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Abstract

We prove that important properties describing complex behaviours as ergodicity, chaos, topological transitivity, and
topological mixing, are decidable for one-dimensional linear cellular automata (LCA) over (Z/mZ)n (Theorem 6
and Corollary 7), a large and important class of cellular automata (CA) which are able to exhibit the complex
behaviours of general CA and are used in applications. In particular, we provide a decidable characterization of
ergodicity, which is known to be equivalent to all the above mentioned properties, in terms of the characteristic
polynomial of the matrix associated with LCA. We stress that the setting of LCA over (Z/mZ)n with n > 1
is more expressive, gives rise to much more complex dynamics, and is more difficult to deal with than the
already investigated case n = 1. The proof techniques from [23, 25] used when n = 1 for obtaining decidable
characterizations of dynamical and ergodic properties can no longer be exploited when n> 1 for achieving the
same goal. Indeed, in order to get the decision algorithm (Algorithm 1) we need to prove a non trivial result of
abstract algebra (Theorem 5) which is also of interest in its own.

We also illustrate the impact of our results in real-world applications concerning the important and growing
domain of cryptosystems which are often based on one-dimensional LCA over (Z/mZ)n with n> 1. As a matter of
facts, since cryptosystems have to satisfy the so-called confusion and diffusion properties (ensured by ergodicity and
chaos, respectively, of the involved LCA) Algorithm 1 turns out to be an important tool for building chaotic/ergodic
one-dimensional linear CA over (Z/mZ)n and, hence, for improving the existing methods based on them.

Keywords: Cellular Automata, Linear Cellular Automata, Decidability, Symbolic dynamics, Complex Systems

1. Introduction

We study the class of one-dimensional linear cellular automata (LCA) over the alphabet (Z/mZ)n, i.e., one-
dimensional cellular automata (CA) with local rule defined by n× n matrices with elements in Z/mZ. Despite
their simplicity, they are able to exhibit the complex behaviors of general CA (for recent results and an up-
to date bibliography on CA, see for instance [19, 12, 10, 1], while for related models we refer the reader
to [16, 18, 17, 15]). Moreover, they are used in many applications in several scientific domains [5, 21]. We recall
that LCA over the alphabet (Z/mZ)n with n = 1 have been extensively studied. In that case, all the dynamical
and ergodic properties, including those we will deal with in this paper, have been characterized and proved to be
decidable [23, 25, 6, 7, 11].

Although LCA over (Z/mZ)n with n > 1 are used in many important applications such as design of secret
sharing schemes, data encryption, data compression and image processing, there are few results regarding
decidable characterizations of the dynamical properties for such LCA. Actually, the setting n> 1, which is more
expressive and gives rise to much more complex dynamics than n = 1 (see, for instance [14, 13]), is more difficult

Email addresses: alberto.dennunzio@unimib.it (Alberto Dennunzio), enrico.formenti@unice.fr (Enrico Formenti),
darijgrinberg@gmail.com (Darij Grinberg), luciano.margara@unibo.it (Luciano Margara)

Preprint submitted to Elsevier May 22, 2020



to deal with. The proof techniques from [23, 25] used when n = 1 for obtaining decidable characterizations
of dynamical and ergodic properties can no longer be exploited when n> 1 for achieving the same goal. Only
injectivity and surjectivity have been characterized (in terms of decidable conditions on the matrix associated with
the LCA [4, 24]).

In this paper, we prove that important properties describing CA complex behaviours as chaos, ergodicity,
topological transitivity, and topological mixing are decidable (as well as equivalent) for one-dimensional LCA over
(Z/mZ)n (Theorem 6 and Corollary 7). In particular, we provide a decidable characterization for ergodicity in
terms of the characteristic polynomial of the matrix associated to LCA. In order to get such a characterization and
then the decision algorithm, namely Algorithm 1, we need to prove a non trivial result of abstract algebra which is
also of interest in its own (Theorem 5).

