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Abstract. In this paper we consider the horizontal high-order curvatures of a real hypersurface

in a generic Kähler manifold and we prove a rigidity result under a suitable assumption of parallelism.

As an application we get a classification result for hypersurfaces in a complex space form.

1. Introduction and statement of the result

Given a complex space form K(c) of constant holomorphic sectional curvature
4c 6= 0, it is known that do not exist real hypersurfaces with parallel second funda-
mental form nor umbilical real hypersurfaces (see for instance [16, Theorem 1.5] and
the references therein). A weaker notion of parallelism of the second fundamental
form was introduce by Kimura and Maeda in [8] for the case of the complex projec-
tive space CP n. Their definition can be easily extended to any real hypersurface M

in a generic Kähler manifold K. We say that the second fundamental form h of a
hypersurface M ⊆ K is η-parallel if

(∇Xh)(Y, Z) = 0 for all X, Y, Z ∈ TM ∩ J(TM).

Here ∇ and J denote respectively the Levi–Civita connection and the complex struc-
ture of K; we refer the reader to the next section for all the precise definitions.

This notion has been intensively investigated in the case of complex space forms,
also under several additional assumptions ([6, 9, 10, 11]); in particular, there are
classification results for η-parallel hypersurfaces of Hopf type (see next section).

In this paper we restrict the second fundamental form of M to the horizontal
distribution TM∩J(TM), namely we denote by hH the horizontal part of the second
fundamental form and we consider the horizontal high-order curvatures σk(h

H), which
are the normalized k-th elementary symmetric functions of the eigenvalues of hH .

Our main theorem is a rigidity result in a generic Kähler manifold by using
essentially the η-parallel condition and that one of the curvatures σk(h

H) is constant.
We can state it in the following way:

Theorem 1.1. Let n ≥ 1 and K be a Kähler manifold of real dimension 2n+ 2
and let M be a smooth real orientable, connected and strictly H-convex hypersurface

in K. Let us suppose that the second fundamental form of M is η-parallel and

that exists k ∈ {1, . . . , 2n} such that σk(h
H(M)) is constant. Then M is a Hopf

hypersurface; moreover all the eigenvalues of hH are constant.
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Here, by strictly H-convex, we mean that hH is strictly positive definite as a
quadratic form; we will see that this assumption cannot be dropped by showing a
counterexample.

Since Hopf hypersurfaces with η-parallel second fundamental form in K(c) are
classified, we obtain as application of Theorem 1.1, a classification result for hyper-
surfaces embedded in complex space forms (Corollary 3.1); in other words we recover
the property of being Hopf from the assumptions on the horizontal curvatures.

We want to mention that an analogous result has been proved in [12] where it
is considered a hypersurface embedded in complex space form with two additional
conditions: one is an hypothesis of parallelism (called H-parallel condition) and one
regarding the high-order Levi curvatures, which are the normalized k-th elementary
symmetric functions of the eigenvalues of the Levi form. In the present paper we
relaxed the condition on the ambient manifold and we were able to prove our result in
a generic Kähler manifold: however we remark that the two hypotheses of parallelism
and the two notions of curvatures look similar but they are different, even if one
specializes to the case of complex space forms.

For other similar results we refer the reader to the paper [14] and its recent
generalization [3]. Moreover, for somehow related results, carried out in some cases
outside the class of complex space forms, we refer to [2, 4].

Finally, as we said in the beginning, also umbilical hypersurfaces cannot occur
in a complex space form, therefore less strong conditions have been introduced and
studied also in this situation. We found classification results for η-umbilical or totally
η-umbilical hypersurfaces in the case of complex space forms with c 6= 0 ([6, 9, 17]):
in these papers the condition c 6= 0 is only used to apply early classification results.
Since we did not find explicit computations in the case c = 0, in the Appendix
we consider η-umbilical hypersurfaces in the flat space C

n+1, n > 1, obtaining an
horizontal version of the classical Darboux Theorem; in particular in Example 4.1 we
show that the assumption n > 1 cannot be removed.

