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Time-Varying General Dynamic Factor Models
and the Measurement of Financial Connectedness

Matteo Barigozzi1 Marc Hallin2 Stefano Soccorsi3 Rainer von Sachs4

16th April 2020

Abstract

We propose a new time-varying Generalized Dynamic Factor Model for high-dimensional,
locally stationary time series. Estimation is based on dynamic principal component ana-
lysis jointly with singular VAR estimation, and extends to the locally stationary case the
one-sided estimation method proposed by Forni et al. (2017) for stationary data. We
prove consistency of our estimators of time-varying impulse response functions as both
the sample size T and the dimension n of the time series grow to infinity. This approach is
used in an empirical application in order to construct a time-varying measure of financial
connectedness for a large panel of adjusted intra-day log ranges of stocks. We show that
large increases in long-run connectedness are associated with the main financial turmoils.
Moreover, we provide evidence of a significant heterogeneity in the dynamic responses to
common shocks in time and over different scales, as well as across industrial sectors.

JEL subject classification: C32, C14.
Key words: locally stationary dynamic factor models, volatility, financial connectedness.

1 Introduction

Together with growing interests in big-data techniques and increased availability of large
datasets, high-dimensional statistical methodology has been thriving in the past two dec-
ades. Time series analysis and time-series econometrics are no exception and factor models,
under their various forms, have emerged as the most successful tools in the analysis of high-
dimensional serially dependent observations (see Stock and Watson (2016) and references
therein for a recent survey).

The most general approach to factor analysis is, arguably, the so-called General Dynamic
Factor Model (henceforth GDFM) initially proposed by Forni et al. (2000) in which common
factors or common shocks are loaded via time-invariant filters. The essence of the GDFM
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We thank Wei Biao Wu and Danna Zhang for sharing their unpublished manuscript, and two anonymous
referees for helpful comments.



is that few unobserved factors drive the main comovements (cross-covariances, whether con-
temporaneous or lagged) across the panel: a common shock indeed may affect some series at
time t but some other one at time t + 1 only. The GDFM approach encompasses, strictly,
the so-called static factor model, where the impact of a factor is assumed to be contem-
poraneous on all series (see e.g. Stock and Watson, 2002). As shown in Hallin and Lippi
(2013), the GDFM actually follows from a very general representation result, in contrast with
the static factor model which requires rather stringent assumptions on the dynamics of the
data-generating process.1

In this paper, we consider the estimation of a time-varying version of the GDFM (hence-
forth tvGDFM) in which the factors are loaded via time-varying filters. We then develop an
application to the measurement through time of connectedness in the financial market, in the
spirit of Diebold and Yilmaz (2014).

Our approach builds on the locally stationary framework introduced by Dahlhaus (1997),
where it is assumed that the second-order structure is evolving smoothly over time. A slightly
different tvGDFM has been previously studied by Eichler et al. (2011). Their method, how-
ever, inspired by Forni et al. (2000), is entirely based on dynamic principal component analysis
(DPCA). As a result, it suffers from the main drawback of DPCA, which resorts to two-sided
filters to recover the space spanned by the factors. Such two-sided filtering makes the Eichler
et al. (2011) approach unsuitable for a number of important applications, among which fore-
casting, impulse response analysis of the dynamic impacts of common shocks, and the analysis
of financial connectedness considered in this paper.

To cope with this problem, Forni et al. (2015, 2017), in the stationary case, recur to a
combination of spectral estimation and VAR filtering which only involves one-sided filters.
In this paper, we extend their approach to the time-varying setting and propose estimators
involving one-sided filters only, of time-dependent impulse responses, which we prove to be
consistent, uniformly in time, as both the sample size T and the dimension n of the panel grow
to infinity. Specifically, we show that the rate of convergence is, up to some multiplicative
logarithmic factors in T , of order min(T ρr∗ ,

√
n) where ρr∗ depends on the maximum order r∗

of moments that we can assume to exist for the data under study; in particular, ρr∗ = 1/4
when r∗ =∞ as, e.g., in the Gaussian case. Our asymptotic results build on recent work by
Zhang and Wu (2019) on the estimation of large time-varying spectral density matrices.

This tvGDFM approach is particulatly welcome in the study of time-varying connected-
ness in the financial market. The existing method, as proposed by Diebold and Yilmaz (2014),
indeed, is based on variance decompositions in vector moving average models and suffers of
two serious limitations. First, it is fully parametric, hence inadequate for the large cross-
sections typically affected by systemic events. Second, it is based on a stationary model and,
therefore, cannot fully account for time-variation—an essential feature of financial connected-
ness.2 Our tvGDFM is ideally designed to overcome both shortcomings. We apply it here to
a panel of adjusted intra-day log ranges3 of n = 329 constituents of the Standard & Poor’s 500
observed from December 31, 1999 to August 31, 2015, for a total of T = 3939 observations.

1Yet another approach has been proposed by Peña and Yohai (2016) where DPCA is used as a data-analytic
tool with no reference to the consistent estimation of any underlying factors nor data-generating process.

2A rolling estimation is considered but little theoretical justification is provided, and no guidelines are
offered for the choice of a window size.

3Adjusted intra-day log ranges were defined by Parkinson (1980) and their use as “highly efficient and
robust to microstructure noise” log-volatility proxies has been recommended by Alizadeh et al. (2002). It has
been shown (Brownlees and Gallo, 2010) that they often outperform more sophisticated alternatives.
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The rest of the paper is organized as follows. In Section 2, we present the time-varying
General Dynamic Factor Model. Section 3 proposes an estimation method of the time-varying
impulse response functions to common factors, and establishes its consistency. The connected-
ness measures we derive from the model and the empirical results are discussed in Section 4.
Section 5 concludes. Proofs are postponed to an online Appendix.

Notation

We denote by A† and v† the transposed complex conjugate of any complex matrix A or
column vector v, respectively. The imaginary unit is denoted as ι :=

√
−1. Let N0 stand, as

usual, for the set of natural integers. Given two sequences {an} and {bn}, we write an � bn
if, for some finite positive constants c and c, there exists an N0 ∈ N0 such that c ≤ anb−1

n ≤ c
for all n ≥ N0. Throughout, L stands for the lag operator.

2 A time-varying Generalized Dynamic Factor Model

In this section we present the time-varying Generalized Dynamic Factor Model (tvGDFM)
inspired by Eichler et al. (2011). All random variables considered below belong to the space
of centered real-valued random variables with finite second-order moments defined over some
common probability space.

The factor model approach in the analysis of a (zero-mean) double-indexed pro-
cess X := {Xit : i ∈ N0, t ∈ Z} (here, the process of intraday log range values; i is
a cross-sectional index and t stands for time) is based on a decomposition of Xit into the sum

Xit = χit + ξit, i ∈ N0, t ∈ Z (1)

of two unobserved components: the common component process χ := {χit} and the idio-
syncratic component process ξ := {ξit}. For χ and ξ, we assume the following time-varying
MA representations, which account for nonstationarity and the time-varying nature of their
second-order structure:

χit =
q∑
j=1

∞∑
k=0

c∗ijk(t)uj,t−k, i ∈ N0, t ∈ Z, (2)

ξit =
∞∑
j=1

∞∑
k=0

d∗ijk(t)ηj,t−k, i ∈ N0, t ∈ Z (3)

(see Assumption (A) for identification assumptions). Denoting by {Xnt := (X1t, . . . , Xnt)′},
{χnt := (χ1t, . . . , χnt)′}, and {ξnt := (ξ1t, . . . , ξnt)′} the n-dimensional subprocesses of X, χ,
and ξ, we also have

Xnt = χnt + ξnt, n ∈ N0, t ∈ Z

with

χnt := C∗n(t, L)ut and ξnt := D∗n(t, L)ηt, n ∈ N0, t ∈ Z (4)

where ut := (u1t, . . . , uqt)′, ηt := (η1t, η2t, . . .)′, and the (i, j) entries of C∗n(t, L) and D∗n(t, L)
are defined by

c∗ij(t, L) :=
∞∑
k=0

c∗ijk(t)Lk, 1 ≤ i ≤ n, 1 ≤ j ≤ q,
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and
d∗ij(t, L) :=

∞∑
k=0

d∗ijk(t)Lk, 1 ≤ i ≤ n, j ∈ N0.

The existence of time-independent one-sided filters C∗n(t, L) = C∗n(L) is justified in the
stationary case by the representation results in Hallin and Lippi (2013); here we directly
assume (2). The generic element c∗ij(t, L) of C∗n(t, L) represents the time-varying impulse
response function of variable Xit to the jth factor (common shock) uj ; those impulse response
functions are the main quantities of interest here.

Throughout, we assume that the shocks are satisfying the following assumption.