Let us explain the importance of our results in applications by considering the growing domain of cryptosystems.
Indeed, one-dimensional LCA over (Z/mZ)n with n> 1 are often involved in designing cryptographic techniques.
Moreover, it is well-known that safe cryptosystems have to satisfy the so-called confusion and diffusion properties
(along with some variants of them). Since ergodicity and chaotic behavior are the dynamical counterparts of
confusion and diffusion [2], Corollary 7 and Algorithm 1 are important tools to be used in the applications for
building chaotic/ergodic one-dimensional LCA over (Z/mZ)n and, hence, for improving the existing techniques
which are based on them. We show how our results can be used regarding two representative applications in the
domain of cryptosystems, namely, a secret sharing scheme and a data encryption method. Clearly, they turn out
to be very useful in many domains and for all those numerous applications where such CA are involved and a
chaotic behavior is required.
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2. Basic notions

Let Q be a finite set (also called alphabet). A CA configuration (or, briefly, a configuration) is any function from
Z to Q. Given a configuration c ∈QZ and any integer i ∈ Z, the value of c in position i is denoted by ci . The set
QZ, called configuration space, is as usual equipped with the standard Tychonoff distance d.

A one-dimensional CA (or, briefly, a CA) over Q is a pair (QZ,∆), where∆: QZ→QZ is the uniformly continuous
transformation (called global rule) defined as ∀c ∈ QZ,∀i ∈ Z,∆(c)i = δ (ci−r , . . . ci+r) , for some fixed natural
number r ∈ N (called radius) and some fixed function δ : Q2r+1→Q (called local rule of radius r).

In the context of one-dimensional CA, whenever the term linear is involved the alphabet Q is Kn, where
K = Z/mZ for some natural m > 1. Both Kn and (Kn)Z become K-modules in the obvious (i.e., entrywise)
way. For any natural n > 0, In shall always stand for the n × n identity matrix (over whatever ring we are
using). Moreover, if K is any commutative ring and A ∈ Kn×n is an n× n-matrix over K, then χA shall denote
the characteristic polynomial det (t In − A) ∈K [t] of A. Furthermore, we denote by K[X , X−1] the set of Laurent
polynomials with coefficients in K. Finally, if f and g are two polynomials over a field K, then “ f ⊥ g” will
mean that the polynomials f and g are coprime (this makes sense, since the polynomial ring K [t] is a Euclidean
domain).

Let K= Z/mZ for some natural m> 1 and let n ∈ N with n≥ 1.

A local rule δ : (Kn)2r+1→Kn of radius r is said to be linear if it is defined by 2r+1 matrices A−r , . . . , Ar ∈Kn×n

as follows: ∀(x−r , . . . , x r) ∈ (Kn)2r+1,δ(x−r , . . . , x r) =
∑r

i=−r Ai · x i .
A one-dimensional linear CA (LCA) over Kn is a CA ∆ based on a linear local rule. The Laurent polynomial

M(X ) =
r
∑

i=−r
AiX

−i ∈ Kn×n[X , X−1] is said to be the the matrix associated with ∆. We recall that the dynamical

behavior of LCA over Kn when n = 1 has been successfully investigated by means of M(X ) (see [23, 25]). In
that case, all the dynamical and ergodic properties, including those we will deal with in this paper, have been
characterized and, in particular, they turn out to be decidable. For this reason, in the sequel we will deal with
naturals n> 1.
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3. Deciding chaos, ergodicity, transitivity, and mixing for one-dimensional linear CA over (Z/mZ)n

This section contains the major result of the paper, namely, the decidability of chaos ergodicity, topological
transitivity, and mixing for one-dimensional linear CA over (Z/mZ)n. We recall that a CA (QZ,∆) is chaotic if
it is sensitive to the initial conditions, topologically transitive and regular (for the definitions of such standard
properties, including mixing, the reader is referred for instance to [14, 13, 20, 25]), while it is ergodic with
respect to the normalized Haar measure µ : M → [0,1] if for every set E ∈M it holds that

�

E = F−1(E)
�

⇒
(µ(E) = 0 or µ(E) = 1), where M is the usual collection of measurable sets of QZ .

