper bounds for the non-linear generalized assignment problem

Published:
DOI: http://doi.org/10.1016/j.cor.2020.104933

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/764101 since: 2021-02-19

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1016/j.cor.2020.104933
https://hdl.handle.net/11585/764101

This is the final peer-reviewed accepted manuscript of:

Claudia D'Ambrosio, Silvano Martello, Michele Monaci

Lower and upper bounds for the non-linear generalized
assignment problem

Computers & Operations Research,Volume 120,2020,104933,ISSN 0305-0548

The final published version is available online at:
https://doi.org/10.1016/j.cor.2020.104933

Rights / License:

The terms and conditions for the reuse of this version of the manuscript are specified in the
publishing policy. For all terms of use and more information see the publisher's website.

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/)

When citing, please refer to the published version.

Lower and upper bounds for the

non-linear generalized assignment problem

Claudia D'Ambrosio1 Silvano Martello2 Michele Monaci2

Abstract

We consider a non-linear version of the Generalized Assignment Problem, a well-

known strongly NP-hard combinatorial optimization problem. We assume that the

variables are continuous and that objective function and constraints are de�ned by

non-linear functions of the variables. A mathematical model is introduced and used

to derive upper bounds on the optimal solution value. We present constructive

heuristics, obtained from decomposition and non-linear programming tools, and a

binary linear programming model that provides approximate solutions. By combin-

ing the various methods and a local search framework, we �nally obtain a hybrid

heuristic approach. Extensive computational experiments show that the proposed

methods outperform the direct application of non-linear solvers and provide high

quality solutions in a reasonable amount of time.

Keywords. Non-linear generalized assignment problem, Upper bounds, Heuristic

algorithms, Computational experiments.

1 Introduction

The Generalized Assignment Problem (GAP) is a classical combinatorial optimization
problem: We are given a set M of agents and a set N of tasks. Assigning a task j to
an agent i produces a pro�t pij and requires an amount wij of resource (weight). Each
agent i has a maximum resource capacity ci. The objective is to �nd a maximum pro�t
assignment of each task to at most one agent so that the sum of the resources allocated
to each agent does not exceed her capacity. Formally, the GAP can be de�ned as the

1LIX CNRS (UMR7161), École Polytechnique, 91128 Palaiseau Cedex, France.
Email: dambrosio@lix.polytechnique.fr

2DEI �Guglielmo Marconi�, Alma Mater Studiorum University of Bologna, 40136 Bologna, Italy.
Email: {silvano.martello,michele.monaci}@unibo.it

1

following binary linear program:

max
∑
i∈M

∑
j∈N

pijxij (1)∑
j∈N

wijxij ≤ ci i ∈M (2)∑
i∈M

xij ≤ 1 j ∈ N (3)

xij ∈ {0, 1} i ∈M, j ∈ N, (4)

where xij takes the value 1 if task j is assigned to agent i and the value 0 otherwise.

The GAP is known to be strongly NP-hard (see, e.g., Martello and Toth [10]) and
very di�cult to solve in practice.

In this paper, we consider the Non-Linear Generalized Assignment Problem (NLGAP),
de�ned as a GAP in which
• variables xij are continuous;

• the total pro�t and the amount of resource allocated to each agent are given by
non-linear, nondecreasing, separable functions of the variables;

• each task j ∈ N has a maximum availability aj.

The mathematical formulation of the NLGAP is then

max
∑
i∈M

∑
j∈N

fij(xij) (5)∑
j∈N

gij(xij) ≤ ci i ∈M (6)∑
i∈M

xij ≤ aj j ∈ N (7)

xij ≥ 0 i ∈M, j ∈ N, (8)

where xij denotes the amount of task j that is assigned to agent i (i ∈ M, j ∈ N).
Objective function (5) maximizes the overall pro�t produced by the assignments. The
knapsack-like capacity constraints (6) limit the agent workloads, while constraints (7)
impose the task availabilities.

We assume that pro�t and weight functions are twice continuously di�erentiable, and
that the evaluation of each term fij(xij) and gij(xij) can be performed in constant time.
We also assume that, given any non-negative value c, the solution of gij(xij) = c takes a
time bounded by a constant independent of the input size, i.e., that the same complexity
applies to the computation of g−1ij (·). Note that we do not make assumptions on convexity
or concavity of the involved functions.

Provided all functions can be represented using �nite length input, model (5)-(8) has
polynomial size (nm variables and m+ n constraints). On the one hand, the continuous

2

nature of the variables makes the problem easier than the classical GAP; on the other,
the non-linearity of the objective function and of the capacity constraints make it much
more di�cult.

Note that, in general, the classical complexity analysis does not apply to nonlinear op-
timization. Indeed: (i) the input functions might not be easily encodable by �nitely many
bits; (ii) solutions of the problem might involve irrational numbers (see, e.g., Hochbaum
[8]). The former issue is typically tackled by assuming that the evaluation of f and g at
a point is provided by an oracle and by performing a complexity analysis based on the
number of oracle calls made by the algorithm, together with the number of elementary
operations. The latter point remains instead critical, even when considering an approxi-

mate solution, i.e., a feasible solution that approximates the optimal one within a given
sub-optimality error. The strong NP-hardness of approximation is a common complexity
approach for continuous optimization, like, e.g., in Tillmann [16], Chen et al. [2], and
Chen, Ye, and Wang [3].

Other classical interpretations of the problem (in its linear or non-linear version) con-
sider, instead of tasks and agents, items and knapsacks (as the problem can be seen as
a generalization of the Multiple Knapsack Problem, see again [10]), or items and bins
(in particular, when all the items have to be assigned), or customers and facilities (see
Sharkey and Romeijn [13]), or jobs and parallel machines (see Shmoys and Tardos [14]).

We are not aware of any previous work on the NLGAP. Some variants of the problem
have however been studied in the literature. In 1989, Mazzola [11] considered GAP
problems with non-linear capacity interaction, i.e., a case in which the weight functions
are expressed as a multilinear (or polynomial) function of the variables. An application of
this problem is the hierarchical production planning problem, in which groups of products
have to be assigned to groups of facilities. The assignment of a group of products to
the same facility can give rise to non-linear capacity interaction among them. The case
studied in [11] has binary variables and a linear objective function.

Freling et al. [6] modeled a multiperiod single-sourcing problem as a special case of
the NLGAP with binary variables, and proposed a branch-and-price algorithm. The same
problem was considered by Morales and Romeijn [12], who discussed its computational
complexity, reviewed some special cases, and analyzed solution approaches and methods
for generating experimental data for purposes of testing.

Lee and Ma [9] were the �rst to introduce the Generalized Quadratic Assignment

Problem (GQAP), a variant of the NLGAP with quadratic objective function, linear
capacity constraints, and binary variables. The same problem was later considered by
Hahn et al. [7], who proposed an algorithm based on an RLT (Reformulation Linearization
Technique) dual ascent procedure.

More recently, Srivastava and Bullo [15] considered applications in human-robot in-
teraction, modeled as GAPs (and other packing problems) with sigmoid utilities, linear
capacity constraints, and binary variables and proposed approximation algorithms with
constant approximation factor.

3

When pro�ts and weights are independent of the agent, i.e., fij(xij) = fj(xij) and
gij(xij) = wj(xij) for each i ∈ M and j ∈ N , the NLGAP becomes a purely continuous
Multiple Non-Linear Knapsack Problem (see D'Ambrosio, Martello, and Mencarelli [5]),
while in the special case |M | = 1 it reduces to a purely continuous Non-Linear Knapsack
Problem (NLK). The NLK was studied by D'Ambrosio and Martello [4], who proposed a
heuristic algorithm that will be used in the next section.