Assumption (A). The common and idiosyncratic shocks are such that

A1. the q-dimensional process of common shocks {ut : t ∈ Z} is such that E[ut] = 0,
E[utu′t] = Iq, and ut is independent of us for all t, s ∈ Z with t 6= s;

A2. the infinite-dimensional process of idiosyncratic shocks η := {ηt : t ∈ Z} is such that, for
any n-dimensional subprocess {ηnt = (η1t, . . . , ηnt)′ : t ∈ Z}, E[ηnt] = 0, E[ηntη′nt] = In,
and ηnt is independent of ηns for all t, s ∈ Z with t 6= s;

A3. the common and idiosyncratic shocks are such that: E[ηitujs] = 0 for all i ∈ N0,
1 ≤ j ≤ q, and t, s ∈ Z;

A4. there exists an r∗ > 4 and a constant C0 (independent of i, j, and t) such that
E[|ujt|r

∗ ] ≤ C0 and E[|ηit|r
∗ ] ≤ C0, for all i ∈ N0, 1 ≤ j ≤ q, and t ∈ Z;

A5. there exists a ϕ ∈ (0, 2] and constants Ku and Mu (independent of j and t) and
Kη and Mη (independent of i and t) such that, P (|ujt| > ε) ≤ Ku exp (−εϕMu) and
P (|ηit| > ε) ≤ Kη exp (−εϕMη), for any ε > 0 and for all 1 ≤ j ≤ q, i ∈ N0, and t ∈ Z.

Orthonormality and mutual orthogonality of the common and idiosyncratic shocks shocks
in (A1)-(A3) are standard in this literature (see e.g. Assumption 1 in Eichler et al., 2011, and
Assumption 1 in Forni et al., 2017). The moments conditions in (A4) are instead borrowed
from the literature on high-dimensional estimation of spectral densities and we refer here
mainly to Wu and Zaffaroni (2018) and Zhang and Wu (2019). Note that moment assumptions
in the locally stationary setting are also for example in Dahlhaus (2009), where in fact all
moments are assumed to exist. Last, condition (A5) allows for either sub-Gaussian tails
(ϕ = 2), or heavier tails like sub-exponential (ϕ = 1) or even sub-Weibull (0 < ϕ < 1) (see
e.g. Vershynin, 2018, Chapter 2, and Kuchibhotla and Chakrabortty, 2018).

In practice, observations of X are available over a finite number T of points. Due to
nonstationarity, letting T tend to infinity, that is, extending the process into the future, will
not provide further insight into the behavior of the process at the beginning of the time
interval. Hence, in this context, we need a different asymptotic scheme in order to assess the
quality of inference procedures — typically, in order to study the consistency, as n and T
tend to infinity, of estimators of the time-varying impulse response functions C∗n(t, L) over
the time interval [1, T ].

Following Dahlhaus (2009), we consider the locally stationary asymptotic scheme, an
approach that has been initiated in Dahlhaus (1997). More precisely, for any τ ∈ (0, 1),
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let X(τ) = {Xit(τ) : i ∈ N0, t ∈ Z} denote the fictitious (i.e., non-observable) stationary
process described by the GDFM decomposition

Xit(τ) := χit(τ) + ξit(τ), i ∈ N0, t ∈ Z, (5)

where

χit(τ) =
q∑
j=1

∞∑
k=0

cijk(τ)uj,t−k, i ∈ N0, t ∈ Z, (6)

ξit(τ) =
∞∑
j=1

∞∑
k=0

dijk(τ)ηj,t−k, i ∈ N0, t ∈ Z (7)

where the driving shocks ujt and ηjt are the same as in (2) and (3) (hence satisfy Assump-
tion (A)): write χ(τ) and ξ(τ) for {χit(τ) : i ∈ N0, t ∈ Z} and {ξit(τ) : i ∈ N0, t ∈ Z}, respect-
ively. Letting Xnt(τ) := (X1t(τ), . . . , Xnt(τ))′, χnt(τ) := (χ1t(τ), . . . , χnt(τ))′,
and ξnt(τ) := (ξ1t(τ), . . . , ξnt(τ))′, (5)-(7) also can be written, with obvious notation Cn(τ ;L)
and Dn(τ ;L), as

Xnt(τ) = χnt(τ) + ξnt(τ), τ ∈ (0, 1), t ∈ Z, n ∈ N0 (8)

where

χnt(τ) := Cn(τ ;L)ut and ξnt(τ) := Dn(τ ;L)ηnt, τ ∈ (0, 1), t ∈ Z, n ∈ N0. (9)

As τ ranges over (0, 1), the X(τ)’s thus constitute a collection of stationary processes.
Denote by XT := {Xit : i ∈ N0, 1 ≤ t ≤ T} the finite-T subprocess of the nonstation-
ary X. The idea consists in approximating the (nonstationary) component Xit of XT with
the value Xit(t/T ) of the stationary process X(τ) = {Xis(τ) : i ∈ N0, s ∈ Z}, τ = t/T (the
so-called rescaled time) at time s = t:

Xit ≈ Xit(t/T ) = χit(t/T ) + ξit(t/T ), i ∈ N0, 1 ≤ t ≤ T, (10)

where χit(t/T ), defined in (6), depends on the coefficients cijk(t/T ) and ξit(t/T ), defined
in (7), similarly depends on the coefficients dijk(t/T ).

If the approximation (10) is to make sense, of course, the coefficients in (6) and (7) need
to satisfy some regularity assumptions, and to somehow approximate those in (2) and (3).
We require the following regularity conditions for the coefficients of the common component.

Assumption (B part I).

B1. There exists a ρχ ∈ [0, 1) and constants C ′1 and C1 (independent of k) such that

sup
i∈N0

max
1≤j≤q

sup
t∈N0

|c∗ijk(t)| ≤ C ′1ρkχ and sup
i∈N0

max
1≤j≤q

sup
τ∈(0,1)

|cijk(τ)| ≤ C1ρ
k
χ

for all k ∈ N.

B2. The filters c∗ij(t;L) and cij(τ ;L) are rational for all i ∈ N0 and 1 ≤ j ≤ q.
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B3. There exists a constant Cχ (independent of T and k) such that

sup
i∈N0

max
1≤j≤q

max
1≤t≤T

|c∗ijk(t)− cijk(t/T )| ≤ Cχρkχ/T

for all T ∈ N0 and k ∈ N, where ρχ is defined in (B1).

B4. The mapping τ 7→ cij(τ ; z) is twice uniformly continuously differentiable for all i, j ∈ N0
and z ∈ C, and there exists a constant C2 (independent of k) such that

sup
i∈N0

max
1≤j≤q

sup
τ∈(0,1)

∣∣∣∣∣d2cijk(τ)
dτ2

∣∣∣∣∣ ≤ C2ρ
k
χ

for all k ∈ N, where ρχ is defined in (B1).

Assumption (B1) is a standard geometric decay requirement for the autocorrelations of
the common components. Assumption (B2) allows to apply the results on singular processes
used also in Forni et al. (2017). Note that a rational process is a process admitting a VARMA
representation of finite (but unspecified) orders and that such processes are dense in the family
of stationary processes.

In accordance with Dahlhaus’ terminology, a sequence of processes {χnt(τ)} satisfying
Assumptions (A1) and (B3) will be called locally stationary. Although the filters in (6) and (7)
are not required to coincide with those in (2) and (3), the approximation in (10) is justified
by condition (B3), which is similar to Definition 2.1 in Dahlhaus (1997) and Assumption 4.1
in Dahlhaus (2012). As we show in Section 3, this plays an essential role in the problem of
consistent estimation of the impulse response coefficients c∗ijk(t) as n and T tend to infinity.

Assumption (B4) controls the degree of smoothness of the impulse response functions
and it is standard in this context (see e.g. Assumption 4.1 in Dahlhaus, 2012). Obviously
it implies uniform Lipschitz continuity of the function cijk(·) and, moreover, implies twofold
uniform continuous differentiability of the time-varying spectral density (see Lemma 1 below);
both these conditions are also required by Eichler et al. (2011, Assumption 2).

Similarly, we impose the following regularity conditions on the coefficients of the idiosyn-
cratic component.

Assumption (B part II).

B5. There exists a ρξ ∈ [0, 1) and constants B′1ij, B1ij (independent of k) such that

sup
t∈N0

|d∗ijk(t)| ≤ B′1ijρkξ and sup
τ∈(0,1)

|dijk(τ)| ≤ B1ijρ
k
ξ

for all k ∈ N. Moreover, there exist constants B′1 and B1 (independent of i and j) such
that

∞∑
j=1

B′1ij ≤ B′1,
∞∑
i=1

B′1ij ≤ B′1,
∞∑
j=1

B1ij ≤ B1, and
∞∑
i=1

B1ij ≤ B1

for all i, j ∈ N0.
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B6. There exist constants Bξij (independent of T and k) such that

max
1≤t≤T

|d∗ijk(t)− dijk(t/T )| ≤ Bξijρkξ/T

for all T ∈ N0 and k ∈ N, where ρξ is defined in (B5). Moreover, there exists a
constant Bξ (independent of i and j) such that

∞∑
j=1

Bξij ≤ Bξ and
∞∑
i=1

Bξij ≤ Bξ

for all i, j ∈ N0.

B7. The mapping τ 7→ dij(τ ; z) is twice uniformly continuously differentiable for all i, j ∈ N0
and z ∈ C, and there exist constants B2ij (independent of k) such that

sup
τ∈(0,1)

∣∣∣∣∣d2dijk(τ)
dτ2

∣∣∣∣∣ ≤ B2ijρ
k
ξ

for all k ∈ N, where ρξ is defined in (B5). Moreover, there exists a constant B2 (inde-
pendent of i and j) such that

∞∑
j=1

B2ij ≤ B2 and
∞∑
i=1

B2ij ≤ B2

for all i, j ∈ N0.