First of all, as an immediate consequence of our results in [14, 13], we can state that all these properties are
equivalent for one-dimensional linear CA over the alphabet Q = (Z/mZ)n.

Theorem 1. Let
�

(Kn)Z ,∆
�

be a one-dimensional LCA over Kn, where K = Z/mZ for some natural m> 1. Then, ∆
is ergodic iff it is transitive iff it is mixing iff it is chaotic.

We want to stress that the following theorem has been fundamental for proving our result in [14, 13], in
particular that topological transitivity implies ergodicity for the larger class of additive CA over a finite abelian
group.

Theorem 2. Let F be any endomorphism of a compact abelian group G with normalized Haar measure µ. Then, the
following conditions are equivalent: (1) F is ergodic; (2) F is surjective and Fh − I is surjective for all h ∈ N (I is the
identity map)

Moreover, we want to clarify that Theorem 2 consists of an extrapolation from [26, Th. 1] which states that
five conditions (namely, items (i), . . . , (v) in that theorem) involving properties of the endomorphism F are
equivalent. We have reported in Theorem 2 only two among them, since the cycle of implications (i)⇒ (ii)⇒
·· · (v)⇒ (i) considered in the proof of [26, Th. 1] turns out be false, while (1) and (2) are actually equivalent.
Indeed, such an equivalence is ensured by [27, Th. 1.10] which states that (iii) (i.e., (1)) is equivalent to (iv)
which in turn is correctly proved to be equivalent to (v) (i.e. (2)) in [26].

3.1. The decision algorithm

The following result is another ingredient used in the sequel.

Theorem 3 ([4, 24]). Let
�

(Kn)Z ,∆
�

be a one-dimensional LCA over Kn, where K = Z/mZ for some natural m> 1,
and let M(X ) be the matrix associated with ∆. Then, ∆ is surjective if and only if det M(X ) is the Laurent polynomial
associated with a surjective one-dimensional LCA over K.

Remark 4. When K= Z/pkZ for some prime p and some integer k > 0, for every matrix M(X ) ∈Kn×n[X , X−1]
it holds that det M(X ) is the Laurent polynomial associated with a surjective one-dimensional LCA over K iff
p - det M(X ), i.e., equivalently, det(M(X ) mod p) 6= 0, where (M(X ) mod p) means that all the coefficients of
M(X ) are taken modulo p.

We stress that Theorem 2 used in conjunction with both Theorem 3 and a generalisation of [6, Lemma 3.2] to
(Z/mZ)n already provides a semi-algorithm for deciding ergodicity for one-dimensional LCA over Kn. However,
obtaining a real algorithm is not a trivial task at all. Indeed, as illustrated in the sequel, it will require to prove the
following non trivial result of abstract algebra which is also of interest in its own (the proof is located at the end
of this section).

Theorem 5. Let q be a prime power and Fq the corresponding finite field. Let F be a field such that F/Fq is a
purely transcendental field extension. Let n ∈ N and let N ∈ F n×n be a matrix. Then, the following statements are
equivalent:

A.1 det(Nh − In) 6= 0 for all h ∈ N \ {0};
A.2 χN (t)⊥ th − 1 for all h ∈ N \ {0};
A.3 χN (t)⊥ tqi−1 − 1 for all i ∈ [1, n].
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input : a natural n> 1, a prime p, and a matrix M(X ) ∈Kn×n[X , X−1], where K= Z/pkZ for some k > 0
output : true iff the one-dimensional LCA having M(X ) as associated matrix is ergodic

if det(M(X ) mod p) 6= 0 then // See Remark 4
for i← 1 to n do // Check Condition A.3

if gcd(χM(X )(t), t(p
k)i−1 − 1) 6= 1 then

return false
end

end
return true

end
return false

Algorithm 1: Algorithm for deciding ergodicity for one-dimensional LCA over Kn, with K= Z/pkZ.