The paper is organized as follows. In the next section we present constructive heuris-
tics, obtained from decomposition and non-linear programming tools. In Section 3 we
introduce continuous and binary linear programs and prove that they provide valid re-
laxations of the problem. An additional binary linear program can be used to produce
a feasible solution. In Section 4 we present a local search approach and obtain a hybrid
algorithm by combining it with the previous heuristics. Extensive computational exper-
iments are presented in Section 5, showing that the proposed methods outperform the
direct application of non-linear solvers and provide high quality solutions in a reasonable
amount of time. Conclusions follow in Sections 6.

2 Constructive heuristics from non-linear programs

We introduce in this section two simple heuristic approaches based on the decomposition
of the NLGAP into independent single non-linear knapsack subproblems. Recall that in
the knapsack interpretation of the NLGAP an agent can be seen as a knapsack and a task
as an item. The �rst heuristic iteratively considers an agent based decomposition. The
following procedure separately produces a feasible solution for each agent:

Procedure Agent:

for j := 1 to n do aj := aj;

for i := 1 to m do

solve the ith NLK instance, de�ned by knapsack capacity ci, item pro�ts fij(·),
item weights gij(·), and item availabilities aj (j ∈ N);

let yj (j ∈ N) be the resulting solution;

for j := 1 to n do xij := yj, aj := aj − yj
end for.

The procedure requires the solution of m single non-linear knapsack problems, which
are NP-hard, and very di�cult to be exactly solved in practice. We can however obtain a
fast NLGAP heuristic by computing approximate NLK solutions through the constructive
heuristic by D'Ambrosio and Martello [4] as follows.

For the current agent i, let ūij (j ∈ N) denote the maximum amount of task j that
can be assigned to i, computed as the minimum between the current task availability and
the amount that saturates the agent's capacity:

ūij := min(aj, g
−1
ij (ci)) (9)

4

and recall that the �rst term is computed in constant time. The algorithm in [4] is
based on a discretization of the solution space induced by an input integer parameter s
(number of samplings). For each item j, the sampling step ∆j = ūij/s is used to discretize
pro�t and weight functions. The algorithm iteratively selects the item and the sample
that provide the largest pro�t to weight ratio, and packs a fraction of such item into the
knapsack. The algorithm terminates when no residual capacity remains or all items have
been evaluated. Its time complexity is O(n2) (see [4]).

At each iteration, procedure Agent executes the NLK heuristic a constant number of
times, with increasing values of parameter s. The �rst execution is performed with a given
value s0. The following executions use values sh (h = 1, 2, . . .), with sh = 2sh−1 + 1. (In
this way most of the new sample points are di�erent from those of the previous execution.)
It follows that the time complexity of Agent is O(mn2).

The iterative execution of procedure Agent for di�erent agent sorting policies results
in the following NLGAP heuristic:

Algorithm H-Agent:

z∗ := −∞;

sort the agents by nonincreasing capacity ci;

repeat

execute Agent: let [xij] be the returned solution and z its value;

if z > z∗ then z∗ := z, [x∗ij] := [xij];

for i := 1 to m do

ϑ := random value uniformly distributed in [−z/m,+z/m];

ri :=

∑
j∈N fij(xij) + ϑ

ci
;

end for

sort the agents by nonincreasing ri values;

until halting condition.

The agents are initially sorted by nonincreasing capacity. Each subsequent iteration
sorts them by nonincreasing values of the pro�t per unit capacity obtained in the previous
iteration. In order to avoid cycling, such value is randomly perturbed by a value ϑ
depending on the average pro�t per agent.

If the halting condition is set to a constant number of iterations, the algorithm runs in
polynomial time. Each agent sorting takes O(m logm) time. At each iteration, procedure
Agent takes O(mn2) time while the for loop requires O(mn) time. The overall time
complexity of H-Agent is thus O(m logm+mn2).

H-Agent iteratively invokes a procedure that considers one agent at a time. The next
heuristic adopts a symmetrical strategy. Algorithm H-Task makes use of the following
procedure, that considers one task at a time and assigns fractions of it to the agents.
In this case the current task plays the role of a knapsack, and the agents correspond to
items:

5

Procedure Task:

for i := 1 to m do ci := ci;

for j := 1 to n do

solve the jth NLK instance, de�ned by knapsack capacity aj, item pro�ts fij(·),
unit item weights, and item availabilities ci (i ∈M);

let yi (i ∈M) be the resulting solution;

for i := 1 to m do xij := yi, ci := ci − gij(yi)
end for.

The NLGAP heuristic iteratively invokes procedure Task for di�erent task sorting
policies:

Algorithm H-Task:

z∗ := −∞;

for j := 1 to n do rj := maxi∈M

{
fij(aj)

gij(aj)

}
sort the tasks by nonincreasing rj values;

repeat

execute Task: let [xij] be the returned solution and z its value;

if z > z∗ then z∗ := z, [x∗ij] := [xij];

for j := 1 to n do

ϑ := random value uniformly distributed in [−z/n,+z/n];

rj :=

∑
i∈M fij(xij) + ϑ∑
i∈M gij(xij)

;

end for

sort the tasks by nonincreasing rj values;

until halting condition.

(For cases where a denominator takes the value 0, we set the corresponding rj to zero.)

From the considerations made for H-Agent it easily follows that H-Task has time
complexity O(n log n + nm2). The overall time complexity required by the consecutive
execution of the two heuristics is thus O(mn(m+ n)).

Preliminary computational experiments showed that, from a practical point of view,
iterating the execution of Agent and Task for di�erent ordering policies is bene�cial for
improving the quality of the solutions.

3 Upper and lower bounds from linear programs

In this section we present linear models that produce two relaxations and an approximate
solution of the NLGAP.

6

For each pair (i, j), let uij be the maximum amount of task j that can be feasibly
assigned to agent i, computed as in (9)

uij := min(aj, g
−1
ij (ci)). (10)

Let s be a positive integer parameter. For each pair (i, j) let α0
ij, α

1
ij, . . . , α

s
ij be s + 1

distinct values (samples) such that

0 = α0
ij < α1

ij < . . . < αsij = uij. (11)

The three models introduced in the following make use of the above samples, but they
rely on very di�erent considerations. The one presented in the next section replaces each
continuous variable with a linear combination of the samples, the next one makes use of
integer variables associated with the intervals de�ned by the samples, and the last one
computes a lower bound by imposing that each variable can only take the value of a
sample.

3.1 An upper bound through linear programming

This relaxation is obtained by overestimating (resp. underestimating) the values of the
pro�t (resp. weight) functions at each sample k (k = 0, . . . , s), namely:

f̂kij =

{
fij(α

k+1
ij) if k < s;

fij(α
s
ij) otherwise

and ĝkij =

{
gij(α

k−1
ij) if k ≥ 1;

0 otherwise
(i ∈M, j ∈ N). (12)

For each triple (i, j, k), let us introduce a continuous variable ϑkij ∈ [0, 1] and consider
the linear model

(U LP) max
∑
i∈M

∑
j∈N

s∑
k=0

f̂kijϑ
k
ij (13)

∑
j∈N

s∑
k=0

ĝkijϑ
k
ij ≤ ci i ∈M (14)

∑
i∈M

s∑
k=0

αkijϑ
k
ij ≤ aj j ∈ N (15)

s∑
k=0

ϑkij = 1 i ∈M, j ∈ N (16)

ϑkij ≥ 0 i ∈M, j ∈ N, k = 0, . . . , s. (17)

Equations (13)-(15) are the counterparts of (5)-(7) obtained through convex combinations
(see (16)) of the estimated values at the sample points.

Property 1 Model (13)-(17) is a valid relaxation for the NLGAP (5)-(8).