Assumptions (B5), (B6), and (B7) are the analogues of (B1), (B3), and (B4), respectively.
In particular, the summability conditions of the constants are a generalization to the tvGDFM
of Assumption 4 by Forni et al. (2017), which requires the idiosyncratic components to have
“weak” cross-dependence only (see Lemma 2 below).

Unlike the nonstationary X, χ, and ξ, the stationary processes X(τ), χ(τ), and ξ(τ), for
any τ ∈ (0, 1), under Assumptions (A) and (B), admit well-defined spectral densities. For
any n ∈ N0, define the n× n lag ` autocovariance matrix of Xn(τ) as

ΓXn (τ ; `) := E[Xnt(τ)X′n,t−`(τ)], ` ∈ Z, τ ∈ (0, 1). (11)

Then, for any n ∈ N0, the n× n spectral density matrix of Xn(τ) is defined as

ΣX
n (τ ; θ) := 1

2π

∞∑
`=−∞

e−ι`θ ΓXn (τ ; `), θ ∈ [−π, π], τ ∈ (0, 1). (12)

Similarly define Σχ
n(τ ; θ) and Σξ

n(τ ; θ). For given τ and θ, each of the matrix sequences ΣX
n (τ ; θ),

Σχ
n(τ ; θ), and Σξ

n(τ ; θ) is nested as n increases.
Obviously, because of Assumption (A3),

ΣX
n (τ ; θ) = Σχ

n(τ ; θ) + Σξ
n(τ ; θ), τ ∈ (0, 1), θ ∈ (0, 2π].

Assuming that the nT -dimensional process XnT := {Xit : 1 ≤ i ≤ n, 1 ≤ t ≤ T}
(an n × T panel) is observed, we associate with each t = 1, . . . , T the spectral density
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matrices ΣX
n (t/T ; θ), Σχ

n(t/T ; θ), and Σξ
n(t/T ; θ): those spectral matrices, which depend

on rescaled time, will be used as local substitutes for the nonexisting (or meaningless) spectra
of XnT .

We denote by σXij (τ ; θ) the (i, j) entry of ΣX
n (τ ; θ). The following regularity conditions,

proved in the online Appendix, are a consequence of Assumptions (A) and (B).

Lemma 1. Under Assumptions (A)-(B),

(i) the mapping τ 7→ σXij (τ ; θ) is twice uniformly continuously differentiable for all i, j ∈ N0
and θ ∈ [−π, π] and there exists a constant K (independent of n) such that, for any n ∈N0,

max
1≤i,j≤n

sup
τ∈(0,1)

sup
θ∈[−π,π]

∣∣∣∣∣d
2σXij (τ ; θ)

dτ2

∣∣∣∣∣ ≤ K.
(ii) the mapping θ 7→ σXij (τ ; θ) is twice uniformly continuously differentiable for all i, j ∈ N0

and τ ∈ (0, 1) and there exists a constant K′ (independent of n) such that, for any n ∈N0,

max
1≤i,j≤n

sup
τ∈(0,1)

sup
θ∈[−π,π]

∣∣∣∣∣d
2σXij (τ ; θ)

dθ2

∣∣∣∣∣ ≤ K′.
These smoothness requirements are also in Eichler et al. (2011, Assumption 2(i)) and, as

a consequence, σXij (τ ; θ) is uniformly Lipschitz continuous both in τ and in θ.
Denote by λXj;n(τ ; θ), λχj;n(τ ; θ), and λξj;n(τ ; θ) the jth eigenvalues (in decreasing order of

magnitude) of the spectral density matrices ΣX
n (τ ; θ), Σχ

n(τ ; θ), and Σξ
n(τ ; θ), respectively.

We make the following assumption.

Assumption (C). There exist continuous functions θ 7→ αχj (τ ; θ) and θ 7→ βχj (τ ; θ), 1 ≤ j ≤ q,
and an integer Nχ such that, for all n ≥ Nχ, any given τ ∈ (0, 1), and Lebesgue-a.e.4
over θ ∈ [−π, π],

βχ1 (τ ; θ) ≥
λχ1;n(τ ; θ)

n
≥ αχ1 (τ ; θ) > βχ2 (τ ; θ) ≥

λχ2;n(τ ; θ)
n

≥ . . .

. . . ≥ αχq−1(τ ; θ) > βχq (τ ; θ) ≥
λχq;n(τ ; θ)

n
≥ αχq (τ ; θ) > 0.

Assumption (C) is a generalization to the time-varying case of the classical assumption
of pervasive factors (see also Forni et al., 2000, Assumption 3 in Eichler et al., 2011, and
Assumption 3 in Forni et al., 2017).

The eigenvalues λξj;n(τ ; θ) of Σξ
n(τ ; θ) and λXj;n(τ ; θ) of ΣX

n (τ ; θ) are then characterized by
the following lemma, which is proved in the online Appendix.

Lemma 2. Under Assumptions (A)-(C),

(i) there exists a constant Bξ such that λξ1;n(τ ; θ) ≤ Bξ for all n ∈ N0, all τ ∈ (0, 1) and
all θ ∈ [−π, π];

4That is, except for a subset of θ values included in a set with Lebesgue measure zero.
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(ii) there exist continuous functions θ 7→ αj(τ ; θ) and θ 7→ βj(τ ; θ) , 1 ≤ j ≤ q, and an
integer NX such that, for all n ≥ NX , any given τ ∈ (0, 1), and Lebesgue-a.e. over θ ∈
[−π, π],

β1(τ ; θ) ≥
λX1;n(τ ; θ)

n
≥ α1(τ ; θ) > β2(τ ; θ) ≥

λX2;n(τ ; θ)
n

≥ . . .

. . . ≥ αq−1(τ ; θ) > βq(τ ; θ) ≥
λXq;n(τ ; θ)

n
≥ αq(τ ; θ) > 0; (13)

(iii) there exists a constant BX such that λXq+1;n(τ ; θ) ≤ BX for all n ∈ N0, all τ ∈ (0, 1),
and all θ ∈ [−π, π].

Parts (ii) and (iii) of Lemma 2 imply the presence of an eigen-gap in the spectral density
matrix of Xn(τ) which is increasing with n, and therefore allows for identification of the
tvGDFM as n→∞.

It is important to stress that Assumption (C) rules out the possibility of a number of
factors depending on τ in the stationary processes X(τ) and χ(τ): irrespective of τ , all
spectral density matrices ΣX

n (τ ; θ) and Σχ
n(τ ; θ) have (for n ≥ q+ 1) q distinct and exploding

(as n → ∞) eigenvalues. The slow variation in time of the tvGDFM parameters implied by
Assumptions (B3)-(B4) and (B6)-(B7) is not compatible with a time-varying number of factors
and, for this reason, q in Assumption (A1) is fixed over time. Note, however, that a factor
model with a time-varying number of factors q(t), say, can always be written as a factor model
with a constant number q := max1≤t≤T q(t) of factors in which almost all loadings relative to
some given common shock are zero over some time period (see Barigozzi et al. (2018)). Such
a situation is incompatible with the idea of slowly varying loadings because it corresponds
to a cross-sectionally pervasive change in the tvGDFM structure. However, as mentioned in
the Introduction, and in agreement with the results by Bates et al. (2013), we expect our
locally stationary approach to be robust against the presence of “small” (cross-sectionally
non-pervasive) change-points.

We conclude this section by assuming the existence of a singular autoregressive represent-
ation for the common components processes χ(τ) (for a stationary version, see Assumption 5
in Forni et al., 2017).

Assumption (D). For any k ∈ N0, denote by

χ(k)(τ) := {χ(k)
t (τ) := (χ(k−1)(q+1)+1,t(τ), . . . , χk(q+1),t(τ))′ : t ∈ Z}

an arbitrary (q+1)-dimensional subprocess of χ(τ) (as defined in (6)). Then, for all τ ∈ (0, 1)
and k ∈ N0,

D1. there exists a unique autoregressive (q + 1)× (q + 1) filter A(k)(τ ;L) and a (q + 1)× q
matrix H(k)(τ) of rank q such that

A(k)(τ ;L)χ(k)
t (τ) = H(k)(τ)ut, t ∈ Z;

D2. there exists a constant S (independent of τ and k) such that, denoting by sk(τ) the order
of A(k)(τ ;L), sk(τ) ≤ S for all k ∈ N0 and τ ∈ (0, 1);
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D3. det A(k)(τ ; z) 6= 0 for all z ∈ C such that |z| ≤ 1;

D4. letting Γχ(k)(τ ; `) := E[χ(k)
t (τ)χ(k)′

t−`(τ)] denote the (q+ 1)× (q+ 1) lag ` autocovariance
matrix of χ(k)(τ) and defining, for S > 0, the S(q + 1)× S(q + 1) matrix

G(k)(τ) :=


Γχ(k)(τ ; 0) Γχ(k)(τ ; 1) . . . Γχ(k)(τ ;S − 1)
Γχ(k)(τ ;−1) Γχ(k)(τ ; 0) . . . Γχ(k)(τ ;S − 2)
...