We now exhibit the decision algorithm of ergodicity for one-dimensional LCA over Kn with K = Z/pkZ for
any prime p and any natural k > 0. As we will see, such an algorithm allows one to decide ergodicity also for
one-dimensional LCA over Kn where K= Z/mZ for any natural m> 1.

The correctness of Algorithm 1 is ensured by the following

Theorem 6. Algorithm 1 decides ergodicity for one-dimensional LCA over Kn, where K = Z/pkZ for any natural
n> 1, any prime p, and any natural k > 0. In other words, the following decidable condition characterizes ergodicity
for any LCA ∆: ∆ is surjective and χM(X )(t) ⊥ tqi−1 − 1 for all i ∈ [1, n], where q = pk and M(X ) is the matrix
associated with ∆.

Proof. Let ∆ any one-dimensional LCA over Kn, where K = Z/pkZ for some n, p, and k as in the statement.
Let M(X ) be the matrix associated to ∆. By Theorem 2, ∆ is ergodic iff ∆ is surjective and, for all naturals
h > 0, the 1-dimensional LCA H(h) =∆h − I is surjective. Equivalently, by Remark 4, ∆ is ergodic iff det(M(X )
mod p) 6= 0 and, for all naturals h> 0, det((M(X )h − In) mod p) 6= 0. The first requirement is clearly decidable.
Since the second one is nothing but an instance of Condition A.1 of Theorem 5, it is equivalent to Condition A.3
of Theorem 5 itself and, hence, it is decidable. Algorithm 1 just consists of testing both the requirements to decide
if ∆ is ergodic.

Theorem 6 leads to the following result.

Corollary 7. Chaos, ergodicity, transitivity, and mixing are decidable properties for one-dimensional LCA over
(Z/mZ)n for any natural m> 1 and any natural n> 1.

Proof. By Theorem 1 it is enough to show that ergodicity is decidable. Consider a one-dimensional LCA ∆
over (Z/mZ)n for arbitrary naturals m > 1 and n > 1. By a generalisation of [6, Lemma 3.2] to (Z/mZ)n, if
m = pk1

1 . . . pkl
l is the prime factor decomposition of m, then ∆ is topologically conjugated to a product of one-

dimensional LCAs, each of them having global rule ∆i over (Z/pki
i Z)

n. Since topological transitivity is preserved
under topological conjugacy and the product of CA is topological transitive iff each CA is, by Theorem 1 it follows
that ∆ is ergodic iff each one-dimensional LCA ∆i over (Z/pki

i Z)
n is ergodic. Algorithm 1 just allows one to

establish whether each of such one-dimensional LCA is ergodic. Therefore, ergodicity is decidable.

Remark 8. An incremental version of Algorithm 1 that is able to decide ergodicity for LCA over (Z/mZ)n for any
natural m> 1 and any natural n> 1 can be easily obtained by the proof of Corollary 7.

3.2. Proof of Theorem 5

The rest of the section is devoted to the proof of Theorem 5. We need the following two lemmata.
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Lemma 9. Let q, Fq and F be as in Theorem 5 and n ∈ N. Let f ∈ F[t] be a polynomial with deg f ≤ n. Assume
that f ⊥ tqi−1 − 1 for all i ∈ [1, n]. Then, f ⊥ th − 1 for all integers h> 0.

Proof. Let h be a positive integer. We must prove that f ⊥ th − 1. Indeed, assume the contrary. Then, the
polynomials f and th − 1 have a non-constant common divisor g ∈ F [t]. Then, g | f and g | th − 1. Thus, the
roots of g are h-th roots of unity, and therefore are algebraic over the field Fq. Hence, the coefficients of g are
algebraic over the field Fq as well (since these coefficients are symmetric polynomials in these roots with integer
coefficients). On the other hand, these coefficients belong to F . But F/Fq is a purely transcendental field extension.
Thus, every element of F that is algebraic over Fq must belong to Fq

1. Thus, the coefficients of g must belong to
Fq (since they are elements of F that are algebraic over Fq). In other words, g ∈ Fq [t].