We would like to thank the anonymous referees for their useful comments and
suggestions and for having brought to our attention the references [2, 4, 17].

2. Definitions and notations

Let K be a Kähler manifold of real dimension 2n + 2 and ω be its fundamental
symplectic 2-form. We denote by J the complex structure, by g the Riemannian
metric and by ∇ its Levi-Civita connection. We recall that g and J are related by
the following identity

ω(X, Y ) = g(X, JY ) for every pair of vector fields X, Y ∈ TK.

Moreover, both g and ∇ are compatible with the complex structure J in the following
sense

(1) J∇ = ∇J, g(·, ·) = g(J ·, J ·).

We consider a smooth real orientable and connected embedded manifold M ⊆ K

of codimension 1 on K, with induced metric and connection denoted again by g

and ∇. We denote by N a local choice of the unit normal to M and by X0 = JN

the characteristic (or structure) vector field. Then, if X ∈ TM , one can define an
endomorphism ϕ of TM by

JX = ϕX − η(X)N

where η is the one-form such that η(X) = g(X,X0).
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The horizontal distribution HM is the 2n-dimensional subspace of TM which is
invariant under the action of J , namely

HM = TM ∩ J(TM) = ker(η).

Then, the complex structure J induces the following orthogonal splitting of TM

TM = RX0 ⊕g HM.

We denote the Weingarten or shape operator by

A : TM → TM, AX = −∇XN

and the second fundamental form of M by

h(·, ·) = g(·, A ·).

We also need to define the horizontal part of the second fundamental form hH :

hH(X, Y ) = h(X, Y ) for every X, Y ∈ HM.

Now let λ1, . . . , λ2n be the eigenvalues of hH . The k-th elementary symmetric function
of hH is

Sk(h
H) =

1

k!

∑

i1,...,ik∈A2n

i1 6=···6=ik

λi1 . . . λik , if k ∈ {1, . . . , 2n}, S0 = 1,

where A2n is the set of indexes A2n = {1, . . . , 2n}. We will also denote by

Sk,q̂(h
H) =

1

k!

∑

i1,...,ik∈A2n\{q}
i1 6=···6=ik

λi1 . . . λik , k, q ∈ {1, . . . , 2n},

the k-th elementary symmetric function of λ1, . . . λ̂q, . . . , λ2n. Hereafter we use the

notation λ̂q to highlight that the variable λq is missing.
The k-th horizontal curvature σk(h

H) of M is defined as

σk(h
H) =

1
(

2n

k

)Sk(h
H), k ∈ {1, . . . , 2n}.

These kind of horizontal curvatures appear quite naturally and have been recently
studied to obtain integral formulas of Minkowski type [13, 5].

Let us recall also the following definitions.

Definition 2.1. A real hypersurface M in a Kähler manifold K is said to be
strictly H-convex if hH is strictly positive definite as a quadratic form on HM .

Definition 2.2. A real hypersurface M in a Kähler manifold K is said to be
a Hopf hypersurface if the structure vector field X0 = JN is an eigenvector for the
shape operator A.

Definition 2.3. A real hypersurface M in a Kähler manifold K is said to have
η-parallel second fundamental form h if

(∇Xh)(Y, Z) = 0 for every X, Y, Z ∈ HM.

Here we have denoted the Bortolotti derivative by (∇Xh)(Y, Z):

(∇Xh)(Y, Z) = X (h(Y, Z))− h (∇XY, Z)− h (Y,∇XZ) .
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Let us conclude the section by recalling the Codazzi equations, which we will use
in the sequel. Let K(c) be a complex space form, the Codazzi equations read as (see
[16])

(∇XA)Y − (∇YA)X = −c (g(X,X0)ϕY − g(Y,X0)ϕX + 2g(X,ϕY )X0) ,

for any X, Y ∈ TM . In particular we have:

(2) (∇Xh)(Y, Z) = (∇Y h)(X,Z), for any X, Y, Z ∈ HM,

since the characteristic direction X0 is orthogonal to HM .