... . . . ...
Γχ(k)(τ ;−S + 1) Γχ(k)(τ ;−S + 2) . . . Γχ(k)(τ ; 0)

 ,

there exists a constant d (independent of τ and k) such that det G(k)(τ) > d (for S = 0,
let G(k)(τ) := Iq+1).

Assumption (D) jointly with (B2) is crucial for allowing us to estimate the model by
means of one-sided filters. Actually, it has been shown by Anderson and Deistler (2008a,b)
that, for rational processes, Assumption (D) holds generically.5 Generically is not enough
here, though, and this is why we need to make it an assumption which, however, for the same
reason, turns out to be a very mild one (see also Section 4 in Forni et al., 2015).

Now consider the case in which n = m(q + 1) for some integer m.6 The n-dimensional
common component χn(τ) under Assumption (D) admits the autoregressive representation

An(τ ;L)χnt(τ) = Rn(τ)ut, τ ∈ (0, 1), t ∈ Z (14)

where, for τ ∈ (0, 1), An(τ ;L) is block-diagonal with (q+1)×(q+1) diagonal blocks A(k)(τ ;L),
1 ≤ k ≤ m satisfying Assumption (D) and Rn(τ) (stacking m (q + 1) × q matrices of the
type H(k)(τ)) is of dimension n×q with full column rank q. Letting Znt(τ) := An(τ ;L)Xnt(τ),
we have

Znt(τ) = Rn(τ)ut + An(τ ;L)ξnt(τ) =: ψnt(τ) + ζnt(τ), τ ∈ (0, 1), t ∈ Z. (15)

This constitutes for Znt(τ) a stationary static factor model with the same q common shocks {ut}
as those appearing in the definition (2) of the nonstationary GDFM for X. Let ΓZn (τ), Γψn(τ),
and Γζn(τ) stand for the n×n covariance matrices of Znt(τ), ψnt(τ), and ζnt(τ), respectively;
because of Assumption (A3), we have

ΓZn (τ) = Γψn(τ) + Γζn(τ).

To conclude, let µψj;n(τ) and µζj;n(τ) denote the jth eigenvalues (in decreasing order of
magnitude) of the covariance matrices Γψn(τ) and Γζn(τ), respectively. The next assumption
and the following Lemma, proved in the online Appendix, allow us to identify, for any given
τ ∈ (0, 1), the decomposition (15) as n→∞ (see, for the stationary case, Assumption 6 and
Proposition 4 in Forni et al., 2017).

5That is, except for a subset of the parameter space of their VARMA representation contained in a set of
Lebesgue measure zero.

6This is convenient and does not imply any loss of generality for our asymptotic analysis, see the end
Section 3.1 for further details when it does not hold.
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Assumption (E). There exist continuous functions αψj (τ) and βψj (τ) , 1 ≤ j ≤ q, and an
integer Nψ such that, for all n ≥ Nψ, and any given τ ∈ (0, 1),

βψ1 (τ) ≥
µψ1;n(τ)
n

≥ αψ1 (τ) > βψ2 (τ) ≥
µψ2;n(τ)
n

≥ . . .

. . . ≥ αψq−1(τ) > βψq (τ) ≥
µψq;n(τ)
n

≥ αψq (τ) > 0.

Lemma 3. Under Assumptions (A)-(D), there exists a constant Bζ such that µζ1;n(τ) ≤ Bζ
for all n ∈ N0 and all τ ∈ (0, 1).

3 Estimation and consistency

In this section, we show how to adapt the Forni et al. (2017) one-sided estimation method to
the time-varying setting described by Assumptions (A)-(E). The substantial advantage over
the Eichler et al. (2011) time-varying extension of the simpler dynamic principal component
analysis of Forni et al. (2000) is that the approach considered in this paper delivers estimators
of the filters C∗n(t, L) (1 ≤ t ≤ T ) which are one-sided and therefore can be used directly for
time-varying impulse response analysis.

Hereafter, all estimated quantities are denoted with “hats”, e.g. ĉij;n,T (t) for the estimator,
based on the observation of an n×T realization XnT of X, of the kth coefficient in the (i, j)th
entry of C∗n(t, L), etc. Suffixes highlight the dependence on T and (possibly) also on n of
those quantities.

3.1 Estimation

Our estimation procedure is based on four main steps; throughout this section, n and T are
fixed.

(i) Estimation of the Spectral Density. First, we need an estimator of the spectral density
matrices ΣX

n (τ ; θ); here, we follow Zhang and Wu (2019). For any given τ ∈ (0, 1), define, for
some bandwidth bT ∈ [0, 1/2], T1(τ) := bTτc − bTbT c+ 1 and T2(τ) := bTτc+ bTbT c. Next,
letting MT := 2bTbT c, define the local estimator of the lag ` autocovariance matrix of Xn(τ)
as

Γ̂Xn,T (τ ; `) :=


1
MT

T2(τ)∑
s=T1(τ)+`

J
(
s− bτT c
MT

)
Xn,s−`X′ns τ ∈ (0, 1), 0 ≤ ` ≤ (MT − 1)

Γ̂X′n,T (τ ;−`) (−MT + 1) ≤ ` ≤ −1
(16)

(see also Rodŕıguez-Poo and Linton, 2001) where J(·) is a suitable kernel. Then define, for
some mT ∈ N0 such that mT < MT , the local estimator of the spectral density matrix
of Xn(τ) as

Σ̂X
n,T (τ ; θ) := 1

2π

mT∑
`=−mT

K
( |`|
mT

)
Γ̂Xn,T (τ ; `)e−ι`θ, τ ∈ (0, 1), θ ∈ [−π, π], (17)

where K(·) is a suitable kernel. We refer to Assumption (F) in the next section for details on
the choice of the kernels, MT , and mT .
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In practice, the estimator (17) can be computed only at a discrete number of time points
and frequencies. Specifically, recalling thatMT by definition is always even, at any given τ , the
sum in (16) only involves the MT time points ts := t+s such that (−MT /2+1) ≤ s ≤MT /2.
As a consequence, we are able to compute the estimator (16) only for the central (T −MT +1)
time points of the sample, i.e., we compute Γ̂Xn,T (t/T ; `) for MT /2 ≤ t ≤ (T − MT /2).
Similarly, we only are able to consider the mT frequencies θj := πj/mT with |j| ≤ mT ;
indeed, the maximum achievable resolution for (17) in the frequency domain is mT /(2π).7

(ii) Dynamic Principal Component Analysis. Denote by λ̂Xj;n,T (t/T ; θj) the jth eigenvalue
(in decreasing order of magnitude) of Σ̂X

n,T (t/T ; θj) and by P̂X
j;n,T (t/T ; θj), the corresponding

n-dimensional normalized eigenvector. Then, for a given number q of factors,

Σ̂χ
n,T (t/T ; θj) :=

q∑
j=1

λ̂Xj;n,T (t/T ; θj)P̂X
j;n,T (t/T ; θj)P̂X†

j;n,T (t/T ; θj),

MT /2 ≤ t ≤ (T −MT /2), |j| ≤ mT , (18)

is an estimator of the spectral density Σχ
n(τ ; θ) of the common component.

Lastly, by inverse Fourier transform, compute from (18) the estimators

Γ̂χn,T (t/T ; `) := 2π
mT

mT∑
j=−mT

Σ̂χ
n,T (t/T ; θj)eι`θj , MT /2 ≤ t ≤ (T −MT /2), ` ∈ Z. (19)

of the local autocovariance matrices of the common component.

(iii) VAR filtering. Assuming again, for simplicity, that n = m(q + 1) for some integer m,
consider the m autoregressive models (each of dimension (q + 1): see Assumption (D))

A(k)
n (t/T ;L)χ(k)

nt (t/T ) = H(k)
n (t/T )ut, MT /2 ≤ t ≤ (T −MT /2), 1 ≤ k ≤ m. (20)

Based on the estimated autocovariances (19), compute, using AIC for determining the VAR
orders, the Yule-Walker estimates Â(k)

n,T (t/T ;L) of the autoregressive filters A(k)
n (t/T ;L).

Construct the n× n block-diagonal filter Ân,T (t/T ;L) with (see (14)) the m diagonal blocks

Â(1)
n,T (t/T ;L), . . . , Â(m)

n,T (t/T ;L)

and the filtered process

Ẑnt(t/T ) := Ân,T (t/T ;L)Xnt, MT /2 ≤ t ≤ (T −MT /2), (21)

to be used as an estimation of Znt(t/T ) satisfying (15) for τ = t/T .