7

Proof. We prove the thesis by showing that, for any feasible solution [xij] to (5)-(8), there
exists a feasible solution [ϑkij] to (13)-(17) having at least the same objective function value.
Consider any pair (i, j). Let ` be such that xij ∈ [α`ij, α

`+1
ij], i.e., xij = λα`ij + (1− λ)α`+1

ij

for some λ ∈ [0, 1]. Consider the solution de�ned, for pair (i, j), by

ϑkij =


λ if k = `;
1− λ if k = `+ 1;
0 otherwise.

(18)

The corresponding contribution to the left-hand side of (14) is thus λĝ`ij + (1− λ)ĝ`+1
ij ≤

gij(xij), where the inequality follows from (12), and hence [ϑkij] satis�es (14). Similarly,
the contribution of pair (i, j) to (15) is λα`ij + (1 − λ)α`+1

ij = xij by de�nition of `, and
hence [ϑkij] satis�es (15). The de�nition of ϑ immediately implies (16). Finally, the con-

tribution of (i, j) to (13) is λf̂ `ij+(1−λ)f̂ `+1
ij , which, by (12), is at least equal to fij(xij). 2

As (13)-(17) is a linear program, upper bound U LP can be computed in polynomial time,
provided that parameter s is chosen polynomial in the encoding length of the problem
instance. As we will see in Section 5, its computation is very fast even for a large number
s of samples, allowing a tight approximation of pro�t and weight functions.

3.2 An upper bound through 0-1 linear programming

The relaxation presented in this section replaces the domain of each continuous variable
xij with the s consecutive intervals

(α0
ij, α

1
ij], (α

1
ij, α

2
ij], . . . , (α

s−1
ij , αsij] (19)

induced by the samples, and associates with each interval k (k = 1, . . . , s) the pro�t of
its right extreme and the weight of its left extreme, namely:

f̃kij = fij(α
k
ij) and g̃kij = gij(α

k−1
ij) (i ∈M, j ∈ N).

For each triple (i, j, k), we introduce a binary variable ψkij ∈ {0, 1} and consider the 0-1
linear model

(U LP01) max
∑
i∈M

∑
j∈N

s∑
k=1

f̃kijψ
k
ij (20)

∑
j∈N

s∑
k=1

g̃kijψ
k
ij ≤ ci i ∈M (21)

∑
i∈M

s∑
k=1

αk−1ij ψkij ≤ aj j ∈ N (22)

s∑
k=1

ψkij = 1 i ∈M, j ∈ N (23)

ψkij ∈ {0, 1} i ∈M, j ∈ N, k = 1, . . . , s. (24)

8

Constraints (23) impose that one interval is assigned to each pair (i, j), while (20)-(22)
describe pro�t, weight and task consumption of the interval assignment.

Property 2 Model (20)-(24) is a valid relaxation for the NLGAP (5)-(8).

Proof. We prove the thesis by showing that, for any feasible solution [xij] to (5)-(8),
there exists a feasible solution [ψkij] to (20)-(24) having at least the same objective function
value. For any pair (i, j),

• let ` be such that xij ∈ (α`−1ij , α`ij] (` = 1 if xij = 0);

• observe that, as f and g are nondecreasing, we have fij(xij) ∈ [fij(α
`−1
ij), fij(α

`
ij)]

and gij(xij) ∈ [gij(α
`−1
ij), gij(α

`
ij)];

• associate pair (i, j) to segment `, i.e.,

ψkij =

{
1 if k = `;
0 otherwise.

(25)

• Recalling that f and g are nondecreasing, the contribution of pair (i, j) to objective
function (20), to the left-hand side of (21), and to the left-hand side of (22) are,
respectively, f̃ `ij ≥ fij(xij), g̃`ij ≤ gij(xij), and α

`−1
ij ≤ xij.

The thesis follows. 2

3.3 A lower bound through 0-1 linear programming

The samples [αkij], see (11), can also be used to de�ne a binary linear program that can
produce a heuristic solution to the NLGAP.

For each triple (i, j, k), we sample the pro�t and weight functions as

f̄kij = fij(α
k
ij) and ḡkij = gij(α

k
ij) (i ∈M, j ∈ N), (26)

and we de�ne a binary variable ϕkij taking the value one if and only if xij = αkij. This
leads to the model

(L0-1) max
∑
i∈M

∑
j∈N

s∑
k=0

f̄kijϕ
k
ij (27)

∑
j∈N

s∑
k=0

ḡkijϕ
k
ij ≤ ci i ∈M (28)

∑
i∈M

s∑
k=0

αkijϕ
k
ij ≤ aj j ∈ N (29)

s∑
k=0

ϕkij = 1 i ∈M, j ∈ N (30)

ϕkij ∈ {0, 1} i ∈M, j ∈ N, k = 0, . . . , s. (31)

9

The model imposes (see (30)) that, for any pair (i, j), the amount of task j that is
assigned to agent i coincide with one of the samples. Equations (27)-(29) describe the
corresponding contribution to objective function, agent workload, and task availability,
respectively.

Property 3 Model (27)-(31) provides a feasible solution to the NLGAP (5)-(8).

Proof. Observe that any solution [ϕkij] satisfying (28)-(31) provides a feasible solu-
tion [xij] to the NLGAP. Indeed, (30) imposes that, for each pair (i, j) exactly one
sample, say `, is selected, i.e., xij = α`ij. Such solution satis�es (6)-(8) and has value∑

i∈M
∑

j∈N fij(xij) =
∑

i∈M
∑

j∈N
∑s

k=0 f̄
k
ijϕ

k
ij. 2

Note that model (L0-1) produces the best solution over the feasible region obtained by
discretizing the domain of each variable xij, and hence it can be expected to provide a
good approximation to the problem. Unfortunately, this lower bound cannot be computed
e�ciently. Indeed,

Property 4 Problem (L0-1) is strongly NP-hard.

Proof. We prove the thesis by transformation from the Multiple Subset-Sum Problem

(MSSP): Given m identical bins of capacity c and a set of n integer values wj ≤ c, select
m subsets such that no subset has a total value exceeding c and the sum of the selected
integers is a maximum. Formally,

max
∑
i∈M

∑
j∈N

wjxij (32)∑
j∈N

wjxij ≤ c i ∈M (33)∑
i∈M

xij ≤ 1 j ∈ N (34)

xij ∈ {0, 1} i ∈M, j ∈ N. (35)

This problem is known to be strongly NP-hard, see Caprara, Kellerer, and Pferschy [1].

Given an instance of the MSSP, consider an instance of (27)-(31) in which

• ci = c for all i.

• s = 1, i.e., there are only two samples, α0
ij = 0 and α1

ij = uij for all i, j;

• fij(·) and gij(·) satisfy fij(0) = gij(0) = 0 and fij(uij) = gij(uij) = wj for all i, j;

• aj = 1 for all j,

10

and observe that the last two de�nitions imply uij = 1 for all i, j. For such instance,
(27)-(31) becomes

max
∑
i∈M

∑
j∈N

(
0ϕ0

ij + wjϕ
1
ij

)
(36)∑

j∈N

(
0ϕ0

ij + wjϕ
1
ij

)
≤ c i ∈M (37)∑

i∈M

(
0ϕ0

ij + 1ϕ1
ij

)
≤ 1 j ∈ N (38)

ϕ0
ij + ϕ1

ij = 1 i ∈M, j ∈ N (39)

ϕ0
ij, ϕ

1
ij ∈ {0, 1} i ∈M, j ∈ N. (40)

By eliminating the terms with ϕ0
ij, equation (39) becomes redundant as ϕ0

ij = 1−ϕ1
ij. We

thus obtain a formulation that exactly models the MSSP. 2

Although it can be impractical to exactly solve (L0-1), the results in Section 5 show
that an ILP solver can quickly provide heuristic solutions of good quality for (27)-(31)
and hence for the NLGAP.