3. Proof of main result

Let B = {X0, X1, . . . , X2n}, with JX0 = −N be an orthonormal basis for TM ,
we define B the matrix associated to the operator J with respect to the basis B

(B)ij = B
j
i = g(JXi, Xj), i, j ∈ {1, . . . , 2n}.

Therefore, for i, j ∈ {1, . . . , 2n}, we have

JXi =
2n
∑

j=1

B
j
iXj,

and from the compatibility relation (1) we deduce that the matrix B is skew sym-
metric:

B
j
i = g(JXi, Xj) = −g(Xi, JXj) = −B

j
i .

We will need the following lemma:

Lemma 3.1. Let the basis B and the matrix B be defined as above, then

g ([Xi, JXi], X0) = hii +

2n
∑

k,l=1

Bl
iB

k
i g (−∇Xl

N,Xk) .

Proof. We use the compatibility relations (1) to compute

g ([Xi, JXi], X0) = g(∇Xi
JXi −∇JXi

Xi, X0) = g(∇Xi
Xi, N) + g(∇JXi

JXi, N)

= hii + g(−∇JXi
N, JXi) = hii +

2n
∑

j,l=1

g(−∇
B

j
iXj

N,Bl
iXl)

= hii +

2n
∑

j,l=1

B
j
iB

l
ig
(

−∇Xj
N,Xl

)

. �

Now we can prove our main result.

Proof of Theorem 1.1. In order to simplify the computations, it will be conve-
nient to choose a basis B = {Xα}α=0,1,...,2n that makes hH diagonal. With this choice
of B, we have that λi = hii are the eigenvalues of hH , for every i = {1, . . . , 2n}. In
this basis the connection coefficients Γj

i0 can be written as

Γj
i0 = g(∇Xi

X0, Xj) = g(−∇Xi
N, JXj) =

2n
∑

l=1

Bl
jhil = Bi

jhii.

So, the η-parallel condition (Definition 2.3)

Xl(hjj)− 2

2n
∑

α=0

Γα
ljhαj = 0 for every l, j ∈ {1, . . . , 2n}
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reads as

(3) Xl(hjj) = 2Γ0

ljh0j = −2Bl
jhllh0j .

Then, for every k, l ∈ {1, . . . , 2n} we have

k!Xl

(

Sk(h
H)
)

=
∑

i1,...,ik∈A2n

i1 6=···6=ik

k
∑

r=1

Xl(λir)λi1 . . . λ̂ir . . . λik

(3)
= −2λl

∑

i1,...,ik∈A2n

i1 6=···6=ik

k
∑

r=1

Bl
ir
h0irλi1 . . . λ̂ir . . . λik

= −2λl

2n
∑

q=1

Bl
qh0q

∑

i1,...q̂,...,ik∈A2n\{q}
i1 6=···6=ik

λi1 . . . λ̂q . . . λik

= 2λl(k − 1)!

2n
∑

q=1

B
q
l h0qSk−1,q̂(h

H).

(4)

In the last equality it has been used the skew symmetry of the matrix B. Now,
by hypotheses there exists k ∈ {1, . . . , 2n} such that Sk(h

H) is a positive constant,
hence for this particular value of k the left hand side of the chain of equalities (4) is
zero. So, from the strict H-convexity hypothesis on M , we deduce

(5)
2n
∑

q=1

B
q
l h0qSk−1,q̂(h

H) = 0 for every l ∈ {1, . . . , n}.

Let us denote by γ the vector γ = (h01, . . . , h02n), and by Mk−1 the 2n× 2n diagonal
matrix with entries (Mk−1)qq = Sk−1,q̂(h

H). Then, we recognize that (5) can be
written in a compact form as

(6) BMk−1γ = 0.