(iv) Principal Component Analysis. Consider the estimator

Γ̂Ẑn,T (t/T ) := 1
MT

T2(t/T )∑
s=T1(t/T )

J
(
s− t
MT

)
Ẑns(t/T )Ẑns(t/T )′, MT /2 ≤ t ≤ (T −MT /2), (22)

7Hence, it makes no sense to compute (17) over the finer grid θj = πj/T with |j| ≤ T .
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of the covariance matrix of Ẑnt(t/T ), where MT , T1, T2, and J(·) are the same as in (16).
Denoting by µ̂Ẑj;n,T (t/T ) the jth eigenvalue of Γ̂Ẑn (t/T ) (in decreasing order of magnitude),
with normalized n-dimensional eigenvector P̂Ẑ

j;n,T (t/T ), define

R̂j;n,T (t/T ) := P̂Ẑ
j;n,T (t/T )

√
µ̂Ẑj;n,T (t/T ), MT /2 ≤ t ≤ (T −MT /2), 1 ≤ j ≤ q,

and let R̂n,T (t/T ) := (R̂1;n,T (t/T ), . . . , R̂q;n,T (t/T )). Our estimators of the impulse response
functions C∗n(t;L) are

Ĉn,T (t;L) := [Ân,T (t/T ;L)]−1R̂n,T (t/T ), MT /2 ≤ t ≤ (T −MT /2), (23)

with (i, j) entry ĉij;n,T (t;L) :=
∑∞
k=0 ĉijk;n,T (t)Lk. As shown in the next section (see Propo-

sition 1), the latter, up to a sign, is a consistent estimator of c∗ij(t;L) :=
∑∞
k=0 c

∗
ijk(t)Lk,

as n, T →∞.

The estimation procedure just described calls for some comments.
First, the estimator of the time-varying spectral density in step (i), which is the one pro-

posed in Zhang and Wu (2019), consists of a local-in-time estimator of the autocovariances
smoothed over time and is then used to compute at each point in time the usual weighted peri-
odogram. Another possible estimator, not considered in this paper, would be the smoothed
pre-periodogram proposed by Neumann and von Sachs (1997), where a local-in-time pre-
periodogram is computed first, then is smoothed both over time and over frequencies. This
latter estimator has also been considered by Dahlhaus (2009) and Eichler et al. (2011).

Second, step (ii) is directly taken from Eichler et al. (2011), who propose to estimate
the common component by means of time-varying dynamic principal components. Steps (iii)
and (iv), and the estimator (23) of the time-varying impulse response function to common
shocks represent the main novelty of this paper, being the generalization to the time-varying
case of the approach proposed by Forni et al. (2017). In particular, step (iv) shows how an
adequate VAR filtering brings the problem back to a time-varying static factor model in the
style of Rodŕıguez-Poo and Linton (2001) and Motta et al. (2011).

Third, the matrices Rn(τ) and the noise ut in (14) are identified up to an arbitrary invert-
ible transformation P(τ) only, as Rn(τ)ut = Rn(τ)P(τ)P−1(τ)ut. It is shown in the online
Appendix that our choice of R̂n,T (t/T ), together with Assumption (A1) on the orthonormal-
ity of {ut}, identifies the impulse responses up to a sign. That sign issue can be solved by
imposing identification constraints: see, for instance, Section 4.1 of Forni et al. (2009) in a
stationary setting. Since, however, our study of connectedness in Section 4 does not require
specifying those signs, we are skipping details.

Fourth, the cross-sectional ordering of the panel has an impact on the selection of the m
subvectors χ(k)

nt (τ) in step (iii) and the possible dropping of n − bn/(q + 1)c(q + 1) series
at the end of the panel when n is not an exact multiple of (q + 1). The n! cross-sectional
permutations of the panel, thus, would lead to n! estimators, all sharing the same consistency
properties stated in Proposition 1. A Rao-Blackwell argument (see Section 3.5 of Forni et al.,
2017 for details) suggests aggregating these estimators into a unique one by simple averaging
(after obvious reordering) of the resulting impulse response functions. Although averaging
over all n! permutations is clearly unfeasible, as stressed by Forni et al. (2017, Section 4.2)
and Forni et al. (2018, Appendix D) in a stationary setting, a few of them are enough, in
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practice, to deliver stable averages (which therefore are matching the infeasible average over
all n! permutations). Such averaging clearly has no impact on consistency.

Fifth, the number q of common shocks throughout has been considered as known, and
we assumed it to be constant through time. That number has to be estimated from the
observations, though. We suggest using the criterion proposed by Hallin and Lǐska (2007).
However, instead of implementing it on the basis of a classical estimator of the spectral
density (invalid in the present context), we suggest running the method on the local esti-
mator Σ̂X

n,T (1/2; θj) of the spectral density associated with the central part of the observation
period (τ = 1/2). The validity of the assumption of a constant number q of common shocks
also can be tested heuristically by performing the same analysis for a few values of τ , then
comparing the results. This is how we determine q in Section 4.

3.2 Consistency

We now turn to the proof of consistency, as n and T tend to infinity, of the estimated time-
varying impulse response functions (23). This, however, requires assumptions on the band-
widths and the kernels used to estimate the autocovariance matrices in (16) and the spectral
density matrix in (17). In the previous section we defined MT := 2bTbT c for some bT ∈ [0, 1/2]
so that 0 ≤MT ≤ T , and, similarly, we now define mT := b1/hT c for some hT ∈ (1/MT ,∞),
so that 0 ≤ mT < MT , as required in Section 3.1.

On kernels and badwidths, we make the following assumptions.

Assumption (F).

F1. The kernels J(·) and K(·) are such that

(a) J : [−1/2, 1/2]→ R+ is continuous, symmetric, and such that
∫ 1/2
−1/2 J(u)du = 1;

(b) K : [−1, 1]→ R+ is continuous, symmetric, and such that
∫ 1
−1 K(u)du = 1.

F2. The bandwidth bT is such that bT � T−1/3+2/(3r∗) if 4 < r∗ < 8, or bT � T−1/4 if r∗ ≥ 8,
where r∗ is defined in Assumption (A4).

F3. The bandwidth hT is such that hT � bT .

Assumption (F1) is standard in the literature (see e.g. Example 4.2 in Dahlhaus, 2009).
Assumptions (F2) and (F3) imply the standard asymptotic conditions on the bandwidths,
i.e., bT → 0, hT → 0, and TbT → ∞, ThT → ∞ as T → ∞. The assumed rates are the
optimal ones, in the sense that they deliver the minimum mean-squared-error when estimating
the spectral density (see Lemma 4 below and the following discussion). In particular, notice
that, because of these assumptions, we must have, neglecting logarithmic in T quantities and
powers thereof,

mT � T 1/3−2/(3r∗) and MT � T 2/3−2/(3r∗) if 4 < r∗ < 8
mT � T 1/4 and MT � T 3/4 if 8 ≤ r∗.

Although our theory holds for any kernel satisfying (F1), in practice, we adopt

J(u) =
{

1 if |u| ≤ 1/2,
0 otherwise, and K(u) =

{
1− |u| if |u| ≤ 1,

0 otherwise. (24)
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While the choice of a uniform kernel for J(·) is recommended by Zhang and Wu (2019),
the choice of a triangular kernel for K(·) is very common (see e.g. Forni et al., 2017 in
the stationary case). Notice that, with this choice of kernels, our estimator of the local
spectral density is nothing else but the classical weighted periodogram computed using a
rolling window of observations of size MT .

Let σ̂Xij;T (τ ; θ) and σXij (τ ; θ) denote the (i, j) entries of Σ̂X
n,T (τ ; θ) and ΣX

n (τ ; θ), respect-
ively (due to nestedness, σ̂Xij;T (τ ; θ) and σXij (τ ; θ) do not depend on n).

We have the following result.

Lemma 4. Under Assumptions (A), (B), and (F), and given the choice of kernels in (24),
there exists constants CX , C ′X , and C ′′X (independent of T and n) such that, for any n, T ∈ N0,

max
1≤i,j≤n

E
[

sup
τ∈(0,1)

sup
θ∈[−π,π]

∣∣∣σ̂Xij;T (τ ; θ)− σXij (τ ; θ)
∣∣∣2] ≤ AT + BT,r∗ + ∆2

T (25)

where

AT ≤ CX
log T
TbThT

, BT,r∗ ≤ C ′X
T 4/r∗(log T )4+4/r∗

T 2b2Th
2
T

, and ∆2
T ≤ C ′′X

(
h2
T + b4T

h2
T

+ 1
T 2b2Th

2
T

)
,

with r∗ defined in Assumption (A4).

This result is proved in the online Appendix; it is based on the Zhang and Wu (2019)
approach applied to our tvGDFM. In particular, the proof relies on deriving bounds for the
physical dependence of the common and idiosyncratic components, a concept introduced by
Wu (2005). The terms AT and BT,r∗ are due to the variance of the estimator, while ∆T is
the bias.

Let us show that the choices in Assumptions (F2) and (F3) are optimal. We have a
balance between squared bias and variance if, as T →∞, either

(i) AT � ∆2
T and BT,r∗ = o(AT ), or

(ii) BT,r∗ � ∆2
T and AT = o(BT,r∗).

For simplicity of notation, define δ1(r∗) := 1/3− 2/3r∗ and δ2(r∗) := 1/2− 2/r∗. First, note
that ∆2

T = O(max(h2
T , b

4
T /h

2
T )) since min(h2

T , b
4
T /h

2
T ) is always dominated by AT and BT,r∗ .

Second, neglecting log T quantities and powers thereof, we have

AT � ∆2
T if bT � T−1/4 and hT � T−1/4,

BT,r∗ � ∆2
T if bT � T−δ1(r∗) and hT � T−δ1(r∗).