Since this polynomial g ∈ Fq [t] is non-constant, it must have a monic irreducible divisor in Fq [t]. In other
words, there exists a monic irreducible π ∈ Fq [t] such that π | g. We have π | g | f , thus degπ ≤ deg f . Let
j = degπ. Then, j ≥ 1 (since π is irreducible) and

j = degπ≤ deg f ≤ n.

Hence, j ∈ [1, n]. Thus, f ⊥ tq j−1 − 1 (since we assumed that f ⊥ tqi−1 − 1 for all i ∈ [1, n]). Hence, every
common divisor of f and tq j−1 − 1 in F [t] must be constant.

From π | g | th − 1, we conclude that th ≡ 1 mod π in F [t]. If we had π | t in F [t], then we would have
t ≡ 0 mod π in F [t], which would entail th ≡ 0h = 0 mod π and thus 0≡ th ≡ 1 mod π, which would lead to
π | 1, which would be absurd (since degπ= j ≥ 1). Thus, we cannot have π | t in F [t]. Thus, we cannot have
π | t in Fq [t] either. Hence, π - t in Fq [t].

Claim 10. π | tq j−1 − 1.

Proof. This is a well-known fact about irreducible polynomials in Fq [t] distinct from t, but for the sake of
completeness let us give a proof. For each u ∈ Fq [t], we let u denote the projection of u onto Fq [t]/ (π).

We have π - t in Fq [t]. In other words, t 6= 0 in Fq [t]/ (π). As π is irreducible, Fq [t]/ (π) is a finite field
of size q j with degπ = j. As a consequence, its group of units is a finite group of size q j − 1. Thus, Lagrange’s
theorem shows that uq j−1 = 1 for every nonzero element u ∈ Fq [t]/ (π). Applying this to u = t, we conclude that

tq j−1 = 1 (since the element t of Fq [t]/ (π) is nonzero). Hence, tq j−1 = tq j−1 = 1= 1, so that tq j−1 ≡ 1 mod π

in Fq [t]. In other words, π | tq j−1 − 1.

Combining π | g | f with π | tq j−1 − 1, we conclude that π is a common divisor of f and tq j−1 − 1 in F [t].
Hence, π is constant (since every common divisor of f and tq j−1 − 1 in F [t] must be constant). This contradicts
the irreducibility of π. This contradiction shows that our assumption was false. Hence, Lemma 9 is proven.

The following is a known result which will be useful for proving Theorem 5.

Lemma 11 ([22]). Let n ∈ N. Let K be any field. Let N ∈ Kn×n be a matrix. Let f ∈ K [t] be any polynomial. Then,
det ( f (N)) 6= 0 if and only if χN ⊥ f .

Proof of Theorem 5. Let h be a positive integer. Then, Lemma 11 (applied to K = F and f = th − 1) shows that
det

�

Nh − In

�

6= 0 if and only if χN ⊥ th − 1. We thus have proven the equivalence

�

det
�

Nh − In

�

6= 0
�

⇐⇒
�

χN ⊥ th − 1
�

for each positive integer h. Hence, the statement A.1 is equivalent to the statement A.2.

1Here we are using one of the basic properties of purely transcendental field extensions: If L/K is a purely transcendental field extension,
then every element of L that is algebraic over K must belong to K . (Equivalently: If L/K is a purely transcendental field extension, then every
element x ∈ L \ K is transcendental over K .) This is proven in [3, § 7.1, Remark 10], for example.
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On the other hand, χN ∈ F [t] is a polynomial with deg (χN ) = n. Thus, Lemma 9 (applied to f = χN ) shows
that if we have χN ⊥ tqi−1−1 for all i ∈ [1, n], then we have χN ⊥ th−1 for all positive integers h. In other words,
the statement A.3 implies the statement A.2. Conversely, the statement A.2 implies the statement A.3 (since each
qi − 1 with i ∈ [1, n] is a positive integer). Combining these two sentences, we conclude that the statement A.2 is
equivalent to the statement A.3. Therefore, Theorem 5 is proven.