4 Post-optimization and hybrid approach

In this section we �rst introduce a local search algorithm that can be used to improve
any feasible solution [xij] to the NLGAP. We then present an overall hybrid algorithm
that combines the constructive heuristics of Section 2 and the 0-1 linear programming
approach of Section 3.3.

4.1 Post-optimization

In the following, we denote by c̄i the current slack (residual capacity) of the i-th constraint
(6) and by āj the current slack (residual availability) of the j-th constraint (7). The
algorithm makes use of the following four neighborhoods:

1. Preliminary observe that, in general, there is no guarantee that a solution be max-
imal. This neighborhood contains a solution for each agent i and task j such that
c̄i > 0 and āj > 0, obtained by increasing xij to its maximum feasible value. For-
mally,

N1(i, j): (a) set xij := 0, and correspondingly update c̄i and āj;
(b) set xij := min

(
āj, g

−1
ij (c̄i)

)
.

2. For each agent i and pair of distinct tasks j and k such that xij > 0 and āk > 0, the
second neighborhood contains all solutions obtained by decreasing xij to a certain

11

value, say ∆ (< xij), and increasing xik to the maximum resulting feasible value.
Formally,

N2(i, j, k): (a) set xij := ∆, xik := 0, and correspondingly update c̄i and āk;
(b) set xik := min

(
āk, g

−1
ik (c̄i)

)
.

3. For each task j and pair of distinct agents i and ` such that xij > 0 and c̄` > 0, the
third neighborhood is a �dual� of the second one. It contains all solutions obtained
by decreasing xij to ∆ (< xij), and increasing x`j to the maximum resulting feasible
value. Formally,

N3(j, i, `): (a) set xij := ∆, x`j := 0, and correspondingly update c̄` and āj;
(b) set x`j := min

(
āj, g

−1
`j (c̄`)

)
.

4. For each pair of distinct agents i and ` and pair of distinct tasks j and k such
that xij > 0 and x`k > 0, the last neighborhood contains all solutions obtained by
simultaneously decreasing xij and x`k to ∆′ (< xij) and ∆′′ (< x`k), respectively,
and increasing xik and x`j to their maximum resulting feasible values. Formally,

N4(i, `, j, k): (a) set xij := ∆′, x`k := ∆′′, xik := x`j := 0, and correspondingly
update c̄i, c̄`, āj, and āk;

(b) set xik := min
(
āk, g

−1
ik (c̄i)

)
and x`j := min

(
āj, g

−1
`j (c̄`)

)
.

The ∆ values (needed by N2 and N3) are handled as follows. Given a pre�xed integer
parameter σ, we evaluate, for each xij variable, σ potential solutions, obtained, for r =
1, . . . , σ, by decreasing xij to ∆ := r

xij
σ
. The best solution is then returned. The values

of ∆′ and ∆′′ needed by N4 are handled in a similar way.

The four neighborhoods are sequentially explored following a best-improve strategy,
but the exploration of each neighborhood is not exhaustive, according to the following
random criterion. As the neighborhoods have di�erent size, in order to avoid to spend
too much time on one of them, thus possibly failing the exploration of others, it was de-
cided to explore a similar number of solutions of each neighborhood. Let ν be an integer
parameter representing the desired number of pairs (resp. triples, resp. quadruplets) to
examine for N1 (resp. for N2 and N3, resp. for N4): For each pair/triple/quadruplet,
the corresponding neighborhood is examined with a probability given by ν over the num-
ber of distinct pairs/triples/quadruplets. The overall local search algorithm is then:

Procedure Local Search (ν, σ):

repeat

for each pair (i, j) do

with probability ν
nm

explore N1(i, j);

possibly update the incumbent solution

end for;

if the incumbent solution was updated then continue;

12

for each triple (i, j, k) do

with probability ν
n(n−1)m explore N2(i, j, k);

possibly update the incumbent solution

end for;

if the incumbent solution was updated then continue;

for each triple (j, i, `) do

with probability ν
nm(m−1) explore N3(j, i, `);

possibly update the incumbent solution

end for;

if the incumbent solution was updated then continue;

for each quadruplet (i, `, j, k) do

with probability ν
nm(n−1)(m−1) explore N4(i, `, j, k);

possibly update the incumbent solution

end for;

if the incumbent solution was not updated then return;

until halting condition.

The procedure terminates when either time/iteration limit occurs or a local optimum is
attained. In the latter case, σ is increased and the procedure is re-executed. The increasing
is obtained by generating a uniform real number ρ ∈ [1, 2] and setting σ := bρσc + 1 (to
guarantee strictly increasing σ values).

Preliminary computational experiments showed that changing the order in which the
neighborhoods are explored has no major impact on the quality of the solutions found.

4.2 Hybrid heuristic

Summarizing, the solution methods we have introduced so far are:

• constructive heuristics H-Agent and H-Task (Section 2);

• 0-1 linear programming approach (Section 3.3);

• post-optimization (Section 4.1).

First observe that post-optimization can be embedded into H-Agent and H-Task by
executing, at each iteration, procedure Local Search on the feasible solution produced
by inner procedures Agent and Task, respectively. We denote by H-Agent∗ and H-
Task∗ the resulting algorithms.

Their combination leads to the following overall algorithm for the NLGAP:

13

Procedure Hybrid:

execute H-Agent∗ and H-Task∗, and let [xij] be the best solution found;

for each i ∈M and j ∈ N do

de�ne the αkij values (k = 0, 1, . . . , s) as in (11);

for k := 0 to s do ϕkij =

{
1 if k = arg max

h∈{0,...,s}
{αhij ≤ xij};

0 otherwise
end for;

run an ILP solver on (L0-1), with initial solution [ϕkij];

execute Local Search on the solution returned by the solver

end.

5 Computational experiments

The procedures introduced in the previous sections were implemented in C language.
Computational experiments were performed on an Intel Xeon E5649 running at 2.53
GHz. To the best of our knowledge, no benchmark for the NLGAP has been proposed in
the literature. We thus designed a large benchmark of instances with di�erent character-
istics, that is described in the next section. In Section 5.2 we report the outcome of the
experiments that compare the performance of our methods with that of state-of-the-art
MINLP solvers.

5.1 Benchmarks

The NLGAP can be seen as a generalization of the multiple non-linear knapsack problem.
It was then natural to derive benchmark instances from those proposed for such prob-
lem. In particular, we started from the instances adopted by D'Ambrosio, Martello, and
Mencarelli [5]. Accordingly, we de�ned the pro�t functions as

fij(xij) =
γij

1 + βije−αij(xij+δij)
, (i ∈M, j ∈ N), (41)

by uniformly randomly generating αij in [0.1, 0.2], βij and γij in [0, 100], and δij in
[−100, 0]. In this way each pro�t function can randomly turn out to be convex, or concave,
or non-concave and non-convex.

We generated two families of instances having Non-linear and Linear weight functions,
de�ned, respectively, as

gij(xij) =
√
πijxij + τij −

√
τij, (42)

with πij and τij uniformly random in [1, 20], and

gij(xij) = πijxij, (43)

14

with πij uniformly random in [1, 100]. Note that both functions are concave (the latter is
linear), increasing, and take the value zero when xij = 0.

For each family, we produced two sets of instances with di�erent kinds of capacity.
Instances with Similar capacities have

ci = ρ

n∑
j=1

gij(uj) (i = 1, . . . ,m), (44)

ρ being a uniformly random value in [0.4, 0.6]. For instances with Dissimilar capacities,
ρ was generated in [0.1, 0.9].