Thus, in both cases, we need hT � bT in agreement with Assumption (F3). Third, let-
ting hT � bT , we have, neglecting logarithmic in T quantities and powers thereof, AT � BT,r∗
if bT � T−δ2(r∗).

Now, consider first the case 4 < r∗ < 8 and note that δ2(r∗) < δ1(r∗) < 1/4. Then,
the optimal bandwidth choice is bT � T−δ1(r∗) since, in this case, BT,r∗ � ∆2

T and AT
is o(BT,r∗), while if bT � T−1/4, we have AT � ∆2

T but still AT = o(BT,r∗), so that the
term that dominates is BT,r∗ , which is larger than the squared bias. In case r∗ > 8, we
have instead 1/4 < δ1(r∗) < δ2(r∗) and the optimal bandwidth choice is bT � T−1/4 since
now AT � ∆2

T and BT,r∗ = o(AT ), while if bT � T−δ1(r∗), we have BT,r∗ � ∆2
T but BT,r∗

still is o(AT ), so that the term that dominates is AT , which is larger than the squared bias.
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Finally, notice that if r∗ = 8, setting bT � T−1/4 and hT � T−1/4 implies AT � BT,r∗ � ∆2
T .

The previous discussion shows that Assumption (F2) is optimal.
Furthermore, for the bandwidth choices in Assumptions (F2) and (F3), the convergence

rate in Lemma 4 reduces to

ζT,r∗ :=
{
T−2/3+4/(3r∗)(log T )4+4/r∗ if 4 < r∗ < 8,
T−1/2 log T, if r∗ ≥ 8. (26)

In particular, if the data is Gaussian, i.e. r∗ = ∞, still neglecting log T quantities and
their powers, ζT,r∗ = T−1/2, implying, by Chebychev’s inequality, the uniform (in τ and θ)
consistency, with rate T 1/4, of the estimators σ̂Xij;T (τ ; θ).

We conclude the discussion of Lemma 4 with three comments.
First, comparing our results with those of Dahlhaus (2009, Example 4.2) on the smoothed

pre-periodogram (already suggested by Neumann and von Sachs (1997)) or those in Dahlhaus
(1996, Theorem 2.2) and Dahlhaus (2012, Theorem 4.7) on the smoothed segmented period-
ogram, we conjecture that it is possible to achieve convergence at rate T 1/3, which would
be faster than ours. However, this would require replacing the triangular kernel K(·) by a
smoother one, as is well-known already in the spectral estimation of stationary time series.
Moreover, the aforementioned results are derived under the assumption that all moments of
the innovations of the MA(∞)-representations are finite (r∗ = ∞). Finally, we preferred to
work with the same kernels as in Zhang and Wu (2019), who derive rates (uniform in time and
frequency) for the mean-squared-errror convergence of the spectral density estimator in the
given set-up, whereas it is not clear how such uniform rates can be derived from the results
by Dahlhaus (2009).

Second, as in the Dahlhaus approach, our results make use of uniformly bounded second
derivatives of the autocovariances with respect to time, which is possible in view of Assump-
tions (B4) and (B7). We still could achieve consistency by just assuming uniformly bounded
first derivatives instead, which implies uniform Lipschitz continuity. However, in this case,
we would have ∆2

T = O(max(b2T /h2
T , h

2
T )) and, following a reasoning similar to the one made

above, we could show that, in the r∗ =∞ case, the optimal bandwidths should be (neglecting
again logarithmic quantities in T and their powers) of order bT � T−2/5 and hT � T−1/5,
implying ζT,r∗ = T−2/5 and, therefore, the consistency rate T 1/5.

Third, in the stationary case, we can just set bT = 1/2, so that MT = T and, from
Lemma 4, up to log T quantities and their powers, obtain AT = O((ThT )−1) = O(mT /T ).
Moreover, we would have ∆2

T = O(h2
T ) and, in the r∗ = ∞ case, the optimal bandwidth

choice would be hT � T−1/3, yielding, as expected, a faster convergence of the mean-squared-
errorwith rate T 2/3, implying the consistency rate T 1/3. This result coincides, still up to log T
quantities, with the corresponding result in Wu and Zaffaroni (2018) (see also Proposition 6
in Forni et al., 2017).

In the following proposition, we consider consistency in terms of the estimation of the
coefficients c∗ijk(t).

Proposition 1. Let Assumptions (A)-(F) hold with, in Assumptions (A4) and (A5), r∗ > 4
and ϕ ∈ (0, 2] . Define

H(n, T, r∗, ϕ) := max
(
ζ

1/2
T,r∗ , n

−1/2
)

log1/ϕ T

and assume that n = O(Tω) for some ω > 0. Then, for any ε > 0 there exist η(ε), T ∗ = T ∗(ε)
and N∗ = N∗(ε), all independent of i and j, such that, for all n ≥ N∗ and T ≥ T ∗, and for
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any given k ≥ 0, there exists a sequence {sj(t)}qj=1, with sj(t) = ±1, for which

P

 max
MT /2≤t≤(T−MT /2)

∣∣∣ĉijk;n,T (t)− sj(t)c∗ijk(t)
∣∣∣

H(n, T, r∗, ϕ) ≥ η(ε)

 < ε

for all 1 ≤ i ≤ n and 1 ≤ j ≤ q.

This consistency result is proved in the online Appendix and justifies, for large n and T ,
the analysis of connectedness conducted in Section 4 on the basis of Ĉ∗n,T (t; z). Three final
comments are in order.

First, due to the identification issue mentioned is Section 3.1, consistency holds up to post-
multiplication by a sign. While that issue can be fixed by means of identification constraints,
we do not resolve it here, since the sign indetermination does not affect our empirical results
in Section 4.

Second, by Assumptions (F2) and (F3), H(n, T, r∗, ϕ) → 0, as n, T → ∞. In partic-
ular, in the Gaussian case, (up to powers of log T quantities) we have convergence with a
rate max(T−1/4, n−1/2), to be compared with the rate max(T−1/3, n−1/2) in the stationary
case, which directly follows from Proposition 10 in Forni et al. (2017). Let us stress here
that the adjusted intra-day log range observations we are considering in Section 4 are well
approximated by Gaussian variables (see e.g. Alizadeh et al., 2002).

Third, due to the two-sided kernel used for smoothing in time, the above result only holds
for the central (T −MT + 1) observations, not for the beginning nor the end of the sample.
A consequence is that we only do recover the impulse response functions for the same central
values of t.

4 An analysis of time-varying financial connectedness

4.1 Financial connectedness and the tvGDFM

The use of a tvGDFM in a study of time-varying financial connectedness is motivated by two
stylized facts we observe for the adjusted intra-day log ranges under study.

(1) Co-movements. Figure 1 reports, as a function of time, the proportions of variance
accounted for by the first factor (blue line) and the first three factors (red line), respect-
ively, computed from the tvGDFM as described in Sections 2 and 3. Both proportions
exhibit a visible evolution in time.

(2) Time-variation. Figure 2 reports rolling estimates of the 329 × 329 sample covariance
matrix of these log ranges computed at selected dates. The time-variation in the mag-
nitude of covariances very clearly appears and indicates increased interdependencies
during the financial crisis in 2008.

Common factors in the tvGDFM can be considered as “market-wide” and generate most
of the dynamic interdependencies across the observed log ranges which are the focus in this
section. The dynamic specification of the loadings in our GDFM is particularly useful in
this context since filters naturally induce measures of connectedness at different time scales
obtained from the impulse response functions of the observed data to the factors, and the
implied variance decomposition.

In our approach, motivated by the fact that cross-dependencies in the observed data
are predominantly driven by common factors, the connectedness of each variable lies in its
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Figure 1: Share of variance explained by common factors.

time

Standard & Poor’s 500 from December 31, 1999 to August 31, 2015. Evolution in time of the
estimated shares of variance accounted for by the first factor (blue line) and the first three
factors (red line). The share of variance explained at time t by the first k factors is defined
as n−1∑k

`=1

∑5
j=−5 λ̂

X
`;n,T (t/T ; θj), θj = jπ/5 where λ̂X`;n,T (t/T ; θj) is the `th largest (in decreasing

order of magnitude) eigenvalue of the estimated time-varying spectral density matrix of intra-day
adjusted log ranges (see (17) for details).

Figure 2: Covariance matrix at selected dates.
03-May-2000 03-May-2002 01-Jul-2002 21-Feb-2008

10-Sep-2008 08-Oct-2008 05-Nov-2008 04-Dec-2008

14-Apr-2010 12-May-2010 20-Jul-2011 22-Oct-2014

Heatmaps of sample covariance matrices of the intra daily adjusted log ranges estimated at selected
dates using a window of 22 days (see (16) for details). Same scale in each plot.
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degree of commonality and is undirectional. In line with previous works on systemic risk, the
connectedness measure associated with each variable in the dataset indeed consists of its own
contribution to the total connectedness of the whole system. Note that, even though systemic
risk is not uniquely defined (as reviewed by Benoit et al. (2017)), the standard approach
to its quantitative analysis is essentially a measurement of comovements. Acharya et al.
(2017), extending previous works of Acharya et al. (2012) and Brownlees and Engle (2017),
consider individual capitalization with respect to that of the market. Similarly, Adrian and
Brunnermeier (2016) measure the conditional effect of deviations from median value-at-risk
on the system value-at-risk.