Due to an interest in its own and a possible application to CA over a more general alphabet (as, for instance, an
abelian group), we are going to extend Lemma 11 to arbitrary commutative rings and re-prove it in that generality.
However, we first need to prove some additional lemmata.

Lemma 12. Let K be any commutative ring. Let f ∈K [t] be any polynomial. Let L be any commutative K-algebra.
Let u and v be two elements of L. Then, u− v | f (u)− f (v) in L.

Proof. This is well-known in the case when K = Z and L = Z; but the same proof applies in the general case.
Indeed, write the polynomial f ∈ K [t] in the form f =

∑n
i=0 ai t

i for some n ∈ N and some a0, a1, . . . , an ∈ K.
Then, f (u) =

∑n
i=0 aiu

i and f (v) =
∑n

i=0 ai v
i . Subtracting these two equalities from each other, we obtain

f (u)− f (v) =
n
∑

i=1

aiu
i −

n
∑

i=1

ai v
i =

n
∑

i=1

ai

�

ui − v i
�

︸ ︷︷ ︸

=(u−v)
∑i−1

k=0 uk v i−1−k

=
n
∑

i=1

ai (u− v)
i−1
∑

k=0

uk v i−1−k = (u− v)
n
∑

i=1

ai

i−1
∑

k=0

uk v i−1−k.

The right hand side of this equality is clearly divisible by u− v. Thus, so is the left hand side. In other words, we
have u− v | f (u)− f (v) in L.

Note that commutativity of L is crucial in the proof of the previous lemma.

Lemma 13. Let n ∈ N. Let L be any commutative ring. Let A∈ Ln×n be any n× n-matrix. Let λ ∈ L. Then,

det (λIn + A)≡ det AmodλL.

Proof. This can be proven using the explicit formula for det (λIn + A) in terms of principal minors of A, or using
the fact that the characteristic polynomial of A has constant term (−1)n det A. Here is another argument: For each
u ∈ L, we let u be the projection of u onto the quotient ring L/λL; furthermore, for each matrix B ∈ Ln×n, we let
B ∈ (L/λL)n×n be the result of projecting each entry of the matrix B onto the quotient ring L/λL. Then, λ ∈ λL
and thus λ = 0. Hence, λIn + A= λIn

︸︷︷︸

=0
(since λ=0)

+A= A. But the determinant of a matrix is a polynomial in the entries

of the matrix, and thus is respected by the canonical projection L→ L/λL; hence,

det
�

λIn + A
�

= det (λIn + A) and det A= det A.

The left hand sides of these two equalities are equal (since λIn + A= A). Thus, the right hand sides are equal
as well. In other words, det (λIn + A) = det A. In other words, det (λIn + A)≡ det AmodλL. This proves Lemma
13.

Lemma 14. Let n ∈ N. Let K be any commutative ring. Let f ∈ K [t] be any polynomial. Let N ∈ Kn×n be any
n× n-matrix. Then, there exist two polynomials a, b ∈K [t] such that

det ( f (N)) = f a+χN b in K [t] .

(Note that the left hand side of this equality is a constant polynomial, since f (N) ∈Kn×n.)

6



Proof. Consider N as a matrix over the polynomial ring K [t] (via the standard embedding Kn×n→ (K [t])n×n).
The K-subalgebra (K [t]) [N] of (K [t])n×n is commutative (since it is generated by the single element N over the
commutative ring K [t]).

Hence, Lemma 12 (applied to L= (K [t]) [N] and u= t In and v = N) shows that t In − N | f (t In)− f (N) in
(K [t]) [N]. In other words, there exists U ∈ (K [t]) [N] such that

f (t In)− f (N) = (t In − N) · U . (1)

Consider this U . Taking determinants on both sides of the Equality (1), we find

det ( f (t In)− f (N)) = det ((t In − N) · U) = det (t In − N)
︸ ︷︷ ︸

=χN
(by the definition of χN )

·det U

= χN · det U .

In view of f (t In) = f (t) · In, this rewrites as

det ( f (t) · In − f (N)) = χN · det U .