The two weight functions and the two kinds of capacity produced then four bench-
marks, denoted as NS (Non-linear weights, Similar capacities), ND (Non-linear weights,
Dissimilar capacities), LS (Linear weights, Similar capacities), and LD (Linear weights,
Dissimilar capacities). For each benchmark, we considered �ve values of n (10, 50, 100,
500, and 1000) and three values of m (5, 10, and 20), and generated 20 instances per pair
(n,m). The overall test bed includes then 1200 random instances, that are available at
http://or.dei.unibo.it/library/non-linear-generalized-assignment-problem.

5.2 Experiments

The computational experiments were performed in two phases. First, we computed, for
each instance, an upper bound on the optimal solution value. This was obtained by
running IBM ILOG CPLEX 12.6.0.0 on

• the linear problem (U LP) of Section 3.1;

• the binary problem (U LP01) of Section 3.2,

for di�erent numbers of samples (s ∈ {5, 10, 50, 100}). In all cases, the samples were
de�ned so that the resulting intervals had the same length. A time limit of 300 seconds
per execution was imposed. For each instance, the best (lowest) upper bound (U∗ in the
following) was selected. The upper bound U produced by each computation was then
evaluated through the ratio U/U∗.

Table 1 reports average times and ratios for the instances of class NS. Each entry
reports the average values over the corresponding 20 instances. For each value of m, an
additional row provides the average values over the associated 100 instances, and a �nal
row provides the overall averages.

The linear model was always solved to optimality within comparatively small comput-
ing times. The quality of the resulting upper bounds monotonically improves with s (and
hence with the CPU time). For s = 100, the linear model produces good upper bounds
(on average within 5% from the best bound) with reasonable computing times (below 13
seconds on average).

15

(U
L
P
)

(U
L
P
01
)

S
iz
e

s
=

5
s
=

10
s
=

5
0

s
=

1
0
0

s
=

5
s
=

1
0

s
=

5
0

s
=

1
0
0

m
n

t
U
/U

∗
t

U
/U

∗
t

U
/
U

∗
t

U
/
U

∗
t

U
/
U

∗
t

U
/
U

∗
t

U
/
U

∗
t

U
/
U

∗

5
10

0.
00

1.
67
6

0.
00

1.
33
7

0.
01

1.
17
5

0.
01

1.
15
9

0.
03

1.
20
7

0.
06

1.
08
8

0.
55

1.
00
8

1.
92

1.
00
0

50
0.
01

1.
67
6

0.
01

1.
23
0

0.
05

1.
05
0

0.
10

1.
03
4

0.
74

1.
21
8

2.
22

1.
08
6

46
.2
9

1.
00
9

77
.7
4

1.
00
0

10
0

0.
01

1.
67
1

0.
02

1.
23
0

0.
09

1.
04
6

0.
30

1.
03
0

2.
06

1.
22
3

10
.1
1

1.
08
7

26
.5
2

1.
00
8

88
.8
2

1.
00
0

50
0

0.
10

1.
63
7

0.
16

1.
22
0

0.
88

1.
04
5

5.
22

1.
03
0

8.
43

1.
21
8

11
.3
9

1.
08
5

61
.4
7

1.
00
8

13
8.
42

1.
00
0

10
00

0.
24

1.
64
7

0.
43

1.
22
1

2.
74

1.
04
4

19
.6
8

1.
02
9

7.
95

1.
22
0

14
.0
3

1.
08
5

10
8.
66

1.
00
8

25
0.
21

1.
00
0

av
g.

0.
07

1.
66
1

0.
12

1.
24
7

0.
75

1.
07
2

5.
06

1.
05
6

3.
84

1.
21
7

7.
56

1.
08
6

48
.7
0

1.
00
8

11
1.
40

1.
00
0

10
10

0.
00

1.
37
8

0.
00

1.
21
8

0.
02

1.
11
7

0.
03

1.
10
6

0.
05

1.
11
4

0.
08

1.
04
4

0.
56

1.
00
4

2.
06

1.
00
0

50
0.
02

1.
97
8

0.
02

1.
32
3

0.
09

1.
06
8

0.
24

1.
04
8

3.
38

1.
31
8

38
.9
8

1.
11
1

26
4.
01

1.
00
9

28
7.
87

1.
00
0

10
0

0.
03

1.
93
7

0.
05

1.
30
2

0.
22

1.
05
4

0.
71

1.
03
5

60
.8
1

1.
31
2

22
4.
18

1.
11
1

30
0.
00

1.
01
0

30
0.
00

1.
00
0

50
0

0.
22

1.
93
5

0.
37

1.
30
0

2.
23

1.
05
3

10
.9
9

1.
03
4

28
5.
21

1.
31
7

21
9.
82

1.
11
4

29
9.
28

1.
01
0

30
0.
00

1.
20
5

10
00

0.
54

1.
93
7

1.
02

1.
29
8

6.
79

1.
05
2

37
.5
2

1.
03
2

10
6.
95

1.
31
5

72
.9
0

1.
11
3

29
8.
84

1.
21
1

30
0.
00

1.
00
0

av
g.

0.
16

1.
83
3

0.
29

1.
28
8

1.
87

1.
06
9

9.
90

1.
05
1

91
.2
7

1.
27
5

11
1.
18

1.
09
8

23
2.
33

1.
04
9

23
7.
97

1.
04
1

20
10

0.
01

1.
21
1

0.
01

1.
11
3

0.
03

1.
05
0

0.
06

1.
04
3

0.
05

1.
07
1

0.
11

1.
03
2

1.
17

1.
00
3

3.
53

1.
00
0

50
0.
04

2.
20
8

0.
06

1.
41
8

0.
22

1.
09
2

0.
51

1.
06
7

3.
63

1.
43
0

98
.1
2

1.
13
8

30
0.
00

1.
00
9

30
0.
00

1.
00
0

10
0

0.
10

2.
25
2

0.
11

1.
41
6

0.
53

1.
07
2

1.
54

1.
04
7

23
1.
06

1.
47
8

30
0.
00

1.
15
8

30
0.
00

1.
01
4

30
0.
00

1.
00
0

50
0

0.
57

2.
21
0

0.
95

1.
40
3

4.
83

1.
06
4

23
.7
5

1.
04
0

30
0.
00

1.
47
5

30
0.
00

1.
15
8

30
0.
00

1.
01
2

30
0.
00

1.
00
0

10
00

1.
46

2.
18
9

2.
70

1.
38
8

14
.6
5

1.
05
3

89
.2
4

1.
02
9

30
0.
00

1.
46
0

30
0.
00

1.
14
6

30
0.
00

1.
00
2

30
0.
00

1.
00
0

av
g.

0.
43

2.
01
4

0.
77

1.
34
8

4.
05

1.
06
6

23
.0
2

1.
04
5

16
6.
95

1.
38
3

19
9.
65

1.
12
6

24
0.
23

1.
00
8

24
0.
71

1.
00
0

ov
er
al
l
av
g.

0.
22

1.
83
6

0.
39

1.
29
4

2.
22

1.
06
9

12
.6
6

1.
05
1

87
.3
5

1.
29
2

10
6.
13

1.
10
4

17
3.
75

1.
02
2

19
6.
69

1.
01
4

T
ab
le
1:

U
pp

er
b
ou
nd

co
m
pu

ta
ti
on
s
fo
r
N
on
-l
in
ea
r
w
ei
gh
t
fu
nc
ti
on

an
d
Si
m
ila
r
ca
pa
ci
ti
es
.
A
ve
ra
ge

va
lu
es

ov
er

20
in
st
an
ce
s.