This application is mainly related to three strands of the financial econometrics literature.
First, earlier works have also considered a multi-scale approach in systemic risk analysis
(Bandi and Tamoni, 2017) in close relation to fields like asset pricing (Balke and Wohar, 2002;
Ortu et al., 2013; Dew-Becker and Giglio, 2016), risk management (Engle, 2010), investment,
employment, and R&D (Barrero et al., 2017). Second, two extensions of the Diebold and
Yilmaz (2014) have been proposed quite recently: Baruńık and Křehĺık (2018) consider a
frequency-domain decomposition of connectedness matrices in a low-dimensional stationary
setting; Korobilis and Yilmaz (2018) consider time-varying estimation of high-dimensional
connectedness matrices by means of Bayesian shrinkage, based, however, on a restrictive
parametric VAR model in which connectedness is directional between any two given variables.
Third, following Diebold and Yilmaz (2014) who strongly recommend the adoption of network
measures in econometric models for financial connectedness, our approach also applies to
network analysis of time series: see Acemoglu et al. (2010); Billio et al. (2012); Allen et al.
(2012); Barigozzi and Hallin (2017); Barigozzi and Brownlees (2019), to quote only a few.

The main findings of our empirical analysis of the Standard & Poor’s 500 adjusted intra-
day log ranges in the next sections are the following:

(a) connectedness is much stronger at mid to low frequencies;
(b) large increases in long-run connectedness are associated with, and often anticipate, the

main financial downturns;
(c) the largest spike in long-run connectedness associated with the great crisis of 2007-2009

is much amplified in banks, firms in related financial sectors, and real estate;
(d) during periods of crisis, the factors tend to affect all stocks contemporaneously, while

during calm periods we find evidence of lead-lag relations between the stocks and the
market.

4.2 Data and model specification

We apply the tvGSDM methodology developed in the previous sections to an analysis of the
daily volatility of stocks which have been constituents of the Standard & Poor’s 500 from
December 31, 1999 to August 31, 2015. In order to do so, we retain the daily maximum and
minimum prices of n = 329 stocks observed over a sample of T = 3939 daily observations.
Specifically, as log-volatility proxy, we consider the intra-day adjusted log ranges for each of
those 329 stocks, defined as (Parkinson, 1980)

Xit := (pit,high − pit,low)2

4 log 2 , (27)

where pit,high and pit,low are the maximum and minimum log prices, respectively, of the i-
th stock on day t. On the resulting panel {Xnt = (X1t, . . . , Xnt)′| 1 ≤ t ≤ T}, we fit the
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tvGDFM studied in Sections 2 and 3, then compute the connectedness measures as described
in Section 4.2.

The spectral density matrix ΣX is estimated as in (17) with the kernels J(·) and K(·)
given in (24). This yields

Σ̂X
n,T (t/T ; θj) = 1

2πMT

mT∑
`=−mT

(
1− |`|

mT

) t+MT /2∑
s=t−MT /2+1+`

Xn,s−`X′nse−ι`θj , (28)

where MT /2 ≤ t ≤ (T −MT /2), θj = πj/mT , and |j| ≤ mT . In particular, we set MT = 22,
corresponding to a month of trading days and mT = 5 corresponding to one week of trading.

The estimated impulse response functions (23) then are computed by truncating the in-
finite sum at lag kmax; all connectedness measures defined in this section thus are computed
from the matrix Ĉn,T (t;L) with entries

ĉij;n,T (t;L) =
kmax∑
k=0

ĉijk;n,T (t)Lk, 1 ≤ i ≤ n, 1 ≤ j ≤ q. (29)

In the sequel, we set kmax = 20.
Once the spectrum is estimated, we need to determine the number of factors. The num-

ber q is estimated by applying the criterion of Hallin and Lǐska (2007) to the local estimate
of the spectral density matrix defined in (28). Estimation at various points in time (various
values of t) supports the evidence that q = 3 throughout the observation period, hence is
compatible with the assumption made of a “constant q”.8

Finally, as explained at the end of Section 3.2, in order to avoid the finite-sample depend-
ence of the results on the cross-sectional ordering, we average the estimated impulse response
computed from 100 random permutations of the observed cross-sectional units. Hereafter, for
simplicity of notation, we do not always indicate explicitly the dependence of the estimators
on T and/or n.

4.3 Connectedness

Our connectedness measurements, in analogy with Diebold and Yilmaz (2014), are based on
the n× n estimated matrices

Q̂n(t; z) := Ĉn(t; z)Ĉ′n(t; z), MT /2 ≤ t ≤ (T −MT /2), z ∈ C. (30)

Note that, due to its quadratic nature, Q̂n(t; z) is not impacted by the sign indeterminacy
in the estimation of Ĉn(t; z). Since Ĉn(t; z) represents the dynamic impact of the common
“market-wide” shocks, considering (30) at different horizons yields connectedness measure-
ments at different horizons; namely,

(a) a long-run connectedness matrix at time t measured as Q̂n (t; 1) which is generated by
the long-run effects of the market shocks;

(b) an instantaneous connectedness matrix at time t measured as Q̂n (t; 0) which is gener-
ated by the instantaneous effects of the market shocks;

8Additional results under alternative penalty functions and related settings proposed by Hallin and Lǐska
(2007) lead to the same conclusion.
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Figure 3: Instantaneous connectedness at selected dates.
03-May-2000 03-May-2002 01-Jul-2002 21-Feb-2008

10-Sep-2008 08-Oct-2008 05-Nov-2008 04-Dec-2008

14-Apr-2010 12-May-2010 20-Jul-2011 22-Oct-2014

Heatmaps of the estimated instantaneous connectedness matrices Q̂n (t; 0) defined in (30), for se-
lected points in time. Same scale in each plot.

(c) spectral connectedness matrices within specific frequency bands Θ ⊂ [0, π]

Q̂n (t; Θ) := 1
|Θ|

∑
j:θj∈Θ

Q̂n

(
t; e−ιθj

)
, MT /2 ≤ t ≤ (T −MT /2) θj = πj/mT , (31)

where |Θ| stands for the size of the frequency band Θ, measuring connectedness in the
components with period 2π/θj , for θj ∈ Θ, of the spectral representation of Xnt.9

In Figures 3 and 4, we present heatmaps of the estimated long-run and instantaneous
connectedness matrices Q̂n(t; 0) and Q̂n(t; 1), as defined in (30). We clearly see evidence
of time-variation, with higher connectedness during the crisis periods as the great financial
crisis of 2007-2008. Compared with the results based on the sample covariance matrices in
Figure 2, these figures reveal that connectedness in the long-run absorbs, or arguably even
amplifies, the time-variation in the data, while the short-run is relatively smoother over time.

To better appreciate the dynamics of connectedness, we can consider cross-sectional ag-
gregation of the connectedness matrices. Figure 5 provides plots of the Frobenius norms10 of
the instantaneous and long-run connectedness matrices Q̂n (t; 0) and Q̂n (t; 1), respectively,
along with the daily values of the S&P500 index. The plots reveal that both long-run and
instantaneous connectedness have spikes in conjunction with important financial crashes. The
turbulence at the beginning of our sample is related to a series of events starting with the burst

9See Theorem 11.8.2 in Brockwell and Davis (1991).
10Other norms would be equally suitable, and actually yield very similar results.
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Figure 4: Long-run connectedness, Q̂n (t; 1), at selected dates.
03-May-2000 03-May-2002 01-Jul-2002 21-Feb-2008

10-Sep-2008 08-Oct-2008 05-Nov-2008 04-Dec-2008

14-Apr-2010 12-May-2010 20-Jul-2011 22-Oct-2014

Heatmaps of the estimated long-run connectedness matrices Q̂n (t; 1) defined in (30), for selected
points in time. Same scale in each plot.

Figure 5: Instantaneous and long-run aggregate connectedness.
‖Q̂n (t; 0) ‖F vs. S&P500 ‖Q̂n (t; 1) ‖F vs. S&P500

time time

Frobenius norms (red) of the estimated instantaneous (left) and long-run (right) connectedness
matrices Q̂n(t; 0) and Q̂n(t; 1) as defined in (30), plotted against time, along with the S&P 500
index (blue).

of the dot-com bubble early in 2000 and then followed by the 2002-2003 US recession and the
US stock market downturn of 2002. Connectedness then stays low and stable until 2007 and
the onset of the great financial crisis, yielding the maximal connectedness values recorded in
the observation period. Consistently with the view that financial risk is a forward-looking
concept affecting future investment strategies, Figure 5 suggests that long-run connectedness
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Figure 6: Spectral connectedness.
‖Q̂n(t; Θ)‖F - Period of two weeks or more: Θ = [0, π/5]

time

‖Q̂n(t; Θ)‖F - Period of two weeks or less: Θ = [π/5, π]

time

Frobenius norm of the estimated spectral connectedness matrices Q̂n(t; Θ) as defined in (31).

is, quantitatively, the most relevant concept. Nevertheless, it should be noticed that short-run
dynamics also may reveal different patterns: see, for instance, the 2010 connectedness spike
which, at instantaneous level, is almost as pronounced as during the great financial crisis.