Hence,

χN · det U = det ( f (t) · In − f (N))
︸ ︷︷ ︸

= f (t)·In+(− f (N))

= det ( f (t) · In + (− f (N)))

≡ det (− f (N)) (by Lemma 13, applied to L=K [t] , λ= f (t) and A= − f (N))
= (−1)n det ( f (N))mod f (t)K [t] .

Multiplying this congruence by (−1)n, we obtain

(−1)nχN · det U ≡ (−1)n (−1)n
︸ ︷︷ ︸

=1

det ( f (N)) = det ( f (N))mod f (t)K [t] .

In other words, (−1)nχN · det U − det ( f (N)) ∈ f (t)K [t]. In other words, there exists a polynomial c ∈ K [t]
such that

(−1)nχN · det U − det ( f (N)) = f (t) c. (2)

Consider this c. Solving the Equality (2) for det ( f (N)), we find

det ( f (N)) = (−1)nχN · det U − f (t)
︸︷︷︸

= f

c = (−1)nχN · det U − f c

= f · (−c) +χN · (−1)n det U .

Hence, there exist two polynomials a, b ∈ K [t] such that det ( f (N)) = f a+χN b in K [t] (namely, a = −c and
b = (−1)n det U). This proves Lemma 14.

We can now generalize Lemma 11 to arbitrary rings.

Lemma 15. Let n ∈ N. Let K be any commutative ring. Let N ∈Kn×n be a matrix. Let f ∈K [t] be any polynomial.
Then, det ( f (N)) ∈K is invertible if and only if there exist polynomials a, b ∈K [t] such that f a+χN b = 1.

Proof. =⇒: Assume that det ( f (N)) ∈ K is invertible. Thus, there exists c ∈ K such that det ( f (N)) · c = 1.
Lemma 14 ensures that there exist two polynomials a, b ∈ K [t] such that det ( f (N)) = f a + χN b in K [t].
Consider these a and b, and denote them by a0 and b0. Thus, a0 and b0 are two polynomials in K [t] such that
det ( f (N)) = f a0 +χN b0. Now, comparing det ( f (N)) · c = 1 with

det ( f (N))
︸ ︷︷ ︸

= f a0+χN b0

·c = ( f a0 +χN b0) · c = f a0c +χN b0c,
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we obtain f a0c +χN b0c = 1. Thus, there exist polynomials a, b ∈K [t] such that f a+χN b = 1 (namely, a = a0c
and b = b0c). This proves the “=⇒” direction.
⇐=: Assume that there exist polynomials a, b ∈K [t] such that f a+χN b = 1. Consider these a and b. The

Cayley–Hamilton theorem yields χN (N) = 0. But evaluating both sides of the equality f a+χN b = 1 at N , we
obtain

f (N) a (N) +χN (N) b (N) = In.

Hence,
In = f (N) a (N) +χN (N)

︸ ︷︷ ︸

=0

b (N) = f (N) a (N) .

Taking determinants on both sides of this equality, we find

det (In) = det ( f (N) a (N)) = det ( f (N)) · det (a (N)) .

Thus,
det ( f (N)) · det (a (N)) = det (In) = 1.

Hence, det ( f (N)) ∈K is invertible (and its inverse is det (a (N))). This proves the “⇐=” direction.

4. Applications

In this section we illustrate how our results can improve applications. Considering the rapid growing of
cryptographic techniques and the fact that LCA are often involved in designing these latter, we will deal with
two representative applications in the domain of cryptosystems, namely, a secret sharing scheme and a data
encryption method. Such applications are based on reversible (i.e., equivalently, injective) one-dimensional LCA
over Kn with K= Z/mZ for some natural m> 1. Although reversibility is an essential requirement allowing the
authorized parts to recover the cyphered/secreted data, it is largely not enough in order to ensure the security
level expected in real scenarios. Indeed, it is well-known that good cryptosystems have to satisfy the so-called
confusion and diffusion properties (along with some variants of them). Ergodicity and chaotic behavior are just
the dynamical counterparts of the required cryptographic properties [2] and then they have to be exhibited by
the dynamical system on which the cryptosystem is based. Actually, Corollary 7 and Algorithm 1 allow one to
establish whether one-dimensional LCA exhibit such behaviors. Therefore, they are important tools to be used in
the above mentioned applications for building one-dimensional LCA with the required properties and, then, for
improving the existing methods which are based on such LCA.