16

(U
L
P
)

(U
L
P
01
)

s
=

5
s
=

10
s
=

5
0

s
=

1
0
0

s
=

5
s
=

1
0

s
=

5
0

s
=

1
0
0

C
la
ss

m
t

U
/U

∗
t

U
/U

∗
t

U
/
U

∗
t

U
/
U

∗
t

U
/
U

∗
t

U
/
U

∗
t

U
/
U

∗
t

U
/
U

∗

N
S

5
0.
07

1.
66
1

0.
12

1.
24
7

0.
75

1.
07
2

5.
06

1.
05
6

3.
84

1.
21
7

7.
56

1.
08
6

48
.7
0

1.
00
8

11
1.
40

1.
00
0

10
0.
16

1.
83
3

0.
29

1.
28
8

1.
87

1.
06
9

9.
90

1.
05
1

91
.2
7

1.
27
5

11
1.
18

1.
09
8

23
2.
33

1.
04
9

23
7.
97

1.
04
1

20
0.
43

2.
01
4

0.
77

1.
34
8

4.
05

1.
06
6

23
.0
2

1.
04
5

16
6.
95

1.
38
3

19
9.
65

1.
12
6

24
0.
23

1.
00
8

24
0.
71

1.
00
0

av
g.

0.
22

1.
83
6

0.
39

1.
29
4

2.
22

1.
06
9

12
.6
6

1.
05
1

87
.3
5

1.
29
2

10
6.
13

1.
10
4

17
3.
75

1.
02
2

19
6.
69

1.
01
4

N
D

5
0.
08

1.
66
1

0.
14

1.
24
2

0.
71

1.
06
8

4.
68

1.
05
2

4.
14

1.
21
4

5.
71

1.
08
2

41
.1
4

1.
00
8

10
2.
49

1.
00
0

10
0.
18

1.
86
3

0.
31

1.
30
0

1.
68

1.
07
4

10
.0
1

1.
05
5

82
.0
5

1.
28
1

91
.7
2

1.
10
1

22
1.
78

1.
00
8

23
6.
09

1.
19
4

20
0.
44

2.
01
2

0.
77

1.
35
0

3.
81

1.
07
1

21
.3
1

1.
04
9

14
7.
49

1.
37
1

19
5.
16

1.
12
3

24
0.
21

1.
00
8

24
0.
99

1.
00
0

av
g.

0.
23

1.
84
5

0.
40

1.
29
7

2.
07

1.
07
1

12
.0
0

1.
05
2

77
.9
0

1.
28
9

97
.5
3

1.
10
2

16
7.
71

1.
00
8

19
3.
19

1.
06
5

L
S

5
0.
07

1.
31
1

0.
16

1.
17
0

1.
04

1.
07
1

5.
91

1.
06
0

3.
68

1.
26
5

7.
48

1.
11
1

69
.4
2

1.
01
1

14
9.
72

1.
03
1

10
0.
20

1.
38
9

0.
43

1.
20
2

2.
73

1.
08
1

14
.3
4

1.
06
7

97
.4
3

1.
33
4

12
3.
23

1.
13
4

23
6.
76

1.
01
1

24
0.
85

1.
00
0

20
0.
47

1.
46
7

0.
97

1.
21
6

7.
02

1.
06
6

33
.7
1

1.
04
9

20
4.
20

1.
42
1

23
8.
67

1.
16
0

24
1.
11

1.
01
1

24
4.
76

1.
00
2

av
g.

0.
25

1.
38
9

0.
52

1.
19
6

3.
60

1.
07
3

17
.9
9

1.
05
9

10
1.
77

1.
34
0

12
3.
13

1.
13
5

18
2.
43

1.
01
1

21
1.
78

1.
01
1

L
D

5
0.
07

1.
31
1

0.
15

1.
16
8

1.
07

1.
07
0

5.
98

1.
05
8

2.
45

1.
26
0

7.
03

1.
10
9

52
.3
4

1.
01
1

12
3.
67

1.
05
3

10
0.
20

1.
38
7

0.
39

1.
20
1

2.
70

1.
08
1

14
.0
2

1.
06
7

74
.7
1

1.
33
3

10
6.
66

1.
13
2

23
4.
53

1.
07
3

24
1.
88

1.
00
0

20
0.
49

1.
46
6

0.
93

1.
21
7

7.
63

1.
06
8

32
.8
5

1.
05
2

20
5.
52

1.
41
6

23
8.
18

1.
15
9

24
1.
31

1.
01
1

24
6.
13

1.
00
2

av
g.

0.
25

1.
38
8

0.
49

1.
19
5

3.
80

1.
07
3

17
.6
2

1.
05
9

94
.2
3

1.
33
6

11
7.
29

1.
13
4

17
6.
06

1.
03
2

20
3.
89

1.
01
8

T
ab
le
2:

Su
m
m
ar
y
of

re
su
lt
s
fo
r
th
e
up

p
er

b
ou
nd

co
m
pu

ta
ti
on
s
(f
ou
r
cl
as
se
s
of

in
st
an
ce
s)
.

17

As one could expect, �nding the optimal solution of the integer model was much more
di�cult, and the solver frequently hit the time limit, especially for larger m values: for
s = 100, this happened 5 times (out of 100) for the instances with m = 5, 78 times for
those with m = 10, and 80 times for those with m = 20. On the other hand, the resulting
upper bounds are considerably tighter when large s values are used. Observe however
that U LP01 with s ≤ 10 is dominated by U LP with s = 100 both in terms of upper bound
value and CPU time. Overall, the best value U∗ was obtained by the integer model for
s = 100 in 296 cases out of 300.

The results obtained for the other three classes (ND, LS, and LD) were very similar to
those reported in Table 1. For this reason we do not give the detailed results, but provide,
in Table 2, the average values over each group of 100 instances having the same value of
m (and the overall results of each class). It can be observed that only in the simplest
(s = 5) linear relaxation there is a small di�erence between the instances with Non-linear
and Linear weight functions: in the latter case the linear model provides upper bounds
closer to the best computed upper bounds. For larger s values and for the binary linear
model (all s values), such behavior does not occur.

The next tables compare the performance of �ve heuristic approaches to the NLGAP:

• Baron: direct application of commercial solver Baron version 18.11.12 on the non-
linear formulation (5)-(8) of Section 1;

• Couenne: direct application of freeware solver Couenne version 0.5 on the non-
linear formulation (5)-(8) of Section 1;

• H-Agent∗: heuristic H-Agent of Section 2 improved through procedure Local
Search of Section 4.1;

• H-Task∗: heuristicH-Task of Section 2 improved through procedure Local Search
of Section 4.1;

• L01: 0-1 linear model (L0-1) of Section 3.3, de�ned by (27)-(31), solved by ILP
commercial solver IBM ILOG CPLEX 12.6.0.0. The solver is run as standalone
program, without providing an initial solution;

• Hyb: hybrid approach of Section 4.2. For given time limit T, the algorithm was
executed by assigning 0.1T to H-Agent∗, 0.1T to H-Task∗, 0.7T to L01, and the
residual time to Local Search.