This finding is confirmed when looking at Figure 6, where we report the Frobenius norms
of the spectral connectedness matrices Q̂n (t; Θ) for two selected frequency bands Θ, as defined
in (31). In particular, we consider frequencies corresponding to cycles of period at least two
weeks (Θ = [0, π/5], top panel) and to cycles of period less than two weeks (Θ = [π/5, 0],
bottom panel). Since spectral connectedness are normalized by the size of the frequency band
considered, their scales allow for meaningful comparisons: we observe that connectedness gets
stronger and stronger as we filter out high-frequency components. When focussing on cycles
of at least two weeks, we see that the norm of spectral connectedness is very similar to that
of long-run connectedness in Figure 5, while it is indeed very small at high frequencies.

4.4 Sectoral connectedness

The connectedness of a specific cross-sectional item i attributable to shock j and the mean
connectedness 11 of series i at time t are measured by

Q̂ij (t; z) := {ĉij (t; z)}2 and Q̂i (t; z) := 1
q

q∑
j=1

Q̂ij (t; z) , (32)

respectively; long-run, instantaneous, and spectral versions of the same concepts follow in
an obvious way. By means of (32), we can evaluate connectedness within a group of cross-
sectional items. Let S(K), with cardinality nK, denote the set of cross-sectional indexes of the
series belonging to some given sector K. We can measure the corresponding sector-specific
mean connectedness at time t as

Q̂S(K) (t; z) := 1
nK

∑
i∈S(K)

Q̂i (t; z) , (33)

11Mean connectedness actually is what Diebold and Yilmaz (2014) call total connectedness.
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Figure 7: Difference between sectoral and overall long-run connectedness.
Aerospace Electronic and

and Defense Banks Chemicals Electrical Equipment

Food and
Financial Services Food Producers Drug Retailers General Retailers

Health Care Industrial Industrial
Equip. and Services Engineering Metals and Mining Life Insurance

Oil Equipment Pharmaceuticals Real Estate
Nonlife Insurance and Services and Biotech. Investment Trusts

Software Technology
Computer Services Support Services Hardware and Equip. Tobacco

Evolution through time of the differences between long-run sectoral mean connectedness Q̂S(K) (t; 1)
and the overall long-run mean connectedness Q̂(n) (t; 1) (thick line); the reference level zero is the
light grey horizontal line.

from which we can compute sector-specific long-run, instantaneous, and spectral mean con-
nectedness.

In Figure 7, we consider the evolution over time of connectedness within the main industry-
specific sectors, as defined in equation (33). Sector-specific connectedness essentially is an
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Figure 8: Average absolute phase.

time

Evolution in time (horizontal axis) of the average absolute phases φ̄χi (t/T ; θj), 1 ≤ i ≤ n
(on the vertical axis), as defined in (35).

average mean connectedness within the sector. Plotting the differences between industry-
specific connectedness and the panel-wide average

Q̂(n) (t; z) := 1
n

n∑
i=1

Q̂i (t; z) , (34)

mean connectedness provides interesting insights into the heterogeneity of dynamics across
the various sectors. It tells us, for instance, whether the long-run connectedness in any given
sector comoves with the overall market long-run connectedness, exceeding, subceeding, or
remaining constant with it.

During the great financial crisis of 2007-2009, the connectedness of Financial Services and
Real Estate and Investment Trusts are among the largest. Similar dynamics are observed
for the sectors of Industrial Metals and Mining, Industrial Engineering, Oil Equipment and
Services, and Chemicals. While a number of sectors display roughly the same amount of
connectedness as the market average (e.g. Food and Drug Retailers, Food Producers, General
Retailers), some others display more specific dynamics, with lower than the market average
connectedness during the crises: see Pharmaceuticals and Biotechnology, Software and Com-
puter Services, Technology, Hardware and Equipment. The turmoils of the early 2000’s are
associated with high connectedness in some sectors which are clearly related to the dot-com
bubble (Software and Computer Services, Technology Hardware and Equipment). Finally, it
should be stressed that we find less heterogeneity across sectors in calm times than during
financial turmoils.

4.5 Dynamic effects of common factors

As argued in the Introduction, the GDFM, unlike static factor models, does not require any
particular restriction on the dynamic impacts of the factors. In this section, we analyze such
dynamics over time for the panel of S&P500 intra-day adjusted log ranges. Specifically, given
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the estimated time-varying common spectral density matrix Σ̂χ
n,T (t/T ; θj) defined in (18),

with entries σ̂χij(t/T ; θj), we consider the time-varying phase spectrum which is an n × n
matrix with generic elements

φ̂χij(t/T ; θj) := tan−1
(

Im(σ̂χij(t/T ; θj))
Re(σ̂χij(t/T ; θj))

)
, MT /2 ≤ t ≤ (T −MT /2)), |j| ≤ mT .

Evaluating this quantity is most useful at frequencies where the coherence between χ̂i(t/T )
and χ̂j(t/T )—i.e. the pairwise correlation among the spectral components of the two processes
at the same frequency—is high (see e.g. Granger and Hatanaka, 1964, Section 5.6). For this
reason, given the results in Figure 6, we here focus only on the frequency range Θ = [0, π/5].

Specifically, in Figure 8, for 1 ≤ i ≤ n, we report

φ̄χi (t/T ; θj) := 1
n

∑
j:θj∈Θ

n∑
`=1

∣∣∣φ̂χi`(t/T ; θj)
∣∣∣, MT /2 ≤ t ≤ (T −MT /2), θj = πj/mT , (35)

a quantity which is zero when at time t there is no lead-lag relationship between the common
component χ̂i(t/T ) and all other common components of χ̂`(t/T ). It is intuitively clear that,
during the turmoil periods as the great financial crisis 2007-2009, all stocks tend to be in phase
(white areas in the figure), thus are comoving instantaneously, while during quieter periods
the effects of the common factors are more heterogeneous in time. Inspection of Figure 8
confirms this intuition.

5 Conclusions

We introduce a new time-varying version of the General Dynamic Factor Model (tvGDFM) for
high-dimensional locally stationary processes in the sense of Dahlhaus (1997, 2009), thereby
extending previous work on dynamic factor models (especially recent results in Forni et al.,
2015, 2017) by allowing for time-varying one-sided loading filters. We propose an estimation
method and, based on recent work of Zhang and Wu (2019), establish its consistency (with
rates). Unlike the related approach by Eichler et al. (2011), our time-varying GDFM does
allow for impulse response estimation and analysis.

This local stationarity approach, in a sense, is the opposite of the change-point setting
where abrupt changes in parameters are assumed (for the case of factor models, see Barigozzi
et al., 2018, and references therein). In this respect, the main advantage of a smoothly
varying model is that it does not require to determine the number and exact location in
time of possible change-points, while, admittedly, a disadvantage is that, in our framework,
the number of factors cannot be time-varying (such variation is tantamount to an abrupt
change in the factor loadings). It should be noted, however, that “small change-points”
(violating the assumption of stationarity) do not necessarily preclude consistent recovery of
the common-idiosyncratic decomposition; see Bates et al. (2013) for more precise results on
this (in a stationary static factor model context). Intuitively, “small change-points” here is
to be interpreted as “cross-sectionally non-pervasive” ones. Providing a formal statement for
this is beyond the scope of this paper but we reasonably can expect that our locally stationary
approach similarly is robust to the presence of such “small change-points”.

Our tvGDFM is then employed in an analysis of financial connectedness along the lines
of Diebold and Yilmaz (2014). The main difference between their approach and ours is that
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we can handle large datasets where episodes of systemic risk are typically pervasive, thus
implying a factor structure, and accomodate locally stationary time series. We find that the
comovements in a high-dimensional dataset of intra-day adjusted log ranges of the constituents
of the Standard & Poor’s 500 index are remarkably strong; this suggests basing the analysis
of connectedness on (estimators of) the impulse response functions with respect to common
factors or shocks, a straightforward source of systemic risk also considered (in a fixed low-
dimensional context) by Billio et al. (2012). We show that large increases in connectedness,
especially in their mid to low frequencies, are associated with the most important turmoils in
the stock market, as the great financial crisis of 2007-2009. Moreover, the dynamic effect of
factors is heterogeneous across industrial sectors and time. During crisis periods the financial
and real estate sectors are the most affected, and all stocks react in a synchronous way to
market shocks.

Our empirical analysis opens the way for two important empirical questions. First, since
connectedness is a measure of systemic risk, its ultimate use is to predict rare financial events.
Exploring such predictability requires an appropriate definition of “rare event” and the spe-
cification of the forecasting equation. Second, a structural analysis along the lines of Barigozzi
et al. (2019), but based on our novel time-varying framework, would allow us to attach an
economic meaning to each individual common shock and shed more light on the sources of
connectedness and their propagation mechanisms. Both extensions are non-trivial, especially
in a nonstationary setting, and are left for further research.
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