In [9], authors propose a (n, l)-threshold secret sharing scheme involving l participants and based on linear
higher-order CA of memory n over the alphabet K = Z/2Z. Such automata are nothing but one-dimensional
linear CA over Kn (with associated matrix presenting a specific structure, namely, a Frobenius normal form) and
this makes it possible to analyse the scheme by exploiting the results concerning LCA.

As discussed at the beginning of this section, the one-dimensional LCA ∆ on which the method is based has
to be both ergodic and chaotic in order to ensure the cryptographic properties of confusion and diffusion. By
Corollary 7 ergodicity and chaos are equivalent. Therefore, it is essential that Algorithm 1 deciding ergodicity is
inserted in the scheme just before step 4. of the setup phase from [9] with the additional requirement that steps 1.
to 3., which by using a pseudo-random number generator produce the LCA ∆, have to be repeated whenever they
provide a non ergodic LCA.

As a specific application, let us consider the (3,4)-threshold scheme for texts of 64 bits proposed in [9]. The
involved LCA ∆, which is one of the possible LCA provided by the method, has local rule with radius r = 1 and
matrix M(X ) in Frobenius normal form and with characteristic polynomial

χM(X )(t) = t3 + (−X−1 − 1− X )t2 + (−X−1 − X )t − 1 .

Clearly, it holds that det M(X ) = 1 and so, by [24, Proposition 3], it follows that ∆ is reversible, that is, as already
pointed out, a necessary but non sufficient requirement. Now, since χM(X )(t) is coprime with t2i−1 − 1 for all
i ∈ [1,3], Algorithm 1 outputs that ∆ is ergodic.
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Assume now that steps 1. to 3. generate a LCA ∆ such that χM(X )(t) = t3 − 1 (this situation may actually
happen). Then, Algorithm 1 outputs that ∆ is not ergodic. By Theorem 1, the LCA is not even chaotic. Hence, the
confusion and diffusion properties are not satisfied and the scheme turns out to be vulnerable. This situation can
be avoided by adding Algorithm 1 at the end of step 3..

A block cypher scheme based on a linear higher-order CA of memory n = 2 over K = Z/2Z, i.e., a LCA
((K2)Z,∆), was proposed in [8]. The local rule of ∆ has radius r = 1 and the matrix M(X ) associated with ∆ has
characteristic polynomial

χM(X )(t) = t2 + (−α2
−1X−1 −α2

0 −α
2
1X )t − 1

where α2
i s are coefficients to be suitably set up. According to the experimental observations by the authors, the

following three choices a2
−1 = a2

1 = 1 and a2
0 = 0, a2

0 = a2
1 = 1 and a2

−1 = 0, and a2
−1 = a2

0 = a2
1 = 1 allow good

performances of the encryption scheme. Indeed, by running Algorithm 1 in these three situations, one finds that
all the corresponding LCA are ergodic and chaotic. This is a formal explanation of such observations about the
proposed encryption scheme. Therefore, also the cypher scheme can be equipped by Algorithm 1 to avoid bad
choices and so in such a way that attacks are much harder.

5. Conclusions

We have proved that ergodicity, chaos, topological transitivity, and topological mixing, are decidable for
one-dimensional LCA over (Z/mZ)n. Providing decision algorithms for other interesting dynamical properties such
as equicontinuity, sensitivity to the initial conditions, expansivity, and strong transitivity for LCA over (Z/mZ)n is
the first step for further researches in this domain.

Another interesting research direction consists in extending the decidability results for all the above mentioned
properties from one-dimensional LCA over (Z/mZ)n to the more general class of one-dimensional additive CA over
any finite abelian group. This would allow to build more robust methods based on such CA in several applications.
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