For each instance, the heuristics were run with two di�erent time limits: 10 seconds
and 30 seconds. In the former (resp. latter) case the discretization was produced with
s = 50 (resp. s = 100) for H-Agent∗ and H-Task∗, and s = 5 (resp. s = 10) for L01,
and Hyb. As Baron and Couenne are general purpose solvers, they were instead run
with a considerably larger time limit of 600 seconds. All solvers were executed with their
default parameter setting. Tables 3-6 report, for the considered time limits, the average
percentage gap of each algorithm over the 20 instances of each row. For each instance,

18

Class T=10 sec T=30 sec T=600 sec
m n H-Task∗ H-Agent∗ L01 Hyb H-Task∗ H-Agent∗ L01 Hyb Couenne Baron
5 10 3.989 2.597 3.893 1.537 2.679 2.614 2.107 1.055 5.015 1.067

50 6.090 5.020 2.631 1.397 6.268 4.916 1.391 1.000 29.532 12.757
100 5.956 4.743 2.131 1.231 6.110 4.569 1.196 0.907 32.352 14.627
500 9.854 6.637 1.935 1.711 8.187 6.046 1.138 0.942 35.163 27.887
1000 19.844 7.892 1.975 1.921 13.248 6.271 1.138 1.054 38.068 44.267
avg. 9.146 5.378 2.513 1.559 7.298 4.883 1.394 0.992 28.026 20.121

10 10 2.164 1.441 2.408 0.710 1.922 1.439 1.510 0.613 5.781 1.179
50 8.543 7.660 4.168 2.513 8.949 7.151 2.539 1.884 34.412 12.569
100 8.498 7.352 3.058 2.079 8.604 7.138 1.919 1.537 35.966 14.254
500 18.450 10.639 2.549 2.455 11.073 9.207 1.549 1.499 40.349 52.222
1000 34.860 19.463 2.652 2.622 26.639 12.962 1.680 1.671 100.000 100.000
avg. 14.503 9.311 2.967 2.076 11.437 7.579 1.839 1.441 43.302 36.045

20 10 1.002 0.621 1.889 0.393 0.957 0.554 1.046 0.423 19.593 0.936
50 13.116 12.173 7.011 5.310 13.818 11.724 4.728 3.878 39.377 14.072
100 12.819 13.689 4.954 4.258 12.403 13.266 3.751 3.218 38.800 14.285
500 33.386 22.309 3.503 3.385 20.054 15.974 2.514 2.479 91.108 100.000
1000 43.444 35.300 4.401 4.568 41.094 29.046 3.481 3.766 100.000 99.970
avg. 20.753 16.818 4.352 3.583 17.665 14.113 3.104 2.753 57.776 45.853

overall avg. 14.801 10.503 3.277 2.406 12.134 8.858 2.112 1.728 43.034 34.006

Table 3: Percentage gap of the heuristics on instances with Non-linear weight function
and Similar capacities. Average values over 20 instances.

Class T=10 sec T=30 sec T=600 sec
m n H-Task∗ H-Agent∗ L01 Hyb H-Task∗ H-Agent∗ L01 Hyb Couenne Baron
5 10 4.459 2.904 3.080 1.220 3.877 2.791 1.790 0.708 1.738 0.631

50 6.103 5.316 2.569 1.513 5.962 4.998 1.463 1.046 27.260 13.596
100 5.873 4.624 2.166 1.277 6.201 4.413 1.199 0.904 32.734 15.706
500 9.463 6.773 1.937 1.693 8.130 6.307 1.126 0.930 87.293 28.262
1000 20.042 7.631 1.926 1.858 12.799 6.282 1.122 1.038 100.000 100.000
avg. 9.188 5.450 2.336 1.512 7.394 4.958 1.340 0.925 49.805 31.639

10 10 2.046 1.716 3.092 0.977 2.043 1.715 1.889 0.824 7.861 1.359
50 9.074 7.106 4.050 2.530 7.970 6.920 2.538 1.903 33.651 12.242
100 8.133 7.360 3.104 2.135 8.003 7.154 1.992 1.579 35.639 14.730
500 18.159 10.257 2.746 2.637 10.925 8.866 1.748 1.707 100.000 35.928
1000 35.713 18.254 2.613 2.571 26.720 11.876 1.650 1.660 100.000 100.000
avg. 14.625 8.939 3.121 2.170 11.132 7.306 1.963 1.535 55.430 32.852

20 10 0.947 0.791 2.202 0.528 0.966 0.791 1.044 0.428 18.255 1.023
50 12.847 12.010 6.183 4.520 12.271 11.406 4.288 3.474 37.891 14.070
100 12.466 13.040 4.866 3.902 11.722 12.476 3.386 2.896 38.522 13.829
500 33.265 19.758 3.423 3.320 20.140 14.380 2.406 2.395 93.944 72.476
1000 45.170 33.508 4.550 4.609 42.124 26.264 3.532 3.546 100.000 100.000
avg. 20.939 15.821 4.245 3.376 17.445 13.063 2.931 2.548 57.722 40.280

overall avg. 14.917 10.070 3.234 2.353 11.990 8.443 2.078 1.669 54.319 34.923

Table 4: Percentage gap of the heuristics on instances with Non-linear weight function
and Dissimilar capacities. Average values over 20 instances.

19

Class T=10 sec T=30 sec T=600 sec
m n H-Task∗ H-Agent∗ L01 Hyb H-Task∗ H-Agent∗ L01 Hyb Couenne Baron
5 10 2.932 1.884 5.088 1.561 2.889 1.896 2.738 1.300 9.457 1.824

50 4.863 4.525 3.110 1.662 4.771 4.593 1.840 1.320 21.594 14.270
100 4.541 4.043 2.687 1.456 4.533 4.110 1.582 1.171 23.616 16.257
500 10.229 12.947 2.616 2.315 8.391 11.512 1.549 1.292 100.000 17.823
1000 22.767 15.014 2.816 2.759 14.493 14.432 1.734 1.658 100.000 94.793
avg. 9.066 7.683 3.263 1.951 7.015 7.309 1.888 1.348 50.934 28.993

10 10 2.613 2.122 4.867 1.075 2.821 2.273 2.602 1.043 10.282 2.069
50 6.750 6.123 4.515 2.642 5.776 6.128 2.944 2.210 19.577 14.820
100 6.318 6.256 3.890 2.685 5.801 5.872 2.414 1.897 80.445 15.210
500 19.455 22.779 3.931 3.857 12.265 21.570 2.531 2.488 100.000 100.000
1000 39.021 24.793 4.177 4.171 29.528 21.388 2.810 2.824 100.000 100.000
avg. 14.832 12.415 4.276 2.886 11.238 11.446 2.660 2.092 62.061 46.420

20 10 2.296 3.618 4.379 1.500 2.092 3.697 2.270 1.039 14.176 3.122
50 9.989 9.839 7.370 5.112 9.469 8.997 5.068 3.812 42.257 15.959
100 11.401 14.368 5.659 5.032 9.714 10.110 3.807 3.313 100.000 16.164
500 34.534 29.110 5.543 5.516 20.911 21.465 3.972 4.027 100.000 100.000
1000 50.748 42.865 6.890 7.304 43.295 33.544 5.314 5.854 100.000 100.000
avg. 21.794 19.960 5.968 4.893 17.096 15.563 4.086 3.609 71.287 47.049

overall avg. 15.231 13.352 4.503 3.243 11.783 11.439 2.878 2.350 61.427 40.821

Table 5: Percentage gap of the heuristics on instances with Linear weight function and
Similar capacities. Average values over 20 instances.

Class T=10 sec T=30 sec T=600 sec
m n H-Task∗ H-Agent∗ L01 Hyb H-Task∗ H-Agent∗ L01 Hyb Couenne Baron
5 10 2.372 2.454 4.747 1.622 2.236 2.507 2.465 1.302 9.782 2.361

50 4.403 4.778 3.105 1.709 4.344 4.541 1.767 1.261 22.430 15.878
100 4.218 4.044 2.681 1.417 4.104 3.793 1.532 1.143 27.758 15.869
500 9.959 12.111 2.623 2.290 8.135 10.783 1.522 1.264 100.000 18.083
1000 24.870 14.543 2.784 2.718 14.810 13.753 1.718 1.644 100.000 97.894
avg. 9.164 7.586 3.188 1.951 6.726 7.076 1.801 1.323 51.994 30.017

10 10 2.931 2.744 4.608 1.361 2.468 2.929 2.689 1.071 8.986 2.391
50 6.433 6.652 4.723 2.661 5.890 6.084 3.021 2.232 22.391 16.975
100 6.130 6.382 3.814 2.605 5.923 6.323 2.364 1.853 68.134 15.713
500 19.992 21.576 3.840 3.734 12.043 20.327 2.496 2.448 100.000 96.580
1000 42.707 24.320 4.143 4.139 31.656 20.467 2.818 2.817 100.000 100.000
avg. 15.639 12.335 4.226 2.900 11.596 11.226 2.677 2.084 59.902 46.332

20 10 2.807 3.125 4.200 1.202 2.585 3.360 2.443 1.016 12.455 3.858
50 9.759 9.575 7.087 4.743 9.315 9.183 4.779 3.650 19.261 16.252
100 11.367 14.013 5.555 4.817 9.250 10.707 3.763 3.234 100.000 16.019
500 36.750 27.458 5.330 5.272 20.421 25.540 3.826 3.800 100.000 100.000
1000 51.388 39.924 6.725 6.787 46.732 31.930 5.263 5.734 100.000 100.000
avg. 22.414 18.819 5.779 4.564 17.660 16.144 4.015 3.487 66.343 47.226

overall avg. 15.739 12.913 4.398 3.138 11.994 11.482 2.831 2.298 59.413 41.192

Table 6: Percentage gap of the heuristics on instances with Linear weight function and
Dissimilar capacities. Average values over 20 instances.