Now, the strict H-convexity ensures the invertibility of the matrix Mk−1 and we have
B2 = − Id2n, then equality above implies γ = 0, i.e. M is a Hopf hypersurface. It
remains to prove that all the eigenvalues of hH are constant. Since we have just
shown that γ = 0, equation (3) reads as

(7) Xl(λj) = 0 for every l, j ∈ {1, . . . , 2n}.

Moreover by (7) and Lemma 3.1 we have

[Xi, JXi] (λj) =
2n
∑

l=1

g ([Xi, JXi] , Xl)Xl(λj) + g ([Xi, JXi] , X0)X0(λj)

(7)
= X0(λj)g ([Xi, JXi] , X0)

= X0(λj)

(

hii +
2n
∑

k,l=1

Bl
iB

k
i g (−∇Xl

N,Xk)

)

= X0(λj)

(

hii +
2n
∑

l=1

(Bl
i)

2hll

)

.
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On the other hand, using again (7) we have

[Xl, JXl] (λj) = Xj (JXl(λj))− JXl (Xl(λj)) = 0,

for every l, j ∈ {1, . . . , 2n}, so that

0 = [Xi, JXi] (λj) = X0(λj)

(

hii +

2n
∑

l=1

(Bl
i)

2hll

)

and the strict H-convexity hypotheses on M implies

(8) X0(λj) = 0 for every j ∈ {1, . . . , 2n}.

This and (7) prove that λj are constant for j ∈ {1, . . . , 2n}. �

As a Corollary, we deduce a classification result for hypersurfaces embedded in
complex space forms K(c) and satisfying hypotheses of Theorem 1.1. It is well known
that, according to the sign of the sectional curvature, zero, positive or negative, the
models for this type of spaces are respectively the standard complex space C

n+1

endowed with the standard Hermitian metric, the complex projective space CP n+1

with the Fubini study metric, and the complex hyperbolic space CHn+1 with the
Bergman metric. In these model spaces, Hopf hypersurfaces with constant princi-
pal curvatures are classified according the “Takagi’s list” and “Montiel’s list” (see
[16, 19, 20, 21, 7, 15, 1]). These classifications concern the case of non-vanishing
sectional curvature c; anyway we can easily recover also the flat case. So, in view of
these results, and taking into account our convexity assumption on M , we have the
following

Corollary 3.1. Let M be a real strictly H-convex hypersurface in a complex

space form K(c) with η-parallel second fundamental form. If σk(h
H(M)) is constant

for some k ∈ {1, . . . , 2n}, then

• if c = 0, M is contained in a sphere;

• if c > 0, M is contained in a type A or a type B hypersurface of Takagi’s list;

• if c < 0, M is contained in a type A or a type B hypersurface of Montiel’s

list.

Proof. By Theorem 1.1 we know that M is Hopf, so for c 6= 0 the result readly
follows from the classification of Hopf hypersurfaces with η-parallel second funda-
mental form (see for a survey [16, Theorem 5.3]). For c = 0 and h00 constant the
result follows from the classical classification by Segre [18] and the strict H-convexity
hypothesis on M . Let us point out that for a general Hopf hypersurface in C

n, h00

might not be constant, but this is always true under the strictly H-convexity assump-
tion. Indeed, using Codazzi equations (2) and the fact that M is Hopf one shows
that Xi(h00) = 0 for every i ∈ {1, . . . , 2n}, and then one has X0(h00) = 0, proceed-
ing exactly as in (8) (i.e. computing the commutators and exploiting the convexity
hypotheses). �

We remark that the strict H-convexity hypothesis can not be dropped, as the
following example shows.

Example 3.1. Let (z1, z2) = (x1 + iy1, x2 + iy2) ∈ C
2 ≃ R

4. For a, b ∈ R such
that a2 + b2 = 1 we consider the domain Ωab ⊆ C

2 defined by

Ωab =

{

(x1, y1, x2, y2) ∈ R
4 ≃ C2 : f(x1, y1, x2, y2) =

x2
1 + (ay1 + bx2)

2 − 1

2
< 0

}
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and the hypersurface Mab = ∂Ωab. Let r = ay1+ bx2, then the norm of the Euclidean
gradient of f is |Df | =

√

x2
1 + r2(a2 + b2) = 1. The unit inward normal to M is given

by

N = −x1∂x1
− ra∂y1 − rb∂x2

,

and we consider B = {X0, X, Y } the basis for TM given by

X0 = J(N) = ra∂x1
− x1∂y1 − rb∂y2 ,

X = rb∂x1
− x1∂x2

+ ra∂y2 ,

Y = J(X) = rb∂y1 − ra∂x2
− x1∂y2 .

We compute the second fundamental form with respect to the basis B:

h(X,X) = rbX(x1)− x1X(rb) = b2,

and similarly

h(Y, Y ) = 0, h(X, Y ) = 0, h(X0, X0) = a2, h(X0, X) = ab, h(X0, Y ) = 0.

From which we deduce that M is H-convex (but not strictly H-convex), it has constant
horizontal curvatures, but it is not Hopf if a, b 6= 0.

4. Appendix

We recall that a hypersurface is called umbilical if there exists a scalar function
f such that the second fundamental form reads as h = fg, being g the metric. A real
hypersurface in a Kähler manifold is said η-umbilical if there exists a scalar function
L such that

h(X, Y ) = Lg(X, Y ) for every X, Y ∈ HM.

This condition has been studied in literature, in particular a slightly stronger con-
dition has been often considered, namely a totally η-umbilical assumption, which
basically means that the hypersurface is η-umbilical and Hopf. We found some re-
sults in this regard (see for instance [6, 9, 17] and the references therein), but all
of them concern the case of complex space forms K(c) with c 6= 0. Here we show
a rigidity result in C

n+1 that is analogue to the classical Darboux Theorem in the
standard Euclidean space: of course the proof is easier than the case with c 6= 0. We
have the following

Theorem 4.1. Let n > 1 and let M be a smooth real orientable and connected

η-umbilical hypersurface in C
n+1. Then M is part of a sphere or a ruled hypersurface

of the type C
n × γ with γ a curve in C

n+1 such that γ̇ = X0.

Proof. We consider B = {X0, X1, . . . , X2n} an orthonormal basis of TM such
that Xn+s = JXs for every s ∈ {1, . . . , n} and X0 = JN . As a convention, we
will use Latin letters to denote indices running from 1 to 2n (i.e. purely horizontal)
and Greek letters to denote indices running from 0 to 2n (i.e. involving also the
characteristic direction), in particular we will use the letters s, t to denote indexes
running from 1 to n.

Since M is η-umbilical, for a suitable function L, we have

(9) hij = h(Xi, Xj) = Lg(Xi, Xj) = δijL, for every i, j ∈ {1, . . . , 2n}.

We want to show that L is constant on M. We start by writing some relations
involving Γγ

αβ = g(∇Xα
Xβ, Xγ) with α, β, γ ∈ {0, . . . , 2n} which are the coefficients
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of the connection with respect to the basis B. Since B is orthonormal we have

Γβ
αβ = 0 and Γγ

αβ = −Γβ
αγ .(10)

Moreover exploiting the relations Xn+s = JXs for every s ∈ {1, . . . , n} and the
compatibility relations (1) we have

Γ0

s n+t = g(∇Xs
Xn+t, X0) = g(−∇Xs

Xt,−N) = hst,

Γ0

n+t s = g(∇Xn+t
Xs, X0) = g(∇Xn+t

Xn+s,−N) = −hn+t n+s,

Γ0

s s = g(∇XsXs, X0) = g(∇Xs
Xn+s,−N) = −hs n+s,

Γ0

n+t n+t = g(∇Xn+t
Xn+t, X0) = g(−∇Xn+t

Xt,−N) = hn+t t.