20

the percentage gap was computed as 100 (U∗−L)/U∗, where L is the value of the solution
found by the heuristic or by the solver. Worth is mentioning that both nonlinear solvers
showed numerical instability: in certain cases the returned upper bound value was wrong
(worse than the value of a feasible solution found by the heuristics). For this reason, we
only considered the value of the best solution returned by each solver.

The tables show that all the proposed heuristics clearly outperform both solvers which,
in some cases, are even unable to �nd a feasible solution. Entries with gap equal (resp.
close) to 100.000 indicate that no feasible solution was found for any (resp. most) of
the 20 instances. Already with a 10 seconds time limit, all the proposed algorithms
exhibit better performance than the solvers, with just two exceptions regarding Baron
when m = 5, n = 10, Classes NS and ND. Among the heuristics, H-Task∗ is better
than H-Agent∗. Both are dominated by L01 and Hyb. The latter turns out to be the
best approach for all time limits and benchmarks: It provides, within short time limits,
results that are one order of magnitude better than those produced by the solvers in very
large CPU times.

The results con�rm that, even though all functions are non-decreasing, separable, and
twice continuously di�erentiable, the NLGAP is very hard to solve in practice. Even very
small instances with 5 agents and 10 tasks cannot be solved to optimality by state-of-the-
art nonlinear solvers within 10 minutes. We also tried the same instances allowing one
hour CPU time, and this did not change the picture: both Baron and Couenne hit the
time limit and still produced suboptimal solutions, with non negligible gap with respect
to U∗.

Between the two non-linear solvers, Baron outperforms Couenne by about 30% on
average. The only exception occurs for Non-linear weight functions and Similar capacities
(Table 3) for instances with a large number of variables (n ·m ≥ 5000), for which Couenne
gets better results by about 10%.

It may be noted that the performance of the lower bounds does not show the same
similarity among the four instance classes that was observed for the upper bound compu-
tations. In particular, the approximation obtained for instances with Non-linear weight
functions appears to be better than for instances with Linear weight functions (both Sim-
ilar and Dissimilar capacities). Such behavior appears for all algorithms and all time
limits. It appears quite surprising that non-linear weight functions are somehow �easier�
to solve than linear ones. A possible explanation is that upper bound are less tight for
the linear case, due to the fact that our methods, intended to solve a general non-linear
problem, do not exploit special properties. Recall indeed that the linearizations we have
proposed in Section 3 underestimate the weights on the samples and hence may be not
fully appropriate for linear functions.

21

6 Conclusions

We have studied a continuous, non-linear variant of the well-known generalized assignment
problem. The mathematical model of the problem has been used to obtain upper bounds
and a heuristic algorithm. We have introduced greedy-type heuristics and a local search
optimization. Such approaches and an overall hybrid heuristic have been computationally
tested on a large benchmark of random instances, showing that they dominate non-linear
solvers in terms of quality and computing time. All the proposed methods can be easily
adapted to the case of mixed continuous and integer variables. Although, as mentioned in
Section 1, the classical complexity analysis does not apply to general nonlinear problems,
a future line of research could be to investigate the complexity of the NLGAP restricted
to the rational domain.

Acknowledgments

This research was supported by Air Force O�ce of Scienti�c Research. It has also received
funding from the European Union's Horizon 2020 research and innovation programme
under the Marie Skªodowska-Curie Grant Agreement No. 764759.

References

[1] A. Caprara, H. Kellerer, and U. Pferschy. The Multiple Subset Sum Problem. SIAM
Journal on Optimization, 11(2):308�319, 2000.

[2] Y. Chen, D. Ge, M. Wang, Z. Wang, Y. Ye, and H. Yin. Strong NP-hardness
for sparse optimization with concave penalty functions. In D. Precup and Y.W.
Teh, editors, Proceedings of the 34th International Conference on Machine Learning,
volume 70 of Proceedings of Machine Learning Research, pages 740�747, 2017.

[3] Y. Chen, Y. Ye, and M. Wang. Approximation hardness for a class of sparse opti-
mization problems. Journal of Machine Learning Research, 20(38):1�27, 2019.

[4] C. D'Ambrosio and S. Martello. Heuristic Algorithms for the General Nonlinear
Separable Knapsack Problem. Computers & Operations Research, 38(2):505�513,
2011.

[5] C. D'Ambrosio, S. Martello, and L. Mencarelli. Relaxations and heuristics for the
multiple non-linear separable knapsack problem. Computers & Operations Research,
93:79�89, 2018.

[6] R. Freling, H.E. Romeijn, D. Romero Morales, and A.P.M. Wagelmans. A branch and
price algorithm for the multi-period single-sourcing problem. Operations Research,
51(6):922�939, 2003.

22

[7] P.M. Hahn, B.-J. Kim, M. Guignard, J. MacGregor Smith, and Y.-R. Zhu. An algo-
rithm for the generalized quadratic assignment problem. Computational Optimization
and Applications, 40(3):351�372, 2007.

[8] D.S. Hochbaum. Complexity and algorithms for convex network optimization and
other nonlinear problems. 4OR: A Quarterly Journal of Operations Research, 3:171�
216, 2005.

[9] C.G. Lee and Z. Ma. The generalized quadratic assignment problem. Research
Report, Department of Mechanical and Industrial Engineering, University of Toronto,
Toronto, Ontario, M5S 3G8, Canada, 2004.

[10] S. Martello and P. Toth. Knapsack Problems: Algorithms and Computer Implemen-

tations. Chichester, New York: John Wiley & Sons, 1990.

[11] J.B. Mazzola. Generalized assignment with nonlinear capacity interaction. Manage-

ment Science, 35(8):923�941, 1989.

[12] D.R. Morales and H.E. Romeijn. The generalized assignment problem and exten-
sions. In Ding-Zhu Du and Panos M. Pardalos, editors, Handbook of Combinatorial
Optimization: Supplement Volume B, pages 259�311. Springer US, Boston, MA, 2005.

[13] T.C. Sharkey and H.E. Romeijn. Greedy approaches for a class of nonlinear Gener-
alized Assignment Problems. Discrete Applied Mathematics, 158(5):559�572, 2010.

[14] D.B. Shmoys and É. Tardos. An approximation algorithm for the generalized assign-
ment problem. Mathematical Programming, 62:461�474, 1993.

[15] V. Srivastava and F. Bullo. Knapsack problems with sigmoid utilities: Approxima-
tion algorithms via hybrid optimization. European Journal of Operational Research,
236(2):488�498, 2014.

[16] A.M. Tillmann. On the computational intractability of exact and approximate dic-
tionary learning. IEEE Signal Processing Letters, 22(1):45�49, 2015.

23