for every s, t ∈ {1, . . . , n}. Then, from the η-umbilical hypotheses (9) we get

Γ0

s n+t = δstL, Γ0

n+t s = −δstL, Γ0

s,s = Γ0

n+t n+t = 0.(11)

Now we use Codazzi equation (2) and the relations (10) and (11), involving the
connection coefficients, to prove that

Xs(L) = Xs(hn+t n+t) = 3δsth0 n+tL,

Xn+s(L) = Xn+s(htt) = −3δsth0tL for every s, t ∈ {1, . . . , n}.
(12)

We perform the computations only for the case Xs(L), since the case Xn+s(L) is
similar:

Xs(L) = Xs(hn+t n+t) = Xs(hn+t n+t)−Xn+t(hs n+t).

(2)
=

2n
∑

α=0

(

2Γα
s n+thα n+t − Γα

n+t shα n+t − Γα
n+t n+ths α

)

(9)
= 2Γ0

s n+th0 n+t − Γ0

n+t sh0 n+t − Γ0

n+t n+ths0

+

2n
∑

i=1

(

2Γi
s n+tδi n+t − Γi

n+t sδi n+t − Γi
n+t n+tδsi

)

L

= 2Γ0

s n+th0 n+t − Γ0

n+t sh0 n+t − Γ0

n+t n+ths0+

+
(

2Γn+t
s n+t − Γn+t

n+t s − Γs
n+t n+t

)

L

(10)
= 2Γ0

s n+th0 n+t − Γ0

n+t sh0 n+t − Γ0

n+t n+ths0

(11)
= 3δsth0 n+tL.

In particular, the identities (12) with the choice t 6= s imply

(13) Xi(L) = 0 for every i ∈ {1, . . . , 2n}.

Note that the choice t 6= s ∈ {1, . . . , n} implicitly uses the assumption on the dimen-
sion n > 1. Now we use the commutators to gain information on X0(L). Recalling
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that Xi(L) = 0 for every i ∈ {1, . . . , 2n} we find

[Xs, Xn+s] (L) =
(

∇Xs
Xn+s −∇Xn+s

Xs

)

(L)

=

2n
∑

i=1

g
(

∇Xs
Xn+s −∇Xn+s

Xs, Xi

)

Xi(L)

+ g
(

∇Xs
Xn+s −∇Xn+s

Xs, X0

)

X0(L)

= g
(

∇Xs
Xn+s −∇Xn+s

Xs, X0

)

X0(L)

=
(

Γ0

s,n+s − Γ0

n+s,s

)

X0(L)

(11)
= 2LX0(L).

On the other hand,

[Xs, Xn+s] (L) = Xs (Xn+s(L))−Xn+s (Xs(L)) = 0

so that

(14) 2LX0(L) = 0.

At this stage we are left with just two cases:

i) L(p) = 0, for every p ∈ M.

ii) There exists p0 ∈ M such that L(p0) 6= 0.

Using the compatibility relations (1), for every i, j ∈ {1, . . . , 2n} we have

g ([Xi, Xj], X0) = −g
(

∇Xi
JXj −∇Xj

JXi, N
)

= − (h(Xi, JXj)− h(Xj, JXi)) .
(15)

So, in the first case, since L ≡ 0 we have g ([Xi, Xj], X0) = 0, hence the horizontal
distribution HM = span{X1, . . . , X2n} is involutive and therefore, by Frobenius
Theorem, M is part of a ruled hypersurface of the type type C

n × γ with γ a curve
in C

n+1 such that γ̇ = X0.

In the second case, we have to prove that M is part of a sphere. Let us start
by showing that L is constant on M . Since L(p0) 6= 0, by continuity, L 6= 0 in a
neighborhood Vp0 ⊆ M of p0. Hence from (14) we deduce that X0(L) = 0 on Vp0,
moreover we have proved Xi(L) = 0 for every i = {1, . . . , 2n}, then L is constant
on Vp0 . Now, from the continuity of L and the connectedness of M we have that L

is a non-vanishing constant on the whole M . Then, equations (12), with the choice
t = s, imply that h0i = 0 for every i ∈ {1, . . . , 2n}. Now, let us identify p with the
position vector field, namely

p =
2n+2
∑

k=1

g (p, ∂xk
) ∂xk

=
2n+2
∑

k=1

pk∂xk
.

Let also the unit normal be

N =

2n+2
∑

k=1

g (N, ∂xk
) ∂xk

=

2n+2
∑

k=1

Nk∂xk
.
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We are going to show that the functions ϕk := pk + Nk

L
are constant. Indeed, for

every i ∈ {1, . . . , 2n} and k ∈ {1, . . . , 2n+ 2} we have

Xi (ϕk) = Xi (g (p, ∂xk
)) +

1

L
Xi (g (N, ∂xk

))

= g (∇Xi
p, ∂xk

) + g (p,∇Xi
∂xk

)−
1

L
g (−∇Xi

N, ∂xk
) +

1

L
g (N,∇Xi

∂xk
)

= g (∇Xi
p, ∂xk

)−
1

L
g (−∇Xi

N, ∂xk
)

= g (Xi, ∂xk
)−

1

L
g (LXi, ∂xk

) = 0.

In the fourth equality we have used the identities h(Xi, Xj) = δijL and h0i = 0 for ev-
ery i, j ∈ {1, . . . , 2n}. Then the same procedure used to obtain (14) gives 2LX0(ϕk) =
0, so X0(ϕk) = 0. Consequently ϕk is constant, for every k ∈ {1, . . . , 2n+2}. There-

fore, for every k we have pk + Nk

L
= ck for some constant ck, hence ‖p − c‖ = 1

|L|

where c = (c1, . . . , c2n+2). This proves that M is part of a sphere of center c and
radius 1

|L|
. �

We explicitly notice that in the above theorem we have assumed n > 1 and this
hypothesis has been exploited to prove (13). When we consider n = 1 the situation
changes drastically. Indeed, there exist η-umbilical hypersurfaces M ⊆ C

2 that are
not contained in spheres nor in ruled hypersurfaces of the type C

n × γ. We have the
following example

Example 4.1. Let C2 ≃ R
4 with coordinates (z1, z2) = (x1 + iy1, x2 + iy2). For

a, b ∈ R we consider the domain Ωab, defined by

Ωab =

{

(x1, y1, x2, y2) ∈ R
4 : f(x1, y1, x2, y2) = a

x2
1 + y21
2

+ b
x2
2 + y22
2

− 1 < 0

}

and the hypersurface Mab = ∂Ωab. The norm of the gradient of f is |Df | =

(a2(x2
1 + y21) + b2(x2

2 + y22))
1

2 , and the inward unit normal to M is given by

N = −
1

|Df |
(ax1∂x1

+ ay1∂y1 + bx2∂x2
+ by2∂y2) ,

and we consider B = {X0, X, Y } the basis for TM given by

X0 = J(N) =
1

|Df |
(ay1∂x1

− ax1∂y1 + by2∂x2
− bx2∂y2) ,

X =
1

|Df |
(bx2∂x1

− by2∂y1 − ax1∂x2
+ ay1∂y2) ,

Y = J(X) =
1

|Df |
(by2∂x1

+ bx2∂y1 − ay1∂x2
− ax1∂y2) .

We compute the horizontal second fundamental form with respect to the basis B:

h(X,X) =
1

|Df |3
(

b2y22a+ b2x2

2a + a2y21b+ a2x2

1b
)

=
2ab

|Df |3
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and similarly

h(Y, Y ) =
2ab

|Df |3
, h(X, Y ) = 0.

Thus Mab is a η-umbilical hypersurface but is not a sphere nor of the type C× γ, if
a 6= b.
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